Semantic & Panoptic Segmentation and Image Processing

with Convnets

Lecture 11 2022

pixels in, pixels out

semantic Segmentation Long et al. 2015

monocular depth + normals Eigen & Fergus 2015

colorization

Zhang et al.2016

optical flow Fischer et al. 2015

boundary prediction Xie & Tu 2015 2

Image segmentation tasks over last 10 years

instance segmentation

semantic segmentation

Overview

- Semantic Segmentation
 - Fully Convolutional Nets [Shelhamer et al. 2016] https://arxiv.org/abs/1605.06211

- Panoptic Segmentation
- Image processing with Convnets

Overview

- Semantic Segmentation
 - Fully Convolutional Nets [Shelhamer et al. 2016] https://arxiv.org/abs/1605.06211

- Panoptic Segmentation
- Image processing with Convnets

A Fuller Understanding of Fully Convolutional Networks

convnets perform classification

"tabby cat"

1000-dim vector

lots of pixels, little time?

end-to-end learning

a classification network

becoming fully convolutional

becoming fully convolutional

upsampling output

end-to-end, pixels-to-pixels network

end-to-end, pixels-to-pixels network

spectrum of deep features

combine where (local, shallow) with what (global, deep)

image

fuse features into deep jet

(cf. Hariharan et al. CVPR15 "hypercolumn")

skip layer refinement

no skips

skip FCN computation

A multi-stream network that fuses features/predictions across layers

Relative to prior state-of-theart SDS:

- 30% relative improvement for mean IoU
- 286× faster

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Max pooling indices transferred to decoder to improve output resolution

https://arxiv.org/abs/1511.00561

How to do the Upsampling?

Also known as Deconvolution See https://distill.pub/2016/deconv-checkerboard/

Deconv in last two layers. Other layers use resize-convolution. Artifacts of frequency 2 and 4.

All layers use resize-convolution. No artifacts.

Avoid artifacts by doing bilinear interpolation

UNet: Convolutional Networks for Biomedical Image Segmentation

https://arxiv.org/abs/1505.04597

Segmentation of a 512x512 image takes less than a second on a recent GPU

Dilated / Atrous Convolutions

[Multi-Scale Context Aggregation by Dilated Convolutions, Yu and Koltun, 2015]

- No pooling operations
- Constant resolution feature maps
- Integrate increasing spatial context by special kind of dilated convolution

Layer	1	2	3	4	5	6	7	8
Convolution	3×3	3×3	3×3	3×3	3×3	3×3	3×3	1×1
Dilation	1	1	2	4	8	16	1	1
Truncation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Receptive field	3×3	5×5	9×9	17×17	33×33	65×65	67×67	67×67
Output channels								
Basic	C	C	C	C	C	C	C	C
Large	2C	2C	4C	8C	16C	32C	32C	C

• Constant 64x64 spatial resolution throughout

Dilated / Atrous Convolutions

[Multi-Scale Context Aggregation by Dilated Convolutions, Yu and Koltun, 2015]

Further Resources

http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review

Overview

- Semantic Segmentation
 - Fully Convolutional Nets [Shelhamer et al. 2016] https://arxiv.org/abs/1605.06211

- Panoptic Segmentation
- Image processing with Convnets

Panoptic Segmentation: Task and Approaches

CVPR 2019 Tutorial Visual Recognition and Beyond

Alexander Kirillov

facebook Artificial Intelligence

Image segmentation tasks last 10 years

instance segmentation

delineate each object with a mask

Image segmentation tasks last 10 years

assign semantic label to each pixel

semantic segmentation

Semantic Segmentation

Image segmentation tasks last 10 years

instance segmentation

semantic segmentation

real-world application likely requires both: things + stuff [Slide: A. Kirillov]

Panoptic segmentation

assign semantic labels to pixels + segment each instance separately

Available panoptic segmentation datasets

COCO (2014) + COCO-stuff (2017) COCO-panoptic challenges: ECCV`18, **ICCV`19**

Mapillary Vistas (2017) Vistas-panoptic challenges: ECCV`18, **ICCV`19**

ADE20k (2016) >22k images, 150 categorie

Panoptic quality (PQ) measure

$$PQ = \frac{\sum_{(p,g)\in TP} IoU(p,g)}{|TP| + \frac{1}{2}|FP| + \frac{1}{2}|FN|} = \underbrace{\sum_{(p,g)\in TP} IoU(p,g)}_{|TP|} \times \underbrace{|TP|}_{|TP| + \frac{1}{2}|FP| + \frac{1}{2}|FN|}$$
Segmentation Quality
(SQ)
(RQ)

- symmetric
- unified for categories with and without instance-level annotation (analysis)

evaluation code: https://github.com/cocodataset/panopticapi

Panoptic segmentation: naïve approach

semantic segmentation

Panoptic FPN: unified framework

Kirillov et al. Panoptic Feature Pyramid Networks, CVPR`19

Panoptic FPN

Feature Pyramid Network (FPN)

Beyond Object Classification with Convolutional Networks

David Eigen (NYU -> Clarifai) Rob Fergus (Facebook / NYU)

Motivation

- Understand input scene
 - Semantic
 - Geometric

- Understand input scene
 - Semantic
 - Geometric

Motivation

Normals

Depth

- Understand input scene
 - Semantic
 - Geometric

Output 2: 75x55

Losses

Depth: $d = D - D^*$ D = log predicted depth, D* = log true depth $L_{depth}(D, D^*) = \frac{1}{n} \sum_{i} d_i^2 - \frac{1}{2n^2} \left(\sum_{i} d_i\right)^2 + \frac{1}{n} \sum_{i} [(\nabla_x d_i)^2 + (\nabla_y d_i)^2]$ Norma

Labels

Evaluation

- NYU Depth dataset
 - RGB, Depth and per-pixel labels
 - Indoor scenes
- Supervised training of models

- Compare to range of other methods
 - Also on SIFTFlow and PASCAL VOC'11

Depths Comparison

Surface Normals

Semantic Labels: NYUD

Overview

- Semantic Segmentation
 - Fully Convolutional Nets [Shelhamer et al. 2016] https://arxiv.org/abs/1605.06211

- Panoptic Segmentation
- Image processing with Convnets

Denoising with ConvNets

- Burger et al. "Can plain NNs compete with BM3D?" CVPR 2012
- Deep Learning for Image Denoising: a survey, Tian et al. <u>https://arxiv.org/abs/1810.05052</u>, 2018

Original

Noised

Denoised

Learning to See in the Dark

[Chen et al., arXiv 1805.01934]

(a) Camera output with ISO 8,000

(b) Camera output with ISO 409,600

(c) Our result from the raw data of (a)

(a) Traditional pipeline

(b) ... followed by BM3D denoising

(c) Our result

Learning to See in the Dark

[Chen et al., arXiv 1805.01934]

Deblurring with Convnets

 Deep Image Deblurring: A Survey, <u>https://arxiv.org/pdf/2201.10700.pdf</u>, 2022.

(b) Out-of-focus blur

(c) Moving object blur

(d) Mixed blur

Deblurring with Convnets

- Blind deconvolution
 - Learning to Deblur, Schuler et al., arXiv 1406.7444, 2014

Fig. 3 Deep single image deblurring network based on the Deep Auto-Encoder (DAE) architecture [91].

Fig. 4 Deep video deblurring network by architecture [122].

Architectures for Deblurring

https://arxiv.org/pdf/2201.10700.pdf

Fig. 7 Deep single image deblurring network based on the GAN architecture [60].

Fig. 12 Evaluation results of the state-of-the-art deblurring methods on the GoPro dataset [86]. From left to right: blurry images, results of Nah *et al.*[86], Tao *et al.*[131], DBGAN [154] and DeblurGAN-v2 [60]. [86] and [131] are two multi-scale based image deblurring networks. [154] and [60] are two GAN based image deblurring networks. vorg/pdf/2201.10700.pdf

Inpainting with Convnets

- Image Denoising and Inpainting with Deep Neural Networks, Xie et al. NIPS 2012.
- Mask-specific inpainting with deep neural networks, Köhler et al., Pattern Recognition 2014

nd Sirius form a nearly equilateral triangle. These Naos, in the Ship, and Phaet, in the Dove, form a h known as the Egyptian "X." From earliest times Sir been known as the Dog of Orion. It is 324 times brid the average sixth-magnitude star, and in the nearest earth of all the stars in this latitude, its a 8.7 light years. At this distance the Sun star a little brighter than the Pole Star, CANIS MAJOR] ARGO NAVIS (ArrA) URGO, (Face South.) 14 Canis Major: 1 for an or stars about 7A' apart in 😈 er stars to Procum. The

Removing Local Corruption

• Restoring An Image Taken Through a Window Covered with Dirt or Rain, Eigen et al., ICCV 2013.

Removing Local Corruption

Restoring An Image Taken Through a Window Covered with Dirt or Rain

Rain Sequence

Each frame processed independently

David Eigen, Dilip Krishnan and Rob Fergus ICCV 2013 Enhanced Deep Residual Networks for Single Image Super-Resolution, Bee Lim Sanghyun Son Heewon Kim Seungjun Nah Kyoung Mu Le, CVPR 2017 workshop

Figure 2: Comparison of residual blocks in original ResNet, SRResNet, and ours.

Conv Shuffle S

Figure 3: The architecture of the proposed single-scale SR network (EDSR).

0853 from DIV2K [26]

Bicubic

VDSR [11] (32.82 dB / 0.9623)

SRResNet [14] (34.00 dB / 0.9679) EDSR+ (Ours) (34.78 dB / 0.9708)

The 2018 PIRM Challenge on Perceptual Image Super-resolution

Yochai Blau^{1*}, Roey Mechrez^{1*}, Radu Timofte², Tomer Michaeli¹, and Lihi Zelnik-Manor¹

¹ Technion-Israel Institute of Technology, Haifa, Israel ² ETH Zurich, Switzerland {yochai,roey}@campus.technion.ac.il

TTI-2

Project Abstracts

Project Abstracts are due next week (Thursday 13th @ midnight) Each project group should email me (fergus@cs.nyu.edu) with an abstract paragraph (100-150 words max; text format) giving:

- 1. Couple of sentences (2-3) describing your intended project.
- 2. Which datasets you will use.
- 3. Any directly related existing papers that you might build off of.

I will review them and let you know if I can concerns about the feasibility of the project, given time & compute constraints.