Unsupervised Learning

Lecture 12



Motivation

* Goal: learn structure of data to yield generic representation,
useful for many different tasks

* Supervised learning: Leaming

Machine

given labels/targets \
for a particular task 1 Otecte

— Task strongly constrains s
argets
objective function

* In unsupervised learning, where do labels/output targets come

from?
— What is the objective?



Motivation

* Most successes obtained with supervised
models, e.g. Convnets

* Unsupervised learning methods less successful

* But likely to be very important in long-term



Different Perspectives on
Unsupervised Learning

1. Density estimation

Given data {x}, build p(x).

E.g. k-Means, PCA, RBMs,

sparse coding etc.

Assumption: good model of data
requires representation that will be
generically useful

2. Train model to use “free-labels”
from task that is somewhat similar

to one we actually care about

* Often called “self-supervised”
learning

* Free-labels often come from
exploiting knowledge of domain



Historical Note

* Deep Learning revival started in ~2006
— Hinton & Salakhudinov Science paper on RBMs

* Unsupervised Learning was focus from 2006-2012

* In ~2012 great results in vision, speech with supervised
methods appeared

— Less interest in unsupervised learning



Arguments for Unsupervised Learning

* Want to be able to exploit unlabeled data

— Vast amount of it often available

— Essentially free

* Good regularizer for supervised learning
— Helps generalization
— Transfer learning

— Zero / one-shot learning



Another Argument for
Unsupervised Learning

When we're learning to see, nobody’s telling us what the right
answers are — we just look. Every so often, your mother says
“that’s a dog”, but that’s very little information.

You'd be lucky if you got a few bits of information — even one
bit per second — that way. The brain’s visual system has 1014
neural connections. And you only live for 107 seconds.

So it’s no use learning one bit per second. You need more like
10° bits per second. And there’s only one place you can get that
much information: from the input itself,

— Geoftrey Hinton, 1996



Taxonomy of Approaches

Autoencoder (most common)
— RBMs / DBMs —

— Denoising autoencoders

. N I.oss involves
— Predictive sparse decomposition

Decoder-only _ S0mc kind .
— Sparse coding of reconstruction
— Deconvolutional Nets error

Encoder-only

— Implicit or self-supervision, e.g. from video
Adversarial Networks [to be covered in class on 12/16]



Auto-Encoder

Output Features
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generative /
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Auto-Encoder Example 1

e Restricted Boltzmann Machine [Hinton ’02]

(Binary) Features Z

Decoder C I
filters WT
o(WTz)
Sigmoid
function O(.) A 4

4

Encoder

filters W

Sigmoid
function o¥(.)

(Binary) Input X



Auto-Encoder Example 2

Sparse Features Z

1
S parsity Ve D Encoder
filters W
Decoder Dz
filters D Sigmoid
& % function 0(.)

4

Input Patch X



Auto-Encoder Example 2

L1 Ve Encoder
Sparsity ﬁltCI’S W
Sigmoid

function o¥(.)

Decoder
filters D &
Input Patch X

min ||Dz — z||5 + Mz|1 + ||lc(Wz) — 2|3
D,W,2 N e e e

Decoder Encoder



Y LeCun
MARanzato
"4

Energy-Based
Unsupervised Learning




Enei'gy-Based Unsupervised Learning

Y LeCun
MA Ranzato

= Learning an energy function (or contrast function) that takes
» Low values on the data manifold
» Higher values everywhere else

A
Y2

Yl



Capturjng Dependencies Between‘%ariables

Y LeCun

with an Energy Function
MA Ranzato

M The energy surface is a “contrast function” that takes low values on the
data manifold, and higher values everywhere else

» Special case: energy = negative log density

Example: the samples live in the manifold Y. 2 = Y ]2




Transforming Energies into Probabilities (if?ecessary) Y LeCun
| , MA Ranzato

M The energy can be interpreted as an unnormalized negative log density

M Gibbs distribution: Probability proportional to exp(-energy)
» Beta parameter is akin to an inverse temperature

#pon't compute probabilities unless you absolutely have to
» Because the denominator is often intractable

4 P(YIW)

o—BE(Y,W)

f e—BE(y,W)
Y

P(Y|W) =

>~ Y
AE(Y.W)

E(Y,W) x —log P(Y|W)




Y LeCun

Learning the Energy Function B R o

=] parameterized energy function E(Y,W)
» Make the energy low on the samples
» Make the energy higher everywhere else
> Making the energy low on the samples is easy
» But how do we make it higher everywhere else?




Seven Strategies to Shape the Energy Functg)n MAELeCun
! anzato

1. kuild the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA

2. push down of the energy of data points, push up everywhere else
Max likelihood (needs tractable partition function)

3. R“Sh down of the energy of data points, push up on chosen locations
contrastive divergence, Ratio Matching, Noise Contrastive
Estimation, Minimum Probability Flow

4. minimize the gradient and maximize the curvature around data points
score matching

= 5. train a dynamical system so that the dynamics goes to the manifold
denoising auto-encoder

- 6. use a regularizer that limits the volume of space that has low energy
Sparse coding, sparse auto-encoder, PSD

= 7.if E(Y) =1lY - G(Y)II*2, make G(Y) as "constant" as possible.
Contracting auto-encoder, saturating auto-encoder



#1: constant voluine of low energy Y LeCun
MA Ranzato

# 1. build the machine so that the volume of low energy stuff is constant
» PCA, K-means, GMM, square ICA...

K-Means,
Z. constrained to 1-of-K code

E(Y)=min:)i || Y-WZ || »

PCA
EY )=/ WtWY -Y [/ 2




#2: push down of the energy ofddata pa points, |
push up everywhere else

i Y LeCun
$ MA Ranzato

@ Max likelihood (requires a tractable partition function)

Maximizing P(YIW) on training A
samples make this big T P(Y)

—BE(Y,W) &

V)= T J i*‘*

make this small =

P(

Y
Minimizing -log P(Y,W) on training

samples

L(Y,W) = E(Y,W) +élog /e—Bva“’) A '* A * 4
/ | Y T f

Y g
make this small make this big T_

AE(Y)




#6. use a regularizer that limitsf

the volume of space that has low energy f Y LeCun
MA Ranzato

@ Sparse coding, sparse auto-encoder, Predictive Saprse Decomposition
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Sparse Modeling,
Sparse Auto-Encoders,
Predictive Sparse Decomposition
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How to Speed Up Inference in a Generative Mﬁdel? Y LeCun
MA Ranzato

= Inference Z - Y is easy

Factor Graph with an asymmetric factor

> Run Z through deterministic decoder, and sample Y

= Inference Y - Z is hard, particularly if Decoder function is many-to-one
¥ MAP: minimize sum of two factors with respect to Z
> /* = argmin_z Distance[Decoder(Z), Y] + FactorB(Z)

- Examples: K-Means (1of K), Sparse Coding (sparse), Factor Analysis

Generative Model

Factor B

LATENT
VARIABLE

INPUT



Sparse Coding & Sparse Modeling Y LeCun

MA Ranzato

|Olshausen & Field 1997]

# Sparse linear reconstruction

M Energy = reconstruction_error + code_prediction_error + code_sparsity

E(Y,2)=|Y'-w,zP+ 1Y |z,

FACTOR DETERMINISTIC
FUNCTION

VARIABLE

# Inference is slow Y=o/ :a]/‘gminz E(Y ,Z)



Encoder Architecfure A Y LeCun
\ MA Ranzato

Examples: most ICA models, Product of Experts

Factor B

LATENT

INPUT VARIABLE

Fast Feed-Forward Model



y |

Encoder-Decoder Architecture | Y LeCun

.‘ , . MA Ranzato
[Kavukcuoglu, Ranzato, LeCun, rejected by every conference, 2008-2009]

M Train a “simple” feed-forward function to predict the result of a complex
optimization on the data points of interest

Generative Model

Factor B

LATENT
VARIABLE

INPUT

# 1. Find optimal Zi for all Yi; 2. Train Encoder to predict Zi from Yi
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Why Limit the Information

® Training sample

‘ontent of theCo‘e? \

® Input vector which is NOT a training sample

® Feature vector
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Y LeCun
MA Ranzato
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Why Limit the Information Contéent of the Cole? MA Ranzato

® Training sample

® Input vector which is NOT a training sample

& Feature vector

Training based on minimizing the reconstruction error
over the training set

INPUT SPACE FEATURE |
e SPACE *
| o~ | | =
@ ‘h,,,”"""” ® ® “‘““\\\\““ :l @
® ® ® g """"""'"""“““““““‘“ [ ®
® ® o L ¢ @




Y LeCun

Why Limit the Information Content of the Coée? - MA Ranzato

® Training sample

® Input vector which is NOT a training sample

¢ Feature vector
BAD: machine does not learn structure from training data!!

It just copies the data.

INPUT SPACE FEATURE |
- SPACE ®
® O o ° °

@)
@




Why Limit the Information Content of the Coae?

® Training sample

® Input vector which is NOT a training sample

® Feature vector

¥

-

IDEA: reduce number of available codes.

INPUT SPACE L
e .
o
e
° .
O O

Y LeCun
MA Ranzato

FEATURE
SPACE
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Why Limit the Information Content of the Coje? ” MA Ranzato

e Training sample

® Input vector which is NOT a training sample
¢ FKeature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
. SPACE
O s @‘v o ®

~
-~
-
5 :
s @
-




Y LeCun

Why Limit the Information Content of the Coée? - MA Ranzato

e Training sample

® Input vector which is NOT a training sample
¢ FKeature vector

IDEA: reduce number of available codes.

INPUT SPACE e 1
. | SPACE
®
_—
® gl S




Predictive Sparse Decomposition (PSD): sparsﬁ auto-encoder y L<Cun
| MA Rapza

[Kavukcuoglu, Ranzato, LeCun 208 - arXiv: 1010.367] ,

Prediction the optimal code with a trained encoder

Energy = reconstruction_error + code_prediction_error + code_sparsity
E(Y',Z)=IIY'=W ZI"+|Z-g. (W, Y)IF+N 2. |z
g (W, Yi)zshrinkage(WeYi)




PSD: Basis Functions on MNIST Y LeCun
MA Ranzato

Basis functions (and encoder matrix) are digit parts
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Learned Features on natural patches:

V1-like receptive'fields Y LeCun

MA Ranzato
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Y LeCun

Convolutional Sparse Coding | MA Ranzato

> Replace the dot products with dictionary element by convolutions.
> Input Y is a full image
¥ Each code component Zk is a feature map (an image)
» Each dictionary element is a convolution kernel

& Regular sparse coding F ;7(Y_, Z ) — | ’Y - Z Wi 7,
k.

2|

]2 + o Z
k

& Convolutional S.C. E(Y,Z) = HY — Z Wi * Zy| ‘2 1+« Z
k L

Z|

7k

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]



Y LeCun

Convolutional PSD: Encoder with a soft sh() Function .

& Convolutional Formulation
» Extend sparse coding from PATCH to IMAGE

K K
1
L(z,2,D)=Sllz = > Dexzellz+ D llze — F(W* x2)|[3 + |al;

» PATCH based learning » CONVOLUTIONAL learning




Convolutional Sparse’Auto-Encoder on Natural Images Y LeCun
MA Ranzato

M Filters and Basis Functions obtained with 1, 2,4, 8, 16, 32, and 64 filters.




Y LeCun
MA Ranzato

Usilig i’SD to Train a Hierarchy of Features§

& Phase 1: train first layer using PSD

FEATURES



Y LeCun
MA Ranzato

Usirig PSD to Train a Hierarchy of Featuresi

& Phase 1: train first layer using PSD

& Phase 2: use encoder + absolute value as feature extractor

FEATURES



Y LeCun
MA Ranzato

Usiﬁg PSD to Train a Hierarchy of Featuresi

& Phase 1: train first layer using PSD
& Phase 2: use encoder + absolute value as feature extractor

& Phase 3: train the second layer using PSD

FEATURES



Y LeCun
MA Ranzato

Usiﬁg PSD to Train a Hierarchy of Featuresi

@ Phase 1: train first layer using PSD
ot Phase 2: use encoder + absolute value as feature extractor
@ phase 3: train the second layer using PSD

b Phase 4: use encoder + absolute value as 2.4 feature extractor

FEATURES



MA Ranzato

Usirig i’SD to Train a Hierarchy of Featuresi Y LeCun

D phage 1: train first layer using PSD

@ phase 2: use encoder + absolute value as feature extractor

@ Phase 3: train the second layer using PSD

D phase 4: use encoder + absolute value as 2.4 feature extractor

@ phagse 5: train a supervised classifier on top

P phase 6 (optional): train the entire system with supervised back-propagation

classifier

FEATURES
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Pedestrian Detection, Face Detection * | Y LeCun
\ MA Ranzato

.E;.d

- ALEX] ‘ D
GOOSSENS =N-AD,
OTLIB = COUTELIS =S £

s R ped .68 M—
-—pe #d16 ped 1.4l =
r ST AR PSS 1 peq 1 gPed Aped wed 1.

[Osadchy Miller LeCun JMLR 2007],[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. CVPR 2013]
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CoﬂvN et Architecture with Multi-Stage Feasures : MAELGCUH
anzato

& Feature maps from all stages are pooled/subsampled and sent to the final
classification layers
» Pooled low-level features: good for textures and local motifs
» High-level features: good for “gestalt” and global shape

2040 9x9 .
) Av Pooling
filters+tanh %2 filter+tanh
68 feat maps
Input l 1 J
78x126xYUV :
t
7x7 filter+tanh L2 Pooling \\_) T
38 feat maps 3x3 subsampling output
| st stage 2nd stage “lassifier
Task Single-Stage features | Multi-Stage features | Improvement %
Pedestrians detection (INRIA) 14.26% 9.85% 31%
Traffic Signs classification (GTSRB) [ 1] 1.80% 0.83% 54%
House Numbers classification (SVHN) [27] 5.54% 5.36% 3.2%

[Sermanet, Chintala, LeCun CVPR 2013]



Pedestl:lan Detection: INRIA Dat!set MlSS rate vs false
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Stacked Auto-Encoders

Two phase training: Class label

|
1. Unsupervised [ De:)der ] *

layer-wise
i
pre-training -
[Decoder] *
2. Fine-tuning with ¥
labeled data

|
Drr | D
[Hinton & Salakhutdinov ‘

Science ‘06] Input Image




Training phase 2: Supervised Fine-Tuning

Class label

e Remove decoders

* Use feed-forward path

e (Gives

standard(Convolutional)
Neural Network

e (Can fine-tune with

backprop

[Hinton & Salakhutdinov
Science ‘06]

Input Image



Effects of Pre-Training

* From [Hinton & Salakhudinov, Science 2006 ]

Big network Small network

Randomly Initialized

Randomly Initialized Autoencoder

Autoencoder

1
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Pretrained Autoencoder
Pretrained Autoencoder

100 150 200 250 300 350 400 450 500
Number of Epochs

100 150 200 250 300 350 400 450 500
Number of Epochs

See also: Why Does Unsupervised Pre-training Help Deep Learning?
Dumitru Erhan, Yoshua Bengio ,Aaron Courville, Pierre-Antoine

Manzagol PIERRE-Pascal Vincent, Sammy Bengio, JMLR 2010



Deep Boltzmann Machines

Undirected model Class label Salakhutdinov & Hinton

AISTATS09
[ Decoder ]

$

Both pathways { Decoder ]
used at train & 3

test time

TD modulation { Decoder }
of : 2

BU features Input Image




Shape Boltzmann Machine

h2

<
Oooo h!

Q0000 Vv
(b) RBM

0000 Vv
(a) MRF

ooooo h?

0000 Vv
(d) ShapeBM

X X
A X 4
X ¥ X
A A

(c) DBM (e) ShapeBM

Figure 2. Undirected models of shape: (a) 1D slice of a Markov
Random Field. (b) Restricted Boltzmann Machine in 1D. (c) Deep
Boltzmann Machine in 1D. (d) 1D slice of a Shape Boltzmann
Machine. (e) Shape Boltzmann Machine in 2D.
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“The Shape Boltzmann Machine: a Strong Model of Object
Shape”, Ali Eslami, Nicolas Heess and John Winn, CVPR 2012



Decoder-Only Models

* Examples:

— Sparse coding
— Deconvolutional Networks [ Zeiler & Fergus, ‘10]

* No encoder to compute features

* So need to perform optimization

— Can be relatively fast



Sparse Coding (Patch-based)

of input ¢ using dictionary )

Input

* ¢, regularization yields solutions
with few non-zero elements

* QOutput is sparse vector: , — 0,0.3,0,...,0.5,...,0.2,...,0]



Deconvolutional Network Layer

* Convolutional form of sparse coding

| Zeiler & Fergus, CVPR 2010].
Also Kavukcuoglu et al. NIPS 2010

Feature Maps |+ |1 Sparsity

Input Image Planes




Toy Example

Feature
maps

Filters

1t LayerFilters

43
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\.‘ Reconstructed

Image
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Overall Architecture (2 layers)
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Layer 2 Filters

* 50 filters/feature maps, showing max for each map
projected down to image

MG SN NI
N2 &R
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Layer 3 filters

* 100 filters/feature maps, showing max for each map

Layer 311




Layer 3 filters

* 100 filters/feature maps, showing max for each map

Layer 31U




Layer 3 filters

* 100 filters/feature maps, showing max for each map

Loyer 31




Results on Caltech 101

* Comparison to other methods using Lazebnik’s SPM
with hard vector quantization

Our model - layer 1

Chen etal.  layer-1+2 65.7 & 0.7%

Kavukcuoglu ef al. 65.7 + 0.7% |ISESuaChEtE
Sparse Coding

Zeiler et al. layer-142 | 66.9 = 1.1%

Boureau et al.  (Hard) 70.9 £ 1.0%
Jarrett et al. 65.6 + 1.0% Other approaches

— using SPM with

Hard quantization

Lazebnik et al. 64.6 £+ 0.7%
Lee et al. layer-142 65.4 + 0.5%




Encoder-Only Models

In vision setting, essentially a convnet trained without explicit class

labels
But still use feed-forward convnet to predict labels (of some kind)

What kinds of labels?

— Need to be “free”, i.e. zero or minimal human effort required to obtain

— Typically exploit some property of images/video
Often called self-supervised learning

Note: NOT generic approach -- only valid for image/video domain



Self-Supervised Learning

Unsupervised feature learning by augmenting single images,

Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas
Brox, NIPS 2014

* Colorful Image Colorization, Richard Zhang, Philip Isola,
Alexei Efros, ECCV 2016

* Unsupervised Visual Representation Learning by Context

Prediction, Carl Doersch, Abhinav Gupta, Alexei Efros, ICCV
2015

* Unsupervised Learning of Visual Representations using Videos,

Xiaolong Wang, Abhinav Gupta, ICCV 2015



Self-Supervised Learning

* Colorful Image Colorization, Richard Zhang, Philip Isola,
Alexei Efros, ECCV 2016

* Unsupervised Visual Representation Learning by Context

Prediction, Carl Doersch, Abhinav Gupta, Alexei Efros, ICCV
2015

* Unsupervised Learning of Visual Representations using Videos,

Xiaolong Wang, Abhinav Gupta, ICCV 2015



Unsupervised Learning of Transformations

[Unsupervised feature learning by augmenting single images, Alexey

Dosovitskiy, Jost Tobias Springenberg and Thomas Brox, NIPS 2014]

‘Take patches from images

; FIFIENL Y 2
A L

o T

= HE PRAY

For each patch, make lots of
peturbed versions

Treat each patch + perturbed copies as a

STL-10 CIFAR-10-reduced CIFAR-10 Caltech-101
separate classs Komeans [0 0121

Multi-way local pooling [5]
Slowness on videos [25]

|
|
Train supervised convnet Receptive field learning [16] - =
|
|
|
il

Hierarchical Matching Pursuit (HMP) [3] 64.5+ 1 _—
Mulipath HIP 4] I ——

Sum-Product Networks [8]
View-Invariant K-means [15]
This paper 76.6 £ 0.7

Introducing prior knowledge about
irrelevant transformations via perturbations



Self-Supervised Learning

* Unsupervised feature learning by augmenting single images,
Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas
Brox, NIPS 2014

* Unsupervised Visual Representation Learning by Context

Prediction, Carl Doersch, Abhinav Gupta, Alexei Efros, ICCV
2015

* Unsupervised Learning of Visual Representations using Videos,

Xiaolong Wang, Abhinav Gupta, ICCV 2015
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Predicting Labels from Data

Supervised
training

Data x

ImageNet
iImages

Learned feature

hierarchy

Label y

ImageNet
labels




Predicting Data from Data

Supervised
training

Unsupervised/
Self-supervised
training

xo\\xl

ImageNet
iImages

3

Learned feature

hierarchy

Learned feature

hierarchy

Label y

ImageNet
labels

\m




Cross-Channel Encoder

convl conv2 conv3d conv4 conv5 convé conv/ conv8
lightness a trous [1]/dilated [2] ab color
192
256
384 384 256 4096 4096
] / —] f
17 17 17 17
/ 33
64
256 . [ (] .
Hidden Unit Activations
X Zhou et al. In ICLR, 2015. 7 € [0, 1]H*xWxQ

[1] Chen et al. In arXiv, 2016.
[2] Yu and Koltun. In ICLR, 2016



Task Generalization: ILSVRC linear classification

convl conv2 conv3 conv4d convb

lightness

384 384 256
~—a I\ a I al

13 13 13

‘ 1000 x 1000 ‘1000 ‘1000 ‘1000
Class Supervision

Are semantic classes linearly separable
in the learned feature space?



Task Generalization: ILSVRC linear classification

|
@®—@ mnet

| W—3Y Gauss
> [> Kraehenbuehl et al.
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Task Generalization: ILSVRC linear classification

T I I ! !

70 @ —@ Imnet : : 5
i causs b s s S

[>——{> Kraehenbuehl et al. f : :

— Pathak et al.

60 | ‘ ‘ Doarech atal. b ......................... ....................... ..... -
@——@® Donahue et al. : : |

50 +

40 -

30+

Top-1 Class Accuracy (%)

20 |
10|
0 ] ] 1 | ]
convl conv2 conv3 conv4 convbS



Task Generalization: ILSVRC linear classification

1 ! ! !

1|
@ —@ mnet

W¥—Y Gauss
> [> Kraehenbuehl et al.

60 l— Pathak et al.
| ‘ ‘ Doersch etal. | . . —

mDonahue et al.

70 H

Top-1 Class Accuracy (%)




Hidden Unit




Hidden Unit (conv5) Activations

§ |

R %

flowers




Dataset & Task Generalization on PASCAL VOC

Does the feature representation
transfer to other datasets and tasks?

AN D q
. 7\ ‘_ Conv Rol feature
ol (NI  feature map VECtOr 1 coch ol
Classification Detection Segmentation

Krahenbthl et al. In ICLR, 2016. Fast R-CNN. Girshick. In ICCV, 2015. FCNs. Long et al. In CVPR, 2015.



Dataset & Task Genera

ImageNet
Labels

% from Gaussian to

Gaussian
Initialization

100%

ImageNet labels

0%

1Ization on PASCAL VOC

[] Autoencoder

Krahenbiihl et al. [] Doersch et al.

Agrawal et al.
| Pathak et al.

[ Wang & Gupta

] Donahue et al.
"1 Ours

Classification

Detection Segmentation



Self-Supervised Learning

Unsupervised feature learning by augmenting single images,

Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas
Brox, NIPS 2014

Colorful Image Colorization, Richard Zhang, Philip Isola,
Alexei Efros, ECCV 2016

Unsupervised Visual Representation Learning by Context

Prediction, Carl Doersch, Abhinav Gupta, Alexei Efros, ICCV
2015

Unsupervised Learning of Visual Representations using Videos,

Xiaolong Wang, Abhinav Gupta, ICCV 2015



Scaling Self-Supervision

| earning Perception and Action without Human Supervision

Abhinav Gupta



¥ Beagle

Materials?

Geometry? Boundaries?

scale learning to billions of images



context as superV|S|on

Collobert & We 8; Mik
(eelo house, where the profcssor lived without his wife and child; or so

he said jokingly sometimes: “Here’s where I live. My house.” His
daughter often aud=d, without res :ntr _ent, f~. the “isicor’s infor-
mation, “It started out to v2 for me, bur s really his.” And she
might reach in to bring forth an inch-high table lamp with fluted
shade, or a blue dish the size of her little fingernail, marked
“Kitty” and half full of eterna! a:il; >ut she was sure to replace

these, after they had been adimirsd, pretty near exactly where they
had been. The little house was very orderly, and just big enough
for all it contained, though to some tastes the bric-a-brac in the
parlor might seem excessive. The d:ughter’s preference was for the
store-bought gimmicks and appliances, the toasters and |Carpes

ers of Lilliput, but she knew that most adult visitors would



idea

Train a CNN to predict the patches in context

(& 1 C; 52 n;
mput feature maps  feature maps feature maps fea 3 output
10x 10 5

5x5 2x2

ronvolution \ subsampling convolution

feature extraction

High-Dimensional Regression






Semantics from a non-
semantic task




Relative Position Task

CNN

t




Classifigr

CNN

CNN

t

Patch Embedding

Input Nearest Neighbors
@ (] I . X = "9 e | B8 A 7 b &
; “‘._.\ ':ﬁ'_' '..‘ . e l
= I ': N (s »/ b: }:‘\ S

Note: connects across instances!




Avoiding Trivial
Shortcuts

nclude a gap

Jitter the patch locations




t-So “Trivial”




What is learned?

Ours Random In|t|aI|zat|on Imag%[}let AIexNet

"gllﬁu.!ggg
iiﬂﬂ&




how do we evaluate”?

w Use as pre-trained network for VOC object detection.

w Compare to ConvNet trained with ImageNet and ConvNet without
Pre-training.



VOC 2007 Detection Performance

(pretraining for R-CNN)

S B AlexNet (7-

"B B \jG6r(16-layer)
5 68.6

o 61.7

ot

o| 54.2

> 46.3

< .

o\o 40.7 42-4
ImageNet Labels Ours No Pretraining



take-nome summary

m Surprising: Within image-context leads to across-image
similarities.

m Significantly better than no pre-training, but the performance is
still below ImageNet pre-training.






.3"

Videos: Use trackin

G 2 i




Approach: Outline

o2 FAgs
-

D: Distance in deep feature space




PATCH MINING IN VIDEOS

100K videos

N

* Track 8M patches

from YouTube.

» Use tracking algorithms with no
learning.

N7

Camera Motion

Small Motion



PATCH MINING IN VIDEOS

Sliding Window
Searching

Query Tracked
(First Frame) (Last Frame)



SOME EXAMPLES







ng Pairs
| 1Al






LEARNING VIA VIDEOS

» Space of negatives is huge might take
lot of time for network to learn

« Hard Negative Mining for Triplet
Sampllng

Random Selection (150K iterations)

» Hard Negatives: Negative patches giving high
loss

= Backprop only for Hard Negatives
« Hard Negative Mining for 200K iterations



vVnhat does the network
learn?

o trained using 8M tracks from 100K YouTube
Videos

Pool5 Neuroiff




Nearest Neighbor

(\J,‘ - a

o e
(@

e e |
A8 SV

(b) Unsupervised AlexNet



VOC 2012 Learning Ensembles

60

< 2.5% difference

45

30

15

Scratch (No Ours ImageNet
Pretraining)



Unsupervised learning big unsolved problem in MIL/AI

Lots of active research

Auto-encoder appealing idea but performance is underwhelming
Self-supervised methods interesting, but not generic

New approaches offer promise, e.g. generative adversarial nets and
variational auto-encoders

— Will be covered by Emily Denton on 12/15



