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monocular depth + normals Eigen & Fergus 2015

boundary prediction Xie & Tu 2015optical flow Fischer et al. 2015

colorization
Zhang et al.2016
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Overview

• Semantic Segmentation
• Fully Convolutional Nets [Shelhamer et al. 2016] 

https://arxiv.org/abs/1605.06211

• Panoptic Segmentation 

• Image processing with Convnets
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UC Berkeley in CVPR'15, PAMI'16

A Fuller Understanding of 
Fully Convolutional Networks

Evan Shelhamer*   Jonathan Long*    Trevor Darrell
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“tabby cat”

1000-dim vector

< 1 millisecond

convnets perform classification

end-to-end learning
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~1/10 second

end-to-end learning

???

lots of pixels, little time?



“tabby cat”
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a classification network
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becoming fully convolutional
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becoming fully convolutional
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upsampling output
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end-to-end, pixels-to-pixels network



conv, pool,
nonlinearity

upsampling

pixelwise
output + loss

end-to-end, pixels-to-pixels network
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spectrum of deep features

combine where (local, shallow) with what (global, deep)

fuse features into deep jet

(cf. Hariharan et al. CVPR15 “hypercolumn”) 15



skip layers

skip to fuse layers!

interp + sum

interp + sum

dense output 16

end-to-end, joint learning
of semantics and location



stride 32

no skips

stride 16

1 skip

stride 8

2 skips

ground truthinput image

skip layer refinement
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skip FCN computation Stage 1 (60.0ms)

Stage 2 (18.7ms)

Stage 3 (23.0ms)

A multi-stream network that fuses features/predictions across layers



FCN SDS* Truth Input

19

Relative to prior state-of-the-
art SDS:

- 30% relative 
improvement
for mean IoU

- 286× faster

*Simultaneous Detection and Segmentation 
Hariharan et al. ECCV14



SegNet: A Deep Convolutional Encoder-Decoder 
Architecture for Image Segmentation

https://arxiv.org/abs/1511.00561

Max pooling indices transferred to decoder to improve output resolution



How to do the Upsampling?

Also known as Deconvolution
See https://distill.pub/2016/deconv-checkerboard/

Avoid artifacts by doing bilinear interpolation



UNet: Convolutional Networks for Biomedical Image Segmentation

https://arxiv.org/abs/1505.04597 Segmentation of a 512x512 image takes less than a second on a recent GPU



[Multi-Scale Context Aggregation by Dilated Convolutions, Yu and Koltun, 2015] 

Published as a conference paper at ICLR 2016

Layer 1 2 3 4 5 6 7 8
Convolution 3⇥3 3⇥3 3⇥3 3⇥3 3⇥3 3⇥3 3⇥3 1⇥1
Dilation 1 1 2 4 8 16 1 1
Truncation Yes Yes Yes Yes Yes Yes Yes No
Receptive field 3⇥3 5⇥5 9⇥9 17⇥17 33⇥33 65⇥65 67⇥67 67⇥67

Output channels
Basic C C C C C C C C
Large 2C 2C 4C 8C 16C 32C 32C C

Table 1: Context network architecture. The network processes C feature maps by aggregating
contextual information at progressively increasing scales without losing resolution.

This completes the presentation of the basic context network. Our experiments show that even this
basic module can increase dense prediction accuracy both quantitatively and qualitatively. This is
particularly notable given the small number of parameters in the network: ⇡ 64C2 parameters in
total.

We have also trained a larger context network that uses a larger number of feature maps in the
deeper layers. The number of maps in the large network is summarized in Table 1. We generalize
the initialization scheme to account for the difference in the number of feature maps in different
layers. Let ci and ci+1 be the number of feature maps in two consecutive layers. Assume that C
divides both ci and ci+1. The initialization is

kb(t, a) =

8
><

>:

C

ci+1
t = 0 and

�
aC

ci

⌫
=

�
bC

ci+1

⌫

" otherwise
(5)

Here " ⇠ N (0,�2) and � ⌧ C/ci+1. The use of random noise breaks ties among feature maps
with a common predecessor.

4 FRONT END

We implemented and trained a front-end prediction module that takes a color image as input and
produces C = 21 feature maps as output. The front-end module follows the work of Long et al.
(2015) and Chen et al. (2015a), but was implemented separately. We adapted the VGG-16 network
(Simonyan & Zisserman, 2015) for dense prediction and removed the last two pooling and striding
layers. Specifically, each of these pooling and striding layers was removed and convolutions in
all subsequent layers were dilated by a factor of 2 for each pooling layer that was ablated. Thus
convolutions in the final layers, which follow both ablated pooling layers, are dilated by a factor of
4. This enables initialization with the parameters of the original classification network, but produces
higher-resolution output. The front-end module takes padded images as input and produces feature
maps at resolution 64⇥64. We use reflection padding: the buffer zone is filled by reflecting the
image about each edge.

Our front-end module is obtained by removing vestiges of the classification network that are counter-
productive for dense prediction. Most significantly, we remove the last two pooling and striding
layers entirely, whereas Long et al. kept them and Chen et al. replaced striding by dilation but
kept the pooling layers. We found that simplifying the network by removing the pooling layers
made it more accurate. We also remove the padding of the intermediate feature maps. Intermediate
padding was used in the original classification network, but is neither necessary nor justified in dense
prediction.

This simplified prediction module was trained on the Pascal VOC 2012 training set, augmented by
the annotations created by Hariharan et al. (2011). We did not use images from the VOC-2012
validation set for training and therefore only used a subset of the annotations of Hariharan et al.
(2011). Training was performed by stochastic gradient descent (SGD) with mini-batch size 14,
learning rate 10�3, and momentum 0.9. The network was trained for 60K iterations.

We now compare the accuracy of our front-end module to the FCN-8s design of Long et al. (2015)
and the DeepLab network of Chen et al. (2015a). For FCN-8s and DeepLab, we evaluate the public
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Dilated / Atrous Convolutions

• No pooling operations
• Constant resolution feature maps
• Integrate increasing spatial context by special kind of 

dilated convolution

• Constant 64x64 spatial resolution throughout



[Multi-Scale Context Aggregation by Dilated Convolutions, Yu and Koltun, 2015] 

Dilated / Atrous ConvolutionsPublished as a conference paper at ICLR 2016

(a) Image (b) FCN-8s (c) DeepLab (d) Our front end (e) Ground truth

Figure 2: Semantic segmentations produced by different adaptations of the VGG-16 classification
network. From left to right: (a) input image, (b) prediction by FCN-8s (Long et al., 2015), (c)
prediction by DeepLab (Chen et al., 2015a), (d) prediction by our simplified front-end module, (e)
ground truth.
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FCN-8s 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2
DeepLab 72 31 71.2 53.7 60.5 77 71.9 73.1 25.2 62.6 49.1 68.7 63.3 73.9 73.6 50.8 72.3 42.1 67.9 52.6 62.1
DeepLab-Msc 74.9 34.1 72.6 52.9 61.0 77.9 73.0 73.7 26.4 62.2 49.3 68.4 64.1 74.0 75.0 51.7 72.7 42.5 67.2 55.7 62.9
Our front end 82.2 37.4 72.7 57.1 62.7 82.8 77.8 78.9 28 70 51.6 73.1 72.8 81.5 79.1 56.6 77.1 49.9 75.3 60.9 67.6

Table 2: Our front-end prediction module is simpler and more accurate than prior models. This table
reports accuracy on the VOC-2012 test set.

models trained by the original authors on VOC-2012. Segmentations produced by the different
models on images from the VOC-2012 dataset are shown in Figure 2. The accuracy of the models
on the VOC-2012 test set is reported in Table 2.

Our front-end prediction module is both simpler and more accurate than the prior models. Specif-
ically, our simplified model outperforms both FCN-8s and the DeepLab network by more than 5
percentage points on the test set. Interestingly, our simplified front-end module outperforms the
leaderboard accuracy of DeepLab+CRF on the test set by more than a percentage point (67.6%
vs. 66.4%) without using a CRF.
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Further Resources

http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review
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Panoptic Segmentation:    
Task and Approaches

Alexander Kirillov

CVPR 2019 Tutorial
Visual Recognition and Beyond



Image segmentation tasks last 10 years
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instance segmentation

delineate each 
object with a mask

[Slide: A. Kirillov]



Instance Segmentation

COCO-challenge winner instance segmentation AP (%)

2015 2016 2017 2018

28.2

37.3
46.3

48.6

20.4

Mask R-CNN based

Hammers credits:
Ross Girshick [Slide: A. Kirillov]



semantic segmentation

grass

trees

sky

river
people

boats

Image segmentation tasks last 10 years

assign semantic 
label to each pixel

[Slide: A. Kirillov]



Semantic Segmentation

Cityscapes semantic segmentation IoU (%)

2015
Dilation-10

2016
DeeplabV2

2017
DeeplabV3

2018
DeeplabV3+

65
67

32

2014
FCN-8s

70

81 82

Hammers credits:
Ross Girshick

Cityscapes leaderboard
performance

https://arxiv.org/pdf/1802.02611.pdf

[Slide: A. Kirillov]



semantic segmentation
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Image segmentation tasks last 10 years
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person

instance segmentation
real-world application likely requires both: things + stuff

[Slide: A. Kirillov]



Panoptic segmentation

trees

sky

river

grass

person 3

boat 1

boat 2

person 1person 2

person 4

boat 3

boat 4

boat 5
person 5

assign semantic labels to pixels 
+ segment each instance 

separately

[Slide: A. Kirillov]



Available panoptic segmentation datasets

COCO (2014) + COCO-stuff (2017)
COCO-panoptic challenges:

ECCV`18, ICCV`19

Mapillary Vistas (2017)
Vistas-panoptic challenges:

ECCV`18, ICCV`19

Cityscapes (2015)
panoptic test set 

leaderboard (2019)

ADE20k (2016)
>22k images, 150 categories

[Slide: A. Kirillov]



Panoptic quality (PQ) measure

Segmentation Quality
(SQ)

Recognition Quality
(RQ)

• symmetric

• unified for categories with and  without instance-level annotation 
(analysis)

evaluation code: https://github.com/cocodataset/panopticapi
[Slide: A. Kirillov]

https://github.com/cocodataset/panopticapi


Panoptic segmentation: naïve approach

panoptic 
segmentation

semantic segmentation

Dilated FCN

Mask R-CNN

input

instance segmentation
resolve overlaps between different 

instances and stuff classes [Slide: A. Kirillov]



Feature Pyramid Network (FPN)

backbone

region-based recognition head

person

grass

trees

sky

river

pixel-level recognition head

…
…

…
…

Panoptic FPN: unified framework 

Lin et al. Feature Pyramid Networks for Object Detection, CVPR`17
He et al. Mask R-CNN, ICCV`17
Kirillov et al. Panoptic Feature Pyramid Networks, CVPR`19 

Mask R-CNN
head

[Slide: A. Kirillov]

[Kirillov et al. 2019] 
https://arxiv.org/abs/1901.02446



Feature Pyramid Network (FPN)

backbone

Panoptic FPN

…
…

…
…

256 1/4

512 1/8

1024 1/16

2048 1/32

256 1/4

256 1/8

256 1/16

256 1/32

semantic
head

task-specific heads

ℒ!"#$%&'(

instance
head

ℒ))*+ + ℒ(,$!!'-'($&'*%
+ℒ#$!. +

[Slide: A. Kirillov]





Beyond Object Classification with 
Convolutional Networks

David Eigen (NYU -> Clarifai)
Rob Fergus (Facebook / NYU)



Motivation

Input Image

• Understand input scene
• Semantic
• Geometric

Semantic Map
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Semantic Map

Motivation

Input Image

• Understand input scene
• Semantic
• Geometric

Depth

Normals



Architecture
96 256 384 384 256 4096 64

Input: 320x240 Output 1: 19x14



Architecture
96 256 384 384 256 4096

64 128 64 64

64

upsample

Input: 320x240

Output 2: 75x55



Architecture
96 256 384 384 256 4096

64 128 64 64

63 64 64 64

convolutionsconv+pool concat

64

upsample

upsample

Input: 320x240

Output: 147x109



Architecture

convolutionsconv+pool concat

upsample

upsample

Input: 320x240



Architecture
96 256 384 384 256 4096

64 128 64 64

64 64+C 64 64

convolutionsconv+pool concat

64

upsample

upsample

Input: 320x240



Losses
Depth:

Normals

Labels

D = log predicted depth,  D* = log true depth

Per-pixel soft-max

Angle between 
true / predicted 
normals



Evaluation
• NYU Depth dataset
• RGB, Depth 

and per-pixel labels
• Indoor scenes

• Supervised training 
of models

• Compare to range of other methods
• Also on SIFTFlow and PASCAL VOC’11



Depths Comparison
Ground TruthOursEigen NIPS’14 (2 scales)



Surface Normals



Semantic Labels: NYUD
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• Fully Convolutional Nets [Shelhamer et al. 2016] 
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Denoising with ConvNets

• Burger et al. “Can plain NNs compete with BM3D?” CVPR 2012
• Deep Learning for Image Denoising: a survey, Tian et al. 

https://arxiv.org/abs/1810.05052, 2018

Original Noised Denoised

https://arxiv.org/abs/1810.05052


Learning to See in the Dark

Learning to See in the Dark

Chen Chen
UIUC

Qifeng Chen
Intel Labs

Jia Xu
Intel Labs

Vladlen Koltun
Intel Labs

(a) Camera output with ISO 8,000 (b) Camera output with ISO 409,600 (c) Our result from the raw data of (a)

Figure 1. Extreme low-light imaging with a convolutional network. Dark indoor environment. The illuminance at the camera is < 0.1
lux. The Sony ↵7S II sensor is exposed for 1/30 second. (a) Image produced by the camera with ISO 8,000. (b) Image produced by the
camera with ISO 409,600. The image suffers from noise and color bias. (c) Image produced by our convolutional network applied to the
raw sensor data from (a).

Abstract

Imaging in low light is challenging due to low pho-
ton count and low SNR. Short-exposure images suffer from
noise, while long exposure can induce blur and is often
impractical. A variety of denoising, deblurring, and en-
hancement techniques have been proposed, but their effec-
tiveness is limited in extreme conditions, such as video-rate
imaging at night. To support the development of learning-
based pipelines for low-light image processing, we intro-
duce a dataset of raw short-exposure low-light images, with
corresponding long-exposure reference images. Using the
presented dataset, we develop a pipeline for processing
low-light images, based on end-to-end training of a fully-
convolutional network. The network operates directly on
raw sensor data and replaces much of the traditional im-
age processing pipeline, which tends to perform poorly on
such data. We report promising results on the new dataset,
analyze factors that affect performance, and highlight op-
portunities for future work.

1. Introduction

Noise is present in any imaging system, but it makes
imaging particularly challenging in low light. High ISO can
be used to increase brightness, but it also amplifies noise.
Postprocessing, such as scaling or histogram stretching, can
be applied, but this does not resolve the low signal-to-noise
ratio (SNR) due to low photon counts. There are physi-

cal means to increase SNR in low light, including opening
the aperture, extending exposure time, and using flash. But
each of these has its own characteristic drawbacks. For ex-
ample, increasing exposure time can introduce blur due to
camera shake or object motion.

The challenge of fast imaging in low light is well-
known in the computational photography community, but
remains open. Researchers have proposed techniques for
denoising, deblurring, and enhancement of low-light im-
ages [34, 16, 42]. These techniques generally assume that
images are captured in somewhat dim environments with
moderate levels of noise. In contrast, we are interested in
extreme low-light imaging with severely limited illumina-
tion (e.g., moonlight) and short exposure (ideally at video
rate). In this regime, the traditional camera processing
pipeline breaks down and the image has to be reconstructed
from the raw sensor data.

Figure 1 illustrates our setting. The environment is ex-
tremely dark: less than 0.1 lux of illumination at the cam-
era. The exposure time is set to 1/30 second. The aperture
is f/5.6. At ISO 8,000, which is generally considered high,
the camera produces an image that is essentially black, de-
spite the high light sensitivity of the full-frame Sony sen-
sor. At ISO 409,600, which is far beyond the reach of most
cameras, the content of the scene is discernible, but the im-
age is dim, noisy, and the colors are distorted. As we will
show, even state-of-the-art denoising techniques [32] fail to
remove such noise and do not address the color bias. An
alternative approach is to use a burst of images [24, 14], but
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[Chen et al., arXiv 1805.01934]

(a) Traditional pipeline (b) ... followed by BM3D denoising (c) Our result

Figure 7. An image from the Sony x300 set. (a) Low-light input processed by the traditional image processing pipeline and linear scaling.
(b) Same, followed by BM3D denoising. (c) Our result.

Condition Sony Fuji

1. Our default pipeline 28.88/0.787 26.61/0.680
2. U-net ! CAN 27.40/0.792 25.71/0.710
3. Raw ! sRGB 17.40/0.554 25.11/0.648
4. L1 ! SSIM loss 28.64/0.817 26.20/0.685
5. L1 ! L2 loss 28.47/0.784 26.51/0.680
6. Packed ! Masked 26.95/0.744 –
7. X-Trans 3⇥ 3 ! 6⇥ 6 – 23.05/0.567
8. Stretched references 18.23/0.674 16.85/0.535

Table 3. Controlled experiments. This table reports mean
PSNR/SSIM in each condition.

Network structure. We begin by comparing different net-
work architectures. Table 3 (row 2) reports the result of
replacing the U-net [35] (our default architecture) by the
CAN [5]. The U-net has higher PSNR on both sets. Al-
though images produced by the CAN have higher SSIM,
they sometimes suffer from loss of color. A patch from the
Fuji x300 set is shown in Figure 8. Here colors are not re-
covered correctly by the CAN.

(a) CAN (b) U-net

Figure 8. Comparison of network architectures on an image patch
from the Fuji x300 test set. (a) Using the CAN structure, the color
is not recovered correctly. (b) Using the U-net. Zoom in for detail.

Input color space. Most existing denoising methods oper-
ate on sRGB images that have already been processed by a
traditional image processing pipeline. We have found that
operating directly on raw sensor data is much more effective
in extreme low-light conditions. Table 3 (row 3) shows the
results of the presented pipeline when it’s applied to sRGB
images produced by the traditional pipeline.

Loss functions. We use the L1 loss by default, but have
evaluated many alternative loss functions. As shown in
Table 3 (rows 4 and 5), replacing the L1 loss by L2 or
SSIM [43] produces comparable results. We have not ob-
served systematic perceptual benefits for any one of these
loss functions. Adding a total variation loss does not im-
prove accuracy. Adding a GAN loss [11] significantly re-
duces accuracy.

Data arrangement. The raw sensor data has all colors in a
single channel. Common choices for arranging raw data for
a convolutional network are packing the color values into
different channels with correspondingly lower spatial reso-
lution, or duplicating and masking different colors [10]. We
use packing by default. As shown in Table 3 (row 6), mask-
ing the Bayer data (Sony subset) yields lower PSNR/SSIM
than packing; a typical perceptual artifact of the masking
approach is loss of some hues in the output.

The X-Trans data is very different in structure from the
Bayer data and is arranged in 6⇥6 blocks. One option is
to pack it into 36 channels. Instead, we exchange some val-
ues between neighboring elements to create a 3⇥3 pattern,
which is packed into 9 channels. As shown in Table 3 (row
7), 6⇥6 packing yields lower PSNR/SSIM; a typical per-
ceptual artifact is loss of color and detail.

Postprocessing. In initial experiments, we included his-
togram stretching in the processing pipeline for the ref-
erence images. Thus the network had to learn histogram
stretching in addition to the rest of the processing pipeline.
Despite trying many network architectures and loss func-
tions, we were not successful in training networks to per-
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Figure 3. The structure of different image processing pipelines. (a) From top to bottom: a traditional image processing pipeline, the L3
pipeline [18], and a burst imaging pipeline [14]. (b) Our pipeline.

modules such as white balance, demosaicing, denoising,
sharpening, color space conversion, gamma correction, and
others. These modules are often tuned for specific cameras.
Jiang et al. [18] proposed to use a large collection of lo-
cal, linear, and learned (L3) filters to approximate the com-
plex nonlinear pipelines found in modern consumer imag-
ing systems. Yet neither the traditional pipeline nor the L3
pipeline successfully deal with fast low-light imaging, as
they are not able to handle the extremely low SNR. Hasinoff
et al. [14] described a burst imaging pipeline for smartphone
cameras. This method can produce good results by aligning
and blending multiple images, but introduces a certain level
of complexity, for example due to the need for dense corre-
spondence estimation, and may not easily extend to video
capture, for example due to the use of lucky imaging.

We propose to use end-to-end learning for direct single-
image processing of fast low-light images. Specifically, we
train a fully-convolutional network (FCN) [22, 25] to per-
form the entire image processing pipeline. Recent work has
shown that pure FCNs can effectively represent many im-
age processing algorithms [40, 5]. We are inspired by this
work and investigate the application of this approach to ex-
treme low-light imaging. Rather than operating on normal
sRGB images produced by traditional camera processing
pipelines, we operate on raw sensor data.

Figure 3(b) illustrates the structure of the presented
pipeline. For Bayer arrays, we pack the input into four
channels and correspondingly reduce the spatial resolution
by a factor of two in each dimension. For X-Trans arrays
(not shown in the figure), the raw data is arranged in 6⇥6
blocks; we pack it into 9 channels instead of 36 channels by
exchanging adjacent elements. We subtract the black level
and scale the data by the desired amplification ratio (e.g.,
x100 or x300). The packed and amplified data is fed into
a fully-convolutional network. The output is a 12-channel
image with half the spatial resolution. This half-sized out-
put is processed by a sub-pixel layer to recover the original
resolution [37].

After preliminary exploration, we have focused on two
general structures for the fully-convolutional network that
forms the core of our pipeline: a multi-scale context aggre-
gation network (CAN) recently used for fast image process-
ing [5] and a U-net [35]. Other work has explored residual
connections [20, 34, 41], but we did not find these bene-
ficial in our setting, possibly because our input and output
are represented in different color spaces. Another consid-
eration that affected our choice of architectures is memory
consumption: we have chosen architectures that can process
a full-resolution image (e.g., at 4240⇥2832 or 6000⇥4000
resolution) in GPU memory. We have therefore avoided
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modules such as white balance, demosaicing, denoising,
sharpening, color space conversion, gamma correction, and
others. These modules are often tuned for specific cameras.
Jiang et al. [18] proposed to use a large collection of lo-
cal, linear, and learned (L3) filters to approximate the com-
plex nonlinear pipelines found in modern consumer imag-
ing systems. Yet neither the traditional pipeline nor the L3
pipeline successfully deal with fast low-light imaging, as
they are not able to handle the extremely low SNR. Hasinoff
et al. [14] described a burst imaging pipeline for smartphone
cameras. This method can produce good results by aligning
and blending multiple images, but introduces a certain level
of complexity, for example due to the need for dense corre-
spondence estimation, and may not easily extend to video
capture, for example due to the use of lucky imaging.

We propose to use end-to-end learning for direct single-
image processing of fast low-light images. Specifically, we
train a fully-convolutional network (FCN) [22, 25] to per-
form the entire image processing pipeline. Recent work has
shown that pure FCNs can effectively represent many im-
age processing algorithms [40, 5]. We are inspired by this
work and investigate the application of this approach to ex-
treme low-light imaging. Rather than operating on normal
sRGB images produced by traditional camera processing
pipelines, we operate on raw sensor data.

Figure 3(b) illustrates the structure of the presented
pipeline. For Bayer arrays, we pack the input into four
channels and correspondingly reduce the spatial resolution
by a factor of two in each dimension. For X-Trans arrays
(not shown in the figure), the raw data is arranged in 6⇥6
blocks; we pack it into 9 channels instead of 36 channels by
exchanging adjacent elements. We subtract the black level
and scale the data by the desired amplification ratio (e.g.,
x100 or x300). The packed and amplified data is fed into
a fully-convolutional network. The output is a 12-channel
image with half the spatial resolution. This half-sized out-
put is processed by a sub-pixel layer to recover the original
resolution [37].

After preliminary exploration, we have focused on two
general structures for the fully-convolutional network that
forms the core of our pipeline: a multi-scale context aggre-
gation network (CAN) recently used for fast image process-
ing [5] and a U-net [35]. Other work has explored residual
connections [20, 34, 41], but we did not find these bene-
ficial in our setting, possibly because our input and output
are represented in different color spaces. Another consid-
eration that affected our choice of architectures is memory
consumption: we have chosen architectures that can process
a full-resolution image (e.g., at 4240⇥2832 or 6000⇥4000
resolution) in GPU memory. We have therefore avoided

[Chen et al., arXiv 1805.01934]
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network architecture with the simpler structure. We show
that our network outperforms the original ones while ex-
hibiting improved computational efficiency. In the follow-
ing sections, we suggest a single-scale architecture (EDSR)
that handles a specific super-resolution scale and a multi-
scale architecture (MDSR) that reconstructs various scales
of high-resolution images in a single model.

3.1. Residual blocks

Recently, residual networks [11, 9, 14] exhibit excellent
performance in computer vision problems from the low-
level to high-level tasks. Although Ledig et al. [14] success-
fully applied the ResNet architecture to the super-resolution
problem with SRResNet, we further improve the perfor-
mance by employing better ResNet structure.

(a) Original (b) SRResNet (c) Proposed

Figure 2: Comparison of residual blocks in original
ResNet, SRResNet, and ours.

In Fig. 2, we compare the building blocks of each net-
work model from original ResNet [9], SRResNet [14], and
our proposed networks. We remove the batch normalization
layers from our network as Nah et al.[19] presented in their
image deblurring work. Since batch normalization layers
normalize the features, they get rid of range flexibility from
networks by normalizing the features, it is better to remove
them. We experimentally show that this simple modifica-
tion increases the performance substantially as detailed in
Sec. 4.

Furthermore, GPU memory usage is also sufficiently re-
duced since the batch normalization layers consume the
same amount of memory as the preceding convolutional
layers. Our baseline model without batch normalization
layer saves approximately 40% of memory usage during
training, compared to SRResNet. Consequently, we can
build up a larger model that has better performance than
conventional ResNet structure under limited computational
resources.

Figure 3: The architecture of the proposed single-scale SR
network (EDSR).

3.2. Single-scale model

The simplest way to enhance the performance of the net-
work model is to increase the number of parameters. In
the convolutional neural network, model performance can
be enhanced by stacking many layers or by increasing the
number of filters. General CNN architecture with depth (the
number of layers) B and width (the number of feature chan-
nels) F occupies roughly O(BF ) memory with O(BF 2)
parameters. Therefore, increasing F instead of B can max-
imize the model capacity when considering limited compu-
tational resources.

However, we found that increasing the number of feature
maps above a certain level would make the training pro-
cedure numerically unstable. A similar phenomenon was
reported by Szegedy et al. [24]. We resolve this issue by
adopting the residual scaling [24] with factor 0.1. In each
residual block, constant scaling layers are placed after the
last convolution layers. These modules stabilize the train-
ing procedure greatly when using a large number of filters.
In the test phase, this layer can be integrated into the previ-
ous convolution layer for the computational efficiency.

We construct our baseline (single-scale) model with our
proposed residual blocks in Fig. 2. The structure is similar
to SRResNet [14], but our model does not have ReLU acti-
vation layers outside the residual blocks. Also, our baseline
model does not have residual scaling layers because we use
only 64 feature maps for each convolution layer. In our final
single-scale model (EDSR), we expand the baseline model
by setting B = 32, F = 256 with a scaling factor 0.1. The
model architecture is displayed in Fig. 3.

When training our model for upsampling factor ×3 and
×4, we initialize the model parameters with pre-trained ×2
network. This pre-training strategy accelerates the training
and improves the final performance as clearly demonstrated
in Fig. 4. For upscaling ×4, if we use a pre-trained scale ×2
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the convolutional neural network, model performance can
be enhanced by stacking many layers or by increasing the
number of filters. General CNN architecture with depth (the
number of layers) B and width (the number of feature chan-
nels) F occupies roughly O(BF ) memory with O(BF 2)
parameters. Therefore, increasing F instead of B can max-
imize the model capacity when considering limited compu-
tational resources.

However, we found that increasing the number of feature
maps above a certain level would make the training pro-
cedure numerically unstable. A similar phenomenon was
reported by Szegedy et al. [24]. We resolve this issue by
adopting the residual scaling [24] with factor 0.1. In each
residual block, constant scaling layers are placed after the
last convolution layers. These modules stabilize the train-
ing procedure greatly when using a large number of filters.
In the test phase, this layer can be integrated into the previ-
ous convolution layer for the computational efficiency.

We construct our baseline (single-scale) model with our
proposed residual blocks in Fig. 2. The structure is similar
to SRResNet [14], but our model does not have ReLU acti-
vation layers outside the residual blocks. Also, our baseline
model does not have residual scaling layers because we use
only 64 feature maps for each convolution layer. In our final
single-scale model (EDSR), we expand the baseline model
by setting B = 32, F = 256 with a scaling factor 0.1. The
model architecture is displayed in Fig. 3.

When training our model for upsampling factor ×3 and
×4, we initialize the model parameters with pre-trained ×2
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The 2018 PIRM Challenge on Perceptual Image Super-resolution 9
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Fig. 5. Visual results. SR results of several top methods in each region, along with the
EDSR [19] and EnhanceNet [31] baselines. The attainable perceptual quality becomes
higher as the allowed RMSE increases.

8 Y. Blau*, R. Mechrez*, R. Timofte, T. Michaeli, and L. Zelnik-Manor

(a) (b)

Fig. 4. Submissions on the perception-distortion plane. (a) Each submission is
a point on the perception-distortion plane, whose axes are RMSE (2) and the PI (1).
The perceptual quality of the challenge submissions exceeds that of the EDSR [19],
EnhanceNet [31] and CX [24] baselines (plotted in red). Notice the tradeoff between
perceptual quality and distortion, i.e. as the perceptual quality of the submissions
improved (lower PI), their RMSE increased. (b) The mean-opinion score of 35 human
raters vs. the mean perceptual index (PI) on the 10 top submissions. The PI is highly-
correlated with human opinion scores (Spearmans correlation of 0.83), as visualized
by the least squares fit. This validates our choice of definition of the PI. A thorough
analysis of other images quality measures appears in Section 5.

study does not test distortion in any way, but rather only perceptual quality.
The mean human-opinion-scores are shown in Fig. 6.

The human-opinion study validates that the challenge submissions surpassed
the performance of state-of-the-art baselines by significant margins. Region 3
submissions, and even Region 2 submissions, are considered notably better than
EnhanceNet by human raters. Region 1 submissions were rated far better in
visual quality compared to EDSR (with only a slight increase in RMSE). The
tradeoff between perceptual quality and distortion is once more revealed, as the
best attainable perceptual quality increases with the increase in RMSE. Note
that while the PI is well correlated with the human-opinion-scores on a coarse
scale (in between regions), it is not always well-correlated with these scores on
a finer scale (rankings within the regions), which can be seen when comparing
the rankings in Table 1 and Fig. 6. This highlights the urgent need for better
perceptual quality metrics, a point which is further analyzed in Section 5.

Figure 7 shows the normalized histogram of votes per method. Notice that all
methods fail to achieve a large percentage of “definitely real” votes, indicating
that there is still much to be done in perceptual super-resolution. In all submitted
results, there tend to appear unnatural features in the reconstructions (at 4×
magnification), which degrade the perceptual quality. Notice that the outputs of
EDSR, a state-of-the-art algorithm in terms of distortion, are mostly voted as
“definitely fake”. This is due to the aggressive averaging causing blurriness as a
consequence of optimizing for distortion.
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