Lecture 14 Multi-view Stereo & Structure from Motion

Many slides adapted from Lana Lazebnik and Noah Snavelly, who in turn adapted slides from Steve Seitz, Rick Szeliski, Martial Hebert, Mark Pollefeys, and others....

Overview

• Multi-view stereo

• Structure from Motion (SfM)

• Large scale Structure from Motion

• Kinect Fusion

Multi-view Stereo

Point Grey's Bumblebee XB3

Point Grey's ProFusion 25

CMU's <u>3D Room</u>

Multi-view Stereo

Home The Tour Sign Up Explore			
statue of liberty			
Full text C Tags only			
We found 80.80	65 results matching st	atue and of and liberty.	
View: Most rele	evant • Most recent • Mos	t interesting Show: De	etails • Thumbnalls
From mbell1975	From sbcreate11	From Marion Doss	From Barry Wright
From phileole	From almk	From <u>sbcreate11</u>	From sbcreate11
From sjoardiner	From sjoardiner	From glosa.ah	From nicoatridge

Multi-view Stereo

Input: calibrated images from several viewpoints Output: 3D object model

Figures by Carlos Hernandez

Goesele et al. 2007

Applications

Google

What's the optimal baseline?

- Too small: large depth error
- Too large: difficult search problem

The Effect of Baseline on Depth Estimation

Figure 2: An example scene. The grid pattern in the background has ambiguity of matching.

pixel matching score

Fig. 5. SSD values versus inverse distance: (a) B = b; (b) B = 2b; (c) B = 3b; (d) B = 4b; (e) B = 5b; (f) B = 6b; (g) B = 7b; (h) B = 8b. The horizontal axis is normalized such that 8bF = 1.

Fig. 6. Combining two stereo pairs with different baselines.

Fig. 7. Combining multiple baseline stereo pairs.

Basic Approach

- Choose a reference view
- Use your favorite stereo algorithm BUT
 - > replace two-view SSD with SSSD over all baselines

Limitations

- Only gives a depth map (not an "object model")
- Won't work for widely distributed views:

Fig. 5. SSD values versus inverse distance: (a) B = b; (b) B = 2b; (c) B = 3b; (d) B = 4b; (e) B = 5b; (f) B = 6b; (g) B = 7b; (h) B = 8b. The horizontal axis is normalized such that 8bF = 1.

Problem:

Fig. 7. Combining multiple baseline stereo pairs.

Some Solutions

- Match only nearby photos [Narayanan 98]
- Use NCC instead of SSD, Ignore NCC values > threshold [Hernandez & Schmitt 03]

Popular matching scores

• SSD (Sum Squared Distance)

$$\sum_{x,y} |W_1(x,y) - W_2(x,y)|^2$$

NCC (Normalized Cross Correlation)

$$\frac{\sum_{x,y} (W_1(x,y) - \overline{W_1}) (W_2(x,y) - \overline{W_2})}{\sigma_{W_1} \sigma_{W_2}}$$
• where $\overline{W_i} = \frac{1}{n} \sum_{x,y} W_i$ $\sigma_{W_i} = \sqrt{\frac{1}{n} \sum_{x,y} (W_i - \overline{W_i})^2}$

• what advantages might NCC have?

Reconstruction from Silhouettes

Approach:

- Backproject each silhouette
- Intersect backprojected volumes

Volume intersection

Reconstruction Contains the True Scene

- But is generally not the same
- In the limit (all views) get visual hull
 - > Complement of all lines that don't intersect S

Voxel algorithm for volume intersection

Color voxel black if on silhouette in every image

- O(MN³), for M images, N³ voxels
- Don't have to search 2^{N³} possible scenes!

Properties of Volume Intersection

Pros

- Easy to implement, fast
- Accelerated via octrees [Szeliski 1993] or interval techniques [Matusik 2000]

Cons

- No concavities
- Reconstruction is not photo-consistent
- Requires identification of silhouettes

Multi-view stereo: Summary

- Multiple-baseline stereo
 - Pick one input view as reference
 - Inverse depth instead of disparity
- Volumetric stereo
 - Photo-consistency
 - Space carving
 - Visual hull: intersection of visual cones
- Feature-based stereo
 - From sparse to dense correspondences

All assume calibrated cameras!

Overview

Multi-view stereo

Structure from Motion (SfM)

Large scale Structure from Motion

Kinect Fusion

Structure from motion

Драконь, видимый подъ различными углами зрѣнія По гравюрь на мѣди изъ "Oculus artificialis teledioptricus" Цана. 1702 года.

Multiple-view geometry questions

- Scene geometry (structure): Given 2D point matches in two or more images, where are the corresponding points in 3D?
- **Correspondence (stereo matching):** Given a point in just one image, how does it constrain the position of the corresponding point in another image?
- Camera geometry (motion): Given a set of corresponding points in two or more images, what are the camera matrices for these views?

Structure from motion

• Given: *m* images of *n* fixed 3D points

$$\mathbf{x}_{ij} = \mathbf{P}_i \mathbf{X}_j, \quad i = 1, ..., m, \quad j = 1, ..., n$$

 Problem: estimate *m* projection matrices P_i and *n* 3D points X_i from the *mn* correspondences x_{ij}

Slide: S. Lazebnik

Structure from motion ambiguity

 If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of 1/k, the projections of the scene points in the image remain exactly the same:

$$\mathbf{x} = \mathbf{P}\mathbf{X} = \left(\frac{1}{k}\,\mathbf{P}\right)(k\,\mathbf{X})$$

It is impossible to recover the absolute scale of the scene!

Structure from motion ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of 1/k, the projections of the scene points in the image remain exactly the same
- More generally: if we transform the scene using a transformation Q and apply the inverse transformation to the camera matrices, then the images do not change

$$\mathbf{x} = \mathbf{P}\mathbf{X} = \left(\mathbf{P}\mathbf{Q}^{-1}\right)\left(\mathbf{Q}\mathbf{X}\right)$$

Types of ambiguity

- With no constraints on the camera calibration matrix or on the scene, we get a *projective* reconstruction
- Need additional information to upgrade the reconstruction to affine, similarity, or Euclidean

Slide: S. Lazebnik

Projective ambiguity

Projective ambiguity

Affine ambiguity

Affine ambiguity

Similarity ambiguity

 $\mathbf{x} = \mathbf{P}\mathbf{X} = \left(\mathbf{P}\mathbf{Q}_{\mathbf{S}}^{-1}\right)\left(\mathbf{Q}_{\mathbf{S}}\mathbf{X}\right)$

Similarity ambiguity

Structure from motion

• Let's start with affine cameras (the math is easier)

Recall: Orthographic Projection

Special case of perspective projection

• Distance from center of projection to image plane is infinite

• Projection matrix:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Affine cameras

Affine cameras

 A general affine camera combines the effects of an affine transformation of the 3D space, orthographic projection, and an affine transformation of the image:

$$\mathbf{P} = \begin{bmatrix} 3 \times 3 \text{ affine} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \times 4 \text{ affine} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

• Affine projection is a linear mapping + translation in inhomogeneous coordinates

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \mathbf{A}\mathbf{X} + \mathbf{b}$$

Projection of world origin

• Given: *m* images of *n* fixed 3D points:

 $\mathbf{x}_{ij} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i$, i = 1, ..., m, j = 1, ..., n

- Problem: use the *mn* correspondences x_{ij} to estimate *m* projection matrices A_i and translation vectors b_i, and *n* points X_j
- The reconstruction is defined up to an arbitrary *affine* transformation **Q** (12 degrees of freedom):

$$\begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} Q^{-1}, \qquad \begin{pmatrix} X \\ 1 \end{pmatrix} \rightarrow Q \begin{pmatrix} X \\ 1 \end{pmatrix}$$

- We have 2mn knowns and 8m + 3n unknowns (minus 12 dof for affine ambiguity)
- Thus, we must have $2mn \ge 8m + 3n 12$
- For two views, we need four point correspondences

• Centering: subtract the centroid of the image points

$$\hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i - \frac{1}{n} \sum_{k=1}^{n} (\mathbf{A}_i \mathbf{X}_k + \mathbf{b}_i)$$
$$= \mathbf{A}_i \left(\mathbf{X}_j - \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_k \right) = \mathbf{A}_i \hat{\mathbf{X}}_j$$

- For simplicity, assume that the origin of the world coordinate system is at the centroid of the 3D points
- After centering, each normalized point x_{ij} is related to the 3D point X_i by

$$\hat{\mathbf{X}}_{ij} = \mathbf{A}_i \mathbf{X}_j$$

• Let's create a $2m \times n$ data (measurement) matrix:

C. Tomasi and T. Kanade. <u>Shape and motion from image streams under orthography:</u> <u>A factorization method.</u> *IJCV*, 9(2):137-154, November 1992.

• Let's create a $2m \times n$ data (measurement) matrix:

The measurement matrix $\mathbf{D} = \mathbf{MS}$ must have rank 3!

C. Tomasi and T. Kanade. <u>Shape and motion from image streams under orthography:</u> <u>A factorization method.</u> *IJCV*, 9(2):137-154, November 1992.

• Singular value decomposition of D:

Source: M. Hebert

• Singular value decomposition of D:

Source: M. Hebert

• Obtaining a factorization from SVD:

Obtaining a factorization from SVD: п \times W₃ V_3^T $\mathbf{U_3} \times 3^{\uparrow}$ 2m3 D Possible decomposition: ←3 $\mathbf{M} = \mathbf{U}_3 \mathbf{W}_3^{1/2} \quad \mathbf{S} = \mathbf{W}_3^{1/2} \mathbf{V}_3^T$ S Μ D \times =This decomposition minimizes $|\mathbf{D}-\mathbf{MS}|^2$

Source: M. Hebert

Affine ambiguity

- The decomposition is not unique. We get the same **D** by using any 3×3 matrix **C** and applying the transformations $\mathbf{M} \to \mathbf{MC}, \mathbf{S} \to \mathbf{C}^{-1}\mathbf{S}$
- That is because we have only an affine transformation and we have not enforced any Euclidean constraints (like forcing the image axes to be perpendicular, for example)

Eliminating the affine ambiguity

• Orthographic: image axes are perpendicular and of unit length

Solve for orthographic constraints

Three equations for each image i

$$\widetilde{\mathbf{a}}_{i1}^{T} \mathbf{C} \mathbf{C}^{T} \widetilde{\mathbf{a}}_{i1}^{T} = 1$$

$$\widetilde{\mathbf{a}}_{i2}^{T} \mathbf{C} \mathbf{C}^{T} \widetilde{\mathbf{a}}_{i2}^{T} = 1 \quad \text{where} \quad \widetilde{\mathbf{A}}_{i} = \begin{bmatrix} \widetilde{\mathbf{a}}_{i1}^{T} \\ \widetilde{\mathbf{a}}_{i2}^{T} \end{bmatrix}$$

$$\widetilde{\mathbf{a}}_{i1}^{T} \mathbf{C} \mathbf{C}^{T} \widetilde{\mathbf{a}}_{i2}^{T} = 0$$

- Solve for **L** = **CC**^T
- Recover C from L by Cholesky decomposition:
 L = CC^T
- Update A and X: $A = \tilde{A}C, X = C^{-1}\tilde{X}$

Algorithm summary

- Given: *m* images and *n* features **x**_{ij}
- For each image *i*, *c*enter the feature coordinates
- Construct a $2m \times n$ measurement matrix **D**:
 - Column *j* contains the projection of point *j* in all views
 - Row *i* contains one coordinate of the projections of all the *n* points in image *i*
- Factorize **D**:
 - Compute SVD: D = U W V^T
 - Create **U**₃ by taking the first 3 columns of **U**
 - Create V₃ by taking the first 3 columns of V
 - Create W_3 by taking the upper left 3 × 3 block of W
- Create the motion and shape matrices:
 - $\mathbf{M} = \mathbf{U}_3 \mathbf{W}_3^{\frac{1}{2}}$ and $\mathbf{S} = \mathbf{W}_3^{\frac{1}{2}} \mathbf{V}_3^{\mathsf{T}}$ (or $\mathbf{M} = \mathbf{U}_3$ and $\mathbf{S} = \mathbf{W}_3 \mathbf{V}_3^{\mathsf{T}}$)
- Eliminate affine ambiguity

Reconstruction results

C. Tomasi and T. Kanade. <u>Shape and motion from image streams under orthography:</u> <u>A factorization method.</u> *IJCV*, 9(2):137-154, November 1992.

Dealing with missing data

- So far, we have assumed that all points are visible in all views
- In reality, the measurement matrix typically looks something like this:

Dealing with missing data

- Possible solution: decompose matrix into dense subblocks, factorize each sub-block, and fuse the results
 - Finding dense maximal sub-blocks of the matrix is NPcomplete (equivalent to finding maximal cliques in a graph)
- Incremental bilinear refinement

(1) Performfactorization on adense sub-block

(2) Solve for a new3D point visible byat least two knowncameras (linearleast squares)

(3) Solve for a new camera that sees at least three known3D points (linear least squares)

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. <u>Segmenting, Modeling, and</u> <u>Matching Video Clips Containing Multiple Moving Objects.</u> PAMI 2007.

Projective structure from motion

• Given: *m* images of *n* fixed 3D points

$$z_{ij} \mathbf{x}_{ij} = \mathbf{P}_i \mathbf{X}_j, \ i = 1, ..., m, \ j = 1, ..., n$$

Problem: estimate *m* projection matrices P_i and *n* 3D points X_j from the *mn* correspondences x_{ij}

Projective structure from motion

• Given: *m* images of *n* fixed 3D points

$$z_{ij} \mathbf{x}_{ij} = \mathbf{P}_i \mathbf{X}_j, \ i = 1, ..., m, \ j = 1, ..., n$$

- Problem: estimate *m* projection matrices P_i and *n* 3D points X_i from the *mn* correspondences x_{ij}
- With no calibration info, cameras and points can only be recovered up to a 4x4 projective transformation **Q**:

$$X \rightarrow QX, P \rightarrow PQ^{-1}$$

- We can solve for structure and motion when $2mn \ge 11m + 3n 15$
- For two cameras, at least 7 points are needed

Projective SFM: Two-camera case

- Compute fundamental matrix **F** between the two views
- First camera matrix: [I|0]
- Second camera matrix: [A|b]
- Then **b** is the epipole ($\mathbf{F}^T \mathbf{b} = 0$), $\mathbf{A} = -[\mathbf{b}_{\times}]\mathbf{F}$

Sequential structure from motion

 Initialize motion from two images using fundamental matrix

- Initialize structure by triangulation
- •For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image – *calibration*

Sequential structure from motion

 Initialize motion from two images using fundamental matrix

- Initialize structure by triangulation
- •For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image – *calibration*
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera – *triangulation*

Sequential structure from motion

 Initialize motion from two images using fundamental matrix

- Initialize structure by triangulation
- •For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image – *calibration*
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera – *triangulation*

•Refine structure and motion: bundle adjustment

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizing reprojection error

Self-calibration

- Self-calibration (auto-calibration) is the process of determining intrinsic camera parameters directly from uncalibrated images
- For example, when the images are acquired by a single moving camera, we can use the constraint that the intrinsic parameter matrix remains fixed for all the images
 - Compute initial projective reconstruction and find 3D projective transformation matrix Q such that all camera matrices are in the form P_i = K [R_i | t_i]
- Can use constraints on the form of the calibration
 matrix: zero skew

Review: Structure from motion

- Ambiguity
- Affine structure from motion
 - Factorization
- Dealing with missing data
 - Incremental structure from motion
- Projective structure from motion
 - Bundle adjustment
 - Self-calibration

Summary: 3D geometric vision

- Single-view geometry
 - The pinhole camera model
 - Variation: orthographic projection
 - The perspective projection matrix
 - Intrinsic parameters
 - Extrinsic parameters
 - Calibration
- Multiple-view geometry
 - Triangulation
 - The epipolar constraint
 - Essential matrix and fundamental matrix
 - Stereo
 - Binocular, multi-view
 - Structure from motion
 - Reconstruction ambiguity
 - Affine SFM
 - Projective SFM

Overview

Multi-view stereo

Structure from Motion (SfM)

Large scale Structure from Motion

Large-scale Structure from motion

Given many images from photo collections how can we

- a) figure out where they were all taken from?
- b) build a 3D model of the scene?

This is (roughly) the **structure from motion** problem

Slides from N. Snavely

Challenges

appearance variation

resolution

massive collections

82,754 results for photos matching notre and dame and paris.
Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845). Total reconstruction time: 23 hours Number of cores: 352

Structure from motion

- Input: images with points in correspondence $p_{i,j} = (u_{i,j}, v_{i,j})$
- Output
 - structure: 3D location \mathbf{x}_i for each point p_i
 - motion: camera parameters \mathbf{R}_i , \mathbf{t}_i possibly \mathbf{K}_i
- Objective function: minimize *reprojection error*

Photo Tourism

First step: how to get correspondence?

Feature detection and matching

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature matching

Match features between each pair of images

Refine matching using RANSAC to estimate fundamental matrix between each pair

Structure from motion

Slide: N. Snavely

Given point **x** and rotation and translation **R**, **t**

$$\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \mathbf{R}\mathbf{x} + \mathbf{t} \qquad \begin{aligned} u' &= \frac{fx'}{z'} \\ v' &= \frac{fy'}{z'} \end{aligned} \qquad \begin{bmatrix} u'\\v' \end{bmatrix} = \mathbf{P}(\mathbf{x}, \mathbf{R}, \mathbf{t})$$

Minimize sum of squared reprojection errors:

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \cdot \left\| \underbrace{\mathbf{P}(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j})}_{predicted} - \underbrace{\begin{bmatrix} u_{i,j} \\ v_{i,j} \end{bmatrix}}_{observed} \right\|^{2}$$

Solving structure from motion

Minimizing *g* is difficult

- g is non-linear due to rotations, perspective division
- lots of parameters: 3 for each 3D point, 6 for each camera
- difficult to initialize
- gauge ambiguity: error is invariant to a similarity transform (translation, rotation, uniform scale)

Many techniques use non-linear least-squares (NLLS) optimization (*bundle adjustment*)

- Levenberg-Marquardt is one common algorithm for NLLS
- Lourakis, The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm, <u>http://www.ics.forth.gr/~lourakis/sba/</u>
- <u>http://en.wikipedia.org/wiki/Levenberg-</u> <u>Marquardt_algorithm</u>

Can also solve for intrinsic parameters (focal length, radial distortion, etc.)

Can use a more robust function than squared error, to

avoid fitting to outliers

For more information, see: Triggs, *et al*, "Bundle Adjustment – A Modern Synthesis", *Vision Algorithms* 2000.

Problem size

Trevi Fountain collection

- 466 input photos
- + > 100,000 3D points
 - = very large optimization problem

Incremental structure from motion

Incremental structure from motion

Incremental structure from motion

Slide: N. Snavely

Photo Explorer

KinectFusion: Real-Time Dense Surface Mapping and Tracking

by Richard.A Newcombe et al.

Presenting: Boaz Petersil

Video

3D reconstruction (surface normals) 3d reconstruction (texture mapped)

Motivation

Augmented Reality

3d model scanning

Robot Navigation

Etc..

Related Work

Challenges

- Tracking Camera Precisely
- Fusing and De-noising Measurements
- Avoiding Drift
- Real-Time
- Low-Cost Hardware

Proposed Solution

- Fast Optimization for Tracking, Due to High Frame Rate.
- Global Framework for fusing data
- Interleaving Tracking & Mapping
- Using Kinect to get Depth data (low cost)
- Using GPGPU to get Real-Time Performance (low cost)

How does Kinect work?

Method

Tracking

 Finding Camera position is the same as fitting frame's Depth Map onto Model

Tracking – ICP algorithm

- icp = iterative closest point
- Goal: fit two 3d point sets

- Problem: What are the correspondences?
- Kinect fusion chosen solution:
 - 1) Start with T
 - 2) Project model onto camera
 - 3) Correspondences are points with same coordinates
 - 4) Find new T with Least Squares
 - 5) Apply T, and repeat 2-5 until convergence

Tracking – ICP algorithm

- Tracking Mapping
- Assumption: frame and model are roughly aligned.
- True because of high frame rate

Mapping

- Mapping is Fusing depth maps <u>when camera</u> <u>poses are known</u>
- Problems:
 - measurements are noisy
 - Depth maps have holes in them
- Solution:
 - using implicit surface representation
 - Fusing = estimating from all frames relevant

Mapping – surface representation

 Surface is represented implicitly - using Truncated Signed Distance Function (TSDF)

Voxel grid

•Numbers in cells measure voxel distance to surface – D [Slide: B. Petersil]

Mapping

Tracking ➤ Mapping

Mapping

Tracking ➤ Mapping d= [pixel depth] – [distance from sensor to voxel]
Mapping

Tracking ➤ Mapping

Mapping

Tracking ➤ Mapping

Mapping

Tracking ➤ Mapping

Handling drift

- Drift would have happened If tracking was done from frame to previous frame
- Tracking is done on built model

(a) Frame to frame tracking

(b) Partial loop

Video

3D reconstruction (surface normals) 3d reconstruction (texture mapped)

Pros & Cons

- Pros:
 - Really nice results!
 - Real time performance (30 HZ)
 - Dense model
 - No drift with local optimization
 - Robust to scene changes
 - Elegant solution
- Cons :
 - 3d grid can't be trivially up-scaled

Limitations

- Assumes static scene
- Doesn't work for large areas (Voxel-Grid)
- Doesn't work far away from objects (active ranging)
- Doesn't work out-doors (IR)
- Requires powerful Graphics card
- Uses lots of battery (active ranging)
- Only one sensor at a time

DynamicFusion

Handling dynamic scenes

