
Local Features, Image Alignment 
and Matching 

Lecture 12

Slides  from: N. Snavely, S. Lazebnik, S. Seitz, M. Pollefeys, A. Efros. 



Motivating Problem

• How do we build panorama?
• Detection & Matching of local features in the

two images



Local features: main components
1) Detection: Identify the interest 

points

2) Description: Extract vector 
feature descriptor surrounding 
each interest point.

3) Matching: Determine 
correspondence between 
descriptors in two views
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Image transformations
• Geometric

Rotation

Scale

• Photometric
Intensity change



Invariance and covariance   
• We want interest points to be invariant to photometric transformations and 
covariant to geometric transformations
– Invariance: image is transformed and corner locations do not change
– Covariance: if we have two transformed versions of the same image, 

features should be detected in corresponding locations



Blob detection with scale selection



Achieving scale covariance
• Goal: independently detect corresponding 

regions in scaled versions of the same image
• Need scale selection mechanism for finding 

characteristic region size that is covariant with 
the image transformation



Edge detection

g
dx
d

f *

f

g
dx
d

Source: S. Seitz

Edge

Derivative
of Gaussian

Edge = maximum
of derivative



Edge detection, Take 2
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From Edges to Blobs
• Edge = ripple
• Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian
response will achieve a maximum at the center of
the blob, provided the scale of the Laplacian is
“matched” to the scale of the blob

maximum



Laplacian of Gaussian (LoG)
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Laplacian of Gaussian
• “Blob” detector

• Find maxima and minima of LoG operator in 
space and scale

* =

maximum

minima



Scale selection

• At what scale does the Laplacian achieve a 
maximum response for a binary circle of 
radius r?

r

image Laplacian



Characteristic scale

• We define the characteristic scale as the scale 
that produces peak of Laplacian response

characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection."
International Journal of Computer Vision 30 (2): pp 77--116. 

http://www.nada.kth.se/cvap/abstracts/cvap198.html


Slide from Tinne Tuytelaars

Lindeberg et al, 1996

Slide from Tinne Tuytelaars

Lindeberg et al., 1996

















Find local maxima in position-scale space

K. Grauman, B. Leibe
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Scale-space blob detector: Example



Scale-space blob detector: Example



Scale-space blob detector: Example





Feature descriptors
We know how to detect good points
Next question: How to match them?

Answer: Come up with a descriptor for each point, 
find similar descriptors between the two images

?



Feature descriptors
We know how to detect good points
Next question: How to match them?

Lots of possibilities (this is a popular research area)
– Simple option:  match square windows around the point
– State of the art approach:  SIFT

• David Lowe, UBC  http://www.cs.ubc.ca/~lowe/keypoints/

?

http://www.cs.ubc.ca/~lowe/keypoints/


Invariance vs. discriminability

• Invariance:
– Descriptor shouldn’t change even if image is 

transformed

• Discriminability:
– Descriptor should be highly unique for each point



Image transformations
• Geometric

Rotation

Scale

• Photometric
Intensity change



Invariance

• Most feature descriptors are designed to be 
invariant to 
– Translation, 2D rotation, scale

• They can usually also handle
– Limited 3D rotations (SIFT works up to about 60 degrees)
– Limited affine transformations (some are fully affine invariant)
– Limited illumination/contrast changes



• Find dominant orientation of the image patch
– This is given by xmax, the eigenvector of H (2nd moment matrix) 

corresponding to lmax (the larger eigenvalue)
– Rotate the patch according to this angle

Rotation invariance for 
feature descriptors

Figure by Matthew Brown



Basic idea:
• Take 16x16 square window around detected feature
• Compute edge orientation (angle of the gradient - 90°) for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2p

angle histogram



SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe



Properties of SIFT
Extraordinarily robust matching technique

– Can handle changes in viewpoint
• Up to about 60 degree out of plane rotation

– Can handle significant changes in illumination
• Sometimes even day vs. night (below)

– Fast and efficient—can run in real time

– Lots of code available
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT


Other descriptors

• HOG: Histogram of Gradients (HOG)
– Dalal/Triggs
– Sliding window, pedestrian detection

• FREAK: Fast Retina Keypoint
– Perceptually motivated

• LIFT: Learned Invariant Feature Transform
– Learned via deep learning

https://arxiv.org/abs/1603.09114

https://arxiv.org/abs/1603.09114


Summary
• Keypoint detection: repeatable 

and distinctive
– Blobs via Difference-of-Gaussians

• Descriptors: robust and selective
– spatial histograms of orientation
– SIFT and variants are typically good 

for stitching and recognition
– But, need not stick to one



SIFT Example

sift

868 SIFT features



Which features match?



Feature matching

Given a feature in I1, how to find the best match 
in I2?
1. Define distance function that compares two 

descriptors
2. Test all the features in I2, find the one with min 

distance



Feature distance
How to define the difference between two features f1, f2?
– Simple approach: L2 distance, ||f1 - f2 || (aka SSD)
– can give good scores to ambiguous (incorrect) matches 

I1 I2

f1 f2



f1 f2f2'

Feature distance
How to define the difference between two features f1, f2?

• Better approach:  ratio distance = ||f1 - f2 || / || f1 - f2’ || 
• f2 is best SSD match to f1 in I2
• f2’  is  2nd best SSD match to f1 in I2
• gives large values for ambiguous matches

I1 I2



Feature distance

• Does the SSD vs “ratio distance” change the 
best match to a given feature in image 1?



Feature matching example

51 matches (thresholded by ratio score)



Feature matching example

58 matches (thresholded by ratio score)



Evaluating the results
How can we measure the performance of a feature matcher?

50
75

200

feature distance



Available at a web site near you…

• For most local feature detectors, executables 
are available online:
– http://www.robots.ox.ac.uk/~vgg/research/affine
– http://www.cs.ubc.ca/~lowe/keypoints/
– http://www.vision.ee.ethz.ch/~surf

K. Grauman, B. Leibe



Image alignment

Why don’t these image line up exactly?



What is the geometric relationship 
between these two images?

?

Answer: Similarity transformation (translation, rotation, uniform scale)



What is the geometric relationship 
between these two images?

?



What is the geometric relationship 
between these two images?

Very important for creating mosaics!



Richard Szeliski Image Stitching 53

Parametric (global) warping

• Examples of parametric warps:

translation rotation aspect

affine
perspective cylindrical



Parametric (global) warping

• Transformation T is a coordinate-changing machine:
p’ = T(p)

• What does it mean that T is global?
– Is the same for any point p
– can be described by just a few numbers (parameters)

• Let’s consider linear forms (can be represented by a 2D matrix):

T

p = (x,y) p’ = (x’,y’)



Common linear transformations

• Uniform scaling by s:

(0,0) (0,0)

What is the inverse?



Common linear transformations

• Rotation by angle θ (about the origin)

(0,0) (0,0)

What is the inverse?
For rotations:

θ



2x2 Matrices

• What types of transformations can be 
represented with a 2x2 matrix?
2D mirror about Y axis?

2D mirror across line y = x?



• What types of transformations can be 
represented with a 2x2 matrix?
2D Translation?

Translation is not a linear operation on 2D coordinates

NO!

2x2 Matrices



All 2D Linear Transformations

• Linear transformations are combinations of …
– Scale,
– Rotation,
– Shear, and
– Mirror

• Properties of linear transformations:
– Origin maps to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition
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Homogeneous coordinates

Trick:  add one more coordinate:

homogeneous image 
coordinates

Converting from homogeneous coordinates

x

y

w
(x, y, w)

w = 1 (x/w, y/w, 1)

homogeneous plane



Translation

• Solution: homogeneous coordinates to the 
rescue



Affine transformations

any transformation with 
last row [ 0 0 1 ] we call an 
affine transformation



Basic affine transformations
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Affine Transformations

• Affine transformations are combinations of …
– Linear transformations, and
– Translations

• Properties of affine transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition
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Is this an affine transformation?



Where do we go from here?

affine transformation

what happens when we 
mess with this row?



Projective Transformations aka 
Homographies aka Planar Perspective Maps

Called a homography
(or planar perspective map)



Homographies

What happens when 
the denominator is 0?



Points at infinity



Image warping with homographies

image plane in front image plane below
black area
where no pixel
maps to



Homographies



Homographies

• Homographies …
– Affine transformations, and
– Projective warps

• Properties of projective transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines do not necessarily remain parallel
– Ratios are not preserved
– Closed under composition



Affine Transformations

• Affine transformations are combinations of …
– Linear transformations, and
– Translations

• Properties of affine transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition
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2D image transformations

These transformations are a nested set of groups
• Closed under composition and inverse is a member



Homographies



Image Warping

• Given a coordinate xform (x’,y’) = T(x,y) and a 
source image f(x,y), how do we compute an 
xformed image g(x’,y’) = f(T(x,y))?

f(x,y) g(x’,y’)x x’

T(x,y)y y’



Forward Warping

• Send each pixel f(x) to its corresponding 
location (x’,y’) = T(x,y) in g(x’,y’)

f(x,y) g(x’,y’)x x’

T(x,y)

• What if pixel lands “between” two pixels?

y y’



Forward Warping

• Send each pixel f(x,y) to its corresponding 
location x’ = h(x,y) in g(x’,y’)

f(x,y) g(x’,y’)x x’

T(x,y)

• What if pixel lands “between” two pixels?
• Answer: add “contribution” to several pixels, 

normalize later (splatting)
• Can still result in holes

y y’



Inverse Warping

• Get each pixel g(x’,y’) from its corresponding 
location (x,y) = T-1(x,y) in f(x,y)

f(x,y) g(x’,y’)x x’

T-1(x,y)

• Requires taking the inverse of the transform
• What if pixel comes from “between” two pixels?

y y’



Inverse Warping

• Get each pixel g(x’) from its corresponding 
location x’ = h(x) in f(x)

• What if pixel comes from “between” two pixels?
• Answer: resample color value from interpolated

(prefiltered) source image

f(x,y) g(x’,y’)x x’

y y’
T-1(x,y)



Interpolation

• Possible interpolation filters:
– nearest neighbor
– bilinear
– bicubic (interpolating)
– sinc

• Needed to prevent “jaggies”
and “texture crawl” 

(with prefiltering)



Computing transformations

• Given a set of matches between images A and B
– How can we compute the transform T from A to B?

– Find transform T that best “agrees” with the matches



Computing transformations

?



Simple case: translations

How do we solve for
? 



Mean displacement = 

Simple case: translations

Displacement of match i =



Another view

• System of linear equations
– What are the knowns?  Unknowns?
– How many unknowns?  How many equations (per match)?



Another view

• Problem: more equations than unknowns
– “Overdetermined” system of equations
– We will find the least squares solution



Least squares formulation

• For each point

• we define the residuals as 



Least squares formulation

• Goal: minimize sum of squared residuals

• “Least squares” solution
• For translations, is equal to mean (average) 

displacement



Least squares formulation

• Can also write as a matrix equation

2n x 2 2 x 1 2n x 1



Least squares

• Find t that minimizes 

• To solve, form the normal equations



Least squares: linear regression
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Linear regression
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Linear regression



Affine transformations

• How many unknowns?
• How many equations per match?
• How many matches do we need?



Affine transformations

• Residuals:

• Cost function:



Affine transformations

• Matrix form

2n x 6 6 x 1 2n x 1



Optimization Problem to Find Transformation

Problem statement Solution

bAx = osolution t squaresleast bAx \=

2  minimize bAx - ( ) bAAAx TT 1-
=

(matlab)



Image Alignment Algorithm
Given images A and B

1. Compute image features for A and B
2. Match features between A and B
3. Compute homography (or affine transformation) 

between A and B using least squares on set of 
matches

What could go wrong?



Outliers
outliers

inliers



Robustness
• Let’s consider a simpler example… linear 

regression

• How can we fix this?
Problem: Fit a line to these datapoints Least squares fit



Idea

• Given a hypothesized line
• Count the number of points that “agree” with 

the line
– “Agree” = within a small distance of the line
– I.e., the inliers to that line

• For all possible lines, select the one with the 
largest number of inliers



Counting inliers



Counting inliers

Inliers: 3



Counting inliers

Inliers: 20



How do we find the best line?

• Unlike least-squares, no simple closed-form 
solution 

• Hypothesize-and-test
– Try out many lines, keep the best one
– Which lines?



Translations



RAndom SAmple Consensus

Select one match at random, count inliers



RAndom SAmple Consensus

Select another match at random, count inliers



RAndom SAmple Consensus

Output the translation with the highest number of inliers



RANSAC

• Idea:
– All the inliers will agree with each other on the 

translation vector; the (hopefully small) number of 
outliers will (hopefully) disagree with each other
• RANSAC only has guarantees if there are < 50% outliers

– “All good matches are alike; every bad match is 
bad in its own way.”

– Tolstoy via Alyosha Efros



RANSAC

• Inlier threshold related to the amount of 
noise we expect in inliers
– Often model noise as Gaussian with some 

standard deviation (e.g., 3 pixels)
• Number of rounds related to the percentage 

of outliers we expect, and the probability of 
success we’d like to guarantee
– Suppose there are 20% outliers, and we want to 

find the correct answer with 99% probability 
– How many rounds do we need?



RANSAC

x translation

y translation
set threshold so that, e.g., 
95% of the Gaussian
lies inside that radius



RANSAC

• Back to linear regression
• How do we generate a hypothesis?

x

y



RANSAC

x

y

• Back to linear regression
• How do we generate a hypothesis?



RANSAC

• General version:
1. Randomly choose s samples
• Typically s = minimum sample size that lets you fit a 

model

2. Fit a model (e.g., line) to those samples

3. Count the number of inliers that approximately 
fit the model

4. Repeat N times

5. Choose the model that has the largest set of 
inliers



How many rounds? 

• If we have to choose s samples each time

– with an outlier ratio e
– and we want the right answer with probability p

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

Source: M. Pollefeys

p = 0.99



How big is s?
• For alignment, depends on the motion model
– Here, each sample is a correspondence (pair of 

matching points)



RANSAC pros and cons

• Pros
– Simple and general
– Applicable to many different problems
– Often works well in practice

• Cons
– Parameters to tune
– Sometimes too many iterations are required
– Can fail for extremely low inlier ratios
– We can often do better than brute-force sampling



Final step: least squares fit

Find average translation vector over all inliers



RANSAC

• An example of a “voting”-based fitting scheme
• Each hypothesis gets voted on by each data 

point, best hypothesis wins

• There are many other types of voting schemes
– E.g., Hough transforms…



Panoramas

• Now we know how to create panoramas!

• Given two images:
– Step 1: Detect features
– Step 2: Match features
– Step 3: Compute a homography using RANSAC
– Step 4: Combine the images together (somehow)

• What if we have more than two images?



Can we use homographies to create a 
360 panorama?

• In order to figure this out, we need to learn 
what a camera is



360 panorama





Homographies

To unwarp (rectify) an image
• solve for homography H given p and p’
• solve equations of the form:  wp’ = Hp

– linear in unknowns:  w and coefficients of H
– H is defined up to an arbitrary scale factor
– how many points are necessary to solve for H?

p
p’



Solving for homographies

Not linear!



Solving for homographies



Solving for homographies

Defines a least squares problem:
• Since        is only defined up to scale, solve for unit vector
• Solution:        = eigenvector of with smallest eigenvalue
• Works with 4 or more points

2n × 9 9 2n



Recap: Two Common Optimization Problems

Problem statement Solution

    1  s.t.      minimize =xxAxAx TTT

0 osolution tlsq  trivial-non =Ax

1..21 :
)eig(],[

vx
AAv

=<
=

n

T

ll
l

Problem statement Solution

bAx = osolution t squaresleast bAx \=

2  minimize bAx - ( ) bAAAx TT 1-
=

(matlab)


