Lecture 13
Stereo Reconstruction

Slides from A. Zisserman & S. Lazebnik



Overview

« Single camera geometry
« Recap of Homogenous coordinates
» Perspective projection model
« Camera calibration

« Stereo Reconstruction
« Epipolar geometry
« Stereo correspondence
* Triangulation



Single camera geometry
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Projective Geometry

« Recovery of structure from one image is inherently
ambiguous

« Today focus on geometry that maps world to camera
Image




Recall: Pinhole camera model
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* Principal axis: line from the camera center
perpendicular to the image plane

 Normalized (camera) coordinate system: camera
center is at the origin and the principal axis is the z-axis



Recall: Pinhole camera model
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Recap: Homogeneous coordinates

X
e TIs this a linear transformation? (x,y,z) > (f —, f Z)

* no—division by z is nonlinear

Trick: add one more coordinate:

(z,y) = | ¥

homogeneous image
coordinates

(z,y,2) =
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homogeﬁeou§ scene
coordinates

Converting from homogeneous coordinates

y | = (z/w,y/w)
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Slide by Steve Seitz



Principal point
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Principal point (p): point where principal axis intersects the
image plane (origin of normalized coordinate system)

Normalized coordinate system: origin is at the principal point
Image coordinate system: origin is in the corner

How to go from normalized coordinate system to image
coordinate system?



Principal point offset
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Principal point offset
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Pixel coordinates

Pixel size:

* m, pixels per meter in horizontal direction,
m, pixels per meter in vertical direction

pixels/m m pixels




Camera rotation and translation

* In general, the camera
coordinate frame will
be related to the world

g =y  coordinate frame by a
rotation and a
X translation

coords. of camera center
in world frame

/Xcam

coords. of point /
in camera frame

coords. of a point

in world frame (nonhomogeneous)



Camera rotation and translation

In non-homogeneous
coordinates:

X, =R(X-C)

<« _|R —RC[XJZI; —II{CX

x=K[[|0)X_, =K|[R|-RC[X  P=K[R[t] t=-RC

Note: C is the null space of the camera projection matrix (PC=0)



Camera parameters

 Intrinsic parameters
* Principal point coordinates

Focal length

Pixel magnification factors

Skew (non-rectanqular pixels)

Radial distortion

radial distortion

correction
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Camera parameters

 Intrinsic parameters
* Principal point coordinates
* Focal length
 Pixel magnification factors
« Skew (non-rectangular pixels)
» Radial distortion
e Extrinsic parameters

 Rotation and translation relative to world coordinate
system



Camera calibration

« Given n points with known 3D coordinates X; and known
Image projections x;, estimate the camera parameters

X

P?



Camera calibration

Ax, =PX, X, xPX. =0

0 o Xz'T iniT
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Two linearly independent equations
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Camera calibration
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P has 11 degrees of freedom (12 parameters, but
scale is arbitrary)

* One 2D/3D correspondence gives us two linearly
iIndependent equations

« Homogeneous least squares
* 6 correspondences needed for a minimal solution



Camera calibration

0" X/ -yX|
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* Note: for coplanar points that satisfy 11 X=0,
we will get degenerate solutions (I1,0,0), (0,I1,0), or
(0,0,IT)



Camera calibration

« Once we’ ve recovered the numerical form of the camera
matrix, we still have to figure out the intrinsic and
extrinsic parameters

e This is a matrix decomposition problem, not an
estimation problem (see F&P sec. 3.2, 3.3)



Alternative: multi-plane calibration
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Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

* Only requires a plane
« Don’t have to know positions/orientations

« Good code available online!
— Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

— Matlab version by Jean-Yves Bouget:
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

— Zhengyou Zhang’ s web site: http:/research.microsoft.com/~zhang/Calib/



http://www.intel.com/research/mrl/research/opencv/
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://research.microsoft.com/~zhang/Calib/

Stereo Reconstruction

Shape (3D) from two (or more) images
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Example

images

shape

surface
reflectance



Scenarios

The two images can arise from
* A stereo rig consisting of two cameras
» the two images are acquired simultaneously

or

* A single moving camera (static scene)
« the two images are acquired sequentially

The two scenarios are geometrically equivalent
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Stereo head
Camera on a mobile vehicle




The objective

Given two images of a scene acquired by known cameras compute the
3D position of the scene (structure recovery)

Basic principle: triangulate from corresponding image points

* Determine 3D point at intersection of two back-projected rays



Corresponding points are images of the same scene point

Triangulation

C o
The back-projected points generate rays which intersect at the
3D scene point



An algorithm for stereo reconstruction

1. For each point in the first image determine the
corresponding point in the second image

(this is a search problem)

2. For each pair of matched points determine the 3D
point by triangulation

(this is an estimation problem)



The correspondence problem

Given a point x in one image find the corresponding point in the other
image

This appears to be a 2D search problem, but it is reduced to a 1D search
by the epipolar constraint



Outline

1. Epipolar geometry

« the geometry of two cameras
* reduces the correspondence problem to a line search

2. Stereo correspondence algorithms

3. Triangulation



Notation

The two cameras are P and P', and a 3D point X is imaged as

x = PX x'=Px

/5 P’\‘ P : 3 x4 matrix

X . 4-vector

X . 3-vector

Warning

for equations involving homogeneous quantities ‘=" means ‘equal up to
scale’



Epipolar geometry



Epipolar geometry

Given an image point in one view, where is the corresponding point
in the other view?

/ epipolar line

C \‘ \)<epipole‘ o

baseline

« Apointin one view “generates” an epipolar line in the other view
« The corresponding point lies on this line



Epipolar line

Epipolar constraint

« Reduces correspondence problem to 1D search along an
epipolar line



Epipolar geometry continued

Epipolar geometry is a consequence of the coplanarity of the camera
centres and scene point

C c/

The camera centres, corresponding points and scene point lie
in a single plane, known as the epipolar plane



Nomenclature

_— right epipolar line
left epipolar line —

c O~ L oL

» The epipolar line I' is the image of the ray through x

* The epipole e is the point of intersection of the line joining the camera centres
with the image plane

¢ this line is the baseline for a stereo rig, and

¢ the translation vector for a moving camera

- The epipole is the image of the centre of the other camera: e = PC', ¢ =P'C



The epipolar pencil

baseline

As the position of the 3D point X varies, the epipolar planes “rotate” about

the baseline. This family of planes is known as an epipolar pencil. All
epipolar lines intersect at the epipole.

(a pencil is a one parameter family)



The epipolar pencil

S N

baseline

As the position of the 3D point X varies, the epipolar planes “rotate” about

the baseline. This family of planes is known as an epipolar pencil. All
epipolar lines intersect at the epipole.

(a pencil is a one parameter family)



Epipolar geometry example I: parallel cameras

e at e’ at

infinity

infinity

Epipolar geometry depends only on the relative pose (position and
orientation) and internal parameters of the two cameras, i.e. the position of

the camera centres and image planes. It does not depend on the scene
structure (3D points external to the camera).



Epipolar geometry example II: converging cameras

\

Note, epipolar lines are in general not parallel



Homogeneous notation for lines

Recall that a point (z,y) in 2D is represented by the homogeneous
3-vector x = (21, 20,%3) |, where © = x1 /3,y = z2/x3

A line in 2D is represented by the homogeneous 3-vector

I
1= I

I3
which is the line i1z + loy + I3 = 0.

Example represent the line y = 1 as a homogeneous vector.

Write the line as —y+ 1 = 0 then [y = 0,l, = —-1,iI3 = 1, and
1=(0,-1,1)".

Note that u(lyx + oy +13) = O represents the same line (only the ratio
of the homogeneous line coordinates is significant).

Writing both the point and line in homogeneous coordinates gives

llxl + l2x2 —I— l3$3 =0

e pointonline Lx=0 or 1'x=0 or x'l=0



* The line 1 through the two points pand qis 1=p x q ]

Proof /

lp=(pxq)p= lgq=(pxq)q=

* The intersection of two lines 1 and m is the point x=1x m

Example: compute the point of intersection of the two lines 1 and m
in the figure below

0 —1
1= —1 m = 0 Y1
1 2
1

which is the point (2,1)



Matrix representation of the vector cross product

The vector product vxx can be represented as a matrix multiplication

U3 — V32
VX X=|v3x —vz3 | = [V]xX
M9 — V201
where
0 —UV3 V9
Vix=1|v3 0 —u
—V2 M 0

o V] is a 3 x 3 skew-symmetric matrix of rank 2.

e v is the null-vector of [v]y, since v x v = [v]xv = 0.



Example: compute the cross product of l and m

0
1= -1
1

X =Ixm = [l]xm =

Note

== O

|

o O

o O

= = O

[V]x =
—11]/ -1
0 0
0 |\ 2

0
=10

v2




Algebraic representation of epipolar geometry

We know that the epipolar geometry defines a mapping

X — I

| |

point in first epipolar line in
image second image

e the map ony depends on the cameras P,P’ (not on
structure)

e it will be shown that the map is linear and can be
written as I’ = Fx, where F is a 3 x 3 matrix called
the fundamental matrix



Derivation of the algebraic expression 1/ = Fx

Outline ,P/
Step 1: for a point x in the first image

back project a ray with camera P

Step 2: choose two points on the ray and

project into the second image with camera =

~

Step 3: compute the line through the two
image points using the relation ' =p x q

~

R ¢ T



* choose camera matrices

P=K|R |t
KR t]

internal . .
. ) rotation translation
calibration

from world to camera
coordinate frame

» first camera P — K [ I ‘ 0]

world coordinate frame aligned with first camera

* second camera P, — K, [R' ‘ t]

R, t



Step 1: for a point x in the first image
back project a ray with cameraP = K[ I | O]

A point x back projects to a ray

X T
y — zK_1 Y — ZK_1X
y4 1

where Z is the point’s depth, since

X(z) = ( ZK;lx )

satisfies

PX(z) = K[I | 0]X(2) = x

g

:.



Step 2: choose two points on the ray and
project into the second image with camera P’

Consider two points on the ray X(z) = (

7. = 0 is the camera centre (?)

—1
e Z = X js the point at infinity (K OX)

Project these two points into the second view

P/ (‘1)) =K[R | t] (?) =K't % (K_O]X

zK—1x

)



Step 3: compute the line through the two

image points using the relation ' =p x q /
\‘, T *

Compute the line through the points I = (K't) x (K'RK™'x)

Using the identity (Ma) x (Mb) =M "(axb) where M~ = M 1)T =m")~1!

' =x—T (t % (RK—lx)) — K~ T[t]«RK~1x F is the fundamental matrix
-

F

I'=Fx F=K"T[t],RK™'

Points x and x’ correspond (x <> x’) then x''l' =0 1/

XITFX — O /;(,/




Example I: compute the fundamental matrix for a parallel camera stereo rig

P=K[I|0] P =KR]|t]

(f0O0] ty
K=K=10f0 R=I t=10
001 0

F =K~ T[t]RK™"

LS

(1/f 0 0o][o0 O ][1/f 0 0] [00 O |
=10 1/f0| |00 —t,|| O 1/f0|=[00-1
0 0 1]||0¢t O || 0O 0 1] |01 O

(00 0| (z
xTFx=(2'y'1)|00-1||y|[=0
010 |\1

* reduces to y =y, I.e. raster correspondence (horizontal scan-lines)



Fis a rank 2 matrix < |

The epipole e is the null-space vector (kernel)
of F (exercise), i.e. Fe =0

In this case

so that

Geometric interpretation ?

e

/S



Example II: compute F for a forward translating camera

P =K[I|O]

Fr
|

1

|
O~ O

P'=K'R | t]

K'=T[t] «<RK~!
/f 0 0]

0 1/f O
0 0 1

—1 i
0
0

o OO

P
N\
N

0 O
1/f O
0 1

/

[




' =

From 1 = Fx the epipolar line for the point
x = (z,y,1)" is
—1 X

O =0

0
0 y | =
0

O
O 1

The points (z,y,1)T and (0,0,1)T lie on this
line

first image second image










Summary: Properties of the Fundamental matrix

F is a rank 2 homogeneous matrix with 7 degrees
of freedom.

Point correspondence:

if x and x’ are corresponding image points, then
x'TFx = 0.

Epipolar lines:

¢ I' = Fx is the epipolar line corresponding to x.

o 1=F"x' is the epipolar line corresponding to x’.

Epipoles:
¢ Fe = 0.

o Fle' = 0.

Computation from camera matrices P, P’:
P=K[I|O0], P =K[R|t], F=K~T[t]xRK!



Admin Interlude

Class Project details

On Thurs Dec 16t

1. Presentation session (7.10pm)
2 Slides / 2 mins per team
Google slide deck
Upload to Google folder here

2. Project report (5-8 pages)
| will be grading, not TAs
Upload to Google folder here
One upload per team


https://drive.google.com/drive/folders/1o-PvKey3SoY6JK3oMlzCw0EtI6Z26J1F?usp=sharing
https://drive.google.com/drive/folders/1o-PvKey3SoY6JK3oMlzCw0EtI6Z26J1F?usp=sharing

Stereo correspondence
algorithms



Problem statement

Given: two images and their associated cameras compute
corresponding image points.

Algorithms may be classified into two types:
1. Dense: compute a correspondence at every pixel
2. Sparse: compute correspondences only for features

The methods may be top down or bottom up



Top down matching

1. Group model (house, windows, etc) independently in
each image

2. Match points (vertices) between images



Bottom up matching

* epipolar geometry reduces the correspondence search from 2D
to a 1D search on corresponding epipolar lines

* 1D correspondence problem




Correspondence algorithms

Algorithms may be top down or bottom up — random dot stereograms
are an existence proof that bottom up algorithms are possible

From here on only consider bottom up algorithms

Algorithms may be classified into two types:
——1. Dense: compute a correspondence at every pixel «~—
2. Sparse: compute correspondences only for features



Example image pair — parallel cameras




First image




Second image




Dense correspondence algorithm

Parallel camera example — epipolar lines are corresponding rasters

epipolar
line

Search problem (geometric constraint): for each point in the left image, the
corresponding point in the right image lies on the epipolar line (1D ambiguity)

Disambiguating assumption (photometric constraint): the intensity
neighbourhood of corresponding points are similar across images

Measure similarity of neighbourhood intensity by cross-correlation



250} 250}
200} 200k
"
150 / 150 rN
100 100 M
s0p M v’M\ 501, M
0 ' ' ' L L 0 I 1 ' L L
0 100 200 300 400 500 0 100 200 300 400 500

* Clear correspondence between intensities, but also noise and ambiguity



Cross-correlation of neighbourhood regions

epipolar
line

regions A, B, write as vectors a, b
translate so that mean is zero
a—a—(a), b—>Db—(b)

cross correlation = a.ll)) Invariant to I — ol + 3
[a|[b] (exercise)




left image band

f ,I right image band

Cross
correlation




: g right image band

Cross
correlation




Why is cross-correlation such a poor measure in the second case?

1. The neighbourhood region does not have a “distinctive” spatial intensity
distribution

2. Foreshortening effects

U 4

fronto-parallel surface slanting surface

imaged length the same imaged lengths differ



Limitations of similarity constraint
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Results with window search

Data




Sketch of a dense correspondence algorithm

For each pixel in the left image

« compute the neighbourhood cross correlation along the
corresponding epipolar line in the right image

« the corresponding pixel is the one with the highest cross
correlation

Parameters
* size (scale) of neighbourhood
« search disparity

Other constraints
e uniqueness

e ordering
« smoothness of disparity field
Applicability

« textured scene, largely fronto-parallel



Stereo matching as energy minimization

\
¢

)

MAP estimate of disparity image D: P(D|1,,1,) o« P({,,1, | D)P(D)

—log P(D|1,,1,) c—log P({,,1, | D)—log P(D)

E — aEdata(]13129D)+ﬂEsmooth(D)

Eyo = S W,G)~W,(i+ DG | |Ewoon = 2, 2(D@)=D()))

i neighbors i, j




Stereo matching as energy minimization

)

\
¢

E=ak,

ata

({,1,,D)+GE

smooth

(D)

Epu =Y (W,(0) =W, @i+ D@))

1

E —

smooth

> p(D(@i) - D()))

neighbors i, j

« Energy functions of this form can be minimized using

graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization

via Graph Cuts, PAMI 2001



http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Graph cuts solution

Graph cuts Ground truth

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy
Minimization via Graph Cuts, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/



http://www.middlebury.edu/stereo/
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Example dense correspondence algorithm

left image right image




3D reconstruction

——

right image | depth map
intensity = depth



anim%5Cfountain.bak.wrl

Texture mapped 3D triangulation




Pentagon example

left image

range map




Rectification

For converging cameras

* epipolar lines are not parallel




Project images onto plane parallel to baseline

epipolar plane



Rectification continued

Convert converging cameras to parallel camera
geometry by an image mapping

N

AN
N
AN

N

Image mapping is a 2D homography (projective transformation)

H=KRK ! (exercise)



Rectification continued

Convert converging cameras to parallel camera
geometry by an image mapping

N N
N

Image mapping is a 2D homography (projective transformation)

AN
N
AN

H=KRK ! (exercise)



original stereo pair

rectified stereo pair




Example: depth and disparity for a parallel camera stereo rig

(f00] ty
K=K=|0f0] R=I t=|0
001 0

Then, ' = y, and the disparity d = 2’ — x =

Derivation \

11?/ X + t;p

ftx
VA

~ | 8
RN

<,

N

N
SN

&
~

tx

Note
« image movement (disparity) is inversely proportional to depth Z

as z — o0, d—0

 depth is inversely proportional to disparity




Depth from disparity

C baseline

/ __ baselinexf

disparity = x — &' = o



Triangulation



1. Vector solution

.

C CI

Compute the mid-point of the shortest line between the
two rays



2. Linear triangulation (algebraic solution)

Use the equations x = PX and x’ = P'X to solve for X

For the first camera: D11 D12 P13 P | p'T

P= |po1 P2 P23 Pu| = ?T
| P31 P32 P33 P34 | _P3T

T

where p'" are the rows of P

e climinate unknown scale in Ax = PX by forming a cross
product x x (PX) =0

z(p’'X) — (p''X) =0
y(p*'X) — (p"TX) =0
z(p?"X) —y(p'"X) =0

e rearrange as (first two equations only)

[xp?)T_plT < — o

yp?)'l' _ pQT




Similarly for the second camera:
:U’p'3T _ pllT ]
X=0
[ y/p/?)“l' _ p/2T
Collecting together gives
AX =0

where A is the 4 x 4 matrix

[ :Up3T _ PlT ]
A= %p,?;:__ p?l—rT
rp-_ —P
i yrp/?)T _ p/2'|' |

from which X can be solved up to scale.

Problem: does not minimize anything meaningful

Advantage: extends to more than two views



3. Minimizing a geometric/statistical error

The idea is to estimate a 3D point X which exactly satisfies the supplied
camera geometry, so it projects as

)’E:PX }’E,:P/)/i

and the aim is to estimate X from the image measurements x and x’.

~

X

~ eX

Xy ~@X
>/af vl
. N

C e e’ C

min

< Clxx)=d(x,%)" +d(x, X)’

where d(x, *) is the Euclidean distance between the points.



* It can be shown that if the measurement noise is
Gaussian mean zero, ~ N(0,¢°) , then minimizing
geometric error is the Maximum Likelihood Estimate of X

* The minimization appears to be over three parameters
(the position X), but the problem can be reduced to a
minimization over one parameter



Different formulation of the problem

The minimization problem may be formulated differently:
e Minimize
d(x,1)* + d(x',1')?

el and I' range over all choices of corresponding epipolar lines.
e x is the closest point on the line 1 to x.
e Same for X',




Minimization method

« Parametrize the pencil of epipolar lines in the first image by ¢,
such that the epipolar line is 1(7)

» Using F compute the corresponding epipolar line in the second
image I’ (2)

- Express the distance function d(x,1)*+d(x',1')* explicitly as a
function of ¢

* Find the value of t that minimizes the distance function

« Solution is a 6" degree polynomial in ¢



java%5CApplets%5CTriangulation.html

Typical Stereo Algorithm

» Define a matching cost function.

» Sum of absolute differences.
» The census transform.

» For each patch in the left image, search, along the epipolar
line, for the patch in the right image with the smallest
matching cost.




Zbontar & LeCun, Computing the Stereo Matching Cost with a
Convolutional Neural Network, CVPR 2015.

» Learn the matching cost function.

» Construct a binary classification dataset.
» Use supervised learning.

Left patch Right patch Label

Good match

Bad match




Constructing the Dataset

» One training example comprises two patches, one from the left
and one from the right image:

< Prin(p): PR n(@) >

» PL _(p)is a n x n patch from the left image,
centered at p = (x, y)

» The true disparity d is obtained from stereo datasets (KITTI
and Middlebury).

» Positive example: q = (x — d, y)

> Negative example: q = (x — d + Oneg, ¥)
> Oneg Chosen randomly from [—Npi, —Nio] U [No, Nhi].

» N, Ny, and n are hyperparameters of the method.



The Accurate Architecture

Similarity score

A

Fully-connected, Sigmoid
Fully-connected, ReLU

Fully-connected, ReLU
Fully-connected, ReLU

Concatenate
Convolution, ReLLU Convolution, ReLU
Convolution, ReLLU Convolution, ReLLU
Convolution, ReLU Convolution, ReLU

i X

Left input patch Righ input patch



The KITTI Stereo Dataset

> Geiger et al. (2012). Vision meets Robotics: The KITTI Dataset.
> Menze, Geiger (2015). Object Scene Flow for Autonomous Vehicles.

3607 Velodyne Laserscanner

» Ground truth is obtained by a LIDAR sensor.
» ~200 training and ~200 test image pairs at 1240 x 376.



Cross-Based Cost Aggregation

» Left input image:

> Raw output from CNN_

- T
E HE A S o W i E
s e ' P ¥
B hil - . e e .
. A L= - .
“;' ] . d * Al £ e 17
L ’ . w o A R
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» After post-processing

_ s Ly 5,
2 AP rl t ’

i




The Middlebury Stereo Dataset

> Scharstein et al. (2014). High-resolution stereo datasets with
subpixel-accurate ground truth.

» Ground truth is obtained by structured light.
» 60 training and 15 test image pairs at up to 3000 x 2000.



Results on the Middlebury stereo dataset ~2017

& & ‘ vision.middlebury.edu/steren X

& C | (@ vision.middlebury.edu/steren/eval3/

bad 2.0 (%) Waight | ]| [ | ) | ) ||| [ |  —
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Results on the Middlebury stereo dataset ~2017

o @ ‘ vision.middlebury.edu/stereo, X
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Jan
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MC-CNN+TC

Reference (3DMST)

L. Li, X. Yu, 5. Zhang, X. Zhao, and L. Zhang. 3D cost aggregation with
multiple minimum spanning trees for stereo matching. Submitted to Applied
Optics 2017,

Description

We propose a cost aggregation method that efficiently weave together MST-
based support region filtering and PatchMatch-based 3D label search. We
use the raw matr:hing cost of MC-CNN.

Parameters
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Middlebury Stereo Evaluation - Version 3

Mouseover the table cells to see the produced disparity map. Clicking a cell will blink the ground truth for comparison. To change the table
type, click the links below. For more information, please see the description of new features.

Submit and evaluate your own results. See snapshots of previous results. See the evaluation v.2 (no longer active).
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Practical Stereo Matching via Cascaded Recurrent Network
with Adaptive Correlation

Jiankun Lil  Peisen Wane!* Penofei Xjono?* Tao Cai' Ziwei Yan® Lei Yano!

CVPR 2022

Jiangyu Liu! Haoqiang Fan! Shuaicheng Liu3!7

!Megvii Research  ?Tencent
3University of Electronic Science and Technology of China
https://github.com/megvii-research/CREStereo
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Figure 2. An overview of our proposed network. Left: A pair of stereo images /7 and I2 are fed into two shared-weight feature extraction
networks to produce a 3-level feature pyramid, which is used to compute different scales of correlations in the 3 stages of cascaded recurrent f§
networks. The feature pyramid of I; also provides context information for latter update blocks and offsets computation. In each stage of §

the cascades, the features and the predicted disparities are refined iteratively using the Recurrent Update Module (RUM, Sec. 3.2), and “=
the final output disparity of the former stage is fed to the next as an initialization. For each iteration in RUM, we apply Adaptive Group
Correlation Layer (AGCL, Sec. 3.1) to compute the correlation. Right: Our proposed stacked cascaded architecture in inference phase,

which takes an image pyramid as input, taking advantage of multi-level context, as detailed in Sec. 3.3 . S
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Figure 3. The architecture of proposed modules. Left: Recurrent Update Module (RUM). Right: Adaptive Group Correlation Layer
(AGCL). Details are described in Sec. 3.2 and Sec. 3.1, respectively.




Other approaches
to obtaining 3D
structure



Active stereo with structured light

* Project “structured” light patterns onto the object
 simplifies the correspondence problem
« Allows us to use only one camera

camera

[+

projector

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming. 3DPVT 2002



http://grail.cs.washington.edu/projects/moscan/

Active stereo with structured light

Surface

ARE
7

A
&/

[Iluminant

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color
Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002



http://grail.cs.washington.edu/projects/moscan/

Microsoft Kinect

MOTORIZED TILT

"MULTI-ARRAY MIC



Laser scanning

Object

Direction of travel
———

%\ CCD image plane
& Y Cylindrical lens

Laser CCD

Laser sheet

Digital Michelangelo Project

http://graphics.stanford.edu/projects/mich/

« Optical triangulation
* Project a single stripe of laser light
« Scan it across the surface of the object
« This is a very precise version of structured light scanning

Source: S. Seitz


http://graphics.stanford.edu/projects/mich/

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

1 S. Seitz

Source



Aligning range images

« A single range scan is not sufficient to describe a
complex surface

B. Curless and M. Levoy, A Volumetric Method for Building Complex Models from

Range Images, SIGGRAPH 1996



http://graphics.stanford.edu/papers/volrange/

Aligning range images

« A single range scan is not sufficient to describe a
complex surface

* Need techniques to register multiple range images

* ... which brings us to multi-view stereo
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Multiple-view geometry questions

Scene geometry (structure): Given 2D point
matches in two or more images, where are the
corresponding points in 3D?

Correspondence (stereo matching): Given a
point in just one image, how does it constrain the
position of the corresponding point in another
image”?

Camera geometry (motion): Given a set of

corresponding points in two or more images, what
are the camera matrices for these views?

Slide: S. Lazebnik



Structure from motion

« Given: mimages of n fixed 3D points
XU-ZPZ-XJ-, i=1,...,m j=1,..,n

* Problem: estimate m projection matrices P, and
n 3D points X; from the mn correspondences x;;

Slide: S. Lazebnik



Structure from motion ambiguity

 If we scale the entire scene by some factor k and, at
the same time, scale the camera matrices by the
factor of 1/k, the projections of the scene points in the

Image remain exactly the same:

1
x=PX = (E Pj(kX)

It is impossible to recover the absolute scale of the scene!

Slide: S. Lazebnik



Structure from motion ambiguity

 If we scale the entire scene by some factor k and, at
the same time, scale the camera matrices by the
factor of 1/k, the projections of the scene points in the
Image remain exactly the same

« More generally: if we transform the scene using a
transformation Q and apply the inverse

transformation to the camera matrices, then the
Images do not change

x = PX = (PQ" JQX)

Slide: S. Lazebnik



Types of ambiguity

Projective (At Preserves intersection and
15dof T tangency

v Y
Affine At Preserves parallellism,
12dof 0" 1 volume ratios
Similarity SRt Preserves angles, ratios of

Preserves angles, lengths

Euclidean R t

* With no constraints on the camera calibration matrix or on the
scene, we get a projective reconstruction

* Need additional information to upgrade the reconstruction to

affine, similarity, or Euclidean
Slide: S. Lazebnik



Projective ambiguity

\ g/
,<L Q/

x=PX = (PQP fQ, X)



rojective ambiguity




Affine ambiguity

\ g/

% 5/

x = PX = (PQA fQ, x)



Affine ambiguity




Similarity ambiguity




Similarity ambiguity

|




Structure from motion

« Let’ s start with affine cameras (the math is easier)

s

center at
infinity
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o - . Y 5 . -
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increasing focal length -

increasing distance from camera =




Recall: Orthographic Projection

Special case of perspective projection
» Distance from center of projection to image plane is infinite

* Projection matrix:

= (z,9)

OGN
O~ O
o O O
= O O

=N @ 8

|
WS

Slide by Steve Seitz



Affine cameras

Orthographic Projection «

Parallel Projection
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Affine cameras

* A general affine camera combines the effects of an

affine transformation

of the 3D space, orthographic

projection, and an affine transformation of the image:

1 0 0 O a, a4y a4y b A b
P=[3x3affine] 0 1 O O [4x4affine]l=|a,, a,, ay Db, :{0 1}
000 1) 0 0 0 1|

« Affine projection is a

Inhomogeneous coordinates

X/

e.

~<_
~
N\
~~.
\N
~

dq

g

~<.
~
\\
~
S~
b X

X
I

| 7I+(s

2

a,, dp

linear mapping + translation in
a
P = AX+b

Projection of
world origin

|

Ay, 4y dy



Affine structure from motion

Given: m images of n fixed 3D points:
XZJ:AZX]+bl, izl,...,m,jzl, e , N1
Problem: use the mn correspondences x; to estimate

m projection matrices A; and translation vectors b,
and n points X

The reconstruction is defined up to an arbitrary affine
transformation Q (12 degrees of freedom):

3G (-

We have 2mn knowns and 8m + 3n unknowns (minus
12 dof for affine ambiguity)

Thus, we must have 2mn >=8m + 3n—12
For two views, we need four point correspondences



Affine structure from motion

« Centering: subtract the centroid of the image points

%, =x, —lzn:xl.k =AX, +b, —li(Aixk +b,)
n - n =

1 & -
:A{Xj ——ZxkaAixj

* For simplicity, assume that the origin of the world
coordinate system is at the centroid of the 3D points

* After centering, each normalized point x; is related to
the 3D point X; by

X, :Al.Xj



Affine structure from motion

« Let’ s create a2m X n data (measurement) matrix:

_ﬁn i12 iln )
D= Xy Xy X, cameras
' (2m)
_ﬁm &mZ o &mn 1 v
points (n) ;

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992,



http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf

Affine structure from motion

« Let’ s create a2m X n data (measurement) matrix:

X

X);

ml

X,

X,

m?2

X,

e>

n

2n

mn

A,

m

X, X,

points (3 X n)

X, ]

cameras
(2m X 3)

The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992,



http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf

Factorizing the measurement matrix

2m

o < |
| D = MS
< " > < 3 >

Source: M. Hebert



Factorizing the measurement matrix

« Singular value decomposition of D:

N

n n
< > < > n n
\
y
)
y

s
~

Source: M. Hebert



Factorizing the measurement matrix

« Singular value decomposition of D:
n n

< a

<

>~
-

n

To reduce to rank 3, we

just need to set all the

singular values to 0 except
3 for the first 3

Source: M. Hebert



Factorizing the measurement matrix

« Obtaining a factorization from SVD:

2m D —

Source: M. Hebert



Factorizing the measurement matrix

« Obtaining a factorization from SVD:

n
3
2m D = A X3I W, B VL 13
Possible decomposition:
3 1/2 /2 v T
M=U,W, S=W,"V;

This decomposition minimizes
|ID-MS|?

Source: M. Hebert



Affine ambiguity

< -

* The decomposition is not unique. We get the same D
by using any 3 X 3 matrix C and applying the
transformations M — MC, S —C-1S

« That is because we have only an affine transformation
and we have not enforced any Euclidean constraints
(like forcing the image axes to be perpendicular, for
example)

Source: M. Hebert



Eliminating the affine ambiguity

e Orthographic: image axes are perpendicular
and of unit length

/ a1'a2=0
X

|a4]? = |ay|2= 1

Source: M. Hebert



Solve for orthographic constraints

Three equations for each image i

~T T~T

a,CCa, =1

ﬁiZCCTEiTz =1 where A;=
~T T~T

e Solve for L=CCT

* Recover C from L by Cholesky decomposition:

L=CCT
e Update Aand X: A=AC, X =C1X

Slide: D. Hoiem



Algorithm summary

« Given: mimages and n features x;
* For each image i, center the feature coordinates

« Construct a 2m X n measurement matrix D:
« Column j contains the projection of pointj in all views
* Row i contains one coordinate of the projections of all the n
points in image i
» Factorize D:
« Compute SVD:D=UWVT
» Create U; by taking the first 3 columns of U
» Create V; by taking the first 3 columns of V
» Create W; by taking the upper left 3 X 3 block of W

« Create the motion and shape matrices:
e M= U3W31/2 and S - W31/2 V3T (Or M= U3 and S - W3V3T)
« Eliminate affine ambiguity

Source: M. Hebert



Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:

A factorization method. IJCV, 9(2):137-154, November 1992,



http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf

Dealing with missing data

« So far, we have assumed that all points are visible in
all views

* |n reality, the measurement matrix typically looks
something like this:

cameras




Dealing with missing data

« Possible solution: decompose matrix into dense sub-
blocks, factorize each sub-block, and fuse the results

* Finding dense maximal sub-blocks of the matrix is NP-
complete (equivalent to finding maximal cliques in a graph)

 |Incremental bilinear refinement

" EEEEEE T E EEEEE B — o o o o o o o o
(1) Perform (2) Solve for a new (3) Solve for a new
factorization on a 3D point visible by camera that sees at
dense sub-block at least two known least three known
cameras (linear 3D points (linear
least squares) least squares)

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling, and
Matching Video Clips Containing Multiple Moving Objects. PAMI 2007.



http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf

Projective structure from motion

e Given: mimages of n fixed 3D points
. Xl-j:Pl-Xj, i=1,....,m j=1,..,n

e Problem: estimate m projection matrices P; and n 3D points
X; from the mn corresponding points x;

Slides from Lana Lazebnik



Projective structure from motion

Given: m images of n fixed 3D points
’X—PX i=1,...,m j=1,..,n

Ay I
Problem: estimate m projection matrices P,

and n 3D points X; from the mn correspondmg
points x;

With no calibration info, cameras and points
can only be recovered up to a 4x4 projective
transformation Q:

e X->QX, P> PQ?
We can solve for structure and motion when
e 2mn>=11m +3n—-15
For two cameras, at least 7 points are needed



Bundle adjustment

* Non-linear method for refining structure and motion

* Minimizing reprojection error
2

E(P,X) = Zmlzn:D(xij,Pin)

i=1 j=1

X;

S




Self-calibration

« Self-calibration (auto-calibration) is the process of
determining intrinsic camera parameters directly from
uncalibrated images

 For example, when the images are acquired by a
single moving camera, we can use the constraint that
the intrinsic parameter matrix remains fixed for all the
Images

« Compute initial projective reconstruction and find 3D
projective transformation matrix Q such that all camera
matrices are in the form P,= K [R, | t;]

« Can use constraints on the form of the calibration

matrix: zero skew



Review: Structure from motion

« Ambiguity
« Affine structure from motion
« Factorization
* Dealing with missing data
* |ncremental structure from motion
* Projective structure from motion

« Bundle adjustment
» Self-calibration



Summary: 3D geometric vision

« Single-view geometry
* The pinhole camera model
— Variation: orthographic projection
The perspective projection matrix
Intrinsic parameters
Extrinsic parameters
Calibration

* Multiple-view geometry
* Triangulation
* The epipolar constraint
— Essential matrix and fundamental matrix
« Stereo
— Binocular, multi-view

o Structure from motion

— Reconstruction ambiguity
— Affine SFM
— Projective SFM



