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Motivation

• Goal: learn structure of data to yield generic representation, 
useful for many different tasks

• Supervised learning: 
given labels/targets 
for a particular task
– Task strongly constrains 

objective function

• In unsupervised learning, where do labels/output targets come 
from?
– What is the objective?  



Motivation

• Most successes obtained with supervised 
models, e.g. Convnets

• Unsupervised learning methods less successful

• But likely to be very important in long-term
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• Most impressive results in deep learning have been obtained with 
purely supervised learning methods (see previous talk) 

• In vision, typically classification (e.g. object recognition) 

• Though progress has been slower, it is likely that unsupervised 
learning will be important to future advances in DL

Motivation

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Image: Krizhevsky (2012) - AlexNet, the “hammer” of DL



Different Perspectives on 
Unsupervised Learning

1. Density estimation
Given data {x}, build p(x). 

E.g. k-Means, PCA, RBMs,
sparse coding etc.

Assumption: good model of data
requires representation that will be 
generically useful  

2. Train model to use “free-labels”
from task that is somewhat similar 
to one we actually care about

• Often called “self-supervised” 
learning

• Free-labels often come from 
exploiting knowledge of domain



Historical Note

• Deep Learning revival started in ~2006
–Hinton & Salakhudinov Science paper on RBMs

• Unsupervised Learning was focus from 2006-2012

• In ~2012 great results in vision, speech with supervised 
methods appeared
– Less interest in unsupervised learning



Arguments for Unsupervised Learning

• Want to be able to exploit unlabeled data
– Vast amount of it often available
– Essentially free

• Good regularizer for supervised learning
–Helps generalization
– Transfer learning
– Zero / one-shot learning



Another Argument for 
Unsupervised Learning

When we’re learning to see, nobody’s telling us what the right
answers are — we just look. Every so often, your mother says
“that’s a dog”, but that’s very little information.

You’d be lucky if you got a few bits of information — even one
bit per second — that way. The brain’s visual system has 1014

neural connections. And you only live for 109 seconds.

So it’s no use learning one bit per second. You need more like
105 bits per second. And there’s only one place you can get that
much information: from the input itself.

— Geoffrey Hinton, 1996



Taxonomy of Approaches

• Autoencoder (most common)
– RBMs / DBMs 
– Denoising autoencoders
– Predictive sparse decomposition

• Decoder-only
– Sparse coding 
– Deconvolutional Nets

• Encoder-only 
– Implicit or self-supervision, e.g. from video

• Adversarial Networks [to be covered in class on 12/16]

Loss involves 
some kind 
of reconstruction 
error



Auto-Encoder

EncoderDecoder

Input (Image/ Features)

Output Features

e.g.Feed-back /
generative /
top-down
path

Feed-forward /
bottom-up path



Auto-Encoder Example 1

σ(Wx)σ(WTz)

(Binary) Input x

(Binary) Features z

e.g.

• Restricted Boltzmann Machine [Hinton ’02]

Encoder 
filters W

Sigmoid 
function σ(.)

Decoder 
filters WT

Sigmoid 
function σ(.)



Auto-Encoder Example 2

σ(Wx)Dz

Input Patch x

Sparse Features z

e.g.

• Predictive Sparse Decomposition  [Ranzato et al., ‘07]

Encoder 
filters W

Sigmoid 
function σ(.)

Decoder 
filters D

L1
Sparsity



Auto-Encoder Example 2

σ(Wx)Dz

Input Patch x

Sparse Features z

e.g.

• Predictive Sparse Decomposition  [Kavukcuoglu et al., ‘09]

Encoder 
filters W

Sigmoid 
function σ(.)

Decoder 
filters D

L1
Sparsity

Training



Y LeCun
MA Ranzato

Energy-Based
Unsupervised Learning
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Y1

Energy-Based Unsupervised Learning

Learning an energy function (or contrast function) that takes
Low values on the data manifold
Higher values everywhere else

Y2
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Capturing Dependencies Between Variables
with an Energy Function

Y1
Y2

Y2 = Y12

The energy surface is a “contrast function” that takes low values on the
data manifold, and higher values everywhere else

Special case: energy = negative log density

Example: the samples live in the manifold 
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Transforming Energies into Probabilities (if necessary)

Y

Y

E(Y,W)

The energy can be interpreted as an unnormalized negative log density

Gibbs distribution: Probability proportional to exp(-energy)
Beta parameter is akin to an inverse temperature

Don't compute probabilities unless you absolutely have to
Because the denominator is often intractable

P(Y|W)



Y LeCun
MA RanzatoLearning the Energy Function

parameterized energy function E(Y,W)
Make the energy low on the samples
Make the energy higher everywhere else
Making the energy low on the samples is easy
But how do we make it higher everywhere else?
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Seven Strategies to Shape the Energy Function

1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA

2. push down of the energy of data points, push up everywhere else
Max likelihood (needs tractable partition function)

3. push down of the energy of data points, push up on chosen locations
contrastive divergence, Ratio Matching, Noise Contrastive

Estimation, Minimum Probability Flow

4. minimize the gradient and maximize the curvature around data points
score matching

5. train a dynamical system so that the dynamics goes to the manifold
denoising auto-encoder

6. use a regularizer that limits the volume of space that has low energy
Sparse coding, sparse auto-encoder, PSD

7. if E(Y) = ||Y - G(Y)||^2, make G(Y) as "constant" as possible.
Contracting auto-encoder, saturating auto-encoder
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#1: constant volume of low energy

1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA...

PCA

E(Y )=∥WTWY −Y∥2

K-Means,
Z constrained to 1-of-K code

E(Y )=minz∑i∥Y−WiZi∥2



make this big

Y LeCun
MA Ranzato

#2: push down of the energy of data points,
push up everywhere else

Max likelihood (requires a tractable partition function)

Y

Y

P(Y)

E(Y)

make this bigmake this small

Maximizing P(Y|W) on training
samples

make this small

Minimizing -log P(Y,W) on training
samples
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#6. use a regularizer that limits
the volume of space that has low energy

Sparse coding, sparse auto-encoder, Predictive Saprse Decomposition
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Sparse Modeling,
Sparse Auto-Encoders,

Predictive Sparse Decomposition
LISTA
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How to Speed Up Inference in a Generative Model?

INPUT

Decoder

Y

Distance

Z

Factor B

LATENT
VARIABLE

Factor Graph with an asymmetric factor

Inference Z→ Y is easy
Run Z through deterministic decoder, and sample Y

Inference Y→ Z is hard, particularly if Decoder function is many-to-one
MAP: minimize sum of two factors with respect to Z
Z* = argmin_z Distance[Decoder(Z), Y] + FactorB(Z)

Examples: K-Means (1of K), Sparse Coding (sparse), Factor Analysis

Generative Model
Factor A



∥Y −Y �∥

Sparse Coding & Sparse Modeling

Sparse linear reconstruction

Energy = reconstruction_error + code_prediction_error + code_sparsity

i i 2

Y LeCun
MA Ranzato

[Olshausen & Field 1997]

INPUT Y Z

i 2

∣z j∣

Wd Z

FEATURES

�∑j .

Inference is slow

DETERMINISTIC
FUNCTION

FACTOR

VARIABLE

Y→Z ̂ =argminZ E(Y ,Z)
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Sparse Coding & Sparse Modeling

Sparse linear reconstruction

Energy  = reconstruction_error + code_prediction_error + code_sparsity

E (Y i , Z )=∥Y i−W d Z∥2+ λ∑ j
∣z j∣

[Olshausen & Field 1997]

INPUT Y Z

∥Y i− Y∥2

∣z j∣

W d Z

FEATURES 

∑ j
.

Y → Ẑ=argmin Z E (Y , Z )Inference is slow

DETERMINISTIC

FUNCTION

FACTOR

VARIABLE
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Sparse Coding & Sparse Modeling

Sparse linear reconstruction

Energy  = reconstruction_error + code_prediction_error + code_sparsity

E (Y i , Z )=∥Y i−W d Z∥2+ λ∑ j
∣z j∣

[Olshausen & Field 1997]

INPUT Y Z

∥Y i− Y∥2

∣z j∣

W d Z

FEATURES 

∑ j
.

Y → Ẑ=argmin Z E (Y , Z )Inference is slow

DETERMINISTIC

FUNCTION

FACTOR

VARIABLE
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Encoder Architecture

Examples: most ICA models, Product of Experts

INPUT Y Z
LATENT
VARIABLE

Factor B

Encoder Distance

Fast Feed-Forward Model
Factor A'



Y LeCunEncoder-Decoder Architecture

INPUT Y Z

Factor B

LATENT
VARIABLE

MA Ranzato
[Kavukcuoglu, Ranzato, LeCun, rejected by every conference, 2008-2009]
Train a “simple” feed-forward function to predict the result of a complex
optimization on the data points of interest

Generative Model
Factor A

Encoder Distance

Distance Decoder

Fast Feed-Forward Model
Factor A'

1. Find optimal Zi for all Yi; 2. Train Encoder to predict Zi from Yi
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INPUT SPACE FEATURE
SPACE

Why Limit the Information Content of the Code?

Training sample

Input vector which is NOT a training sample

Feature vector
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INPUT SPACE FEATURE
SPACE

Why Limit the Information Content of the Code?

Training sample

Input vector which is NOT a training sample

Feature vector
Training based on minimizing the reconstruction error
over the training set



Y LeCun
MA Ranzato

INPUT SPACE FEATURE
SPACE

Why Limit the Information Content of the Code?

Training sample

Input vector which is NOT a training sample

Feature vector
BAD: machine does not learn structure from training data!!
It just copies the data.



Y LeCun
MA RanzatoWhy Limit the Information Content of the Code?

Training sample

Input vector which is NOT a training sample

Feature vector
IDEA: reduce number of available codes.

INPUT SPACE FEATURE
SPACE



Y LeCun
MA RanzatoWhy Limit the Information Content of the Code?

Training sample

Input vector which is NOT a training sample

Feature vector
IDEA: reduce number of available codes.

INPUT SPACE FEATURE
SPACE



Y LeCun
MA RanzatoWhy Limit the Information Content of the Code?

Training sample

Input vector which is NOT a training sample

Feature vector
IDEA: reduce number of available codes.

INPUT SPACE FEATURE
SPACE



Predictive Sparse Decomposition (PSD): sparse auto-encoderY LeCun
MA Ranzato

[Kavukcuoglu, Ranzato, LeCun, 2008 → arXiv:1010.3467],
Prediction the optimal code with a trained encoder

Energy = reconstruction_error + code_prediction_error + code_sparsity

i i 2 i 2

i i

Y LeCun
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Predictive Sparse Decomposition (PSD): sparse auto-encoder

Prediction the optimal code with a trained encoder

Energy  = reconstruction_error + code_prediction_error + code_sparsity

E Y i , Z =∥Y i−W d Z∥2∥Z−ge W e ,Y i∥2∑ j
∣z j∣

ge (W e , Y i)=shrinkage(W e Y i)

[Kavukcuoglu, Ranzato, LeCun, 2008 → arXiv:1010.3467],

INPUT Y Z

∥Y i− Y∥2

∣z j∣

W d Z

FEATURES 

∑ j
.

∥Z− Z∥2ge W e ,Y i
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PSD: Basis Functions on MNIST

Basis functions (and encoder matrix) are digit parts
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Learned Features on natural patches:
V1-like receptive fields
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∑.
k

* Zk
Wk

Y =

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]

Convolutional Sparse Coding

Replace the dot products with dictionary element by convolutions.
Input Y is a full image
Each code component Zk is a feature map (an image)
Each dictionary element is a convolution kernel

Regular sparse coding

Convolutional S.C.
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PATCH based learning CONVOLUTIONAL learning

Convolutional PSD: Encoder with a soft sh() Function

Convolutional Formulation
Extend sparse coding from PATCH to IMAGE
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Convolutional Sparse Auto-Encoder on Natural Images

Filters and Basis Functions obtained with 1, 2, 4, 8, 16, 32, and 64 filters.



∥Z−Z ̃∥
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FEATURES

Y Z

∥Y i−Y ̃∥2

∣z j∣

W d Z λ∑ .

2g e(W e ,Y i)

Using PSD to Train a Hierarchy of Features

Phase 1: train first layer using PSD
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FEATURES

Y ∣z j∣

g e(W e ,Y i)

Using PSD to Train a Hierarchy of Features

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor
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FEATURES

Y ∣z j∣

g e(W e ,Y i)

Y Z

∥Y i−Y ̃∥2

∣z j∣

W d Z λ∑ .

2g e(W e ,Y i)

Using PSD to Train a Hierarchy of Features

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD
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FEATURES

Y ∣z j∣

g e(W e ,Y i)

∣z j∣

g e(W e ,Y i)

Using PSD to Train a Hierarchy of Features

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor
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Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

Phase 5: train a supervised classifier on top

Phase 6 (optional): train the entire system with supervised back-propagation

FEATURES

Y ∣z j∣

g e(W e ,Y i)

∣z j∣

g e(W e ,Y i)

classifier

Using PSD to Train a Hierarchy of Features
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[Osadchy,Miller LeCun JMLR 2007],[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. CVPR 2013]

Pedestrian Detection, Face Detection
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Feature maps from all stages are pooled/subsampled and sent to the final
classification layers

Pooled low-level features: good for textures and local motifs
High-level features: good for “gestalt” and global shape

[Sermanet, Chintala, LeCun CVPR 2013]

38 feat maps

Input
78x126xYUV

7x7 filter+tanh L2 Pooling
3x3

2040 9x9
filters+tanh
68 feat maps

Av Pooling
2x2 filter+tanh

ConvNet Architecture with Multi-Stage Features
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ConvNet
Color+Skip
Supervised

ConvNet
Color+Skip
Unsup+Sup

ConvNet
B&W
Unsup+Sup

[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]

ConvNet
B&W
Supervised

Pedestrian Detection: INRIA Dataset. Miss rate vs false
positives



Stacked Auto-Encoders

EncoderDecoder

Input Image

Class label

e.g.

Features

EncoderDecoder

Features

EncoderDecoder

[Hinton & Salakhutdinov
Science ‘06] 

Two phase training:

1.Unsupervised 
layer-wise
pre-training

2.Fine-tuning with 
labeled data



• Remove decoders
• Use feed-forward path

• Gives 
standard(Convolutional)
Neural Network

• Can fine-tune with 
backprop

Training phase 2: Supervised Fine-Tuning

Encoder

Input Image

Class label

e.g.

Features

Encoder

Features

Encoder

[Hinton & Salakhutdinov
Science ‘06] 



Effects of Pre-Training

Supporting figures
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Fig. S1: The average squared reconstruction error per test image during fine-tuning on the curves
training data. Left panel: The deep 784-400-200-100-50-25-6 autoencoder makes rapid progress after
pretraining but no progress without pretraining. Right panel: A shallow 784-532-6 autoencoder can learn
without pretraining but pretraining makes the fine-tuning much faster, and the pretraining takes less time
than 10 iterations of fine-tuning.
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Fig. S2: The average squared reconstruction error per image on the test dataset is shown during the
fine-tuning on the curves dataset. A 784-100-50-25-6 autoencoder performs slightly better than a shal-
lower 784-108-6 autoencoder that has about the same number of parameters. Both autoencoders were
pretrained.
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• From [Hinton & Salakhudinov, Science 2006]
Big network Small network

See also: Why Does Unsupervised Pre-training Help Deep Learning? 
Dumitru Erhan, Yoshua Bengio ,Aaron Courville, Pierre-Antoine 
Manzagol PIERRE-Pascal Vincent, Sammy Bengio, JMLR  2010



Deep Boltzmann Machines

EncoderDecoder

Input Image

Class label

e.g.

Features

EncoderDecoder

Features

EncoderDecoder
Undirected model

Both pathways
used at train &
test time

TD modulation
of
BU features

Salakhutdinov & Hinton
AISTATS’09



Shape Boltzmann Machine

but these potentials fall short of capturing all such properties
so as to make realistic-looking samples.

Other approaches represent shape using a level set or
parameterized contour. These have different strengths and
weaknesses, but all share the fundamental challenge of im-
posing sufficient constraints to limit the model to valid
shapes while allowing for the right degree of flexibility to
capture all possible shapes. For example, a common ap-
proach when using a contour (or an image) is to use a mean
shape in combination with some principal directions of vari-
ation, as captured by a Principal Components Analysis [7]
or Factor Analysis [5, 8]. Such models capture the typical
global shape of an object and global variations on this shape
(such as changes in the aspect ratio of a face). However, they
cannot capture multimodal shape distributions, and tend to
be poor at learning about local variations which affect only
part of the shape (e.g. the angle of a horse’s front legs).

Non-parametric approaches employ what is effectively a
large database of template shapes [12] or shape fragments
[3, 15]. In the former case, because no attempt is made to
understand the composition of the shape, it is impossible to
generalize to novel shapes not present in the database. In the
latter case, the challenge lies in how to compose the shape
fragments to form valid shapes. To date, no method has been
proposed which can generate a variety of realistic looking
whole shapes by composing fragments.

Table 1 and Fig. 1 summarize why these existing ap-
proaches do not meet the criteria for a strong shape model.

In this paper, we consider a class of models from the
machine learning community, known as Deep Boltzmann
Machines (DBMs, [22]). The main contribution of this pa-
per is to show how a strong model of binary shape can be
constructed using a form of DBM, which we call the Shape
Boltzmann Machine (ShapeBM). We demonstrate that a
ShapeBM trained on a relatively small dataset is both able
to generate realistic samples and to generalize to generate
samples that differ from images in the training dataset.

2. Undirected models of shape
In this section we will review several undirected models

suitable for modeling binary shape images. We will start with
the commonly used grid-structured MRF and describe how
it can be modified to form an undirected model known as the
Restricted Boltzmann Machine (RBM). We then describe
how RBMs can be stacked to form the hierarchical structure
of the Deep Boltzmann Machine (DBM).

Grid MRFs: A binary grid-structured MRF defines a distri-
bution over binary images v whose energy function is:

E(v) =

X

i

f

i

(v

i

; b

i

) +

X

(i,j)

f

ij

(v

i

, v

j

;w

ij

), (1)

where i ranges over image pixels, (i, j) ranges over grid

b
N

v v

h

v

h1

h2

v

h1

h2

v

h1

h2

(a) MRF (b) RBM

(c) DBM (d) ShapeBM (e) ShapeBM

Figure 2. Undirected models of shape: (a) 1D slice of a Markov
Random Field. (b) Restricted Boltzmann Machine in 1D. (c) Deep
Boltzmann Machine in 1D. (d) 1D slice of a Shape Boltzmann
Machine. (e) Shape Boltzmann Machine in 2D.

edges between pixels i and j and the potentials are parame-
terized by b

i

and w

ij

. The grid structure of the MRF arises
from the pairwise potentials f

ij

shown in Fig. 2(a). These
potentials induce dependencies between neighboring pixels
that can favor local shape properties such as connectedness
or smoothness. In an attempt to capture more complex or
global shape properties, much recent research has focused
on constructing higher-order potentials (HOPs), which take
the configuration of larger groups of image pixels into ac-
count (cf. Sec. 1), but remain computationally tractable. The
higher order potentials in [19], for instance, are defined in
terms of a set of ‘reference patterns’ and penalize deviations
of groups of pixels from these patterns. Such HOPs can be
considered to be introducing an auxiliary hidden variable
connected through pairwise potentials to multiple image pix-
els. The introduction of such hidden variables provides a
powerful way to capture and learn complex properties of
multiple image pixels. Yet, because the model only contains
pairwise potentials, learning and inference remain tractable.

Restricted Boltzmann Machines: A model that makes
heavy use of hidden variables is the Restricted Boltzmann
Machine (RBM, e.g. [10]). In an RBM, a number of hidden
variables h are used, each of which is connected to all image
pixels as shown in Fig. 2(b). However, unlike a grid MRF,
there are no direct connections between the image pixels.
There are also no direct connections between the hidden
variables. Hence, the energy function takes the form:

E(v,h) =

X

i

b

i

v

i

+

X

i,j

w

ij

v

i

h

j

+

X

j

c

j

h

j

, (2)

where i now ranges over pixels and j ranges over hidden vari-
ables. The key points to note are that the potential functions
are all simple products and that the only pairwise potentials
are those between each visible and each hidden variable. By
learning the parameters of the potentials {w

ij

, b

i

, c

j

}, the
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model can learn about high-order constraints in the data set.
The distribution over v is given by marginalizing over

the hidden variables: p(v) =

P
h exp{�E(v,h)}/Z(⇥),

where ⇥ denotes all parameters of the model. This marginal-
ization allows the model to capture high-order dependencies
between the visible units. In fact, the hidden units can be
summed out analytically [10], giving rise to an alternative
formulation of the RBM in terms of high-order potentials
that no longer includes latent variables.

Because the RBM has edges only between hidden and
visible variables, all hidden units are conditionally indepen-
dent given the visible units (and vice versa). This property
can be exploited to make inference exact and efficient. The
conditional probabilities are:

p(v

i

= 1|h) = �(

X

j

w

ij

h

j

+ b

i

), (3)

p(h

j

= 1|v) = �(

X

i

w

ij

v

i

+ c

j

), (4)

where �(y) = 1/(1 + exp(�y)) is the sigmoid function.
This property allows for efficient implementations of block-
Gibbs sampling where all v and all h are sampled in parallel
in an alternating manner, which can be exploited during
approximate learning [23].

Deep Boltzmann Machines: RBMs can, in principle, ap-
proximate any binary distribution [10], but this can require
an exponential number of hidden units and a similarly large
amount of training data. The DBM provides a richer model
by introducing additional layers of latent variables as shown
in Fig. 2(c). The additional layers capture high-order de-
pendencies between the hidden variables of previous layers
and so can learn about complex structure in the data using
relatively few hidden units. The energy of a DBM with two
layers of latent variables is given by:
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Although exact inference is no longer possible in this
model, the conditional distributions p(v|h1

), p(h1|v,h2
),

and p(h2|h1
) remain independent due to the layering (taking

forms analogous to Eqs. 3, 4). This allows for computation-
ally efficient inference, either by layerwise block-Gibbs sam-
pling from the posterior p(h1

,h2|v) (Fig. 3), or by using
a mean field procedure with a fully factorized approximate
posterior as described in [22]. The layering further admits
a layer-wise pre-training procedure that makes it less likely
that learning will get stuck in local optima. Hence the DBM
is both a rich model of binary images and a tractable one.

v

h1

h2

...

image reconstruction sample 1 sample n

Figure 3. DBM MCMC. Block-Gibbs MCMC sampling scheme,
in which v, h1 and h2 variables are sampled in turn. Note that
each sample of h1 is obtained conditioned on the current state of
v and h2. For sufficiently large values of n, sample n will be
uncorrelated with the original image.

3. The Shape Boltzmann Machine

RBMs and DBMs are powerful generative models, but
also have many parameters. Since they are typically trained
on large amounts of unlabeled data (thousands or tens of
thousands of examples), this is usually less of a problem
than in supervised settings. Segmented images, however, are
expensive to obtain and datasets are typically small (hun-
dreds of examples). In order to learn a model that accurately
captures the properties of binary shapes, but also generalizes
even when trained on small datasets, we use a form of DBM
but additionally impose carefully chosen connectivity and
capacity constraints (in a similar vein to [16, 18]).

The ShapeBM used below has two layers of latent vari-
ables: h1 and h2. The visible units v are the pixels of a
binary image of size N ⇥ N . In the first layer we enforce
local receptive fields by connecting each hidden unit in h1

only to a subset of the visible units, corresponding to one
of four square patches, as shown in Fig. 2(d,e). Each patch
overlaps its neighbor by b pixels and so has a side length of
N/2 + b/2. We furthermore share weights between the four
sets of hidden units and patches. These modifications reduce
the number of first layer parameters by a factor of about 16
which reduces the amount of data needed for training by a
similar factor. At the same time these modifications take
into account two important properties of shapes: first, the re-
stricted receptive field size reflects the fact that the strongest
dependencies between pixels are typically local, while dis-
tant parts of an object often vary more independently (the
small overlap allows boundary continuity to be learned pri-
marily at the lowest layer); second, weight sharing takes
account of the fact that many generic properties of shapes
(e.g. smoothness) are independent of the image position.

For the second layer we choose full connectivity between
h1 and h2, but restrict the relative capacity of h2: we use
4 ⇥ 500 hidden units for h1 vs. 50 or 100 for h2 in our
single class experiments. While the first layer is primarily
concerned with generic, local properties, the role of the
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second layer is to impose global constraints, e.g. with respect
to the class of an object shape or its overall posture. The
second layer mediates dependencies between pixels that are
far apart (not in the same local receptive field), but these
dependencies will be weaker than between nearby pixels
that share first-level hidden units. Limiting the capacity of
the second-layer encourages this separation of concerns and
helps to prevent the model from overfitting to small training
sets. Note that this is in contrast to [22] which use a top-most
layer that is at least as large as all of the preceding layers.

Learning: Learning of the model involves maximizing
log p(v; ⇥) of the observed data v with respect to its param-
eters ⇥ = {b, W

1
, W

2
, c1

, c2} (cf. Eq. 5). This is difficult
for three reasons: (1) the intractability of the normalization
constant Z (which depends on the parameters); (2) the pres-
ence of latent variables; and (3) the tendency of learning to
get stuck in poor local optima. The procedure proposed in
[22] minimizes these difficulties and we follow it closely.

Learning proceeds in two phases. In the pre-training
phase we greedily train the model bottom up, one layer at
a time. The purpose of this phase is to find good initial
values for all parameters of the model. We begin by training
an RBM on the observed data using stochastic maximum
likelihood learning (SML, also referred to as ‘persistent CD’,
[23, 22]). The number of hidden units of this RBM is the
same as the size of h1 in the full ShapeBM model and it
obeys the same connectivity constraints as the ShapeBM’s
first layer. Once this RBM is trained, we infer the conditional
mean of the hidden units using Eq. 4 for each training image.
The resulting vectors then serve as the training data for a
second RBM with the same number of hidden units as h2,
which is again trained using SML.

We use the parameters of these two RBMs to initialize the
parameters of the full ShapeBM model as described in [22].
In the second phase we perform approximate stochastic gra-
dient ascent in the likelihood of the full model to fine-tune
the parameters in an expectation-maximization-like scheme.
This involves the same sample-based approximation to the
gradient of the normalization constant used for learning the
RBMs [23, 22], as well as a mean-field approximation to the
posterior p(h1

,h2|v) of training images. This joint training
is essential to separate out learning of local and global shape
properties into the two hidden layers.

4. Experiments
We performed both qualitative and quantitative experi-

ments to assess whether the ShapeBM can act as a strong
model of object shape.

4.1. Weizmann horses

The first dataset we investigated was the Weizmann horse
dataset [3] which contains 327 images, all of horses facing
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Figure 4. Sampled shapes. (a) A selection of images from the
Weizmann horse dataset. (b) A collection of samples from a dis-
crete Factor Analysis model. The Gaussianity assumption forces
the model to allocate probability mass to unlikely horse shapes.
(c) Samples from an RBM. (d) Samples from a ShapeBM. The
model generates samples of varying pose, with the correct numbers
of legs and details are preserved (samples are arranged l-r, u-d in
decreasing order of generalization).

to the left, but in a variety of poses. The binary images are
cropped and normalized to 32⇥32 pixels (see Fig. 4(a)). This
dataset is challenging, because in addition to their overall
pose variation, the positions of the horses’ heads, tails and
legs change considerably from image to image. Compared
to the amount of variability seen in the data, the number of
training images is relatively small.

We trained a ShapeBM with overlap b = 4, and 2000
and 100 units for h1 and h2 respectively. The first layer
was pre-trained for 3000 epochs (iterations) and the second
layer for 1000 epochs. After pre-training, joint training was
performed for 1000 epochs. Our MATLAB implementation
completed training in around 4 hours, running on a dual-core,
3GHz PC with 4GB of memory.

For comparison, we trained a Factor Analysis (FA) model
with 10 latent dimensions, and an RBM with 500 hidden
units on the same data1. The FA model was modified to work
on discrete binary images, similarly to the Clipped Factor
Analysis model described in [5].

Realism: To assess the Realism requirement, we sampled
a set of shapes2 from each model, as shown in Fig. 4. FA

1We obtained the best results with these settings of the parameters.
2In the sampling figures, we display the (grayscale) conditional proba-

bility of each pixel given a particular hidden configuration. Binary samples
can be generated per-pixel from a Bernoulli distribution where the gray
level specifies the distribution mean.
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“The Shape Boltzmann Machine: a Strong Model of Object 
Shape”, Ali Eslami, Nicolas Heess and John Winn, CVPR 2012



Decoder-Only Models

• Examples:
– Sparse coding
– Deconvolutional Networks [Zeiler & Fergus, ‘10]

• No encoder to compute features

• So need to perform optimization
– Can be relatively fast



Sparse Coding (Patch-based)

• Over-complete linear decomposition
of input       using dictionary    

Dictionary 

Input

• regularization yields solutions
with few non-zero elements

• Output is sparse vector:



Deconvolutional Network Layer

⊕ ⊕ ⊕ ⊕

∑ y1 yc

f1,1

zK
fK,1 fK,cf1,c

z1

Feature Maps

Input Image Planes

Sparsity
p ≤ 1

| · | p

...

... Filters

1

• Convolutional form of sparse coding
[Zeiler & Fergus, CVPR 2010]. 

Also Kavukcuoglu et al. NIPS 2010



Filters

Feature
maps

Toy Example



Overall Architecture (2 layers)



Layer 2 Filters

• 50 filters/feature maps, showing max for each map
projected down to image



Layer 3 filters

• 100 filters/feature maps, showing max for each map



Layer 3 filters

• 100 filters/feature maps, showing max for each map



Layer 3 filters

• 100 filters/feature maps, showing max for each map



Results on Caltech 101

• Comparison to other methods using Lazebnik’s SPM
with hard vector quantization

Convolutional
Sparse Coding

SPM with 
soft quantization

Other approaches
using SPM with
Hard quantization



Encoder-Only Models

• In vision setting, essentially a convnet trained without explicit class 
labels

• But still use feed-forward convnet to predict labels (of some kind)

• What kinds of labels?
– Need to be “free”, i.e. zero or minimal human effort required to obtain 
– Typically exploit some property of images/video

• Often called self-supervised learning

• Note: NOT generic approach -- only valid for image/video domain



• Unsupervised feature learning by augmenting single images, 
Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas 
Brox, NIPS 2014

Self-Supervised Learning

• Colorful Image Colorization, Richard Zhang, Philip Isola, 
Alexei Efros, ECCV 2016

• Unsupervised Visual Representation Learning by Context 
Prediction, Carl Doersch, Abhinav Gupta, Alexei Efros, ICCV 
2015

• Unsupervised Learning of Visual Representations using Videos, 
Xiaolong Wang, Abhinav Gupta, ICCV 2015
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Unsupervised Learning of Transformations

Figure 1: Random patches sampled from
the STL-10 unlabeled dataset which are later
augmented by various transformation to ob-
tain surrogate classes for the neural network
training.

Figure 2: Random transformations applied to
one of the patches extracted from the STL-10
unlabeled dataset. Original patch is in the top
left corner.

2.1 Data acquisition

The input to our algorithm is a set of unlabeled images, which come from roughly the same distribu-
tion as the images we later aim to classify. We randomly sample N 2 [50, 32000] random patches
of size 32⇥ 32 pixels from different images, at varying positions and scales. We only sample from
regions with considerable gradient energy to avoid getting uniformly colored patches. Then we ap-
ply K 2 [1, 100] random transformations to each of the sampled patches. Each of these random
transformations is a composition of four random ’elementary’ transformations from the following
list:

• Translation: translate the patch by a distance within 0.25 of the patch size vertically and
horizontally.

• Scale: multiply the scale of the patch by a factor between 0.7 and 1.4.
• Color: multiply the projection of each patch pixel onto the principal components of the

set of all pixels by a factor between 0.5 and 2 (factors are independent for each principal
component and the same for all pixels within a patch).

• Contrast: raise saturation and value (S and V components of the HSV color representation)
of all pixels to a power between 0.25 and 4 (same for all pixels within a patch).

We do not apply any preprocessing to the obtained patches other than subtracting the mean of each
pixel over the whole training dataset. Examples of patches sampled from the STL-10 unlabeled
dataset are shown in Fig. 1. Examples of transformed versions of one patch are shown in Fig. 2.

2.2 Training

As a result of the procedure described above, to each patch x

i

2 X from the set of initially sampled
patches X = {x1, . . . xN

} we apply a set of transformations T
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} and get a set of
its transformed versions S
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}. We then declare each of these sets to be
a class by assigning label i to the class S

xi and train a convolutional neural network to discriminate
between these surrogate classes. Formally, we minimize the following loss function:
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STL-10 CIFAR-10-reduced CIFAR-10 Caltech-101
K-means [6] 60.1± 1 70.7± 0.7 82.0 —
Multi-way local pooling [5] — — — 77.3± 0.6

Slowness on videos [25] 61.0 — — 74.6

Receptive field learning [16] — — [83.11]1 75.3± 0.7

Hierarchical Matching Pursuit (HMP) [3] 64.5± 1 — — —
Multipath HMP [4] — — — 82.5± 0.5

Sum-Product Networks [8] 62.3± 1 — [83.96]1 —
View-Invariant K-means [15] 63.7 72.6± 0.7 81.9 —
This paper 67.4± 0.6 69.3± 0.4 77.5 76.6± 0.7 2

Table 1: Classification accuracy on several popular datasets (in %).
1As mentioned, we do not compare to the methods which use supervised information for learning features

on the full CIFAR-10 dataset
2There are two ways to compute the accuracy on Caltech-101: simply averaging the accuracy over the

whole test set or calculating the accuracy for each class separately and then averaging these values. These
methods differ because for many classes less than 50 test samples are available. It seems that most researchers
in the machine learning field use the first method, which is what we report in the table. When using the second
method, our performance drops to 74.1%± 0.6%

distribution of the test dataset is closest to the surrogate samples our algorithm reaches 67.4%±0.6%

accuracy outperforming all other approaches by a large margin.

3.2 Influence of the data acquisition on classification performance

Our pipeline lets us easily vary the number of surrogate classes in the training data and the number
of training samples per surrogate class. We use this to measure the effect of these factors on the
quality of the resulting features. We vary the number of surrogate classes between 50 and 32000

and the number of training samples per surrogate class between 1 and 100. The results are shown in
Fig. 3 and 4. In Fig. 4 we also show, as a baseline, the classification performance of random filters
(all weights are sampled from a normal distribution with standard deviation 0.001, all biases are set
to zero). Initializing the random filters does not require any training data and can hence be seen as
using 0 samples per surrogate class. Error bars in Fig. 3 show the standard deviations computed
when testing on 10 folds of the STL-10 dataset.

An apparent trend in Fig. 3 is that increasing the number of surrogate classes results in an increase
in classification accuracy until it reaches an optimum at around 8000 surrogate classes. When the
number of surrogate classes is further increased the classification results do not change or slightly
decrease. One explanation for this behavior is that the larger the number of surrogate classes be-
comes, the more these classes overlap. As a result of this overlap the classification problem becomes
more difficult and adapting the network to the surrogate task no longer succeeds. To check the valid-
ity of this explanation we also plot in Fig. 3 the classification error on the validation set (taken from
the surrogate data) computed after training the network. It rapidly grows as the number of surrogate
classes increases, supporting the claim that the task quickly becomes more difficult as the number
of surrogate classes increases.

Fig. 4 shows that classification accuracy increases with increasing number of samples per surrogate
class and saturates around 100 samples. It can also be seen that when training with small numbers
of samples per surrogate class, there is no clear indication that having more classes lead to better
performance. We hypothesize that the reason may be that with few training samples per class the
surrogate classification problem is too simple and hence the network can severely overfit, which
results in poor and unstable generalization to real classification tasks. However, starting from around
8�16 samples per surrogate class, the surrogate task gets sufficiently complicated and the networks
with more diverse training data (more surrogate classes) perform consistently better.
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[Unsupervised feature learning by augmenting single images, Alexey 
Dosovitskiy, Jost Tobias Springenberg and Thomas Brox, NIPS 2014]

• Take patches from images

• For each patch, make lots of
peturbed versions

• Treat each patch + perturbed copies as a 
separate classs

• Train supervised convnet

• Introducing prior knowledge about 
irrelevant transformations via perturbations



• Unsupervised feature learning by augmenting single images, 
Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas 
Brox, NIPS 2014

Self-Supervised Learning

• Colorful Image Colorization, Richard Zhang, Philip Isola, 
Alexei Efros, ECCV 2016

• Unsupervised Visual Representation Learning by Context 
Prediction, Carl Doersch, Abhinav Gupta, Alexei Efros, ICCV 
2015

• Unsupervised Learning of Visual Representations using Videos, 
Xiaolong Wang, Abhinav Gupta, ICCV 2015
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Predicting	Labels	from	Data

Data	x Label	yLearned	feature
hierarchy

Supervised
training

ImageNet
images

ImageNet
labels



Predicting	Data	from	Data

Label	yLearned	feature
hierarchy

Supervised
training x0 x1
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ImageNet
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ImageNet
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Task Generalization:	ILSVRC	linear	classification
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Class	Supervision

Are	semantic	classes	linearly	separable	
in	the	learned	feature	space?



Task Generalization:	ILSVRC	linear	classification



Task Generalization:	ILSVRC	linear	classification



Task Generalization:	ILSVRC	linear	classification



Hidden	Unit	(conv5)	Activations

sky

trees
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Dataset & Task Generalization	on	PASCAL	VOC

Does	the	feature	representation
transfer	to	other	datasets	and	tasks?

Detection
Fast	R-CNN.	Girshick.	In	ICCV,	2015.

Segmentation
FCNs. Long	et	al.	In	CVPR,	2015.

Classification
Krähenbühl et	al.	In	ICLR,	2016.



Dataset & Task Generalization	on	PASCAL	VOC
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Scaling Self-Supervision

Abhinav Gupta

 Learning Perception and Action without Human Supervision



supervised learning

Beagle

Do	we	even	manual	(semantic)	labels?

Pose?

Boundaries?Geometry?

Parts?

Materials?

scale learning to billions of images



Deep
Net

context as supervision
[Collobert & Weston 2008; Mikolov et al. 2013]



idea
Train a CNN to predict the patches in context

High-Dimensional Regression
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Semantics	from	a	non-
semantic	task



Relative	Position	Task

Randomly	Sample	
PatchSample	Second	Patch

CNN CNN

Classifier

8	possible	locations



CNN CNN

Classifier

Patch	Embedding

Input Nearest	Neighbors

Note:	connects	across instances!



Avoiding	Trivial	
Shortcuts

Include	a	gap

Jitter	the	patch	locations



A	Not-So	“Trivial”	
Shortcut

Position	in	Image
CNN



What	is	learned?
OursInput Random	Initialization ImageNet	AlexNet



how do we evaluate?

Use as pre-trained network for VOC object detection.

Compare to ConvNet trained with ImageNet and ConvNet without 
Pre-training.



VOC	2007	Detection	Performance
(pretraining	for	R-CNN)

No	PretrainingOursImageNet	Labels
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take-home summary

Surprising: Within image-context leads to across-image 
similarities.

Significantly better than no pre-training, but the performance is 
still below ImageNet pre-training.



Not Enough Supervision?

Hard to learn viewpoint invariance 

Is there a data source which allows such 
“supervision” for free? 



Videos: Use tracking



Approach: Outline
… … … …

Learning to Rank

Conv
Net

Conv
Net

Conv
Net

Query Tracked Negative 

Learn an embedding such that instances from same object instance are closer 



PATCH MINING IN VIDEOS
• Track 8M patches in 100K videos 

from YouTube.

• Use tracking algorithms with no 
learning.

Small Motion Camera Motion



PATCH MINING IN VIDEOS

… … Query
(First Frame)

Tracked
(Last Frame)

Sliding Window 
SearchingTracking



SOME EXAMPLES



DOG



Patch
Pairs

Patch
Pairs



Patch
Pairs

Patch
Pairs



LEARNING VIA VIDEOS
• Space of negatives is huge might take 

lot of time for network to learn

• Hard Negative Mining for Triplet 
Sampling
▪ Random Selection (150K iterations)
▪ Hard Negatives: Negative patches giving high 

loss
▪ Backprop only for Hard Negatives
▪ Hard Negative Mining for 200K iterations



What does the network 
learn?

• trained using 8M tracks from 100K YouTube 
Videos

Pool5 Neurons



Nearest Neighbor

Query (a) Imagenet AlexNet (b) Unsupervised AlexNet
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< 2.5% difference

Learning Ensembles



Summary

• Unsupervised learning big unsolved problem in ML/AI

• Lots of active research

• Auto-encoder appealing idea but performance is underwhelming

• Self-supervised methods interesting, but not generic

• New approaches offer promise, e.g. generative adversarial nets and 
variational auto-encoders 
– Will be covered by Emily Denton on 12/15


