
Lecture 14
Multi-view Stereo & Structure 

from Motion

Many slides adapted from Lana Lazebnik and Noah Snavelly, who in turn adapted slides from 
Steve Seitz, Rick Szeliski, Martial Hebert, Mark Pollefeys, and others….



Overview
• Multi-view stereo

• Structure from Motion (SfM)

• Large scale Structure from Motion

• Kinect Fusion



Multi-view Stereo

CMU’s 3D Room

Point Grey’s Bumblebee XB3

Point Grey’s ProFusion 25

[Slide: N. Snavely]

http://www.cs.cmu.edu/~virtualized-reality/3DRoom/TR.htm
http://www.ptgrey.com/
http://www.ptgrey.com/


Multi-view Stereo

[Slide: N. Snavely]



Multi-view Stereo

Figures by Carlos Hernandez

Input:  calibrated images from several viewpoints
Output:  3D object model

[Slide: N. Snavely]
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Applications













Stereo:  another view
error

depth

[Slide: N. Snavely]



width of 
a pixel

Choosing the stereo baseline

What’s the optimal baseline?
– Too small:  large depth error
– Too large:  difficult search problem

Large Baseline Small Baseline

all of these
points project
to the same 
pair of pixels

[Slide: N. Snavely]



The Effect of Baseline on Depth 
Estimation



z

width of 
a pixel

width of 
a pixel

z

pixel matching score





Multibaseline Stereo

Basic Approach
• Choose a reference view
• Use your favorite stereo algorithm BUT

> replace two-view SSD with SSSD over all baselines

Limitations
• Only gives a depth map (not an “object model”)
• Won’t work for widely distributed views:



Some Solutions
• Match only nearby photos [Narayanan 98]
• Use NCC instead of SSD,

Ignore NCC values > threshold 
[Hernandez & Schmitt 03]

Problem:  visibility



Popular matching scores

• SSD (Sum Squared Distance)

• NCC (Normalized Cross Correlation)

• where          

• what advantages might NCC have?

[Slide: N. Snavely]



Reconstruction from Silhouettes

Binary Images

Approach:  
• Backproject each silhouette
• Intersect backprojected volumes



Volume intersection

Reconstruction Contains the True Scene
• But is generally not the same 
• In the limit (all views) get visual hull

> Complement of all lines that don’t intersect S



Voxel algorithm for volume intersection

Color voxel black if on silhouette in every image
• for M images, N3 voxels
• Don’t have to search 2N3 possible scenes!

O( MN3 ),



Properties of Volume Intersection

Pros
• Easy to implement, fast
• Accelerated via octrees [Szeliski 1993] or interval techniques 

[Matusik 2000]

Cons
• No concavities
• Reconstruction is not photo-consistent
• Requires identification of silhouettes



Multi-view stereo: Summary
• Multiple-baseline stereo

• Pick one input view as reference
• Inverse depth instead of disparity

• Volumetric stereo
• Photo-consistency
• Space carving
• Visual hull: intersection of visual cones

• Feature-based stereo
• From sparse to dense correspondences

All assume calibrated cameras!



Overview
Multi-view stereo

Structure from Motion (SfM)

Large scale Structure from Motion

Kinect Fusion



Structure from motion



Multiple-view geometry questions
• Scene geometry (structure): Given 2D point 

matches in two or more images, where are the 
corresponding points in 3D?

• Correspondence (stereo matching): Given a 
point in just one image, how does it constrain the 
position of the corresponding point in another 
image?

• Camera geometry (motion): Given a set of 
corresponding points in two or more images, what 
are the camera matrices for these views?

Slide: S. Lazebnik



Structure from motion
• Given: m images of n fixed 3D points 

xij = Pi Xj , i = 1, … , m,    j = 1, … , n  

• Problem: estimate m projection matrices Pi and 
n 3D points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3

Slide: S. Lazebnik



Structure from motion ambiguity
• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 
factor of 1/k, the projections of the scene points in the 
image remain exactly the same:

It is impossible to recover the absolute scale of the scene!
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Slide: S. Lazebnik



Structure from motion ambiguity
• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 
factor of 1/k, the projections of the scene points in the 
image remain exactly the same 

• More generally: if we transform the scene using a 
transformation Q and apply the inverse 
transformation to the camera matrices, then the 
images do not change

( )( )QXPQPXx -1==

Slide: S. Lazebnik



Types of ambiguity
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• With no constraints on the camera calibration matrix or on the 
scene, we get a projective reconstruction

• Need additional information to upgrade the reconstruction to 
affine, similarity, or Euclidean

Slide: S. Lazebnik



Projective ambiguity

( )( )XQPQPXx  P
-1

 P==



Projective ambiguity



Affine ambiguity

( )( )XQPQPXx  A
-1

 A==

Affine



Affine ambiguity



Similarity ambiguity

( )( )XQPQPXx S
-1
S==



Similarity ambiguity



Structure from motion
• Let’s start with affine cameras (the math is easier)

center at
infinity



Recall: Orthographic Projection
Special case of perspective projection

• Distance from center of projection to image plane is infinite

• Projection matrix:

Image World

Slide by Steve Seitz



Orthographic Projection

Parallel Projection

Affine cameras



Affine cameras
• A general affine camera combines the effects of an 

affine transformation of the 3D space, orthographic 
projection, and an affine transformation of the image:

• Affine projection is a linear mapping + translation in 
inhomogeneous coordinates
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Affine structure from motion
• Given: m images of n fixed 3D points:

xij = Ai Xj + bi ,     i = 1,… , m,  j = 1, … , n  

• Problem: use the mn correspondences xij  to estimate 
m projection matrices Ai and translation vectors bi, 
and n points Xj

• The reconstruction is defined up to an arbitrary affine 
transformation Q (12 degrees of freedom):

• We have 2mn knowns and 8m + 3n unknowns (minus 
12 dof for affine ambiguity)

• Thus, we must have 2mn >= 8m + 3n – 12
• For two views, we need four point correspondences
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Affine structure from motion
• Centering: subtract the centroid of the image points

• For simplicity, assume that the origin of the world 
coordinate system is at the centroid of the 3D points

• After centering, each normalized point xij is related to 
the 3D point Xi by
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Affine structure from motion
• Let’s create a 2m× n data (measurement) matrix:

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

mnmm

n

n

xxx

xxx
xxx

D

ˆˆˆ

ˆˆˆ
ˆˆˆ

21

22221

11211

!

"

!

!

cameras
(2m)

points (n)

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf


Affine structure from motion
• Let’s create a 2m× n data (measurement) matrix:
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The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf


Factorizing the measurement matrix

Source: M. Hebert



Factorizing the measurement matrix
• Singular value decomposition of D:

Source: M. Hebert



Factorizing the measurement matrix
• Singular value decomposition of D:

Source: M. Hebert



Factorizing the measurement matrix
• Obtaining a factorization from SVD:

Source: M. Hebert



Factorizing the measurement matrix
• Obtaining a factorization from SVD:

Source: M. Hebert

This decomposition minimizes
|D-MS|2



Affine ambiguity

• The decomposition is not unique. We get the same D 
by using any 3×3 matrix C and applying the 
transformations M → MC, S →C-1S

• That is because we have only an affine transformation 
and we have not enforced any Euclidean constraints 
(like forcing the image axes to be perpendicular, for 
example)

Source: M. Hebert



• Orthographic: image axes are perpendicular 
and of unit length

Eliminating the affine ambiguity

x

Xa1

a2

a1 · a2 = 0

|a1|2 = |a2|2 = 1

Source: M. Hebert



Solve for orthographic constraints

• Solve for L = CCT

• Recover C from L by Cholesky decomposition: 
L = CCT

• Update A and X: A = AC, X = C-1X
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Slide: D. Hoiem



Algorithm summary
• Given: m images and n features xij

• For each image i, center the feature coordinates
• Construct a 2m × n measurement matrix D:

• Column j contains the projection of point j in all views
• Row i contains one coordinate of the projections of all the n 

points in image i
• Factorize D:

• Compute SVD: D = U W VT
• Create U3 by taking the first 3 columns of U
• Create V3 by taking the first 3 columns of V
• Create W3 by taking the upper left 3 × 3 block of W

• Create the motion and shape matrices:
• M = U3W3

½  and S = W3
½ V3

T (or M = U3 and S = W3V3
T)

• Eliminate affine ambiguity
Source: M. Hebert



Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf


Dealing with missing data
• So far, we have assumed that all points are visible in 

all views
• In reality, the measurement matrix typically looks 

something like this:

cameras

points



Dealing with missing data
• Possible solution: decompose matrix into dense sub-

blocks, factorize each sub-block, and fuse the results
• Finding dense maximal sub-blocks of the matrix is NP-

complete (equivalent to finding maximal cliques in a graph)
• Incremental bilinear refinement

(1) Perform 
factorization on a 
dense sub-block

(2) Solve for a new 
3D point visible by 
at least two known 
cameras (linear 
least squares)

(3) Solve for a new 
camera that sees at 
least three known 
3D points (linear 
least squares)

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling, and 
Matching Video Clips Containing Multiple Moving Objects. PAMI 2007.

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf


Projective structure from motion
• Given: m images of n fixed 3D points 

zij xij = Pi Xj , i = 1,… , m,    j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D 
points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3



Projective structure from motion
• Given: m images of n fixed 3D points 

zij xij = Pi Xj , i = 1,… , m,    j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D 
points Xj from the mn correspondences xij

• With no calibration info, cameras and points can only 
be recovered up to a 4x4 projective transformation Q:

X → QX, P → PQ-1

• We can solve for structure and motion when 
2mn >= 11m +3n – 15

• For two cameras, at least 7 points are needed



Projective SFM: Two-camera case
• Compute fundamental matrix F between the two views
• First camera matrix: [I|0]
• Second camera matrix: [A|b]
• Then b is the epipole (FTb = 0), A = –[b×]F

F&P sec. 13.3.1



Sequential structure from motion
•Initialize motion from two images 
using fundamental matrix

•Initialize structure by triangulation

•For each additional view:
• Determine projection matrix of 

new camera using all the known 
3D points that are visible in its 
image – calibration ca

m
er

as

points



Sequential structure from motion
•Initialize motion from two images 
using fundamental matrix

•Initialize structure by triangulation

•For each additional view:
• Determine projection matrix of 

new camera using all the known 
3D points that are visible in its 
image – calibration

• Refine and extend structure: 
compute new 3D points, 
re-optimize existing points that 
are also seen by this camera –
triangulation 

ca
m

er
as

points



Sequential structure from motion
•Initialize motion from two images 
using fundamental matrix

•Initialize structure by triangulation

•For each additional view:
• Determine projection matrix of 

new camera using all the known 
3D points that are visible in its 
image – calibration

• Refine and extend structure: 
compute new 3D points, 
re-optimize existing points that 
are also seen by this camera –
triangulation 

•Refine structure and motion: 
bundle adjustment

ca
m

er
as

points



Bundle adjustment
• Non-linear method for refining structure and motion
• Minimizing reprojection error
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Self-calibration
• Self-calibration (auto-calibration) is the process of 

determining intrinsic camera parameters directly from 
uncalibrated images

• For example, when the images are acquired by a 
single moving camera, we can use the constraint that 
the intrinsic parameter matrix remains fixed for all the 
images
• Compute initial projective reconstruction and find 3D 

projective transformation matrix Q such that all camera 
matrices are in the form Pi = K [Ri | ti]

• Can use constraints on the form of the calibration 
matrix: zero skew



Review: Structure from motion
• Ambiguity
• Affine structure from motion

• Factorization
• Dealing with missing data

• Incremental structure from motion
• Projective structure from motion

• Bundle adjustment
• Self-calibration



Summary: 3D geometric vision
• Single-view geometry

• The pinhole camera model
– Variation: orthographic projection

• The perspective projection matrix
• Intrinsic parameters
• Extrinsic parameters
• Calibration

• Multiple-view geometry
• Triangulation
• The epipolar constraint

– Essential matrix and fundamental matrix
• Stereo 

– Binocular, multi-view
• Structure from motion

– Reconstruction ambiguity
– Affine SFM
– Projective SFM



Overview
Multi-view stereo

Structure from Motion (SfM)

Large scale Structure from Motion



Large-scale Structure from motion

Given many images from photo collections how can we 
a) figure out where they were all taken from?
b) build a 3D model of the scene?

This is (roughly) the structure from motion problem
Slides from N. Snavely



appearance variation

resolution

massive collections

Challenges



Large-scale structure from motion

Dubrovnik, Croatia.  4,619 images (out of an initial  57,845).
Total reconstruction time: 23 hours
Number of cores: 352

Slide: N. Snavely



Structure from motion

• Input: images with points in correspondence      
pi,j  = (ui,j,vi,j)

• Output
• structure: 3D location xi for each point pi
• motion: camera parameters Rj , tj possibly Kj

• Objective function: minimize reprojection error

Reconstruction (side) (top)



Photo Tourism

Slide: N. Snavely

TreviFlythrojugh2.wmv



First step: how to get correspondence?

Feature detection and matching



Feature detection

Detect features using SIFT [Lowe, IJCV 2004]



Feature detection

Detect features using SIFT [Lowe, IJCV 2004]



Feature matching

Match features between each pair of images



Feature matching

Refine matching using RANSAC to estimate fundamental 
matrix between each pair



p1,1

p1,2
p1,3

Image 1

Image 2

Image 3

x1

x4
x3

x2

x5
x6

x7

R1,t1

R2,t2

R3,t3

Slide: N. Snavely



Structure from motion

Camera 1

Camera 2

Camera 3
R1,t1

R2,t2
R3,t3

p1

p4
p3

p2

p5
p6

p7

minimize
g (R,T,P)

Slide: N. Snavely



SfM objective function

Given point x and rotation and translation R, t

Minimize sum of squared reprojection errors:

predicted
image location

observed
image location



Solving structure from motion
Minimizing g is difficult

• g is non-linear due to rotations, perspective division
• lots of parameters: 3 for each 3D point, 6 for each 

camera
• difficult to initialize
• gauge ambiguity: error is invariant to a similarity 

transform (translation, rotation, uniform scale) 

Many techniques use non-linear least-squares 
(NLLS) optimization (bundle adjustment)
• Levenberg-Marquardt is one common algorithm for 

NLLS
• Lourakis, The Design and Implementation of a 

Generic Sparse Bundle Adjustment Software 
Package Based on the Levenberg-Marquardt 
Algorithm, http://www.ics.forth.gr/~lourakis/sba/

• http://en.wikipedia.org/wiki/Levenberg-
Marquardt_algorithm

http://www.ics.forth.gr/~lourakis/sba/
http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm


Extensions to SfM

Can also solve for intrinsic parameters (focal length, radial 
distortion, etc.)

Can use a more robust function than squared error, to 
avoid fitting to outliers

For more information, see: Triggs, et al, “Bundle 
Adjustment – A Modern Synthesis”, Vision 
Algorithms 2000.



Problem size
Trevi Fountain collection

466 input photos
+ > 100,000 3D points

= very large optimization problem 



Incremental structure from motion



Incremental structure from motion

Slide: N. Snavely



Incremental structure from motion

Slide: N. Snavely



Photo Explorer

Slide: N. Snavely









KinectFusion: Real-Time Dense 
Surface Mapping and Tracking

by Richard.A Newcombe et al.

Presenting: Boaz Petersil



Video



Motivation
Augmented Reality

3d model scanning

Robot Navigation

Etc..

[Slide: B. Petersil]



Related Work

Tracking (&sparse Mapping)

Bundle-adjustment(offline)PTAM

DTAM (RGB cam!)

Tracking&Mapping

Dense Mapping

Kinect Fusion

[Slide: B. Petersil]



Challenges

• Tracking Camera Precisely
• Fusing and De-noising Measurements
• Avoiding Drift
• Real-Time
• Low-Cost Hardware

[Slide: B. Petersil]



Proposed Solution

• Fast Optimization for Tracking, Due to High Frame 
Rate.

• Global Framework for fusing data
• Interleaving Tracking & Mapping 
• Using Kinect to get Depth data (low cost)
• Using GPGPU to get Real-Time Performance (low 

cost)

[Slide: B. Petersil]



How does Kinect work?

[Slide: B. Petersil]



Method

[Slide: B. Petersil]



Tracking

• Finding Camera position is the same as fitting 
frame’s Depth Map onto Model

Tracking
Mapping [Slide: B. Petersil]



Tracking – ICP algorithm

• icp = iterative closest point
• Goal: fit two 3d point sets
• Problem: What are the correspondences?
• Kinect fusion chosen solution:

1) Start with 
2) Project model onto camera
3) Correspondences are points with same coordinates 
4) Find new T with Least - Squares
5) Apply T, and repeat 2-5 until convergence

0T

Tracking
Mapping [Slide: B. Petersil]



Tracking – ICP algorithm

• Assumption: frame and model are roughly aligned. 
• True because of high frame rate

Tracking
Mapping [Slide: B. Petersil]



Mapping

• Mapping is Fusing depth maps when camera 
poses are known

• Problems: 
– measurements are noisy
– Depth maps have holes in them

• Solution: 
– using implicit surface representation  
– Fusing = estimating from all frames relevant

Tracking
Mapping [Slide: B. Petersil]



Mapping – surface representation 
• Surface is represented implicitly - using     

Truncated Signed Distance Function (TSDF)

•Numbers in cells measure voxel distance to surface – D

Voxel grid

Tracking
Mapping [Slide: B. Petersil]



Mapping

Tracking
Mapping [Slide: B. Petersil]



Mapping

d= [pixel depth] – [distance from sensor  to voxel] Tracking
Mapping [Slide: B. Petersil]



Mapping

Tracking
Mapping [Slide: B. Petersil]



Mapping

Tracking
Mapping [Slide: B. Petersil]



Mapping

Tracking
Mapping [Slide: B. Petersil]



Handling drift

• Drift would have happened If tracking was done from 
frame to previous frame

• Tracking is done on built model

Tracking
Mapping [Slide: B. Petersil]



Video



Pros & Cons

• Pros:
– Really nice results!

• Real time performance (30 HZ)
• Dense model
• No drift with local optimization
• Robust  to scene changes

– Elegant solution

• Cons :
– 3d grid can’t be trivially up-scaled 

[Slide: B. Petersil]



Limitations

• Assumes static scene
• Doesn’t work for large areas (Voxel-Grid)
• Doesn’t work far away from objects (active ranging)
• Doesn’t work out-doors (IR)
• Requires  powerful  Graphics card
• Uses lots of battery (active ranging)
• Only one sensor at a time

[Slide: B. Petersil]



DynamicFusion
Handling dynamic scenes


