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Overview

• Motivation
• Unsupervised Learning 
– Literature review
– Generative models of  video

• [Stochastic Video Generation, Denton et al., ICML 2018]

• Self-supervised learning
– Review of  approaches from vision
– [Unsupervised Learning by Predicting Noise, 

Bojanowski & Joulin, ICML 2017] 



Unsupervised Learning
• Learning without labels (or from just a few)
– Need to capture structure inherent in data

• Practical importance:
– Very uneven distribution of  categories in real-world (Zipf ’s law)
– Lots of  rare categories with few examples
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Figure 2. Summary of the database content. (a) Sorted histogram of the number of in-

stances of each object description. Notice that there is a large degree of consensus with

respect to the entered descriptions. (b) Histogram of the number of annotated images as a

function of the area labeled. The first bin shows that 11571 images have less than 10% of

the pixels labeled. The last bin shows that there are 2690 pictures with more than 90% of

the pixels labeled. (c) Histogram of the number of labeled objects per image.

Figure 3. Examples of annotated scenes. These images have more than 80% of their pixels

labeled and span multiple scene categories. Notice that many different object classes are

labeled per image.
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Arguments for Unsupervised Learning

• Want to be able to exploit unlabeled data
– Vast amount of  it often available
– Essentially free

• Good regularizer for supervised learning
– Helps generalization
– Transfer learning
– Zero/one/few - shot learning



Unsupervised Learning

• Biological argument [from G. Hinton]:
– Our brains have 10^15 connections
– We live for 10^9 secs
– Need 10^6 bits/sec
– Insufficient information from occasional high level label
– Only source with enough information is input itself

• Challenging problem: big focus on many DL 
groups



Historical Note

• Deep Learning revival started in ~2006
– Hinton & Salakhudinov Science paper on RBMs

• Unsupervised Learning was focus from 2006-
2012

• In ~2012 great results in vision, speech with 
supervised methods appeared
– Less interest in unsupervised learning



Overview of  Unsupervised Approaches

• Given just data {X}
– Unlike supervised learning there are no provided 

labels {Y}

1.  Density modeling, i.e. build model of  p(X)
– Enables sampling of  new data 
– Evaluate probability of  a data point
– Can be conditional model, e.g. p(X_t | X_{t-1},…)
– Requires (deep) generative architectures



Density ModelingMotivation
Background

Recent algorithms
Evaluating generative models

Extensions

Have access to x ⇠ pdata(x) through training set

Want to learn a model x ⇠ pmodel(x)

Want pmodel to be similar to pdata:

Samples from true data
distribution have high
likelihood under pmodel

Samples drawn from
pmodel reflect structure
of pdata

Emily Denton Deep generative models of natural images



2. “Self  supervised” learning
• Find supervision signal y within the input data
• This signal is then used as a target:

• Allows the use of  standard supervised learning losses and 
architectures

• Pre-training of  representation for subsequent task
• Typically involves some insight into domain to pick y
• Inspired by word2vec (Mikolov et al. 2013)

– E.g.   The cat sat on the mat
– X = {The, cat, NULL, on the mat}
– Y = {sat}



1. Density Modeling of  Natural Signals 
using Deep Learning



Auto-Encoder

EncoderDecoder

Input

Features

• Encoder/Decoder will be deep network 
• Slightly different architectures for decoder (needs to output image)
• Architecture depends on application

Feed-back /
generative /
top-down
path

Feed-forward /
bottom-up path



Variational Auto-Encoder

Encoder
q(z|x)

Decoder
p(x|z)

Input x

Features z

• Makes auto-encoder into a true generative model

At training
time only

Prior p(z)

Motivation
Deep generative models: Intro

Deep generative models: Recent algorithms
Extensions

Variational autoencoders
Generative adversarial networks
Generative moment matching networks
Evaluating generative models

Variational autoencoder

Rearranging the ELBO:

L(x; ✓,�) =
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z
q�(z|x) log
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q�(z|x)
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= Eq(z|x) log p(x|z)� Eq(z|x) log
q(z|x)
p(z)

= Eq(z|x) log p(x|z)| {z }
Reconstruction term

�DKL(q(z|x)||p(z))| {z }
Prior term

Emily Denton Deep generative models of natural images

[Kingma & Welling 2013] 

e.g. N(0,I)



Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Directed graphical models

x

z

We assume data is generated by:

z ⇠ p(z) x ⇠ p(x|z)

z is latent/hidden x is observed (image)

Use ✓ to denote parameters of the generative model

Emily Denton Deep generative models of natural images



Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Parameter estimation

Given dataset {x1, ..., xn}, maximize likelihood of data
under model:

max
✓

nX

i=1

log p(xi; ✓) = max
✓

nX

i=1

X

z

log p(xi, z; ✓)

This quantity often intractable, di�cult to optimize
directly

Can be optimized with iterative Expectation Maximization
(EM) algorithm

Fix parameters and compute log likelihood wrt p(z|x; ✓t)
Fix z find parameters ✓(t+1) to maximize log likelihood

Emily Denton Deep generative models of natural images



Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Parameter estimation

Standard EM requires access to
posterior p(z|x)

For the deep neural net models we
care about this is infeasible

Solution: introduce variational
approximation q(z;�) to p(z|x)

Will give bound on log likelihood
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Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Bounding the marginal likelihood

Recall Jenson’s inequality: When f is concave, f(E[x]) � E[f(x)]

log p(x) = log

Z

z
p(x, z)

= log

Z

z
q(z)

p(x, z)

q(z)

�
Z
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q(z) log

p(x, z)

q(z)
= L(x; ✓,�) (by Jensons inequality)

=

Z

z
q(z) log p(x, z)�

Z

z
q(z) log q(z)

= Eq(z)[log p(x, z)]| {z }
Expectation of joint distribution

+H(q(z))| {z }
Entropy
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Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Bound is tight when variational approximation matches true
posterior:

log p(x)� L(x; ✓,�) = log p(x)�
Z
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q(z) log
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= DKL(q(z;�)||p(z|x))

Emily Denton Deep generative models of natural images

Evidence Lower 
BOund (ELBO)



Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Learning directed graphical models

Maximize bound on likelihood of data:

max
✓

NX

i=1

log p(xi; ✓) � max
✓,�1,...,�N

NX

i=1

L(xi; ✓,�i)

Historically, used di↵erent �i for every data point
But we’ll move away from this soon..

Can still use EM style algorithm to iteratively optimize

For more info see Blei et al. (2003)

Emily Denton Deep generative models of natural images



Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

New method of learning: approximate inference model

Instead of having di↵erent variational parameters for each
data point, fit a conditional parametric function

The output of this function will be the parameters of the
variational distribution q(z|x)

Instead of q(z) we have q�(z|x)

ELBO becomes:

L(x; ✓,�) = Eq�(z|x)[log p✓(x, z)]| {z }
Expectation of joint distribution

+H(q�(z|x))| {z }
Entropy

Emily Denton Deep generative models of natural images

Evidence Lower BOund (ELBO)



Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

Variational autoencoder

Encoder network maps from
image space to latent space

Outputs parameters of
q�(z|x)

Decoder maps from latent
space back into image space

Outputs parameters of
p✓(x|z)

[Kingma & Welling (2013)]
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Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

Example

Encoder network outputs
mean and variance of Normal
distribution

q�(z|x) = N (µ�(x),��(x))

Decoder network outputs
mean (and optionally
variance) of Normal
distribution

p✓(x|z) = N (µ✓(z), I)

[Kingma & Welling (2013)]
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Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

Variational autoencoder

Rearranging the ELBO:

L(x; ✓,�) =

Z
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p(z)

= Eq(z|x) log p(x|z)| {z }
Reconstruction term
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Prior term
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Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

Variational autoencoder

Inference network outputs
parameters of q�(z|x)

Generative network outputs
parameters of p✓(x|z)

Optimize ✓ and � jointly by
maximizing ELBO:

L(x; ✓,�) = Eq(z|x) log p(x|z)| {z }
Reconstruction term

�DKL(q(z|x)||p(z))| {z }
Prior term
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Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

Stochastic gradient variation bayes (SGVB) estimator

Reparameterization trick : re-parameterize z ⇠ q�(z|x) as

z = g�(x, ✏) with ✏ ⇠ p(✏)

For example, with a Gaussian can write z ⇠ N (µ,�2) as

z = µ+ ✏�2 with ✏ ⇠ N (0, 1)

[Kingma & Welling (2013); Rezende et al. (2014)]

Emily Denton Deep generative models of natural images



Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

Stochastic gradient variation bayes (SGVB) estimator

L(x; ✓,�) = Eq(z|x) log p(x|z)| {z }
Reconstruction term

�DKL(q(z|x)||p(z))| {z }
Prior term

Using reparameterization trick we form Monte Carlo
estimate of reconstruction term:

Eq�(z|x) log p✓(x|z) = Ep(✏) log p✓(x|g�(x, ✏))

' 1

L

LX

i=1

log p✓(x|g�(x, ✏)) where ✏ ⇠ p(✏)

KL divergence term can often be computed analytically
(eg. Gaussian)

Emily Denton Deep generative models of natural images



Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

VAE learned manifold

[Kingma & Welling (2013)]

Emily Denton Deep generative models of natural images



Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

VAE samples

[Kingma & Welling (2013)]

Emily Denton Deep generative models of natural images



Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

VAE tradeo↵s

Pros:
Theoretically pleasing
Optimizes bound on likelihood
Easy to implement

Cons:
Samples tend to be blurry

Maximum likelihood minimizes DKL(pdata||pmodel)

[Theis et al. (2016)]

Emily Denton Deep generative models of natural images



Generative Adversarial Networks

Discriminato
r
D

Generator
G

Sample x

Features z

• Mini—max game between G and D

Decoder-only 
model but with 
adversarial loss term

See Sebastian Nowozin’s lectures

Prior p(z)
[Goodfellow et al. 2014] 

e.g. N(0,I)

^

outputs different. The output in question is a single scalar. In GANs, one network produces a rich,
high dimensional vector that is used as the input to another network, and attempts to choose an input
that the other network does not know how to process. 3) The specification of the learning process
is different. Predictability minimization is described as an optimization problem with an objective
function to be minimized, and learning approaches the minimum of the objective function. GANs
are based on a minimax game rather than an optimization problem, and have a value function that
one agent seeks to maximize and the other seeks to minimize. The game terminates at a saddle point
that is a minimum with respect to one player’s strategy and a maximum with respect to the other
player’s strategy.

Generative adversarial networks has been sometimes confused with the related concept of “adversar-
ial examples” [28]. Adversarial examples are examples found by using gradient-based optimization
directly on the input to a classification network, in order to find examples that are similar to the
data yet misclassified. This is different from the present work because adversarial examples are
not a mechanism for training a generative model. Instead, adversarial examples are primarily an
analysis tool for showing that neural networks behave in intriguing ways, often confidently clas-
sifying two images differently with high confidence even though the difference between them is
imperceptible to a human observer. The existence of such adversarial examples does suggest that
generative adversarial network training could be inefficient, because they show that it is possible to
make modern discriminative networks confidently recognize a class without emulating any of the
human-perceptible attributes of that class.

3 Adversarial nets

The adversarial modeling framework is most straightforward to apply when the models are both
multilayer perceptrons. To learn the generator’s distribution pg over data x, we define a prior on
input noise variables pz(z), then represent a mapping to data space as G(z; ✓g), where G is a
differentiable function represented by a multilayer perceptron with parameters ✓g . We also define a
second multilayer perceptron D(x; ✓d) that outputs a single scalar. D(x) represents the probability
that x came from the data rather than pg . We train D to maximize the probability of assigning the
correct label to both training examples and samples from G. We simultaneously train G to minimize
log(1 � D(G(z))). In other words, D and G play the following two-player minimax game with
value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. The procedure is formally presented in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.
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GAN - Generating Samples

Generated example

High-level features

Features

Features

- Sample from prior 
p(z)

- Push through
decoder network 

Prior 
p(z)

Decoder1

Decoder2

Decoder3



Conditional Generation

Generated frame xt+1

High-level features

Features

Features

Prior 
p(z)

^Previous frame xt

Features

Features

E.g. consider video data

• Encode previous 
frames(s)

• [Optional] add latent 
noise from prior

• Reconstruct next frame 
via decoder

Decoder1

Decoder2

Decoder3

Encoder1

Encoder2

Encoder3



• After unsupervised
“pre-training”, refine
model with few labels 
on 
target task 

• Unsupervised
training phase learns
“good” representation

Supervised Fine-Tuning
High-level 

features

Previous frame xt

Features

Features

Encoder1

Encoder2

Encoder3

Label y



Stacked Auto-Encoders

Encoder1Decoder1

Input

High-level features

Features

Encoder2Decoder2

Features

Encoder3Decoder3

• Ladder Networks 
[Rasmus et al. 2015]
• Reconstruction 

constraint at each 
layer

• Trained end-to-end

• Can be trained layer-
wise
- Stacked RBMs 
[Hinton & Salakhutdinov 2006] 



Many Others Approaches

• Autoencoder (most unsupervised Deep 
Learning methods)
– Restricted / Deep Boltzmann Machines 
– Denoising autoencoders 
– Predictive sparse decomposition 

• Decoder-only
– Sparse coding & hierarchical variants



Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

Autoregressive models

Tractably model a joint distribution of the pixels in the
image

Learn to predict the next pixel given all the previously
generated pixels

Joint distribution of all pixels just product of conditionals:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1)

Emily Denton Deep generative models of natural images



Pixel-CNN

• Conditional generative model of  images
• Generate each pixel, in raster-scan order
• Just predict distribution over a single pixel (can be multi-modal)
• See also Video Pixel Networks [Kalchbrenner et al., 2016], 
• NADE [Larochelle & Murray 2011] & RIDE [Theis and Bethge, NIPS 2015]. 
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Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel xi the model can only condition on the previously generated pixels
x1, . . . xi�1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
We show that a single Conditional PixelCNN model can be used to generate images from diverse
classes such as dogs, lawn mowers and coral reefs, by simply conditioning on a one-hot encoding
of the class. Similarly one can use embeddings that capture high level information of an image to
generate a large variety of images with similar features. This gives us insight into the invariances
encoded in the embeddings — e.g., we can generate different poses of the same person based on a
single image. The same framework can also be used to analyse and interpret different layers and
activations in deep neural networks.

2 Gated PixelCNN

PixelCNNs (and PixelRNNs) [30] model the joint distribution of pixels over an image x as the
following product of conditional distributions, where xi is a single pixel:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1). (1)

The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi�1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
sure the CNN can only use information about pixels above and to the left of the current pixel, the
filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is
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combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
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encoded in the embeddings — e.g., we can generate different poses of the same person based on a
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The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi�1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
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filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is

2

African elephant Coral Reef

Sandbar Sorrel horse

Lhasa Apso (dog) Lawn mower

Brown bear Robin (bird)

Figure 3: Class-Conditional samples from the Conditional PixelCNN.

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.

7

[van den Oord et al., arXiv 1606.05328, 2016] 



Wavenet

• Generative model of  raw speech waveform
• Condition on previous parts of  waveform
• Dilated causal convolution layers
• Discrete output distribution (use softmax)

• In order to deal with long-range temporal dependencies needed for raw audio generation,
we develop new architectures based on dilated causal convolutions, which exhibit very
large receptive fields.

• We show that when conditioned on a speaker identity, a single model can be used to gener-
ate different voices.

• The same architecture shows strong results when tested on a small speech recognition
dataset, and is promising when used to generate other audio modalities such as music.

We believe that WaveNets provide a generic and flexible framework for tackling many applications
that rely on audio generation (e.g. TTS, music, speech enhancement, voice conversion, source sep-
aration).

2 WAVENET

In this paper we introduce a new generative model operating directly on the raw audio waveform.
The joint probability of a waveform x = {x1, . . . , xT } is factorised as a product of conditional
probabilities as follows:

p (x) =
TY

t=1

p (xt | x1, . . . , xt�1) (1)

Each audio sample xt is therefore conditioned on the samples at all previous timesteps.

Similarly to PixelCNNs (van den Oord et al., 2016a;b), the conditional probability distribution is
modelled by a stack of convolutional layers. There are no pooling layers in the network, and the
output of the model has the same time dimensionality as the input. The model outputs a categorical
distribution over the next value xt with a softmax layer and it is optimized to maximize the log-
likelihood of the data w.r.t. the parameters. Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting.

2.1 DILATED CAUSAL CONVOLUTIONS

Input

Hidden Layer

Hidden Layer

Hidden Layer

Output

Figure 2: Visualization of a stack of causal convolutional layers.

The main ingredient of WaveNet are causal convolutions. By using causal convolutions, we
make sure the model cannot violate the ordering in which we model the data: the prediction
p (xt+1 | x1, ..., xt) emitted by the model at timestep t cannot depend on any of the future timesteps
xt+1, xt+2, . . . , xT as shown in Fig. 2. For images, the equivalent of a causal convolution is a
masked convolution (van den Oord et al., 2016a) which can be implemented by constructing a mask
tensor and doing an elementwise multiplication of this mask with the convolution kernel before ap-
plying it. For 1-D data such as audio one can more easily implement this by shifting the output of a
normal convolution by a few timesteps.

At training time, the conditional predictions for all timesteps can be made in parallel because all
timesteps of ground truth x are known. When generating with the model, the predictions are se-
quential: after each sample is predicted, it is fed back into the network to predict the next sample.

2

[van den Oord et al., arXiv 1609.03499, 2016] 



An aside: 
Reasoning and Planning in World 

• Solving AI requires more than just perception

• Essence of  intelligence 
is ability to predict

• To plan ahead
need to simulate
world & reason
about possible actions

[Craik 1943; Dennett 1978; Sutton & Barto 1981; Sutton 1991]

World 
Simulator



[Yann LeCun]

Y LeCun
What we need is Model-Based Reinforcement Learning

The essence of intelligence is the ability to predict

To plan ahead, we must simulate the world, so as to minimizes the 
predicted value of some objective function.

Agent
World

Simulator

Actor

Critic

World
Simulator

Actor

Critic

World
Simulator

Actor

Critic

World
Simulator

Actor

Critic

Perception

Planning in the World

• Try out different action sequences in mind of  
robot/agent

• Need accurate world simulator

Action 1 Action 2 Action 3

State t+1 State t+2 State t+3



Video Prediction
• Predict pixels of  next frame, given previous ones
• Enables learning of  world model/simulator
• Challenging due to inherent uncertainty in the dynamics 

of  the world 
● Pixel wise loss functions can cause blurring due to 

multiple futures being accounted for 
t=0s                t = 1s           t = 2s              t = 4s

ground
truth

PhysNet
prediction[Lerer, Gross, Fergus 

ICML 2016]



Video Prediction
• Lots of  prior work, e.g.: 
– LSTMs: Srivastava et al. (2015); Finn et al. (2016)
– Discrete latent variables: Ranzato et al. (2014)
– Optical flow: Xue et al. (2016); Walker et al. (2015)
– Action-conditional: Chiappa et al. (2017) and Oh et al. 

(2015) 

[Mathieu, Couprie, 
LeCun, ICLR 2016]



Handling Uncertainty
● Video prediction is challenging due to inherent 

uncertainty in the dynamics of  the world 
● Pixel wise loss functions can cause blurring due to 

multiple futures being accounted for 

● Two broad approaches:
○ GANs (Mathieu et al. 2015; Vondrick et al. 2016)
○ Latent variables (Henaff et al., 2017; Babaeizadeh et 

al. 2018; Denton & Fergus 2018) 



Stochastic Video Generation 
with a Learned Prior

ICML 2018

Emily Denton1 and Rob Fergus12



Stochastic video generation, Denton & Fergus 2018

LSTM
!

Dec

Enc

xt
^

xt-1

zt	 ~		N ("#(t)	,$#(t)I)

Learned prior dependent on 
all previous frames

Enc

LSTM#

● Combines a deterministic frame predictor 
with time-dependent stochastic latent 
variables

● Learned prior over the latent variables can 
can be interpreted as a predictive model of  
uncertainty

[Denton et al. ICML 2018]
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[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2018.]

Babaeizadeh et al. (2018) Denton et al. (2018)
Inference
Feed forward net encodes entire video 
sequence:

zt ~ q!(z|	x1:T)

Inference
Recurrent net produces different distribution 
for every t:

q!(z| x)	=								q!(t)(zt	| x1:t		)

zt	 ~	q!(t)(zt	| x1:t		)
t

[Denton et al. ICML 2018]



[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2017.]

Generation

zt ~ N(0,	I)	

Generation

zt ~ N (!"(x1:t-1	) ,	#"(x1:t-1	)I)

Babaeizadeh et al. (2018) Denton et al. (2018)
Inference
Feed forward net encodes entire video 
sequence:

zt ~ q$(z|	x1:T)

Inference
Recurrent net produces different distribution 
for every t:

q$(z| x)	=								q$(t)(zt	| x1:t		)

zt	 ~	q$(t)(zt	| x1:t		)
t

[Denton et al. ICML 2018]



● Stochastic variant of the Moving MNIST 
dataset (Srivastava et al., 2015)

Green: Ground truth input
Red: generated frames 

● Model conditioned on 5 frames and 
trained to predict next 10 frames 

● Best SSIM chosen from 100 
samples

Stochastic Moving MNIST

[Denton et al. ICML 2018]



Prior predicts low variance distribution for deterministic parts of the video, high 
variance distribution as points of uncertainty 

Learned prior can be interpreted as a model of uncertainty

Black dashed lines: 
digit 1 collides with wall

Red dashed lines: 
digit 2 collides with wallPredicted variance from 

our models learned prior

[Denton et al. ICML 2018]



Digit trajectory prior to collision

Peaked predicted and ground truth
distributions prior to collision

[Denton et al. ICML 2018]



● Sawyer robotic arm pushing a variety of objects around a table top
● 30 frames in sequence, 64x64 resolution
● Movements of the arm are highly stochastic

[Ebert et al. Self-supervised visual planning with temporal skip connections. CoRL, 2017.]

BAIR robot push dataset (Ebert et al., 2017)

[Denton et al. ICML 2018]



Babaeizadeh 
et al. (2018)

SVG-LP
(ours)

BAIR robot push dataset

[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2018.]

[Denton et al. ICML 2018]



Babaeizadeh 
et al. (2018)

SVG-LP
(ours)

BAIR robot push dataset

[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2018.]

[Denton et al. ICML 2018]



Babaeizadeh 
et al. (2018)

SVG-LP
(ours)

BAIR robot push dataset

[Babaeizadeh et al. Stochastic variational video prediction. ICLR, 2018.]

[Denton et al. ICML 2018]



2. Self-supervised Learning



Unsupervised learning 
as a pre-training step

• Target task is high-level understanding of  signal
– E.g. Classification, detection

• Unsupervised learning to pre-train models
– Then fine-tune with labels on target task

• Some success in NLP
– Word2vec for word embeddings
– Language modeling for machine translation

• No equivalent success in computer vision or other domains

• But there are a lot of  attempts!



Range of self-supervised systems

images

• Doersch et al. (2015)
• Zhang et al. (2016)
• Zhang et al. (2017)
• Noroozi et al. (2016)
• Pathak et al. (2016)

richer data



Range of self-supervised systems

images

• Doersch et al. (2015)
• Zhang et al. (2016)
• Zhang et al. (2017)
• Noroozi et al. (2016)
• Pathak et al. (2016)

richer data

… …

videos

• Wang et al. (2015)
• Misra et al. (2016)
• Pathak et al. (2017)



Range of self-supervised systems

images

• Doersch et al. (2015)
• Zhang et al. (2016)
• Zhang et al. (2017)
• Noroozi et al. (2016)
• Pathak et al. (2016)

richer data

… …

videos

• Wang et al. (2015)
• Misra et al. (2016)
• Pathak et al. (2017)

sound & depth

• Owens et al. (2016)
• Zhang et al. (2017)
• Bansal et al. (2016)



Range of self-supervised systems

images

• Doersch et al. (2015)
• Zhang et al. (2016)
• Zhang et al. (2017)
• Norouzi et al. (2016)
• Pathak et al. (2016)

richer data

… …

videos

• Wang et al. (2015)
• Misra et al. (2016)
• Pathak et al. (2017)

sound & depth

• Owens et al. (2016)
• Zhang et al. (2017)
• Bansal et al. (2016)

actions

• Agarwal et al. (2015)
• Jayaraman et al. (2015)
• Pinto et al. (2016)
• Agarwal et al. (2016)
• Pinto et al. (2017)
• Pinto et al. (2016)



Image colorization

Richard Zhang, Phillip Isola, Alexei (Alyosha) Efros
Colorful Image Colorization

slides from Zhang

http://richzhang.github.io/colorization/



Grayscale image: L channel Color information: ab channels

abL



abL

Concatenate (L,ab)Grayscale image: L channel

“Free” 
supervisory

signal

Semantics? Higher-
level abstraction?



Deep
Net

Context as supervision
[]
Collobert & Weston 2008; Mikolov et al. 2013



A B

? ? ?
??

? ? ?

Unsupervised Visual Representation Learning by Context Prediction
[Doersch et al. ICCV 2015]



Relative Position Task

Randomly Sample 
Patch Sample Second Patch

CNN CNN

Classifier

8 possible locations



Unsupervised Learning of Visual Representations
by Solving Jigsaw Puzzles, Noorozi et al. (2016)

[Noorozi et al. (2016)]



[Noorozi et al. (2016)]



[Noorozi et al. (2016)]



Feature Learning by Inpainting
[Context Encoders: Feature Learning by Inpainting, Pathak et al. (2016)]

[Pathak et al. (2016)]



Context Encoders
Encoder Decoder

• Encoder can be substituted with any network 
architecture like AlexNet etc.

• Decoder is a set of UpConv/deconv/frac-strided-
conv layers

[Pathak et al. (2016)]



Combined L2 + GAN loss

Input Image L2 Loss Adversarial Loss Joint Loss

[Pathak et al. (2016)]



Unsupervised Learning of Visual Representations 
using Videos, Wang & Gupta 2015

Idea: Object Tracking in Videos

[Wang & Gupta 2015]



Approach

[Wang & Gupta 2015]

• Use object tracking in 
videos

• Classify if  patches belong 
to the same track or not



Patch Mining In Videos

• Track 8M patches in 100K videos from YouTube.

• Use off-the-shelf tracking algorithms with no learning.

Patch
Pairs

Patch
Pairs

[Wang & Gupta 2015]



VOC 2007 Detection Performance
(pretraining for R-CNN)

No PretrainingLayoutImageNet

%
 A
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n

68.6

61.7

42.4

VGG (16-layer)

60.5

Tracking

[Wang & Gupta 2015]



Leveraging Temporal Video Structure

[Shuffle and learn: unsupervised learning using temporal order 
verification, Misra et al. ECCV 2016]

• Videos have temporal structure

• Can we use this to learn an image representation?



Positive Tuples Negative Tuples

[Misra et al. ECCV 2016]
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AlexNet architecture

Shared 
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[Misra et al. ECCV 2016]



Results: Finetune on Action 
Recognition
Dataset Initialization Mean Classification Accuracy

UCF101 Random 38.6
Ours 50.2

ImageNet pre-trained 67.1
HMDB51 Random 13.3

Ours 18.1
UCF101 pre-trained 15.2

ImageNet pre-trained 28.5
[Misra et al. ECCV 2016]



AudioImage

Common 
sources

Visual + Audio
[Ambient Sound Provides Supervision for Visual Learning, 
[Owens et al. (2016)]



Audio label

conv
5

256 
filters

13

Top responses (unit #90 
of 256)

Unit visualizations
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Audio label
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Unit visualizations



Main issue with all these methods

• All these models rely on expert knowledge

• Need to define y(x) for each new domain

• Not clear how to select a y(x) that is a good 
target to learn all-purpose features



[Dosovitskiy et al. ICLR 2014]

• 1 class = single image + its 
transformations

• Learn to classify each “class”

• Domain knowledge about 
appropriate transformations

• does not scale



Unsupervised Learning by Predicting Noise 
Piotr Bojanowski, Armand Joulin

ICML 2017



Unsupervised Learning by Predicting Noise 

Target space

Features AssignmentImages

cj

Pf(X)

CNN

• Inspired by Dosovitskiy et al. 

• Learn mapping from images 
to a sphere

• Fix targets on sphere

• Simultaneously:
– Learn the mapping
– Optimize the assignment 

between images and targets

[Bojanowski & Joulin, ICML 2017]



Deep Discriminative Clustering

• We are given a set of  n images

• We want to learn a visual features f  without using 
labels

• We use the L2 loss 

[Bojanowski & Joulin, ICML 2017]



Label Collapse Problem

• Optimization over Y would lead to a collapse

• Repulsive costs are tricky to use

• Can impose constraints on Y but hard to 
optimize

[Bojanowski & Joulin, ICML 2017]



Fixing the Target Representation

• Instead, we fix the target representation
• Allow a reassignment between targets and images

• Targets C are uniformly sampled on the sphere

• Final objective function
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0
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[Bojanowski & Joulin, ICML 2017]



Optimization

• We minimize our cost function in an on-line 
fashion

• We use the following algorithm:
Require: T batches of images, �0 > 0

for t = {1, . . . , T} do
Obtain batch b and representations r
Compute f✓(Xb)

Compute P ⇤
by minimizing w.r.t. P

Compute r✓L(✓) using P ⇤

Update ✓  ✓ � �tr✓L(✓)
end for

[Bojanowski & Joulin, ICML 2017]



Optimizing the Permutation Matrix

• At theta fixed, the permutation is obtained by 
solving

• Which is a linear program on the set of  
permutation matrices

• We can use the Hungarian algorithm 

[Bojanowski & Joulin, ICML 2017]



Experimental Setup

• AlexNet architecture

• Learn unsupervised features on ImageNet training set

• Retrain a classifier on top for a target transfer task, i.e. 
PASCAL VOC Classification / Detection

[Bojanowski & Joulin, ICML 2017]



Baselines
• Self  supervised models
– Wang & Gupta – Temporal coherence in videos
– Doersch et al. – Predict context patches
– Zhang et al. – Predict color
– Norouzi & Favaro – Solve jigsaw puzzles 

• Unsupervised model
– GAN
– Auto-encoder
– BI-GAN (Donahue et al.)

[Bojanowski & Joulin, ICML 2017]



Pascal VOC - results

Classification Detection

Trained layers fc6-8 all all

ImageNet labels 78.9 79.9 56.8

Agrawal et al. 31.0 54.2 43.9
Pathak et al. 34.6 56.5 44.5
Wang & Gupta 55.6 63.1 47.4
Doersch et al. 55.1 65.3 51.1
Zhang et al. 61.5 65.6 46.9

Autoencoder 16.0 53.8 41.9
GAN 40.5 56.4 -
BiGAN 52.3 60.1 46.9

NAT 56.7 65.3 49.4

• compare  favorably to SOTA

• Poor performance of  AE / 
GAN

[Bojanowski & Joulin, ICML 2017]



Nearest Neighbor Queries

[Bojanowski & Joulin, ICML 2017]



Bojanowski & Joulin Summary

• Simple unsupervised approach

• No domain expert knowledge

• Scales to very large datasets

• Close to supervised pipeline

• SOTA performance (at the time) amongst unsupervised 
methods



Deep Clustering for Unsupervised Learning of 
Visual Features 
Mathilde Caron, Piotr Bojanowski, Armand Joulin, Matthijs Douze

ECCV 2018



Motivation

• Simpler unsupervised approach?

• Closer to supervised pipeline?

àclustering methods are simpler and closer

… but they suffer from the cluster collapsing problem



Is the cluster collapsing a problem?

• Clustering almost never used with neural networks 

• Optimal solution: 
• 1 cluster with every data point and trivial features

• This problem arises in discriminative clustering too

• Their solution: avoid non-empty clusters.

• if we enforce non-empty clusters, are other optimal trivial solutions?



Simple model to test this idea

• Alternate between:
• clustering features  (k-means) 
• feature learning (classification)

• (Vaguely) conceptually similar to the E-M procedure 

Input

Pseudo-labels

Classification

Clustering

Convnet



How do we avoid the collapse of 
clusters?
• 3 simple tricks:

• Reassign empty clusters during k-means

• Using a discriminative loss during classification (logistic regression)

• Class uniform sampling during feature learning to avoid one cluster 
to dominate the others.



…and a lot of standard small “deep learning” tricks



Alternate optimization

• Alternates between k-means:

• And learning the parameters of the network:



Transfer learning

Transfer on Pascal VOC 2007 (higher the better)



Transfer learning

Works on random internet images



Reasonable features

Looking at the activation at different layers



Limitation and future work

• Proof of concept that clustering works with deep learning

• Ad-hoc model with no theoretical guarantees

• Does not scale well:
• converge in 12days on high-end GPU on Imagenet
• Requires a k-means on the full dataset  

• Future work:
• More principled models
• Looking at other “traditional” unsupervised learning approaches



Summary

• Power of  DL comes from ability to learn good 
representations 

• Wide range of  Unsupervised / Self-Supervised 
methods that devise “free” supervisory signals 
which can be used to learn representations via 
DL

• Unsolved problem:
– Should be domain agnostic
– Should be (nearly) as good as supervised methods




