
Lecture 6: Multi-view Stereo & 
Structure from Motion

Prof. Rob Fergus

Many slides adapted from Lana Lazebnik and Noah Snavelly, who in turn adapted slides from 
Steve Seitz, Rick Szeliski, Martial Hebert, Mark Pollefeys, and others….



Overview

• Multi-view stereo

• Structure from Motion (SfM)

• Large scale Structure from Motion



Multi-view stereo

Slides from S. Lazebnik who adapted many from S. Seitz



What is stereo vision?

• Generic problem formulation: given several images of 

the same object or scene, compute a representation of 

its 3D shape



What is stereo vision?

• Generic problem formulation: given several images of 

the same object or scene, compute a representation of 

its 3D shape

• “Images of the same object or scene”

• Arbitrary number of images (from two to thousands)

• Arbitrary camera positions (isolated cameras or video sequence)

• Cameras can be calibrated or uncalibrated

• “Representation of 3D shape”

• Depth maps

• Meshes

• Point clouds

• Patch clouds

• Volumetric models

• Layered models



The third view can be used for verification

Beyond two-view stereo



• Pick a reference image, and slide the corresponding 

window along the corresponding epipolar lines of all 

other images, using inverse depth relative to the first 

image as the search parameter

M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System,” IEEE Trans. on 

Pattern Analysis and Machine Intelligence,  15(4):353-363 (1993). 

Multiple-baseline stereo

http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf
http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf
http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf


Multiple-baseline stereo

• For larger baselines, must search larger 

area in second image

1/z

width of 

a pixel

width of 

a pixel

1/z

pixel matching score



Multiple-baseline stereo

Use the sum of 

SSD scores to rank 

matches



I1 I2 I10

Multiple-baseline stereo results

M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System,” IEEE Trans. on 

Pattern Analysis and Machine Intelligence,  15(4):353-363 (1993). 

http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf
http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf
http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf


Summary: Multiple-baseline stereo

• Pros

• Using multiple images reduces the ambiguity of matching

• Cons

• Must choose a reference view 

• Occlusions become an issue for large baseline

• Possible solution: use a virtual view



Volumetric stereo

• In plane sweep stereo, the sampling of the scene

still depends on the reference view

• We can use a voxel volume to get a view-

independent representation



Volumetric Stereo / Voxel Coloring

Discretized 

Scene Volume

Input Images

(Calibrated)

Goal:  Assign RGB values to voxels in V
photo-consistent with images



Photo-consistency

All Scenes
Photo-Consistent

Scenes

True
Scene

• A photo-consistent scene is a scene that exactly 

reproduces your input images from the same camera 

viewpoints

• You can’t use your input cameras and images to tell 

the difference between a photo-consistent scene and 

the true scene



Space Carving

Space Carving Algorithm

Image 1 Image N

…...

• Initialize to a volume V containing the true scene

• Repeat until convergence

• Choose a voxel on the current surface

• Carve if not photo-consistent

• Project to visible input images

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999

http://www.cs.washington.edu/homes/seitz/papers/kutu-ijcv00.pdf


Which shape do you get?

The Photo Hull is the UNION of all photo-consistent scenes in V

• It is a photo-consistent scene reconstruction

• Tightest possible bound on the true scene

True Scene

V

Photo Hull

V

Source: S. Seitz



Space Carving Results:  African Violet

Input Image (1 of 45) Reconstruction

ReconstructionReconstruction Source: S. Seitz



Space Carving Results:  Hand

Input Image
(1 of 100) 

Views of Reconstruction



Reconstruction from Silhouettes

Binary Images

• The case of binary images: a voxel is photo-

consistent if it lies inside the object’s silhouette in all 

views



Reconstruction from Silhouettes

Binary Images

Finding the silhouette-consistent shape (visual hull):  

• Backproject each silhouette

• Intersect backprojected volumes

• The case of binary images: a voxel is photo-

consistent if it lies inside the object’s silhouette in all 

views



Volume intersection

Reconstruction Contains the True Scene

• But is generally not the same 



Voxel algorithm for volume intersection

Color voxel black if on silhouette in every image



Photo-consistency vs. silhouette-consistency

True Scene Photo Hull Visual Hull



Carved visual hulls

• The visual hull is a good starting point for optimizing 

photo-consistency

• Easy to compute

• Tight outer boundary of the object

• Parts of the visual hull (rims) already lie on the surface and are 

already photo-consistent

Yasutaka Furukawa and Jean Ponce, Carved Visual Hulls for Image-Based 

Modeling, ECCV 2006. 

http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf


Carved visual hulls

1. Compute visual hull 

2. Use dynamic programming to find rims and 

constrain them to be fixed 

3. Carve the visual hull to optimize photo-consistency

Yasutaka Furukawa and Jean Ponce, Carved Visual Hulls for Image-Based 

Modeling, ECCV 2006. 

http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf


Carved visual hulls

Yasutaka Furukawa and Jean Ponce, Carved Visual Hulls for Image-Based 

Modeling, ECCV 2006. 

http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf


Carved visual hulls: Pros and cons

• Pros

• Visual hull gives a reasonable initial mesh that can be 

iteratively deformed

• Cons

• Need silhouette extraction

• Have to compute a lot of points that don’t lie on the object

• Finding rims is difficult

• The carving step can get caught in local minima

• Possible solution: use sparse feature 

correspondences as initialization



From feature matching to dense stereo

1. Extract features

2. Get a sparse set of initial matches

3. Iteratively expand matches to nearby locations

4. Use visibility constraints to filter out false matches

5. Perform surface reconstruction

Yasutaka Furukawa and Jean Ponce, Accurate, Dense, and Robust Multi-View 

Stereopsis, CVPR 2007. 

http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/cvpr07a.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/cvpr07a.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/cvpr07a.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/cvpr07a.pdf


From feature matching to dense stereo

Yasutaka Furukawa and Jean Ponce, Accurate, Dense, and Robust Multi-View 

Stereopsis, CVPR 2007. 

http://www.cs.washington.edu/homes/furukawa/gallery/

http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/cvpr07a.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/cvpr07a.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/cvpr07a.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/cvpr07a.pdf
http://www.cs.washington.edu/homes/furukawa/gallery/


Stereo from community photo collections

M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz, Multi-View Stereo for 

Community Photo Collections, ICCV 2007

http://grail.cs.washington.edu/projects/mvscpc/

http://grail.cs.washington.edu/projects/mvscpc/download/Goesele-2007-MVS.pdf
http://grail.cs.washington.edu/projects/mvscpc/download/Goesele-2007-MVS.pdf
http://grail.cs.washington.edu/projects/mvscpc/download/Goesele-2007-MVS.pdf
http://grail.cs.washington.edu/projects/mvscpc/download/Goesele-2007-MVS.pdf
http://grail.cs.washington.edu/projects/mvscpc/


Stereo from community photo collections

M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz, Multi-View Stereo for 

Community Photo Collections, ICCV 2007

stereo laser scan

Comparison: 90% of points 

within 0.128 m of laser scan 

(building height 51m)

http://grail.cs.washington.edu/projects/mvscpc/download/Goesele-2007-MVS.pdf
http://grail.cs.washington.edu/projects/mvscpc/download/Goesele-2007-MVS.pdf
http://grail.cs.washington.edu/projects/mvscpc/download/Goesele-2007-MVS.pdf
http://grail.cs.washington.edu/projects/mvscpc/download/Goesele-2007-MVS.pdf


Stereo from community photo collections

• Up to now, we’ve always assumed that camera 

calibration is known

• For photos taken from the Internet, we need structure 

from motion techniques to reconstruct both camera 

positions and 3D points



Multi-view stereo: Summary

• Multiple-baseline stereo

• Pick one input view as reference

• Inverse depth instead of disparity

• Volumetric stereo

• Photo-consistency

• Space carving

• Shape from silhouettes

• Visual hull: intersection of visual cones

• Carved visual hulls

• Feature-based stereo

• From sparse to dense correspondences



Overview

Multi-view stereo

Structure from Motion (SfM)

Large scale Structure from Motion



Structure from motion



Multiple-view geometry questions

• Scene geometry (structure): Given 2D point 
matches in two or more images, where are the 
corresponding points in 3D?

• Correspondence (stereo matching): Given a 
point in just one image, how does it constrain the 
position of the corresponding point in another 
image?

• Camera geometry (motion): Given a set of 
corresponding points in two or more images, what 
are the camera matrices for these views?

Slide: S. Lazebnik



Structure from motion

• Given: m images of n fixed 3D points 

xij = Pi Xj , i = 1, … , m,    j = 1, … , n  

• Problem: estimate m projection matrices Pi and 

n 3D points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3

Slide: S. Lazebnik



Structure from motion ambiguity

• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 

factor of 1/k, the projections of the scene points in the 

image remain exactly the same:

It is impossible to recover the absolute scale of the scene!

)(
1

XPPXx k
k











Slide: S. Lazebnik



Structure from motion ambiguity

• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 

factor of 1/k, the projections of the scene points in the 

image remain exactly the same 

• More generally: if we transform the scene using a 

transformation Q and apply the inverse 

transformation to the camera matrices, then the 

images do not change

  QXPQPXx
-1

Slide: S. Lazebnik



Types of ambiguity
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Preserves angles, lengths

• With no constraints on the camera calibration matrix or on the 
scene, we get a projective reconstruction

• Need additional information to upgrade the reconstruction to 
affine, similarity, or Euclidean

Slide: S. Lazebnik



Projective ambiguity

  XQPQPXx  P

-1

 P



Projective ambiguity



Affine ambiguity

  XQPQPXx  A

-1

 A

Affine



Affine ambiguity



Similarity ambiguity

  XQPQPXx S

-1

S



Similarity ambiguity



Structure from motion

• Let’s start with affine cameras (the math is easier)

center at

infinity



Recall: Orthographic Projection

Special case of perspective projection

• Distance from center of projection to image plane is infinite

• Projection matrix:

Image World

Slide by Steve Seitz



Orthographic Projection

Parallel Projection

Affine cameras



Affine cameras

• A general affine camera combines the effects of an 

affine transformation of the 3D space, orthographic 

projection, and an affine transformation of the image:

• Affine projection is a linear mapping + translation in 

inhomogeneous coordinates
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Affine structure from motion

• Given: m images of n fixed 3D points:

xij = Ai Xj + bi ,     i = 1,… , m,  j = 1, … , n  

• Problem: use the mn correspondences xij  to estimate 
m projection matrices Ai and translation vectors bi, 
and n points Xj

• The reconstruction is defined up to an arbitrary affine 
transformation Q (12 degrees of freedom):

• We have 2mn knowns and 8m + 3n unknowns (minus 
12 dof for affine ambiguity)

• Thus, we must have 2mn >= 8m + 3n – 12

• For two views, we need four point correspondences
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Affine structure from motion

• Centering: subtract the centroid of the image points

• For simplicity, assume that the origin of the world 

coordinate system is at the centroid of the 3D points

• After centering, each normalized point xij is related to 

the 3D point Xi by
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Affine structure from motion

• Let’s create a 2m × n data (measurement) matrix:
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C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 

A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf


Affine structure from motion

• Let’s create a 2m × n data (measurement) matrix:
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The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 

A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf


Factorizing the measurement matrix

Source: M. Hebert



Factorizing the measurement matrix

• Singular value decomposition of D:

Source: M. Hebert



Factorizing the measurement matrix

• Singular value decomposition of D:

Source: M. Hebert



Factorizing the measurement matrix

• Obtaining a factorization from SVD:

Source: M. Hebert



Factorizing the measurement matrix

• Obtaining a factorization from SVD:

Source: M. Hebert

This decomposition minimizes

|D-MS|2



Affine ambiguity

• The decomposition is not unique. We get the same D 

by using any 3×3 matrix C and applying the 

transformations M → MC, S →C-1S

• That is because we have only an affine transformation 

and we have not enforced any Euclidean constraints 

(like forcing the image axes to be perpendicular, for 

example)

Source: M. Hebert



• Orthographic: image axes are perpendicular 
and of unit length

Eliminating the affine ambiguity

x

X
a1

a2

a1 · a2 = 0

|a1|
2 = |a2|

2 = 1

Source: M. Hebert



Solve for orthographic constraints

• Solve for L = CCT

• Recover C from L by Cholesky decomposition: 
L = CCT

• Update A and X: A = AC, X = C-1X
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Three equations for each image i

Slide: D. Hoiem



Algorithm summary

• Given: m images and n features xij

• For each image i, center the feature coordinates

• Construct a 2m × n measurement matrix D:

• Column j contains the projection of point j in all views

• Row i contains one coordinate of the projections of all the n 

points in image i

• Factorize D:

• Compute SVD: D = U W VT

• Create U3 by taking the first 3 columns of U

• Create V3 by taking the first 3 columns of V

• Create W3 by taking the upper left 3 × 3 block of W

• Create the motion and shape matrices:

• M = U3W3
½  and S = W3

½ V3
T (or M = U3 and S = W3V3

T)

• Eliminate affine ambiguity
Source: M. Hebert



Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 

A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf


Dealing with missing data

• So far, we have assumed that all points are visible in 

all views

• In reality, the measurement matrix typically looks 

something like this:

cameras

points



Dealing with missing data

• Possible solution: decompose matrix into dense sub-

blocks, factorize each sub-block, and fuse the results

• Finding dense maximal sub-blocks of the matrix is NP-

complete (equivalent to finding maximal cliques in a graph)

• Incremental bilinear refinement

(1) Perform 

factorization on a 

dense sub-block

(2) Solve for a new 

3D point visible by 

at least two known 

cameras (linear 

least squares)

(3) Solve for a new 

camera that sees at 

least three known 

3D points (linear 

least squares)

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling, and 

Matching Video Clips Containing Multiple Moving Objects. PAMI 2007.

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf


Projective structure from motion

• Given: m images of n fixed 3D points 

zij xij = Pi Xj , i = 1,… , m,    j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D 

points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3



Projective structure from motion

• Given: m images of n fixed 3D points 

zij xij = Pi Xj , i = 1,… , m,    j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D 

points Xj from the mn correspondences xij

• With no calibration info, cameras and points can only 

be recovered up to a 4x4 projective transformation Q:

X → QX, P → PQ-1

• We can solve for structure and motion when 

2mn >= 11m +3n – 15

• For two cameras, at least 7 points are needed



Projective SFM: Two-camera case

• Compute fundamental matrix F between the two views

• First camera matrix: [I|0]

• Second camera matrix: [A|b]

• Then b is the epipole (FTb = 0), A = –[b×]F

F&P sec. 13.3.1



Sequential structure from motion

•Initialize motion from two images 

using fundamental matrix

•Initialize structure by triangulation

•For each additional view:

• Determine projection matrix of 

new camera using all the known 

3D points that are visible in its 

image – calibration c
a

m
e
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points



Sequential structure from motion

•Initialize motion from two images 

using fundamental matrix

•Initialize structure by triangulation

•For each additional view:

• Determine projection matrix of 

new camera using all the known 

3D points that are visible in its 

image – calibration

• Refine and extend structure: 

compute new 3D points, 

re-optimize existing points that 

are also seen by this camera –

triangulation 

c
a
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Sequential structure from motion

•Initialize motion from two images 

using fundamental matrix

•Initialize structure by triangulation

•For each additional view:

• Determine projection matrix of 

new camera using all the known 

3D points that are visible in its 

image – calibration

• Refine and extend structure: 

compute new 3D points, 

re-optimize existing points that 

are also seen by this camera –

triangulation 

•Refine structure and motion: 

bundle adjustment

c
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points



Bundle adjustment

• Non-linear method for refining structure and motion

• Minimizing reprojection error
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Self-calibration

• Self-calibration (auto-calibration) is the process of 

determining intrinsic camera parameters directly from 

uncalibrated images

• For example, when the images are acquired by a 

single moving camera, we can use the constraint that 

the intrinsic parameter matrix remains fixed for all the 

images

• Compute initial projective reconstruction and find 3D 

projective transformation matrix Q such that all camera 

matrices are in the form Pi = K [Ri | ti]

• Can use constraints on the form of the calibration 

matrix: zero skew



Review: Structure from motion

• Ambiguity

• Affine structure from motion

• Factorization

• Dealing with missing data

• Incremental structure from motion

• Projective structure from motion

• Bundle adjustment

• Self-calibration



Summary: 3D geometric vision

• Single-view geometry
• The pinhole camera model

– Variation: orthographic projection

• The perspective projection matrix

• Intrinsic parameters

• Extrinsic parameters

• Calibration

• Multiple-view geometry
• Triangulation

• The epipolar constraint

– Essential matrix and fundamental matrix

• Stereo 

– Binocular, multi-view

• Structure from motion

– Reconstruction ambiguity

– Affine SFM

– Projective SFM



Overview

Multi-view stereo

Structure from Motion (SfM)

Large scale Structure from Motion



Large-scale Structure from motion

Given many images from photo collections how can we 

a) figure out where they were all taken from?

b) build a 3D model of the scene?

This is (roughly) the structure from motion problem

Slides from N. Snavely



Large-scale structure from motion

Dubrovnik, Croatia.  4,619 images (out of an initial  57,845).
Total reconstruction time: 23 hours
Number of cores: 352

Slide: N. Snavely



Structure from motion

• Input: images with points in correspondence      
pi,j  = (ui,j,vi,j)

• Output
• structure: 3D location xi for each point pi
• motion: camera parameters Rj , tj possibly Kj

• Objective function: minimize reprojection error

Reconstruction (side)
(top)



Photo Tourism

Slide: N. Snavely



First step: how to get correspondence?

Feature detection and matching



Feature detection

Detect features using SIFT [Lowe, IJCV 2004]



Feature detection

Detect features using SIFT [Lowe, IJCV 2004]



Feature matching

Match features between each pair of images



Feature matching

Refine matching using RANSAC to estimate fundamental 

matrix between each pair
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Structure from motion

Camera 1

Camera 2

Camera 3

R1,t1

R2,t2

R3,t3
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p4
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p5
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p7

minimize

f (R,T,P)
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Problem size

Trevi Fountain collection

466 input photos

+ > 100,000 3D points

= very large optimization problem 



Incremental structure from motion



Incremental structure from motion

Slide: N. Snavely



Incremental structure from motion

Slide: N. Snavely



Photo Explorer
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Related topic: Drift

copy of first image

(xn,yn)

(x1,y1)

– add another copy of first image at the end
– this gives a constraint:  yn = y1

– there are a bunch of ways to solve this problem
• add displacement of (y1 – yn)/(n - 1) to each image after the 

first
• compute a global warp:  y’ = y + ax
• run a big optimization problem, incorporating this constraint

– best solution, but more complicated
– known as “bundle adjustment”

Slide: N. Snavely



Global optimization

Minimize a global energy function:

• What are the variables?

– The translation tj = (xj, yj) for each image Ij

• What is the objective function?

– We have a set of matched features pi,j = (ui,j, vi,j)

» We’ll call these tracks

– For each point match (pi,j, pi,j+1):   pi,j+1 – pi,j = tj+1 – tj

I1 I2 I3 I4

p1,1
p1,2 p1,3

p2,2

p2,3 p2,4

p3,3
p3,4 p4,4p4,1

track
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Global optimization

I1 I2 I3 I4

p1,1
p1,2 p1,3

p2,2

p2,3 p2,4

p3,3
p3,4 p4,4p4,1

p1,2 – p1,1 = t2 – t1

p1,3 – p1,2 = t3 – t2

p2,3 – p2,2 = t3 – t2

…
v4,1 – v4,4 = y1 – y4

minimize

wij = 1 if track i is visible in images j and j+1
0 otherwise

Slide: N. Snavely



Global optimization

I1 I2 I3 I4

p1,1
p1,2 p1,3

p2,2

p2,3 p2,4

p3,3
p3,4 p4,4p4,1

A
2m x 2n 2n x 1

x
2m x 1

b
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Global optimization

Defines a least squares problem:    minimize

• Solution:

• Problem: there is no unique solution for    ! (det           = 0)

• We can add a global offset to a solution     and get the same error

A
2m x 2n 2n x 1

x
2m x 1

b

Slide: N. Snavely



Ambiguity in global location

Each of these solutions has the same error

Called the gauge ambiguity

Solution: fix the position of one image (e.g., make the origin of the 1st image (0,0))

(0,0)

(-100,-100)

(200,-200)



Solving for camera rotation

Instead of spherically warping the images and solving 

for translation, we can directly solve for the rotation Rj

of each camera

Can handle tilt / twist



Solving for rotations

R1

R2

f

I1

I2

p12 = (u12, v12)

p11 = (u11, v11)

(u11, v11, f) = p11

R1p11

R2p22



Solving for rotations

minimize



3D rotations

How many degrees of freedom are there?

How do we represent a rotation?

• Rotation matrix (too many degrees of freedom)

• Euler angles (e.g. yaw, pitch, and roll) – bad idea

• Quaternions (4-vector on unit sphere)

Usually involves non-linear optimization
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SfM objective function

Given point x and rotation and translation R, t

Minimize sum of squared reprojection errors:

predicted
image location

observed
image location



Solving structure from motion

Minimizing g is difficult
• g is non-linear due to rotations, perspective division
• lots of parameters: 3 for each 3D point, 6 for each 

camera
• difficult to initialize
• gauge ambiguity: error is invariant to a similarity 

transform (translation, rotation, uniform scale) 

Many techniques use non-linear least-squares 
(NLLS) optimization (bundle adjustment)
• Levenberg-Marquardt is one common algorithm for 

NLLS
• Lourakis, The Design and Implementation of a 

Generic Sparse Bundle Adjustment Software 
Package Based on the Levenberg-Marquardt 
Algorithm, http://www.ics.forth.gr/~lourakis/sba/

• http://en.wikipedia.org/wiki/Levenberg-
Marquardt_algorithm

http://www.ics.forth.gr/~lourakis/sba/
http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm
http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm
http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm


Extensions to SfM

Can also solve for intrinsic parameters (focal length, radial 
distortion, etc.)

Can use a more robust function than squared error, to 
avoid fitting to outliers

For more information, see: Triggs, et al, “Bundle 
Adjustment – A Modern Synthesis”, Vision 
Algorithms 2000.


