Overview of Unsupervised Learning

&
Generative Adversarial Networks

Lecture 10

Slides from: Emily Denton, lan Goodfellow, Soumith Chintala



Auto-Encoder

Features
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generative / Feed-forward /
top-down bottom-up path
path

U i

Input

* Encoder/Decoder will be deep network
* Slightly different architectures for decoder (needs to output image)
* Architecture depends on application



Variational Auto-Encoder

[Kingma & Welling 2013]
Features z <:> Prior p(2)

@ ﬁ e.g. N(0,I)

At training
time only

U 7

Input x

* Makes auto-encoder into a true generative model

Eq(zle) log p(2|2) — Drr(a(z]2)[[p(2))

-~ ~~

Reconstruction term Prior term



Directed graphical models

@ We assume data is generated by:

zep(z)  w~plz)z)

e z is latent/hidden x is observed (image)

@ Use 0 to denote parameters of the generative model

Emily Denton Deep generative models of natural images



Parameter estimation

o Given dataset {z1,...,z,}, maximize likelihood of data
under model:

max Z logp(x;;0) = max Z; Z: log p(x;, z; 0)

1=1

e This quantity often intractable, difficult to optimize
directly

e Can be optimized with iterative Expectation Maximization
(EM) algorithm
o Fix parameters and compute log likelihood wrt p(z|x;6%)
o Fix z find parameters #*t1 to maximize log likelihood

Emily Denton Deep generative models of natural images



Parameter estimation

e Standard EM requires access to @QQQQ@ 2%
e

posterior p(z|x)

@ For the deep neural net models we @QOOQ@ z®

care about this is infeasible

w®@

@ Solution: introduce wariational @QQQQ@ 7
W

approximation q(z; ¢) to p(z|x)

e Will give bound on log likelihood @OOOO@ X

Emily Denton Deep generative models of natural images



Bounding the marginal likelihood

Recall Jenson’s inequality: When f is concave, f(E|z]) > E[f(x)]

log p(z) = log / p(z, 2)

z

o [ (22

q(2)

p(z, )
> | = L(x: (9 ensons inequali
[ 108 22 < L(w:0.6) o demons st

e risste ) [aonats

< <

— ]Eq(z) [10gp(33,2)] +H(Q(Z))
~ ~— o N—_——

Expectation of joint distribution Entropy

Emily Denton Deep generative models of natural images




Bound is tight when variational approximation matches true
posterior:

log p(x) — Lz 0, ¢) = logp(x) - / () log 2222

Evidence L.ower

pound (ELEOL / q(2) log p(z) — / q(z) log P, 2)

z

= Drr(q(z; ¢)|Ip(z]2))

Emily Denton Deep generative models of natural images



Learning directed graphical models

@ Maximize bound on likelihood of datas:

N

N
max ¥ logp(x;;0) > max L(x;; 0, ¢,
0 ; gp( ! ) 97¢17"'7¢N i—1 ( ! ¢Z)

e Historically, used different ¢; for every data point

e But we’ll move away from this soon..

e Can still use EM style algorithm to iteratively optimize

e For more info see Blei et al. (2003)

Emily Denton Deep generative models of natural images



New method of learning: approximate inference model

e Instead of having different variational parameters for each
data point, fit a conditional parametric function

@ The output of this function will be the parameters of the
variational distribution g(z|x)

o Instead of q(z) we have g4(z|z)

Evidence Lower BOund (ELLBO)
o ELLBO becomes:

L(x;0,¢) = Equb(zm)[lnge(ﬂ%Z)] +H(gg(2]7))

J
~ Vv

Expectation of joint distribution Entropy

Emily Denton Deep generative models of natural images



Variational autoencoder

zZ~ q¢(z|x)

@ Encoder network maps from

image space to latent space @QQ@ @QQ@

o Outputs parameters of

qe(z|)

Encoder/ Decoder/
Inference network Generative network

@ Decoder maps from latent
space back into image space

o Outputs parameters of @OQ@ @OO@

po(|2)

X~ p,(x|z)

[Kingma & Welling (2013)]

Emily Denton Deep generative models of natural images



@ Encoder network outputs Z~q,z|%)

d vari f N I
e and vasiane o Normal - <SP (SO0

o gy(2|z) = N(pgy(),04())

Encoder/ Decoder/

@ Decoder network outputs Inference network Generative network
mean (and optionally
variance) of Normal

distribution @O@@ @OQ@

o po(z|z) = N(pg(2),1I) X ~p,(x|2)

[Kingma & Welling (2013)]

Emily Denton Deep generative models of natural images



Variational autoencoder

@ Rearranging the ELBO:

L(z;60,¢) = /Q(le) log

— z|x) log p(x|z 2| L) 10 )
—/Zq( ) log p(z| )+/ZQ( )1 > 4(zl)
_ 0] T\Z) — O Q(Z‘aj)

= Bq(zlz) log plz]2) — Eq(z1) log p(z)

- EEQ(zlzL‘) log p(x ZZ_pKL(Q(ﬂx)”p(Z)Z

N
Reconstruction term Prior term

Emily Denton Deep generative models of natural images



Variational autoencoder

zZ~ q¢(z|x)

e Inference network outputs @QQ@ @QQ@

parameters of gy(z|x)

Encoder/
Inference network

@ Generative network outputs
parameters of py(x|z)

@ Optimize € and ¢ jointly by
maximizing ELBO:

L(w:0, ) = Ey(zja) log p(2|2) — Drrla(2]7)]lp(2))

Decoder/
Generative network

~ Vv

Reconstruction term Prior term

Emily Denton Deep generative models of natural images

@QQ@] COOO

X ~ p,(x|z)




Stochastic gradient variation bayes (SGVB) estimator

o Reparameterization trick : re-parameterize z ~ g4(z|z) as
z = go(x, €) with € ~ p(e)
o For example, with a Gaussian can write 2 ~ N (u, 0?) as

2 = p1 + eo” with e ~ N(0,1)

[Kingma & Welling (2013); Rezende et al. (2014)]

Emily Denton Deep generative models of natural images



Stochastic gradient variation bayes (SGVB) estimator

L(CIZ‘; 6)7 gb) — EEq(z|a:) logp(x\zZ—pKL(q(z\x)\\p(z)z

V V

Reconstruction term Prior term

e Using reparameterization trick we form Monte Carlo
estimate of reconstruction term:

Eq, (2|2) log po(x|2) = Ep () log pe(|ge(x, €))

L
1
~ =3 loapa(algs(w, )  where ¢ ~ p(e)
1=1

e KL divergence term can often be computed analytically
(eg. Gaussian)

Emily Denton Deep generative models of natural images
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Deep generative models of natural images

Emily Denton



QD mArd
BrrouNMSsSaHWUMN
NP QA v )
M=y DS
=MW OPIO AT
M NI e NN
BWEMT =IO IN
DNQO o Mme N
NATT TR0
e e Radt 1A Kl il ol &

WO\ w~9
M~ KYxr YOO
e T A o BN 2R B I o
VoAt M~
MM PFANO0 -~
MNAhnd OO
~A Qe nONO
M) B3O
O HAIAINTT-S T~
M~ s V0™

LN~ TwOral,
S oNYNYDAEe
LT SR L) I e SRR N
=R~ O
O NTF N0
NS er\O
OsMwas MmN Y -
L YonwrTmo >
—VersasOMmiyoeews
"Ny - JF I

FrrMVermMe -
L o R o Nl
M= 2MI0HON
L Tl el A
erMapmaIng >
N mm gl e~
NearOMse 9D
Qe TrHor>e
QYT o
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VAE tradeofts

@ Pros:
o Theoretically pleasing
e Optimizes bound on likelihood
o Fasy to implement

e Cons:
e Samples tend to be blurry
e Maximum likelihood minimizes Dk, (Pdata||Pmodel)

Data KLD

[Theis et al. (2016)]

Emily Denton Deep generative models of natural images



Generative Adversarial Networks
[ Goodfellow et al. 2014]
Features z <: Prior p(z)

@ e.g. N(0,I)

@awtia Decoder-only
¢ model but with

adversarial loss term
Sample X :>

* Mini—max game between G and D

minmax V (D, G) = Eqrpy, (@) 108 D(2)] + Ezrp, () llog(1 — D(G(2)))




Stacked Auto-Encoders

High-level features

e Ladder Networks N A
|[Rasmus et al. 2015]

. Decoder,
e Reconstruction

constraint at each "y ]
layer Features
* Trained end-to-end AN
.
* Can be trained layer-wise
- Stacked RBMs

Features
[Hinton & Salakhutdinov 2006 ]

=1

Input



Many Others Approaches

* Autoencoder (most unsupervised Deep Learning methods)
— Restricted / Deep Boltzmann Machines
— Denoising autoencoders

— Predictive sparse decomposition

* Decoder-only

— Sparse coding & hierarchical variants



Autoregressive models

@ Tractably model a joint distribution of the pixels in the
image

@ Learn to predict the next pixel given all the previously
generated pixels

e Joint distribution of all pixels just product of conditionals:

p(x) = | [ p(ailz1, ..., wic1)

1=1

Emily Denton Deep generative models of natural images



Pixel-CNN

[van den Oord et al., arXiv 1606.05328, 2010]

* Conditional generative model of images i
p(x) = Hp(:vi\xl, ey Ti—1).
* G h pixel, 1 d =
enerate each pixel, in raster-scan order

* Just predict distribution over a single pixel (can be multi-modal)

* See also Video Pixel Networks [Kalchbrenner et al., 2016],
* NADE [Larochelle & Murray 2011] & RIDE [Theis and Bethge, NIPS 2015].
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Wavenet

[van den Oord et al., arXiv 1609.03499, 2016]

Generative model of raw speech waveform
T

Condition on previous parts of waveform p(x)=]]p@:|z1,...,21)

. . t=1
Dilated causal convolution layers

Discrete output distribution (use softmax)

Output @ © © © 0 0 0 0O 0000 OO O

Hidden .
Layer

Hidden .y
Layer

Hidden
Layer

nnt © © O 0O 00000000000 O



Generative Adversarial Networks

Slides from: Emily Denton, lan Goodfellow, Soumith Chintala



Generative Adversarial Networks

 [Generative Adversarial Nets, lan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, NIPS 2014]

* Focus on sample generation

. , , Generative Modeling:
Generative Modeling: Density

Estimation Sample Generation

Training Data Density Function

- Hosiag
£ ‘ A kg ko
R v / %
g 3 L 5754
i . ol (7
77, ‘N v L S -
e - 1 i &
; & P N
- I | s e
oy | e
) Y. ol i {
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- i \ 3

Training Data Sample Generat' a
(CelebA) (Karras et al, 2017)

(Goodfellow 2018)



Generative Adversarial Network

[Goodfellow et al. NIPS 2014]
- Initial application to still images

- Way to train generative model to match distribution of data

- Discriminator network predicts if input image is from data (real) or model (fake)

| Discriminator Real

Network

Random
index

Dataset




Generative Adversarial Network

[Goodfellow et al. NIPS 2014]
- Initial application to still images

- Way to train generative model to match distribution of data

- Discriminator network predicts if input image is from data (real) or model (fake)

Fake

Discriminator

Network

Random
index

Dataset

Update
parameters




Generative Adversarial Network

[Goodfellow et al. NIPS 2014]
- Initial application to still images

- Way to train generative model to match distribution of data
- Discriminator network predicts if input image is from data (real) or model (fake)

- Generator network tries to confuse Discriminator

Generator
Network

Random
noise

Discriminator Fa ke

Update >
parameters Network




Generative Adversarial Network

[Goodfellow et al. NIPS 2014]
- Initial application to still images

- Way to train generative model to match distribution of data
- Discriminator network predicts if input image is from data (real) or model (fake)

- Generator network tries to confuse discriminator

Generator
Network

Random
noise

Real

Discriminator

Update .
parameters Network

Update
parameters



Generative Adversarial Network

[Goodfellow et al. NIPS 2014]
- Initial application to still images

- Way to train generative model to match distribution of data
- Discriminator network predicts if input image is from data (real) or model (fake)

- Generator network tries to confuse Discriminator

Model
Distribution

Noise i

2ok Generator
Distribution FRiins

Network

Discriminator Real/
Network Fake

Data
Distribution




Generative Adversarial Networks

D tries to make
D(G(z)) near 0,
) tries to be (G tries to make
near 1 D(G(z)) near 1
leferentlable D
function D
x sampled from x Sampled from
data model
Differentiable
function G

(Goodtellow et al, 2014) (e )

/\




Generative Adversarial Networks

|Generative Adversarial Nets, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, Yoshua Bengio, NIPS 2014]

e Minimax value function:

m(%n mgx V(D,G) = o pas () log D(x)] + Bz, (2) log(1 — D(G(2)))]

A

Discriminator  Discriminator’s Discriminator’s
pushes up ability to ability to
recognize data as recognize
Generator being real generator
pushes

samples as being

down
[Slide: Ian Gofaflf&@, Deep Learning workshop, ICML 2015]



Generative Adversarial Networks

D(x) Data distribution
l / ‘Model distribution

[ ]
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Poorly fit model

[Slide: Ian Goodfellow, Deep Learninge workshop, ICML 2015]



Generative Adversarial Networks

D(X) Data distribution
l / Model distribution

---------------
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Poorly fit model After updating D

[Slide: Ian Goodfellow, Deep Learninge workshop, ICML 2015]



Generative Adversarial Networks

D(X) Data distribution
l / Model distribution
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Poorly fit model After updating D After updating G

[Slide: Ian Goodfellow, Deep Learninge workshop, ICML 2015]



Generative Adversarial Networks

D(X) Data distribution
l / Model distribution

..............................
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Poorly fit model After updating D After updating G~ Mixed strategy
equilibrium

[Slide: Ian Goodfellow, Deep Learninge workshop, ICML 2015]



Adversarial Network Samples

CIFAR-10 (fully connected) CIFAR |0 (convolutional)

[Slide: Ian Goodfellow, Deep Learning workshop, ICML 2015]



UNSUPERVISED REPRESENTATION LEARNING

D C G A N WITH DEEP CONVOLUTIONAL
GENERATIVE ADVERSARIAL NETWORKS

Alec Radford & Luke Metz
indico Research
Boston, MA

. First to generate plausible results at 64x64. (atec, Luke}eindico. io

. Improved architectures for R ICLR 2016

New York, NY

generator/discriminator
« Most GAN architectures used now are
similar —

T ‘

o« Lots of tricks
to get GANs to
train well



3.5 Years of Progress on Faces

2014 2015 2016

(Brundage et al, 2018)




<2 Years of Progress on ImageNet

- —-: ’g' ’.vb ‘..?

], "J N;"
‘l o )
L ¥ / y

Odena et al
2016

Miyato et al
2017

Zhang et al
2018

(Goodfellow 2018)



The GAN Zoo

https://github.com/hindupuravinash/the-gan-zoo

» 3D-ED-GAN - Shape Inpainting using 3D Generative Adversarial Network and Recurrent Convolutional Networks
* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling (github)

Cumulative number of named GAN papers by month » 3D-IWGAN - Improved Adversarial Systems for 3D Object Generation and Reconstruction (github)
B0 » 3D-PhysNet - 3D-PhysNet: Learning the Intuitive Physics of Non-Rigid Object Deformations
.::a:. » 3D-RecGAN - 3D Object Reconstruction from a Single Depth View with Adversarial Learning (github)
4423 » ABC-GAN - ABC-GAN: Adaptive Blur and Control for improved training stability of Generative Adversarial Networks
40 (github)
4‘1.“*[. * ABC-GAN - GANs for LIFE: Generative Adversarial Networks for Likelihood Free Inference
. 300 « AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs
;_f::_ ;3; » acGAN - Face Aging With Conditional Generative Adversarial Networks
& %.,'"? * ACGAN - Coverless Information Hiding Based on Generative adversarial networks
E g; * acGAN - On-line Adaptative Curriculum Learning for GANs
'E‘ ﬁ'i‘ » ACtuAL - ACtuAL: Actor-Critic Under Adversarial Learning
g ffﬁ * AdaGAN - AdaGAN: Boosting Generative Models
§ g; » Adaptive GAN - Customizing an Adversarial Example Generator with Class-Conditional GANs
B ?'.: * AdvEntuRe - AdvEntuRe: Adversarial Training for Textual Entailment with Knowledge-Guided Examples
3;' » AdvGAN - Generating adversarial examples with adversarial networks
= » AE-GAN - AE-GAN: adversarial eliminating with GAN
,‘,:"; * AE-OT - Latent Space Optimal Transport for Generative Models
g * AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
'2, * AF-DCGAN - AF-DCGAN: Amplitude Feature Deep Convolutional GAN for Fingerprint Construction in Indoor
an4 b 13 [ bR (] 207 2018 Localization System

Year » AffGAN - Amortised MAP Inference for Image Super-resolution
» AIM - Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization
* AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
o ALl - Adversarially Learned Inference (github)


https://github.com/hindupuravinash/the-gan-zoo

Evaluation of GANSs

Short answer: hard; look at quality of samples
Computing log-likelihood not directly possible

LLH is problematic.

See [A note on the evaluation of generative models, Lucas
Theis, Aaron van den Oord, Matthias Bethge, ICLR 2016]

Inception score
User-study: can humans tell fake from real?



https://arxiv.org/abs/1511.01844

Inception Score

Proposed in 2016

Improved Techniques for Training GANs

Tim Salimans Ian Goodfellow Wojciech Zaremba Vicki Cheung
tim@openai.com ian@openai.com wojlopenai.com vicki@openai.com

Alec Radford Xi Chen
alec.radford@gmail.com peter@openai.com

Abstract


https://arxiv.org/abs/1511.01844

Inception Score

» Send generated image through Inception model (trained
on Imagenet)

generated image to get the conditional label distribution p(y|x). Images that contain meaningful
objects should have a conditional label distribution p(y|x) with low entropy. Moreover, we expect
the model to generate varied images, so the marginal | p(y[x = G(z))dz should have high entropy.
Combining these two requirements, the metric that we propose is: exp([E.KL(p(y|x)||p(y))), where




Inception Score

» Send generated image through Inception model (trained
on Imagenet)

generated image (o get the conditional label distribution p(y|x). Images that contain meaningful
objects should have a conditional label distribution p(y|x) with low entropy. Moreover, we expect
the model to generate varied images, so the marginal [ p(y|x = G(z))dz should have high entropy.

Combining these two requirements, the metric that we propose is: exp(EKL(p(y[x)[[p(y))), where



How'to Train a GAN

Emily Denton, Martin Arjovsky, Michael Mathieu
New York University

lan Goodfellow
Google

Soumith Chintala
Facebook Al Research



The stability of GANs




Timeline - the stability of GANs

Goodfellow et. al. “Generative Adversarial Networks”

2014



Timeline - the stability of GANs

model architecture generator
visual inspection

countless failed stability hacks

Denton et. al. “Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks”

»

2015



Tlmellne the stability of GANs

countless hours finding stable models

stable upto 64x64

mode dropping
underfitting

Radfo rd et. al. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”

»

2015



Timeline - the stability of GANs

more heuristics

more stability

SallmanS et. al. “Improved Techniques for Training GANs”’

2015



Timeline - the stability of GANs

gradient norm regularization

Least-Squares
Boundary Equilibrium

G u | ﬁaJ danil et. al. “Improved Training of Wasserstein GANs™

/4

/4
XUC O qg et al. Least squares generative adversarial networks.

| V4 //
e  Began: Boundary equilibrium generative adversarial networks.

Berthelot et. a

»

2016-2017



Timeline - the stability of GANs

https://github.com/khanrc/tf.gans-comparison
by Junbum Cha

GANs comparison without cherry-picking

Implementations of some theoretical generative adversarial nets: DCGAN, EBGAN, LSGAN, WGAN, WGAN-GP,
BEGAN, DRAGAN and CoulombGAN.

| implemented the structure of model equal to the structure in paper and compared it on the CelebA dataset and
LSUN dataset without cherry-picking.



Comparison to Classification ConvNets

- Throw things at the wall and see what sticks

-Intuition Is poorer

- Theoretical work is somewhat improving but still far away
-Objective validation metrics are not there yet



#1: Normalize the inputs

-normalize the images between -1 and 1
-Tanh as the last layer of the generator output

- or some kind of bounds normalization



#2: Modified loss function (classic GAN)

-In papers people write min (log 1-D), but in practice folks practically
use max log D

- because the first formulation has vanishing gradients early on
- Goodfellow et. al (2014)

-In practice:

-Flip labels when training generator: real = fake, fake = real



#2: Modified loss function (classic GAN)

-In papers people write min (log 1-D), but in practice folks practically
use max log D

- because the first formulation has vanishing gradients early on

~Goodfellowet.al CPQOQT OF NEW LOSS FORMULATIONS
-In practice:

-Flip labels when training generator: real = fake, fake = real



#2: Modified loss function (classic GAN)

https://github.com/hwalsuklee/tensorflow-generative-model-collections
https://github.com/znxlwm/pytorch-generative-model-collections

Name Paper Link  Value Function

Li™ = E|log(D(x))] + E|log(1 — D(G(2) ))]

GAN Arxiy LEN = Elog(D(6(2)))]

LiSEAN — EL(D(x) = 1)2] + E[D(G(2) )?)

LSGAN ADQC seaY - B[(D(G(2)) — 1)7)

LYWEAN = EID(x)| - E|D(G(2))]

WGAN Arxiv LE%W = E[D(G(2))]
W, « clip_by_value(W,,—0,01,0.01)

LWGANGP _ |WGAN 4 JE[(|PD(ax — (1 — aG(2)))| — 1)?]

WGAN-GP Arxiv [WGAN GP _ [ WGAN
G —

LYRAGAN — LGAN L AE[(IVD(ax — (1 — ax,))| — 1)2]

DRAGAN Arxiv [PRAGAN _ jGAN
G G
. LECAN = E[log(D(x' c))l + E[log(l - D(G(Z).C))]
Arxiv

LESAN = E|log(D(6(2) ,¢))]

L{’;xgocﬁn = LW — AL (¢, ¢)
infoGAN Arxiv et

Ll{zu[ol..AN = L’é‘” — AL,(C,C')

LS = L™ + E|P(class = c|x)] + E[P{class = c|G(2))]
ACGAN Arxiv

LACGAN — 15AN 4 E[P(class = c|G(2))]

LEPGAN — Do (x) + max(0,m — Dy (G(£)))
EBGAN Arxiv

LERGAN — D (G(2)) + A+ PT

LETOAN = Dyp(x) — IeeDps(G(2) )
BEGAN Arxiv LEFOAN = D4 (G(2))
sy = ke + Ay Dy (x) — Dy (G(2)))



#3: Use spherical z

-interpolation via great circle

-Tom White “Sampling Generative Networks”

- https://arxiv.org/abs/1609.04468




#4: BatchNorm

-different batches for real and fake
-when batchnorm is not an option use instance norm




#5: Avoid Sparse Gradients: ReLU, MaxPool

-the stability of the GAN game suffers
-LeakyRelLU (both G and D)
-Downsampling: Average Pooling, Conv2d + stride

-Upsampling: PixelShuffle, ConvTranspose2d + stride
- PixelShuffle: https://arxiv.org/abs/1609.05158




#6: Soft and Noisy Labels

-Label Smoothing

-making the labels the noisy a bit for the discriminator, sometimes
-Salimans et. al. 2016



#7: Architectures: DCGANSs / Hybrids

-DCGAN when you can

.if you cant use DCGANs and no model is stable,
-use a hybrid model : KL + GAN or VAE + GAN

-ResNets from WGAN-gp also work pretty well (but are very slow)

- https://github.com/igul222/improved_wgan_training

-Width matters more than Depth



#8: Stability tricks from RL

-Experience replay
-Things that work for deep deterministic policy gradients
-See Pfau & Vinyals (2016)



#9: Optimizer: ADAM

-optim.Adam rules!
- See Radford et. al. 2015

-[MMathieu] Use SGD for discriminator and ADAM for generator



#10: Use Gradient Penalty

-Regularize the norm of the gradients
- multiple theories on why this is useful (WGAN-GP, DRAGAN, Stabilizing GANs by Regularization etc.)



#11: Dont balance via loss statistics
(classic GAN)

-Dont try to find a (number of G/ number of D) schedule to uncollapse
training

-while lossD > X;

-train D

-while lossG > X:

-train G



#12: If you have labels, use them

-if you have labels available, training the discriminator to also classify the
samples: auxillary GANs



#13: Add noise to inputs, decay over time

-Add some artificial noise to inputs to D (Arjovsky et. al., Huszar, 2016)

-http://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/
-https://openreview.net/forum?id=Hk4_qw5xe

-adding gaussian noise to every layer of generator (Zhao et. al. EBGAN)
- Improved GANs: OpenAl code also has it (commented out)



#14: Train discriminator more

-especially when you have noise
-hard to find a schedule of number of D iterations vs G iterations
- WGAN/WGAN-gp papers suggest 5x D iterations per G iteration




#15: Avoid discrete spaces

- Pose the generation as a continuous prediction

(C)

WX

Conneau, Lample et. al. “"Word Translation Without Parallel Data”



Conditional GANs



Conditional generative adversarial networks (CGAN)

@ Condition generation on additional info y (e.g. class label,
another image)

@ D has to determine if samples are realistic given y

Z~ pnoise(z) Yy ~ pdata )

[OOO00] OOO]

Genelrat!ve
network X, Y~ Pgata(X; Y)
| x _y
Joe00) [CC00) (GO0
L L
Discriminative Discriminative
network network
D tris to D tris to
output 0 output 1

[Mirza and Osindero (2014); Gauthier (2014)]




#16: Discrete Variables

-Use an Embedding layer

-Add as additional channels to images

-Keep embedding dimensionality low and upsample to match image
channel size




Conclusion

-Model stability is improving
-Theory is improving
-Hacks are a stop-gap



Deep Generative Image Models using a Laplacian

Pyramid of Adversarial Networks

Emily Denton'*, Soumith Chintala®*,
Arthur Szlam?, Rob Fergus2

INew York University
2Facebook Al Research
*Denotes equal contribution

December 16, 2015




Laplacian pyramid (Burt & Adelson, 1983)

Low pass filtered images

Band-pass filtered
images




Training procedure

@ Train conditional
GAN for each level of
Laplacian pyramid

@ G learns to generate
high frequency
structure consistent
with low frequency
Image

E. Denton, S. Chintala, et al.

Real/Generated?

Laplacian Pyramid of Generative Adversarial Nets



Training procedure

Each level of Laplacian pyramid trained independently

Real/

Generated?

. . Generated?
Real/Generated?

Real/Generated?




Sampling procedure
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LSUN coarse-to-fine chain

'1'1"'

T

4 .N ':.




LSUN church samples




PROGRESSIVE GROWING OF GANS FOR IMPROVED
QUALITY, STABILITY, AND VARIATION

Tero Karras Timo Aila Samuli Laine Jaakko Lehtinen
NVIDIA NVIDIA NVIDIA NVIDIA and Aalto University

{tkarras,taila,slaine, jlehtinen}@nvidia.com

ICLR 2018

(Probably) current state-of-art generations



G Latent Latent Latent
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Ax4 Ax4 Ax4

Training progresses >

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4 x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here | N x N | refers to convolutional layers operating on N x N spatial

resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.




Smooth blending with scale increase

! | !
(5 16x16 16x16 16x16
2X 2X
v 32x32
! l 32x32 l
toRGB toRGB toRGB toRGB
l Tavya l
__________________________________________________________ O
v l ¥ v
D fromRGB S fromRGB fromRGB
.5X
32x32 32x32
f RGB
rO”I 0.5x 0.5x
1—a$a J
16x16 16x16 16x16

(a) * (b) (c) *



CELEBA LSUN BEDROOM

Training configuration Sliced Wasserstein distance x10% | MS-SSIM | Sliced Wasserstein distance x10% | MS-SSIM
128 64 32 16 Avg 128 64 32 16 Avg

(a) Gulrajani et al. (2017) 1299 7.79 7.62 8.73 9.28 0.2854 11.97 10.51 8.03 14.48 11.25 0.0587

(b) + Progressive growing 462 264 378 606 4.28 0.2838 7.09 6.27 740 9.64 7.60 0.0615

(c) + Small minibatch 75.42 41.33 41.62 26.57 46.23 0.4065 7273 40.16 42775 42.46 49.52 0.1061

(d) + Revised training parameters 920 653 471 11.84 8.07 0.3027 739 551 3.65 9.63 6.54 0.0662
(e*) + Minibatch discrimination 10.76  6.28 6.04 16.29 9.84 0.3057 10.29 6.22 532 11.88 8.43 0.0648

(e)  Minibatch stddev 1394 5.67 282 571 7.04 0.2950 777 523 327 9.64 6.48 0.0671
(f) + Equalized learning rate 442 328 232 752 439 0.2902 3.61 332 271 644 4.02 0.0668
(g) + Pixelwise normalization 4.06 3.04 2.02 513 3.56 0.2845 3.89 3.05 324 3587 4.01 0.0640
(h) Converged 242 217 224 499 296 0.2828 347 2.60 230 4.87 331 0.0636

Table 1: Sliced Wasserstein distance (SWD) between the generated and training images (Section 5)
and multi-scale structural similarity (MS-SSIM) among the generated 1images for several training
setups at 128 x 128. For SWD, each column represents one level of the Laplacian pyramid, and the
last one gives an average of the four distances.

(h) Converged

Figure 3: (a) — (g) CELEBA examples corresponding to rows in Table 1. These are intentionally
non-converged. (h) Our converged result. Notice that some 1images show aliasing and some are not
sharp — this 1s a flaw of the dataset, which the model learns to replicate faithfully.
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igure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for ¢
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Unpaired Image-to-Image Translation
with CycleGAN

Jun-Yan Zhu and Taesung Park
Joint work with Phillip Isola and Alexei A. Efros




Image-to-Image Translation with pix2pix

Labels to Street Scene Labels to Facade BW to Color

input output
P Aerial to Map g

input oput input output

output
INPUT OUTPUT

* o Image-to-image Translation with Conditional Adversarial Nets
| Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. CVPR 2017

m
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Palred

Horse < zebra: how to get zebras?

- Expensive to collect pairs.
- Impossible in many scenarios.




Unpaired
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No input-output pairs!
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mode collapse!




Cycle-Consistent Adversarial Networks

[Zhu*, Park™*, Isola, and Efros, ICCV 2017]



Cycle-Consistent Adversarial Networks

° [Mark Twain, 1903] .

[Zhu*, Park™*, Isola, and Efros, ICCV 2017]



Cycle-Consistent Adversarial Networks

. \
Reconstruction | . \

error

[Zhu*, Park™*, Isola, and Efros, ICCV 2017]



Cycle Consistency Loss

bang# cycle loss

G
/\
€T
?fﬁQ(OM Y
Reconstruction
error

[Zhu*, Park™*, Isola, and Efros, ICCV 2017]



Cycle Consistency Loss

X Reconstruction
R tructi ; @\

See similar formulations [Yi et al. 2017], [Kim et al. 2017] [Zhu™, Park*, Isola, and Efros, ICCV 2017]




Results









Collection Style Transfer

Photogra
@ Alexei Efros
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Monet’s paintings — photos
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Monet’s paintings = photos







Map — Photo Photo — Map

Loss % Turkers labeled real % Turkers labeled real
CoGAN [30] 0.6% + 0.5% 0.9% + 0.5%
BiGAN/ALI [8, 6] 2.1% + 1.0% 1.9% + 0.9%
SimGAN [45] 0.7% + 0.5% 2.6% + 1.1%
Feature loss + GAN 1.2% + 0.6% 0.3% + 0.2%
CycleGAN (ours) 26.8% + 2.8% 23.2% + 3.4%

AMT ‘real vs fake’ test on maps < aerial

Loss Per-pixel acc. Per-class acc. Class IOU
CoGAN [30] 0.40 0.10 0.06
BiGAN/ALI [&, 6] 0.19 0.06 0.02
SimGAN [45] 0.20 0.10 0.04
Feature loss + GAN 0.06 0.04 0.01
CycleGAN (ours) 0.52 0.17 0.11

FCN scores on cityscapes labels— photos

Loss Per-pixel acc. Per-class acc. Class IOU
CoGAN [30] 0.45 0.11 0.08
BiGAN/ALI [&, 6] 041 0.13 0.07
SimGAN [45] 0.47 0.11 0.07
Feature loss + GAN 0.50 0.10 0.06
CycleGAN (ours) 0.58 0.22 0.16

Classification performance of photo—labels



CycleGAN implementations

PyTorch

Torch

pytorch-CycleGAN-and-pix2pix

Image-to-image translation in PyTorch (e.g., horse2zebra,
edges2cats, and more)

@ Python W43k ¥ 970

CycleGAN

Software that can generate photos from paintings, turn
horses into zebras, perform style transfer, and more.

@®Lua K65k ¥ 940

20+ implementations by researchers/developers:
 Tensorflow, Chainer, mxnet, Lasagne, Keras...



Disentangling Content and Pose

with an Adversarial loss
(%//

NYU

Emily Denton

CVPR GAN Tutorial
June 2018




Generative adversarial network framework:

Adversarial
objective

A
|
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\ Generator /
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Generative adversarial network framework: Adversarial losses to shape representations:

Adversarial Task objective: _
objective (e.g. classification, Adversarial
| reconstruction, etc.) °bjeft've
I | .
| |
1 1
/ Discriminator\ Task \ / i
Discriminator
network
H ; :
| | |
| |
X | !
4 I .
| I |
|

Generator Encoder
network
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Denton and Birodkar. Unsupervised

DrN et: two se pe rate enCOderS Learning of Disentangled Representations
from Video. NIPS, 2017

a Content encoder

~

|| q—
-/

\_ Pose encoder

~

/

Time invariant

information:
Lighting/Background
|dentity/clothing

Time varying
information:
Pose of body




Denton and Birodkar. Unsupervised

Image SyntheSiS by ana|09y Learning of Disentangled Representations
from Video. NIPS, 2017

\ Content encoder A
~— rJ I / Frame decoder \
2y - J L =~I
N e
/ Pose encoder y
Can transfer from one
Pose image and pose from another to

image synthesize a new image



Denton and Birodkar. Unsupervised

Image SyntheSiS by ana|09y Learning of Disentangled Representations
from Video. NIPS, 2017

Pose

A A A A I I 2 2 A A

Content




Denton and Birodkar. Unsupervised

Inte rpOIation in pOSe S pace Learning of Disentangled Representations
from Video. NIPS, 2017

Interpolations
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Decoder maps
back to pixels:




KTH long term video generation

Denton and Birodkar. Unsupervised
Learning of Disentangled Representations
from Video. NIPS, 2017



Task objective:

: ificati Adversarial
Part Il: Survey of adversarial (€.g. classification, orse
art .Su y reconstruction, etc.) objective
losses in feature space .* !
Task

Discriminator
network

Encoder
network

X




Domain adaptation

Labelled examples from source domain,
few or no labels from target domain

Source domain Target domain

5 A
5141 |




Domain adaptation

Classification loss Labelled examples from source domain,
] few or no labels from target domain
I
Classifier

Source encoder

Target domain

5 . A
5141 |




Domain adaptation

Adversarial loss can be used to
learn domain invariant features,

Classification loss Adversarial loss . o
) ) allowing source classifier to
| .
: | transfer to target domain
|
N Domain
Classifier discriminator

Source encoder Target encoder

5. A
1514% }1°




Domain adaptation

Classification loss

A

Classifier

Adversarial loss

A
|
|
]

Domain

discriminator

Source encoder

Gradient reversal [Ganin and
Lempitsky, 2015]

Label flip [Tzeng et al. 2017]

Uniform target [Tzeng et al. 2015]

Target encoder

15 E
HUE



Learning fair representations

Closely related to problem of domain

adaptation Predict sensitive

> source/transfer domain vs. demographic Predict label attrl?bute
groups : :
Different formulations of adversarial objectives Task Discriminator
achieve different notions of fairness network

o Edwards & Storkey, 2016
o Beutel et al. 2017 L — e e —

o Zhang et al. 2018

o Madras et al. 2018
Encoder
network

X




Independent components

Kim and Mnih. Disentangling by Factorising.

q(z|x) VAE p(x|z) ICML, 2018

NIEARY ;. . d . PN \
(22,292 ~ q(2) = [ paata(x)g(z|x)da

randomly permute : .
each dimension - Discriminator
+

across batch

Cross-entropy loss

- i) \RB for classifying samples
(Zperm )i—1 »|INput| —— | > -b@ from each class

- encouraging ¢z ) to
be factorised

 Discriminate marginal distribution vs. product of marginals: q(z, ..., z,) vs. 11q(z)

« Earlier work on discrete code setting by Schmidhuber (1992)



Prior distributions of generative models

q(z|x)

X z ~ q(z)

/—)-—)-—)-—)»—3-—:»/

Draw samples } Adversarial cost
from p(z) | 4+ for distinguishing

0 >|Input|=>1 P> positive samples p(z)

Adversarial feature learning:

GAN loss in image space and latent space
[Dumoulin et al. 2017; Donahue et al. 2017]

from negative samples ¢(z)

Adversarial autoencoders:
/ Match aggregate approx posterior q(z)

[Makhzani et al. 2016]

Adversarial variational bayes:
Match approx posterior q(z|x)
[Mescheder et al. 2017]
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