Overview of Unsupervised Learning

&
Generative Adversarial Networks

Lecture 10

Slides from: Emily Denton, lan Goodfellow, Soumith Chintala

Auto-Encoder

Features

L i

Feed-back /

generative / Feed-forward /
top-down bottom-up path
path

U i

Input

* Encoder/Decoder will be deep network
* Slightly different architectures for decoder (needs to output image)
* Architecture depends on application

Variational Auto-Encoder

[Kingma & Welling 2013]
Features z <:> Prior p(2)

@ ﬁ e.g. N(0,I)

At training
time only

U 7

Input x

* Makes auto-encoder into a true generative model

Eq(zle) log p(2|2) — Drr(a(z]2)[[p(2))

-~ ~~

Reconstruction term Prior term

Directed graphical models

@ We assume data is generated by:

zep(z) w~plz)z)

e z is latent/hidden x is observed (image)

@ Use 0 to denote parameters of the generative model

Emily Denton Deep generative models of natural images

Parameter estimation

o Given dataset {z1,...,z,}, maximize likelihood of data
under model:

max Z logp(x;;0) = max Z; Z: log p(x;, z; 0)

1=1

e This quantity often intractable, difficult to optimize
directly

e Can be optimized with iterative Expectation Maximization
(EM) algorithm
o Fix parameters and compute log likelihood wrt p(z|x;6%)
o Fix z find parameters #*t1 to maximize log likelihood

Emily Denton Deep generative models of natural images

Parameter estimation

e Standard EM requires access to @QQQQ@ 2%
e

posterior p(z|x)

@ For the deep neural net models we @QOOQ@ z®

care about this is infeasible

w®@

@ Solution: introduce wariational @QQQQ@ 7
W

approximation q(z; ¢) to p(z|x)

e Will give bound on log likelihood @OOOO@ X

Emily Denton Deep generative models of natural images

Bounding the marginal likelihood

Recall Jenson’s inequality: When f is concave, f(E|z]) > E[f(x)]

log p(z) = log / p(z, 2)

z

o [(22

q(2)

p(z,)
> | = L(x: (9 ensons inequali
[108 22 < L(w:0.6) o demons st

e risste) [aonats

< <

—]Eq(z) [10gp(33,2)] +H(Q(Z))
~ ~— o N—_——

Expectation of joint distribution Entropy

Emily Denton Deep generative models of natural images

Bound is tight when variational approximation matches true
posterior:

log p(x) — Lz 0, ¢) = logp(x) - / () log 2222

Evidence L.ower

pound (ELEOL / q(2) log p(z) — / q(z) log P, 2)

z

= Drr(q(z; ¢)|Ip(z]2))

Emily Denton Deep generative models of natural images

Learning directed graphical models

@ Maximize bound on likelihood of datas:

N

N
max ¥ logp(x;;0) > max L(x;; 0, ¢,
0 ; gp(!) 97¢17"'7¢N i—1 (! ¢Z)

e Historically, used different ¢; for every data point

e But we’ll move away from this soon..

e Can still use EM style algorithm to iteratively optimize

e For more info see Blei et al. (2003)

Emily Denton Deep generative models of natural images

New method of learning: approximate inference model

e Instead of having different variational parameters for each
data point, fit a conditional parametric function

@ The output of this function will be the parameters of the
variational distribution g(z|x)

o Instead of q(z) we have g4(z|z)

Evidence Lower BOund (ELLBO)
o ELLBO becomes:

L(x;0,¢) = Equb(zm)[lnge(ﬂ%Z)] +H(gg(2]7))

J
~ Vv

Expectation of joint distribution Entropy

Emily Denton Deep generative models of natural images

Variational autoencoder

zZ~ q¢(z|x)

@ Encoder network maps from

image space to latent space @QQ@ @QQ@

o Outputs parameters of

qe(z|)

Encoder/ Decoder/
Inference network Generative network

@ Decoder maps from latent
space back into image space

o Outputs parameters of @OQ@ @OO@

po(|2)

X~ p,(x|z)

[Kingma & Welling (2013)]

Emily Denton Deep generative models of natural images

@ Encoder network outputs Z~q,z|%)

d vari f N I
e and vasiane o Normal - <SP (SO0

o gy(2|z) = N(pgy(),04())

Encoder/ Decoder/

@ Decoder network outputs Inference network Generative network
mean (and optionally
variance) of Normal

distribution @O@@ @OQ@

o po(z|z) = N(pg(2),1I) X ~p,(x|2)

[Kingma & Welling (2013)]

Emily Denton Deep generative models of natural images

Variational autoencoder

@ Rearranging the ELBO:

L(z;60,¢) = /Q(le) log

— z|x) log p(x|z 2| L) 10)
—/Zq() log p(z|)+/ZQ()1 > 4(zl)
_ 0] T\Z) — O Q(Z‘aj)

= Bq(zlz) log plz]2) — Eq(z1) log p(z)

- EEQ(zlzL‘) log p(x ZZ_pKL(Q(ﬂx)”p(Z)Z

N
Reconstruction term Prior term

Emily Denton Deep generative models of natural images

Variational autoencoder

zZ~ q¢(z|x)

e Inference network outputs @QQ@ @QQ@

parameters of gy(z|x)

Encoder/
Inference network

@ Generative network outputs
parameters of py(x|z)

@ Optimize € and ¢ jointly by
maximizing ELBO:

L(w:0,) = Ey(zja) log p(2|2) — Drrla(2]7)]lp(2))

Decoder/
Generative network

~ Vv

Reconstruction term Prior term

Emily Denton Deep generative models of natural images

@QQ@] COOO

X ~ p,(x|z)

Stochastic gradient variation bayes (SGVB) estimator

o Reparameterization trick : re-parameterize z ~ g4(z|z) as
z = go(x, €) with € ~ p(e)
o For example, with a Gaussian can write 2 ~ N (u, 0?) as

2 = p1 + eo” with e ~ N(0,1)

[Kingma & Welling (2013); Rezende et al. (2014)]

Emily Denton Deep generative models of natural images

Stochastic gradient variation bayes (SGVB) estimator

L(CIZ‘; 6)7 gb) — EEq(z|a:) logp(x\zZ—pKL(q(z\x)\\p(z)z

V V

Reconstruction term Prior term

e Using reparameterization trick we form Monte Carlo
estimate of reconstruction term:

Eq, (2|2) log po(x|2) = Ep () log pe(|ge(x, €))

L
1
~ =3 loapa(algs(w,) where ¢ ~ p(e)
1=1

e KL divergence term can often be computed analytically
(eg. Gaussian)

Emily Denton Deep generative models of natural images

=
=
-
5
=
g=
»)
-
—
i~
=
=
=

DAV NANNNAANNNNSNNNNSN
QAP AELLLLLW NN~
QAW LELELLLVYY NN~
QUAVVDINIn ity tote©OVOVVY W -~~~
QAVDHIHLININKVWWWBIVIY Y W - —-—
QAOODHINININMHMEBPBDIIIY D W - - —
QAQOQODIOMHINMMMNEBMDIOID D W - - —
QODODIMMNMMMM MO DD D " o —
OODOMMNMMMN MDD D e —
OODOMMM MMM W® DD e e —
QOOMMOMMMM MM N LW e on om o e —
QONMMMEM " 000000 o o o oo
QA I A2 0 0P 000000 00 n o~ o~ 0~ P~ =
NI L N Ll Gl R R Rl
Gt oo oo~
S ogororroroorrrTaaan~N
SAdadadadadogrrrorr T ITIIINN
SddddgorrrrrrdFFITITRIRINN
SAdTTTTrTrrrrrdFrIP2TR™2RNN
SFroosocoorererec AR NNN

™
<
®|
®
-

33
5

33
s

5,
EEEes
SEees

oAb
B 4
b
)

24
s
R

=
p
o
FEFEF

]

Kingma & Welling (2013)

|

Deep generative models of natural images

Emily Denton

QD mArd
BrrouNMSsSaHWUMN
NP QA v)
M=y DS
=MW OPIO AT
M NI e NN
BWEMT =IO IN
DNQO o Mme N
NATT TR0
e e Radt 1A Kl il ol &

WO\ w~9
M~ KYxr YOO
e T A o BN 2R B I o
VoAt M~
MM PFANO0 -~
MNAhnd OO
~A Qe nONO
M) B3O
O HAIAINTT-S T~
M~ s V0™

LN~ TwOral,
S oNYNYDAEe
LT SR L) I e SRR N
=R~ O
O NTF N0
NS er\O
OsMwas MmN Y -
L YonwrTmo >
—VersasOMmiyoeews
"Ny - JF I

FrrMVermMe -
L o R o Nl
M= 2MI0HON
L Tl el A
erMapmaIng >
N mm gl e~
NearOMse 9D
Qe TrHor>e
QYT o

(b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

(a) 2-D latent space

[Kingma & Welling (2013)]

N
O
a0
®
E
@
~
)
)
®
g
(-
©)
-
)
o
o
=
O
2
+
¥
~
O
g
O
a0
Q
o}
)
A

Emily Denton

VAE tradeofts

@ Pros:
o Theoretically pleasing
e Optimizes bound on likelihood
o Fasy to implement

e Cons:
e Samples tend to be blurry
e Maximum likelihood minimizes Dk, (Pdata||Pmodel)

Data KLD

[Theis et al. (2016)]

Emily Denton Deep generative models of natural images

Generative Adversarial Networks
[Goodfellow et al. 2014]
Features z <: Prior p(z)

@ e.g. N(0,I)

@awtia Decoder-only
¢ model but with

adversarial loss term
Sample X :>

* Mini—max game between G and D

minmax V (D, G) = Eqrpy, (@) 108 D(2)] + Ezrp, () llog(1 — D(G(2)))

Stacked Auto-Encoders

High-level features

e Ladder Networks N A
|[Rasmus et al. 2015]

. Decoder,
e Reconstruction

constraint at each "y]
layer Features
* Trained end-to-end AN
.
* Can be trained layer-wise
- Stacked RBMs

Features
[Hinton & Salakhutdinov 2006]

=1

Input

Many Others Approaches

* Autoencoder (most unsupervised Deep Learning methods)
— Restricted / Deep Boltzmann Machines
— Denoising autoencoders

— Predictive sparse decomposition

* Decoder-only

— Sparse coding & hierarchical variants

Autoregressive models

@ Tractably model a joint distribution of the pixels in the
image

@ Learn to predict the next pixel given all the previously
generated pixels

e Joint distribution of all pixels just product of conditionals:

p(x) = | [p(ailz1, ..., wic1)

1=1

Emily Denton Deep generative models of natural images

Pixel-CNN

[van den Oord et al., arXiv 1606.05328, 2010]

* Conditional generative model of images i
p(x) = Hp(:vi\xl, ey Ti—1).
* G h pixel, 1 d =
enerate each pixel, in raster-scan order

* Just predict distribution over a single pixel (can be multi-modal)

* See also Video Pixel Networks [Kalchbrenner et al., 2016],
* NADE [Larochelle & Murray 2011] & RIDE [Theis and Bethge, NIPS 2015].

. . - 2
L W e . ' -
o | e e
: - ’ .o
R
., & 2 L . 2 »
¥ : - < 9
r- > B -
: . '»\ " - . < -
.- FAEN 0
3 .- . -
M { '~¢- L. .
- -‘ h .
S it o .

African elephant Coral Reef

Wavenet

[van den Oord et al., arXiv 1609.03499, 2016]

Generative model of raw speech waveform
T

Condition on previous parts of waveform p(x)=]]p@:|z1,...,21)

. . t=1
Dilated causal convolution layers

Discrete output distribution (use softmax)

Output @ © © © 0 0 0 0O 0000 OO O

Hidden .
Layer

Hidden .y
Layer

Hidden
Layer

nnt © © O 0O 00000000000 O

Generative Adversarial Networks

Slides from: Emily Denton, lan Goodfellow, Soumith Chintala

Generative Adversarial Networks

 [Generative Adversarial Nets, lan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, NIPS 2014]

* Focus on sample generation

. , , Generative Modeling:
Generative Modeling: Density

Estimation Sample Generation

Training Data Density Function

- Hosiag
£ ‘ A kg ko
R v / %
g 3 L 5754
i . ol (7
77, ‘N v L S -
e - 1 i &
; & P N
- I | s e
oy | e
) Y. ol i {
p ! g d 3 o
- i \ 3

Training Data Sample Generat' a
(CelebA) (Karras et al, 2017)

(Goodfellow 2018)

Generative Adversarial Network

[Goodfellow et al. NIPS 2014]
- Initial application to still images

- Way to train generative model to match distribution of data

- Discriminator network predicts if input image is from data (real) or model (fake)

| Discriminator Real

Network

Random
index

Dataset

Generative Adversarial Network

[Goodfellow et al. NIPS 2014]
- Initial application to still images

- Way to train generative model to match distribution of data

- Discriminator network predicts if input image is from data (real) or model (fake)

Fake

Discriminator

Network

Random
index

Dataset

Update
parameters

Generative Adversarial Network

[Goodfellow et al. NIPS 2014]
- Initial application to still images

- Way to train generative model to match distribution of data
- Discriminator network predicts if input image is from data (real) or model (fake)

- Generator network tries to confuse Discriminator

Generator
Network

Random
noise

Discriminator Fa ke

Update >
parameters Network

Generative Adversarial Network

[Goodfellow et al. NIPS 2014]
- Initial application to still images

- Way to train generative model to match distribution of data
- Discriminator network predicts if input image is from data (real) or model (fake)

- Generator network tries to confuse discriminator

Generator
Network

Random
noise

Real

Discriminator

Update .
parameters Network

Update
parameters

Generative Adversarial Network

[Goodfellow et al. NIPS 2014]
- Initial application to still images

- Way to train generative model to match distribution of data
- Discriminator network predicts if input image is from data (real) or model (fake)

- Generator network tries to confuse Discriminator

Model
Distribution

Noise i

2ok Generator
Distribution FRiins

Network

Discriminator Real/
Network Fake

Data
Distribution

Generative Adversarial Networks

D tries to make
D(G(z)) near 0,
) tries to be (G tries to make
near 1 D(G(z)) near 1
leferentlable D
function D
x sampled from x Sampled from
data model
Differentiable
function G

(Goodtellow et al, 2014) (e)

/\

Generative Adversarial Networks

|Generative Adversarial Nets, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, Yoshua Bengio, NIPS 2014]

e Minimax value function:

m(%n mgx V(D,G) = o pas () log D(x)] + Bz, (2) log(1 — D(G(2)))]

A

Discriminator Discriminator’s Discriminator’s
pushes up ability to ability to
recognize data as recognize
Generator being real generator
pushes

samples as being

down
[Slide: Ian Gofaflf&@, Deep Learning workshop, ICML 2015]

Generative Adversarial Networks

D(x) Data distribution
l / ‘Model distribution

[]
1}
LA
[e ,
L
‘o
A
S

Ul

Poorly fit model

[Slide: Ian Goodfellow, Deep Learninge workshop, ICML 2015]

Generative Adversarial Networks

D(X) Data distribution
l / Model distribution

[]
. .
| [J .
' 0 b R
‘o
A
S

T T

Poorly fit model After updating D

[Slide: Ian Goodfellow, Deep Learninge workshop, ICML 2015]

Generative Adversarial Networks

D(X) Data distribution
l / Model distribution

..............................

°
° Y

1}
!
' 0 e R
‘o
A
S

T 7 T

Poorly fit model After updating D After updating G

[Slide: Ian Goodfellow, Deep Learninge workshop, ICML 2015]

Generative Adversarial Networks

D(X) Data distribution
l / Model distribution

..............................

[]
. .
| [J .
' 0 b R
‘o
A
S

T 1 J& I

Poorly fit model After updating D After updating G~ Mixed strategy
equilibrium

[Slide: Ian Goodfellow, Deep Learninge workshop, ICML 2015]

Adversarial Network Samples

CIFAR-10 (fully connected) CIFAR |0 (convolutional)

[Slide: Ian Goodfellow, Deep Learning workshop, ICML 2015]

UNSUPERVISED REPRESENTATION LEARNING

D C G A N WITH DEEP CONVOLUTIONAL
GENERATIVE ADVERSARIAL NETWORKS

Alec Radford & Luke Metz
indico Research
Boston, MA

. First to generate plausible results at 64x64. (atec, Luke}eindico. io

. Improved architectures for R ICLR 2016

New York, NY

generator/discriminator
« Most GAN architectures used now are
similar —

T ‘

o« Lots of tricks
to get GANs to
train well

3.5 Years of Progress on Faces

2014 2015 2016

(Brundage et al, 2018)

<2 Years of Progress on ImageNet

- —-: ’g' ’.vb ‘..?

], "J N;"
‘l o)
L ¥ / y

Odena et al
2016

Miyato et al
2017

Zhang et al
2018

(Goodfellow 2018)

The GAN Zoo

https://github.com/hindupuravinash/the-gan-zoo

» 3D-ED-GAN - Shape Inpainting using 3D Generative Adversarial Network and Recurrent Convolutional Networks
* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling (github)

Cumulative number of named GAN papers by month » 3D-IWGAN - Improved Adversarial Systems for 3D Object Generation and Reconstruction (github)
B0 » 3D-PhysNet - 3D-PhysNet: Learning the Intuitive Physics of Non-Rigid Object Deformations
.::a:. » 3D-RecGAN - 3D Object Reconstruction from a Single Depth View with Adversarial Learning (github)
4423 » ABC-GAN - ABC-GAN: Adaptive Blur and Control for improved training stability of Generative Adversarial Networks
40 (github)
4‘1.“*[. * ABC-GAN - GANs for LIFE: Generative Adversarial Networks for Likelihood Free Inference
. 300 « AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs
;_f::_ ;3; » acGAN - Face Aging With Conditional Generative Adversarial Networks
& %.,'"? * ACGAN - Coverless Information Hiding Based on Generative adversarial networks
E g; * acGAN - On-line Adaptative Curriculum Learning for GANs
'E‘ ﬁ'i‘ » ACtuAL - ACtuAL: Actor-Critic Under Adversarial Learning
g ffﬁ * AdaGAN - AdaGAN: Boosting Generative Models
§ g; » Adaptive GAN - Customizing an Adversarial Example Generator with Class-Conditional GANs
B ?'.: * AdvEntuRe - AdvEntuRe: Adversarial Training for Textual Entailment with Knowledge-Guided Examples
3;' » AdvGAN - Generating adversarial examples with adversarial networks
= » AE-GAN - AE-GAN: adversarial eliminating with GAN
,‘,:"; * AE-OT - Latent Space Optimal Transport for Generative Models
g * AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
'2, * AF-DCGAN - AF-DCGAN: Amplitude Feature Deep Convolutional GAN for Fingerprint Construction in Indoor
an4 b 13 [bR (] 207 2018 Localization System

Year » AffGAN - Amortised MAP Inference for Image Super-resolution
» AIM - Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization
* AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
o ALl - Adversarially Learned Inference (github)

https://github.com/hindupuravinash/the-gan-zoo

Evaluation of GANSs

Short answer: hard; look at quality of samples
Computing log-likelihood not directly possible

LLH is problematic.

See [A note on the evaluation of generative models, Lucas
Theis, Aaron van den Oord, Matthias Bethge, ICLR 2016]

Inception score
User-study: can humans tell fake from real?

https://arxiv.org/abs/1511.01844

Inception Score

Proposed in 2016

Improved Techniques for Training GANs

Tim Salimans Ian Goodfellow Wojciech Zaremba Vicki Cheung
tim@openai.com ian@openai.com wojlopenai.com vicki@openai.com

Alec Radford Xi Chen
alec.radford@gmail.com peter@openai.com

Abstract

https://arxiv.org/abs/1511.01844

Inception Score

» Send generated image through Inception model (trained
on Imagenet)

generated image to get the conditional label distribution p(y|x). Images that contain meaningful
objects should have a conditional label distribution p(y|x) with low entropy. Moreover, we expect
the model to generate varied images, so the marginal | p(y[x = G(z))dz should have high entropy.
Combining these two requirements, the metric that we propose is: exp([E.KL(p(y|x)||p(y))), where

Inception Score

» Send generated image through Inception model (trained
on Imagenet)

generated image (o get the conditional label distribution p(y|x). Images that contain meaningful
objects should have a conditional label distribution p(y|x) with low entropy. Moreover, we expect
the model to generate varied images, so the marginal [p(y|x = G(z))dz should have high entropy.

Combining these two requirements, the metric that we propose is: exp(EKL(p(y[x)[[p(y))), where

How'to Train a GAN

Emily Denton, Martin Arjovsky, Michael Mathieu
New York University

lan Goodfellow
Google

Soumith Chintala
Facebook Al Research

The stability of GANs

Timeline - the stability of GANs

Goodfellow et. al. “Generative Adversarial Networks”

2014

Timeline - the stability of GANs

model architecture generator
visual inspection

countless failed stability hacks

Denton et. al. “Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks”

»

2015

Tlmellne the stability of GANs

countless hours finding stable models

stable upto 64x64

mode dropping
underfitting

Radfo rd et. al. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”

»

2015

Timeline - the stability of GANs

more heuristics

more stability

SallmanS et. al. “Improved Techniques for Training GANs”’

2015

Timeline - the stability of GANs

gradient norm regularization

Least-Squares
Boundary Equilibrium

G u | ﬁaJ danil et. al. “Improved Training of Wasserstein GANs™

/4

/4
XUC O qg et al. Least squares generative adversarial networks.

| V4 //
e Began: Boundary equilibrium generative adversarial networks.

Berthelot et. a

»

2016-2017

Timeline - the stability of GANs

https://github.com/khanrc/tf.gans-comparison
by Junbum Cha

GANs comparison without cherry-picking

Implementations of some theoretical generative adversarial nets: DCGAN, EBGAN, LSGAN, WGAN, WGAN-GP,
BEGAN, DRAGAN and CoulombGAN.

| implemented the structure of model equal to the structure in paper and compared it on the CelebA dataset and
LSUN dataset without cherry-picking.

Comparison to Classification ConvNets

- Throw things at the wall and see what sticks

-Intuition Is poorer

- Theoretical work is somewhat improving but still far away
-Objective validation metrics are not there yet

#1: Normalize the inputs

-normalize the images between -1 and 1
-Tanh as the last layer of the generator output

- or some kind of bounds normalization

#2: Modified loss function (classic GAN)

-In papers people write min (log 1-D), but in practice folks practically
use max log D

- because the first formulation has vanishing gradients early on
- Goodfellow et. al (2014)

-In practice:

-Flip labels when training generator: real = fake, fake = real

#2: Modified loss function (classic GAN)

-In papers people write min (log 1-D), but in practice folks practically
use max log D

- because the first formulation has vanishing gradients early on

~Goodfellowet.al CPQOQT OF NEW LOSS FORMULATIONS
-In practice:

-Flip labels when training generator: real = fake, fake = real

#2: Modified loss function (classic GAN)

https://github.com/hwalsuklee/tensorflow-generative-model-collections
https://github.com/znxlwm/pytorch-generative-model-collections

Name Paper Link Value Function

Li™ = E|log(D(x))] + E|log(1 — D(G(2)))]

GAN Arxiy LEN = Elog(D(6(2)))]

LiSEAN — EL(D(x) = 1)2] + E[D(G(2))?)

LSGAN ADQC seaY - B[(D(G(2)) — 1)7)

LYWEAN = EID(x)| - E|D(G(2))]

WGAN Arxiv LE%W = E[D(G(2))]
W, « clip_by_value(W,,—0,01,0.01)

LWGANGP _ |WGAN 4 JE[(|PD(ax — (1 — aG(2)))| — 1)?]

WGAN-GP Arxiv [WGAN GP _ [WGAN
G —

LYRAGAN — LGAN L AE[(IVD(ax — (1 — ax,))| — 1)2]

DRAGAN Arxiv [PRAGAN _ jGAN
G G
. LECAN = E[log(D(x' c))l + E[log(l - D(G(Z).C))]
Arxiv

LESAN = E|log(D(6(2) ,¢))]

L{’;xgocﬁn = LW — AL (¢, ¢)
infoGAN Arxiv et

Ll{zu[ol..AN = L’é‘” — AL,(C,C')

LS = L™ + E|P(class = c|x)] + E[P{class = c|G(2))]
ACGAN Arxiv

LACGAN — 15AN 4 E[P(class = c|G(2))]

LEPGAN — Do (x) + max(0,m — Dy (G(£)))
EBGAN Arxiv

LERGAN — D (G(2)) + A+ PT

LETOAN = Dyp(x) — IeeDps(G(2))
BEGAN Arxiv LEFOAN = D4 (G(2))
sy = ke + Ay Dy (x) — Dy (G(2)))

#3: Use spherical z

-interpolation via great circle

-Tom White “Sampling Generative Networks”

- https://arxiv.org/abs/1609.04468

#4: BatchNorm

-different batches for real and fake
-when batchnorm is not an option use instance norm

#5: Avoid Sparse Gradients: ReLU, MaxPool

-the stability of the GAN game suffers
-LeakyRelLU (both G and D)
-Downsampling: Average Pooling, Conv2d + stride

-Upsampling: PixelShuffle, ConvTranspose2d + stride
- PixelShuffle: https://arxiv.org/abs/1609.05158

#6: Soft and Noisy Labels

-Label Smoothing

-making the labels the noisy a bit for the discriminator, sometimes
-Salimans et. al. 2016

#7: Architectures: DCGANSs / Hybrids

-DCGAN when you can

.if you cant use DCGANs and no model is stable,
-use a hybrid model : KL + GAN or VAE + GAN

-ResNets from WGAN-gp also work pretty well (but are very slow)

- https://github.com/igul222/improved_wgan_training

-Width matters more than Depth

#8: Stability tricks from RL

-Experience replay
-Things that work for deep deterministic policy gradients
-See Pfau & Vinyals (2016)

#9: Optimizer: ADAM

-optim.Adam rules!
- See Radford et. al. 2015

-[MMathieu] Use SGD for discriminator and ADAM for generator

#10: Use Gradient Penalty

-Regularize the norm of the gradients
- multiple theories on why this is useful (WGAN-GP, DRAGAN, Stabilizing GANs by Regularization etc.)

#11: Dont balance via loss statistics
(classic GAN)

-Dont try to find a (number of G/ number of D) schedule to uncollapse
training

-while lossD > X;

-train D

-while lossG > X:

-train G

#12: If you have labels, use them

-if you have labels available, training the discriminator to also classify the
samples: auxillary GANs

#13: Add noise to inputs, decay over time

-Add some artificial noise to inputs to D (Arjovsky et. al., Huszar, 2016)

-http://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/
-https://openreview.net/forum?id=Hk4_qw5xe

-adding gaussian noise to every layer of generator (Zhao et. al. EBGAN)
- Improved GANs: OpenAl code also has it (commented out)

#14: Train discriminator more

-especially when you have noise
-hard to find a schedule of number of D iterations vs G iterations
- WGAN/WGAN-gp papers suggest 5x D iterations per G iteration

#15: Avoid discrete spaces

- Pose the generation as a continuous prediction

(C)

WX

Conneau, Lample et. al. “"Word Translation Without Parallel Data”

Conditional GANs

Conditional generative adversarial networks (CGAN)

@ Condition generation on additional info y (e.g. class label,
another image)

@ D has to determine if samples are realistic given y

Z~ pnoise(z) Yy ~ pdata)

[OOO00] OOO]

Genelrat!ve
network X, Y~ Pgata(X; Y)
| x _y
Joe00) [CC00) (GO0
L L
Discriminative Discriminative
network network
D tris to D tris to
output 0 output 1

[Mirza and Osindero (2014); Gauthier (2014)]

#16: Discrete Variables

-Use an Embedding layer

-Add as additional channels to images

-Keep embedding dimensionality low and upsample to match image
channel size

Conclusion

-Model stability is improving
-Theory is improving
-Hacks are a stop-gap

Deep Generative Image Models using a Laplacian

Pyramid of Adversarial Networks

Emily Denton'*, Soumith Chintala®*,
Arthur Szlam?, Rob Fergus2

INew York University
2Facebook Al Research
*Denotes equal contribution

December 16, 2015

Laplacian pyramid (Burt & Adelson, 1983)

Low pass filtered images

Band-pass filtered
images

Training procedure

@ Train conditional
GAN for each level of
Laplacian pyramid

@ G learns to generate
high frequency
structure consistent
with low frequency
Image

E. Denton, S. Chintala, et al.

Real/Generated?

Laplacian Pyramid of Generative Adversarial Nets

Training procedure

Each level of Laplacian pyramid trained independently

Real/

Generated?

. . Generated?
Real/Generated?

Real/Generated?

Sampling procedure

.-
F R 5
4 —1x
IN G%;
s
Z; Z3

< @4

2

-~ - ~

LSUN coarse-to-fine chain

'1'1"'

T

4 .N ':.

LSUN church samples

PROGRESSIVE GROWING OF GANS FOR IMPROVED
QUALITY, STABILITY, AND VARIATION

Tero Karras Timo Aila Samuli Laine Jaakko Lehtinen
NVIDIA NVIDIA NVIDIA NVIDIA and Aalto University

{tkarras,taila,slaine, jlehtinen}@nvidia.com

ICLR 2018

(Probably) current state-of-art generations

G Latent Latent Latent

v v v
4>|(4 4x4 Ax4
: 8)|(8 [|

vy [|
1 ! | |

Ax4 Ax4 Ax4

Training progresses >

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4 x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here | N x N | refers to convolutional layers operating on N x N spatial

resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.

Smooth blending with scale increase

! | !
(5 16x16 16x16 16x16
2X 2X
v 32x32
! l 32x32 l
toRGB toRGB toRGB toRGB
l Tavya l
__ O
v l ¥ v
D fromRGB S fromRGB fromRGB
.5X
32x32 32x32
f RGB
rO”I 0.5x 0.5x
1—a$a J
16x16 16x16 16x16

(a) * (b) (c) *

CELEBA LSUN BEDROOM

Training configuration Sliced Wasserstein distance x10% | MS-SSIM | Sliced Wasserstein distance x10% | MS-SSIM
128 64 32 16 Avg 128 64 32 16 Avg

(a) Gulrajani et al. (2017) 1299 7.79 7.62 8.73 9.28 0.2854 11.97 10.51 8.03 14.48 11.25 0.0587

(b) + Progressive growing 462 264 378 606 4.28 0.2838 7.09 6.27 740 9.64 7.60 0.0615

(c) + Small minibatch 75.42 41.33 41.62 26.57 46.23 0.4065 7273 40.16 42775 42.46 49.52 0.1061

(d) + Revised training parameters 920 653 471 11.84 8.07 0.3027 739 551 3.65 9.63 6.54 0.0662
(e*) + Minibatch discrimination 10.76 6.28 6.04 16.29 9.84 0.3057 10.29 6.22 532 11.88 8.43 0.0648

(e) Minibatch stddev 1394 5.67 282 571 7.04 0.2950 777 523 327 9.64 6.48 0.0671
(f) + Equalized learning rate 442 328 232 752 439 0.2902 3.61 332 271 644 4.02 0.0668
(g) + Pixelwise normalization 4.06 3.04 2.02 513 3.56 0.2845 3.89 3.05 324 3587 4.01 0.0640
(h) Converged 242 217 224 499 296 0.2828 347 2.60 230 4.87 331 0.0636

Table 1: Sliced Wasserstein distance (SWD) between the generated and training images (Section 5)
and multi-scale structural similarity (MS-SSIM) among the generated 1images for several training
setups at 128 x 128. For SWD, each column represents one level of the Laplacian pyramid, and the
last one gives an average of the four distances.

(h) Converged

Figure 3: (a) — (g) CELEBA examples corresponding to rows in Table 1. These are intentionally
non-converged. (h) Our converged result. Notice that some 1images show aliasing and some are not
sharp — this 1s a flaw of the dataset, which the model learns to replicate faithfully.

.s’\

L

\

igure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for ¢

POTTEDPLANT HORSE SOFA BUS CHURCHOUTDOOR BICYCLE TVMONITOR

Check

ghbor Sanity

Nearest-Ne

Unpaired Image-to-Image Translation
with CycleGAN

Jun-Yan Zhu and Taesung Park
Joint work with Phillip Isola and Alexei A. Efros

Image-to-Image Translation with pix2pix

Labels to Street Scene Labels to Facade BW to Color

input output
P Aerial to Map g

input oput input output

output
INPUT OUTPUT

* o Image-to-image Translation with Conditional Adversarial Nets
| Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. CVPR 2017

m

Paired
L

Palred

Horse < zebra: how to get zebras?

- Expensive to collect pairs.
- Impossible in many scenarios.

Unpaired

((§€

NP2z

G(x)

Rimiy
— G .,
i AL
Generator — D |
T

No input-output pairs!

NN NN
— G | —|D | Real!
UL UL

Generator | Discriminator

o o) g - pre Ty

L R Q e 4 - -’

- B 2 - - v s (R

y i~ » . -] "y, T :

. . -) £ e N N o

A o, R e \ ‘ \ ‘ T

2 AN 2:' ” : “.‘ '.'3‘-:1 \ 4 4 | N - P i

a2 2 . \ ;

K . ‘." . o) v

A M TR . RN 7

A ‘Up}"" w0 ’ S

A) (% L ﬁ I ﬁ
» “/‘ : y | ‘v ' i %) / (‘ e a O O
| S ¢ L o

A\ s 4 y J' v ‘_'.‘ = X - | .
5 A}_ WAL % 4 ! \ /

IR Y Sl | \|& ‘

. R it LD PINY g DN K &8 ‘

i v%} 3 & ‘.'g é‘.. ,-. 4 AW .

R ").“""K 'r;\‘

) 4

Generator T Discriminator

L

GANSs do not force output to
correspond to input

mode collapse!

Cycle-Consistent Adversarial Networks

[Zhu*, Park™*, Isola, and Efros, ICCV 2017]

Cycle-Consistent Adversarial Networks

° [Mark Twain, 1903] .

[Zhu*, Park™*, Isola, and Efros, ICCV 2017]

Cycle-Consistent Adversarial Networks

. \
Reconstruction | . \

error

[Zhu*, Park™*, Isola, and Efros, ICCV 2017]

Cycle Consistency Loss

bang# cycle loss

G
/\
€T
?fﬁQ(OM Y
Reconstruction
error

[Zhu*, Park™*, Isola, and Efros, ICCV 2017]

Cycle Consistency Loss

X Reconstruction
R tructi ; @\

See similar formulations [Yi et al. 2017], [Kim et al. 2017] [Zhu™, Park*, Isola, and Efros, ICCV 2017]

Results

Collection Style Transfer

Photogra
@ Alexei Efros

Gogh__

.il’”.a: Kos . ,‘-.,'.;-.- ’ . 3 1 Py ..l‘l‘l h,’?
Ty LERT ey Vinz .:',.,"- ; w ‘ AR
SRR -dl[‘ o j “1"‘ -4 BT o R AE g

’ 1 L A "" »A-'.v.. 1. | .

}“"3381-

Monet’s paintings — photos

AL, 4 F 37 Say
ALl v L g
o PSS
R gy A

A P

Monet’s paintings = photos

Map — Photo Photo — Map

Loss % Turkers labeled real % Turkers labeled real
CoGAN [30] 0.6% + 0.5% 0.9% + 0.5%
BiGAN/ALI [8, 6] 2.1% + 1.0% 1.9% + 0.9%
SimGAN [45] 0.7% + 0.5% 2.6% + 1.1%
Feature loss + GAN 1.2% + 0.6% 0.3% + 0.2%
CycleGAN (ours) 26.8% + 2.8% 23.2% + 3.4%

AMT ‘real vs fake’ test on maps < aerial

Loss Per-pixel acc. Per-class acc. Class IOU
CoGAN [30] 0.40 0.10 0.06
BiGAN/ALI [&, 6] 0.19 0.06 0.02
SimGAN [45] 0.20 0.10 0.04
Feature loss + GAN 0.06 0.04 0.01
CycleGAN (ours) 0.52 0.17 0.11

FCN scores on cityscapes labels— photos

Loss Per-pixel acc. Per-class acc. Class IOU
CoGAN [30] 0.45 0.11 0.08
BiGAN/ALI [&, 6] 041 0.13 0.07
SimGAN [45] 0.47 0.11 0.07
Feature loss + GAN 0.50 0.10 0.06
CycleGAN (ours) 0.58 0.22 0.16

Classification performance of photo—labels

CycleGAN implementations

PyTorch

Torch

pytorch-CycleGAN-and-pix2pix

Image-to-image translation in PyTorch (e.g., horse2zebra,
edges2cats, and more)

@ Python W43k ¥ 970

CycleGAN

Software that can generate photos from paintings, turn
horses into zebras, perform style transfer, and more.

@®Lua K65k ¥ 940

20+ implementations by researchers/developers:
 Tensorflow, Chainer, mxnet, Lasagne, Keras...

Disentangling Content and Pose

with an Adversarial loss
(%//

NYU

Emily Denton

CVPR GAN Tutorial
June 2018

Generative adversarial network framework:

Adversarial
objective

A
|
I
I
|

/ Discriminator\

X

\ Generator /

Z

Generative adversarial network framework: Adversarial losses to shape representations:

Adversarial Task objective: _
objective (e.g. classification, Adversarial
| reconstruction, etc.) °bjeft've
I | .
| |
1 1
/ Discriminator\ Task \ / i
Discriminator
network
H ; :
| | |
| |
X | !
4 I .
| I |
|

Generator Encoder
network

y X

——]

Denton and Birodkar. Unsupervised

DrN et: two se pe rate enCOderS Learning of Disentangled Representations
from Video. NIPS, 2017

a Content encoder

~

|| q—
-/

_ Pose encoder

~

/

Time invariant

information:
Lighting/Background
|dentity/clothing

Time varying
information:
Pose of body

Denton and Birodkar. Unsupervised

Image SyntheSiS by ana|09y Learning of Disentangled Representations
from Video. NIPS, 2017

\ Content encoder A
~— rJ I / Frame decoder \
2y - J L =~I
N e
/ Pose encoder y
Can transfer from one
Pose image and pose from another to

image synthesize a new image

Denton and Birodkar. Unsupervised

Image SyntheSiS by ana|09y Learning of Disentangled Representations
from Video. NIPS, 2017

Pose

A A A A I I 2 2 A A

Content

Denton and Birodkar. Unsupervised

Inte rpOIation in pOSe S pace Learning of Disentangled Representations
from Video. NIPS, 2017

Interpolations

P g v éA | &y hx
4
4
4
[]
a
[|
n

Decoder maps
back to pixels:

KTH long term video generation

Denton and Birodkar. Unsupervised
Learning of Disentangled Representations
from Video. NIPS, 2017

Task objective:

: ificati Adversarial
Part Il: Survey of adversarial (€.g. classification, orse
art .Su y reconstruction, etc.) objective
losses in feature space .* !
Task

Discriminator
network

Encoder
network

X

Domain adaptation

Labelled examples from source domain,
few or no labels from target domain

Source domain Target domain

5 A
5141 |

Domain adaptation

Classification loss Labelled examples from source domain,
] few or no labels from target domain
I
Classifier

Source encoder

Target domain

5 . A
5141 |

Domain adaptation

Adversarial loss can be used to
learn domain invariant features,

Classification loss Adversarial loss . o
)) allowing source classifier to
| .
: | transfer to target domain
|
N Domain
Classifier discriminator

Source encoder Target encoder

5. A
1514% }1°

Domain adaptation

Classification loss

A

Classifier

Adversarial loss

A
|
|
]

Domain

discriminator

Source encoder

Gradient reversal [Ganin and
Lempitsky, 2015]

Label flip [Tzeng et al. 2017]

Uniform target [Tzeng et al. 2015]

Target encoder

15 E
HUE

Learning fair representations

Closely related to problem of domain

adaptation Predict sensitive

> source/transfer domain vs. demographic Predict label attrl?bute
groups : :
Different formulations of adversarial objectives Task Discriminator
achieve different notions of fairness network

o Edwards & Storkey, 2016
o Beutel et al. 2017 L — e e —

o Zhang et al. 2018

o Madras et al. 2018
Encoder
network

X

Independent components

Kim and Mnih. Disentangling by Factorising.

q(z|x) VAE p(x|z) ICML, 2018

NIEARY ;. . d . PN \
(22,292 ~ q(2) = [paata(x)g(z|x)da

randomly permute : .
each dimension - Discriminator
+

across batch

Cross-entropy loss

- i) \RB for classifying samples
(Zperm)i—1 »|INput| —— | > -b@ from each class

- encouraging ¢z) to
be factorised

 Discriminate marginal distribution vs. product of marginals: q(z, ..., z,) vs. 11q(z)

« Earlier work on discrete code setting by Schmidhuber (1992)

Prior distributions of generative models

q(z|x)

X z ~ q(z)

/—)-—)-—)-—)»—3-—:»/

Draw samples } Adversarial cost
from p(z) | 4+ for distinguishing

0 >|Input|=>1 P> positive samples p(z)

Adversarial feature learning:

GAN loss in image space and latent space
[Dumoulin et al. 2017; Donahue et al. 2017]

from negative samples ¢(z)

Adversarial autoencoders:
/ Match aggregate approx posterior q(z)

[Makhzani et al. 2016]

Adversarial variational bayes:
Match approx posterior q(z|x)
[Mescheder et al. 2017]

features
N

UmCa)
<@

o)
Cari

o

- @@

References
Beutel et al. Data decisions and theoretical implications when adversarially learning fair representations. arXiv:1707.00075, 2017.

Denton and Birodkar. Unsupervised Learning of Disentangled Representations from Video. NIPS, 2017.
Donahue et al. Adversarial Feature Learning. ICLR, 2017.

Dumoulin et al. Adversarially Learned Inference. ICLR, 2017

Edwards & Storkey. Censoring Representations with an Adversary. ICLR, 2016.

Ganin and Lempitsky. Unsupervised domain adaptation by backpropagation. ICML, 2015.

Kim and Mnih. Disentangling by Factorising. ICML, 2018.

Madras et al. Learning Adversatrially Fair and Transferable Representations. ICML, 2018.

Makhzani et al. Adversarial Autoencoders. ICLR Workshop, 2016.

Mescheder et al. Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks. ICML,
2017.

Schmidhuber. Learning factorial codes by predictability minimization. Neural Computation, 1992.
Tzeng et al. Simultaneous deep transfer across domains and tasks. ICCV, 2015.

Tzeng et al. Adversatrial discriminative domain adaptation. CVPR, 2017.

Villegas, et al. Decomposing motion and content for natural video sequence prediction. In ICLR, 2017.

Zhang et al. Mitigating Unwanted Biases with Adversarial Learning. AIES, 2018.

