
Local Features, Image Alignment
and Matching

Lecture 12

Slides from: N. Snavely, S. Lazebnik, S. Seitz, M. Pollefeys, A. Efros.

Motivating Problem

• How do we build panorama?
• Detection & Matching of local features in the

two images

Local features: main components
1) Detection: Identify the interest

points

2) Description: Extract vector
feature descriptor surrounding
each interest point.

3) Matching: Determine
correspondence between
descriptors in two views

],,[)1()1(
11 dxx !=x

],,[)2()2(
12 dxx !=x

Kristen Grauman

Image transformations
• Geometric

Rotation

Scale

• Photometric
Intensity change

Invariance and covariance
• We want interest points to be invariant to photometric transformations and
covariant to geometric transformations
– Invariance: image is transformed and corner locations do not change
– Covariance: if we have two transformed versions of the same image,

features should be detected in corresponding locations

Blob detection with scale selection

Achieving scale covariance
• Goal: independently detect corresponding

regions in scaled versions of the same image
• Need scale selection mechanism for finding

characteristic region size that is covariant with
the image transformation

Edge detection

g
dx
d

f *

f

g
dx
d

Source: S. Seitz

Edge

Derivative
of Gaussian

Edge = maximum
of derivative

Edge detection, Take 2

g
dx
d

f 2

2

*

f

g
dx
d
2

2

Edge

Second derivative
of Gaussian
(Laplacian)

Edge = zero crossing
of second derivative

Source: S. Seitz

From Edges to Blobs
• Edge = ripple
• Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian
response will achieve a maximum at the center of
the blob, provided the scale of the Laplacian is
“matched” to the scale of the blob

maximum

Laplacian of Gaussian (LoG)

2

2

2

2
2

y
g

x
g

g
¶
¶

+
¶
¶

=Ñ

Laplacian of Gaussian
• “Blob” detector

• Find maxima and minima of LoG operator in
space and scale

* =

maximum

minima

Scale selection

• At what scale does the Laplacian achieve a
maximum response for a binary circle of
radius r?

r

image Laplacian

Characteristic scale

• We define the characteristic scale as the scale
that produces peak of Laplacian response

characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection."
International Journal of Computer Vision 30 (2): pp 77--116.

http://www.nada.kth.se/cvap/abstracts/cvap198.html

Slide from Tinne Tuytelaars

Lindeberg et al, 1996

Slide from Tinne Tuytelaars

Lindeberg et al., 1996

Find local maxima in position-scale space

K. Grauman, B. Leibe

)()(ss yyxx LL +

s

s2

s3

s4

s5

Þ List of
(x, y, s)

Scale-space blob detector: Example

Scale-space blob detector: Example

Scale-space blob detector: Example

Feature descriptors
We know how to detect good points
Next question: How to match them?

Answer: Come up with a descriptor for each point,
find similar descriptors between the two images

?

Feature descriptors
We know how to detect good points
Next question: How to match them?

Lots of possibilities (this is a popular research area)
– Simple option: match square windows around the point
– State of the art approach: SIFT

• David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/

?

http://www.cs.ubc.ca/~lowe/keypoints/

Invariance vs. discriminability

• Invariance:
– Descriptor shouldn’t change even if image is

transformed

• Discriminability:
– Descriptor should be highly unique for each point

Image transformations
• Geometric

Rotation

Scale

• Photometric
Intensity change

Invariance

• Most feature descriptors are designed to be
invariant to
– Translation, 2D rotation, scale

• They can usually also handle
– Limited 3D rotations (SIFT works up to about 60 degrees)
– Limited affine transformations (some are fully affine invariant)
– Limited illumination/contrast changes

• Find dominant orientation of the image patch
– This is given by xmax, the eigenvector of H (2nd moment matrix)

corresponding to lmax (the larger eigenvalue)
– Rotate the patch according to this angle

Rotation invariance for
feature descriptors

Figure by Matthew Brown

Basic idea:
• Take 16x16 square window around detected feature
• Compute edge orientation (angle of the gradient - 90°) for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2p

angle histogram

SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe

Properties of SIFT
Extraordinarily robust matching technique

– Can handle changes in viewpoint
• Up to about 60 degree out of plane rotation

– Can handle significant changes in illumination
• Sometimes even day vs. night (below)

– Fast and efficient—can run in real time

– Lots of code available
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Other descriptors

• HOG: Histogram of Gradients (HOG)
– Dalal/Triggs
– Sliding window, pedestrian detection

• FREAK: Fast Retina Keypoint
– Perceptually motivated

• LIFT: Learned Invariant Feature Transform
– Learned via deep learning

https://arxiv.org/abs/1603.09114

https://arxiv.org/abs/1603.09114

Summary
• Keypoint detection: repeatable

and distinctive
– Blobs via Difference-of-Gaussians

• Descriptors: robust and selective
– spatial histograms of orientation
– SIFT and variants are typically good

for stitching and recognition
– But, need not stick to one

SIFT Example

sift

868 SIFT features

Which features match?

Feature matching

Given a feature in I1, how to find the best match
in I2?
1. Define distance function that compares two

descriptors
2. Test all the features in I2, find the one with min

distance

Feature distance
How to define the difference between two features f1, f2?
– Simple approach: L2 distance, ||f1 - f2 || (aka SSD)
– can give good scores to ambiguous (incorrect) matches

I1 I2

f1 f2

f1 f2f2'

Feature distance
How to define the difference between two features f1, f2?

• Better approach: ratio distance = ||f1 - f2 || / || f1 - f2’ ||
• f2 is best SSD match to f1 in I2
• f2’ is 2nd best SSD match to f1 in I2
• gives large values for ambiguous matches

I1 I2

Feature distance

• Does the SSD vs “ratio distance” change the
best match to a given feature in image 1?

Feature matching example

51 matches (thresholded by ratio score)

Feature matching example

58 matches (thresholded by ratio score)

Evaluating the results
How can we measure the performance of a feature matcher?

50
75

200

feature distance

Available at a web site near you…

• For most local feature detectors, executables
are available online:
– http://www.robots.ox.ac.uk/~vgg/research/affine
– http://www.cs.ubc.ca/~lowe/keypoints/
– http://www.vision.ee.ethz.ch/~surf

K. Grauman, B. Leibe

Image alignment

Why don’t these image line up exactly?

What is the geometric relationship
between these two images?

?

Answer: Similarity transformation (translation, rotation, uniform scale)

What is the geometric relationship
between these two images?

?

What is the geometric relationship
between these two images?

Very important for creating mosaics!

Richard Szeliski Image Stitching 53

Parametric (global) warping

• Examples of parametric warps:

translation rotation aspect

affine
perspective cylindrical

Parametric (global) warping

• Transformation T is a coordinate-changing machine:
p’ = T(p)

• What does it mean that T is global?
– Is the same for any point p
– can be described by just a few numbers (parameters)

• Let’s consider linear forms (can be represented by a 2D matrix):

T

p = (x,y) p’ = (x’,y’)

Common linear transformations

• Uniform scaling by s:

(0,0) (0,0)

What is the inverse?

Common linear transformations

• Rotation by angle θ (about the origin)

(0,0) (0,0)

What is the inverse?
For rotations:

θ

2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?
2D mirror about Y axis?

2D mirror across line y = x?

• What types of transformations can be
represented with a 2x2 matrix?
2D Translation?

Translation is not a linear operation on 2D coordinates

NO!

2x2 Matrices

All 2D Linear Transformations

• Linear transformations are combinations of …
– Scale,
– Rotation,
– Shear, and
– Mirror

• Properties of linear transformations:
– Origin maps to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition

ú
û

ù
ê
ë

é
ú
û

ù
ê
ë

é
=ú

û

ù
ê
ë

é
y
x

dc
ba

y
x
'
'

úû
ù

êë
é
úû
ù

êë
é
úû
ù

êë
é
úû
ù

êë
é=úû

ù
êë
é

y
x

lk
ji

hg
fe

dc
ba

y
x
'
'

Homogeneous coordinates

Trick: add one more coordinate:

homogeneous image
coordinates

Converting from homogeneous coordinates

x

y

w
(x, y, w)

w = 1 (x/w, y/w, 1)

homogeneous plane

Translation

• Solution: homogeneous coordinates to the
rescue

Affine transformations

any transformation with
last row [0 0 1] we call an
affine transformation

Basic affine transformations

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é -
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

1100
0cossin
0sincos

1
'
'

y
x

y
x

qq
qq

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

1100
10
01

1
'
'

y
x

t
t

y
x

y

x

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

1100
01
01

1
'
'

y
x

sh
sh

y
x

y

x

Translate

2D in-plane rotation Shear

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

1100
00
00

1
'
'

y
x

s
s

y
x

y

x

Scale

Affine Transformations

• Affine transformations are combinations of …
– Linear transformations, and
– Translations

• Properties of affine transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition

ú
ú
û

ù

ê
ê
ë

é

ú
ú
û

ù

ê
ê
ë

é
=

ú
ú
û

ù

ê
ê
ë

é

w
y
x

fed
cba

w
y
x

100
'
'

Is this an affine transformation?

Where do we go from here?

affine transformation

what happens when we
mess with this row?

Projective Transformations aka
Homographies aka Planar Perspective Maps

Called a homography
(or planar perspective map)

Homographies

What happens when
the denominator is 0?

Points at infinity

Image warping with homographies

image plane in front image plane below
black area
where no pixel
maps to

Homographies

Homographies

• Homographies …
– Affine transformations, and
– Projective warps

• Properties of projective transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines do not necessarily remain parallel
– Ratios are not preserved
– Closed under composition

Affine Transformations

• Affine transformations are combinations of …
– Linear transformations, and
– Translations

• Properties of affine transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition

ú
ú
û

ù

ê
ê
ë

é

ú
ú
û

ù

ê
ê
ë

é
=

ú
ú
û

ù

ê
ê
ë

é

w
y
x

fed
cba

w
y
x

100
'
'

2D image transformations

These transformations are a nested set of groups
• Closed under composition and inverse is a member

Homographies

Image Warping

• Given a coordinate xform (x’,y’) = T(x,y) and a
source image f(x,y), how do we compute an
xformed image g(x’,y’) = f(T(x,y))?

f(x,y) g(x’,y’)x x’

T(x,y)y y’

Forward Warping

• Send each pixel f(x) to its corresponding
location (x’,y’) = T(x,y) in g(x’,y’)

f(x,y) g(x’,y’)x x’

T(x,y)

• What if pixel lands “between” two pixels?

y y’

Forward Warping

• Send each pixel f(x,y) to its corresponding
location x’ = h(x,y) in g(x’,y’)

f(x,y) g(x’,y’)x x’

T(x,y)

• What if pixel lands “between” two pixels?
• Answer: add “contribution” to several pixels,

normalize later (splatting)
• Can still result in holes

y y’

Inverse Warping

• Get each pixel g(x’,y’) from its corresponding
location (x,y) = T-1(x,y) in f(x,y)

f(x,y) g(x’,y’)x x’

T-1(x,y)

• Requires taking the inverse of the transform
• What if pixel comes from “between” two pixels?

y y’

Inverse Warping

• Get each pixel g(x’) from its corresponding
location x’ = h(x) in f(x)

• What if pixel comes from “between” two pixels?
• Answer: resample color value from interpolated

(prefiltered) source image

f(x,y) g(x’,y’)x x’

y y’
T-1(x,y)

Interpolation

• Possible interpolation filters:
– nearest neighbor
– bilinear
– bicubic (interpolating)
– sinc

• Needed to prevent “jaggies”
and “texture crawl”

(with prefiltering)

Computing transformations

• Given a set of matches between images A and B
– How can we compute the transform T from A to B?

– Find transform T that best “agrees” with the matches

Computing transformations

?

Simple case: translations

How do we solve for
?

Mean displacement =

Simple case: translations

Displacement of match i =

Another view

• System of linear equations
– What are the knowns? Unknowns?
– How many unknowns? How many equations (per match)?

Another view

• Problem: more equations than unknowns
– “Overdetermined” system of equations
– We will find the least squares solution

Least squares formulation

• For each point

• we define the residuals as

Least squares formulation

• Goal: minimize sum of squared residuals

• “Least squares” solution
• For translations, is equal to mean (average)

displacement

Least squares formulation

• Can also write as a matrix equation

2n x 2 2 x 1 2n x 1

Least squares

• Find t that minimizes

• To solve, form the normal equations

Least squares: linear regression

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

ag
e

y = mx + b

(yi, xi)

Linear regression

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

ag
e

residual error

Linear regression

Affine transformations

• How many unknowns?
• How many equations per match?
• How many matches do we need?

Affine transformations

• Residuals:

• Cost function:

Affine transformations

• Matrix form

2n x 6 6 x 1 2n x 1

Optimization Problem to Find Transformation

Problem statement Solution

bAx = osolution t squaresleast bAx \=

2 minimize bAx - () bAAAx TT 1-
=

(matlab)

Image Alignment Algorithm
Given images A and B

1. Compute image features for A and B
2. Match features between A and B
3. Compute homography (or affine transformation)

between A and B using least squares on set of
matches

What could go wrong?

Outliers
outliers

inliers

Robustness
• Let’s consider a simpler example… linear

regression

• How can we fix this?
Problem: Fit a line to these datapoints Least squares fit

Idea

• Given a hypothesized line
• Count the number of points that “agree” with

the line
– “Agree” = within a small distance of the line
– I.e., the inliers to that line

• For all possible lines, select the one with the
largest number of inliers

Counting inliers

Counting inliers

Inliers: 3

Counting inliers

Inliers: 20

How do we find the best line?

• Unlike least-squares, no simple closed-form
solution

• Hypothesize-and-test
– Try out many lines, keep the best one
– Which lines?

Translations

RAndom SAmple Consensus

Select one match at random, count inliers

RAndom SAmple Consensus

Select another match at random, count inliers

RAndom SAmple Consensus

Output the translation with the highest number of inliers

RANSAC

• Idea:
– All the inliers will agree with each other on the

translation vector; the (hopefully small) number of
outliers will (hopefully) disagree with each other
• RANSAC only has guarantees if there are < 50% outliers

– “All good matches are alike; every bad match is
bad in its own way.”

– Tolstoy via Alyosha Efros

RANSAC

• Inlier threshold related to the amount of
noise we expect in inliers
– Often model noise as Gaussian with some

standard deviation (e.g., 3 pixels)
• Number of rounds related to the percentage

of outliers we expect, and the probability of
success we’d like to guarantee
– Suppose there are 20% outliers, and we want to

find the correct answer with 99% probability
– How many rounds do we need?

RANSAC

x translation

y translation
set threshold so that, e.g.,
95% of the Gaussian
lies inside that radius

RANSAC

• Back to linear regression
• How do we generate a hypothesis?

x

y

RANSAC

x

y

• Back to linear regression
• How do we generate a hypothesis?

RANSAC

• General version:
1. Randomly choose s samples
• Typically s = minimum sample size that lets you fit a

model

2. Fit a model (e.g., line) to those samples

3. Count the number of inliers that approximately
fit the model

4. Repeat N times

5. Choose the model that has the largest set of
inliers

How many rounds?

• If we have to choose s samples each time

– with an outlier ratio e
– and we want the right answer with probability p

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

Source: M. Pollefeys

p = 0.99

How big is s?
• For alignment, depends on the motion model
– Here, each sample is a correspondence (pair of

matching points)

RANSAC pros and cons

• Pros
– Simple and general
– Applicable to many different problems
– Often works well in practice

• Cons
– Parameters to tune
– Sometimes too many iterations are required
– Can fail for extremely low inlier ratios
– We can often do better than brute-force sampling

Final step: least squares fit

Find average translation vector over all inliers

RANSAC

• An example of a “voting”-based fitting scheme
• Each hypothesis gets voted on by each data

point, best hypothesis wins

• There are many other types of voting schemes
– E.g., Hough transforms…

Panoramas

• Now we know how to create panoramas!

• Given two images:
– Step 1: Detect features
– Step 2: Match features
– Step 3: Compute a homography using RANSAC
– Step 4: Combine the images together (somehow)

• What if we have more than two images?

Can we use homographies to create a
360 panorama?

• In order to figure this out, we need to learn
what a camera is

360 panorama

Homographies

To unwarp (rectify) an image
• solve for homography H given p and p’
• solve equations of the form: wp’ = Hp

– linear in unknowns: w and coefficients of H
– H is defined up to an arbitrary scale factor
– how many points are necessary to solve for H?

p
p’

Solving for homographies

Not linear!

Solving for homographies

Solving for homographies

Defines a least squares problem:
• Since is only defined up to scale, solve for unit vector
• Solution: = eigenvector of with smallest eigenvalue
• Works with 4 or more points

2n × 9 9 2n

Recap: Two Common Optimization Problems

Problem statement Solution

 1 s.t. minimize =xxAxAx TTT

0 osolution tlsq trivial-non =Ax

1..21 :
)eig(],[

vx
AAv

=<
=

n

T

ll
l

Problem statement Solution

bAx = osolution t squaresleast bAx \=

2 minimize bAx - () bAAAx TT 1-
=

(matlab)

