
Overview of Unsupervised Learning
&

Generative Adversarial Networks
Lecture 10

Slides from: Emily Denton, Ian Goodfellow, Soumith Chintala

Auto-Encoder

EncoderDecoder

Input

Features

• Encoder/Decoder will be deep network
• Slightly different architectures for decoder (needs to output image)
• Architecture depends on application

Feed-back /
generative /
top-down
path

Feed-forward /
bottom-up path

Variational Auto-Encoder

Encoder
q(z|x)

Decoder
p(x|z)

Input x

Features z

• Makes auto-encoder into a true generative model

At training
time only

Prior p(z)
Motivation

Deep generative models: Intro
Deep generative models: Recent algorithms

Extensions

Variational autoencoders
Generative adversarial networks
Generative moment matching networks
Evaluating generative models

Variational autoencoder

Rearranging the ELBO:

L(x; ✓,�) =

Z

z
q�(z|x) log

p(x, z)

q�(z|x)

=

Z

z
q�(z|x) log

p(x|z)p(z)
q�(z|x)

=

Z

z
q�(z|x) log p(x|z) +

Z

z
q�(z|x) log

p(z)

q�(z|x)

= Eq(z|x) log p(x|z)� Eq(z|x) log
q(z|x)
p(z)

= Eq(z|x) log p(x|z)| {z }
Reconstruction term

�DKL(q(z|x)||p(z))| {z }
Prior term

Emily Denton Deep generative models of natural images

[Kingma & Welling 2013]

e.g. N(0,I)

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Directed graphical models

x

z

We assume data is generated by:

z ⇠ p(z) x ⇠ p(x|z)

z is latent/hidden x is observed (image)

Use ✓ to denote parameters of the generative model

Emily Denton Deep generative models of natural images

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Parameter estimation

Given dataset {x1, ..., xn}, maximize likelihood of data
under model:

max
✓

nX

i=1

log p(xi; ✓) = max
✓

nX

i=1

X

z

log p(xi, z; ✓)

This quantity often intractable, di�cult to optimize
directly

Can be optimized with iterative Expectation Maximization
(EM) algorithm

Fix parameters and compute log likelihood wrt p(z|x; ✓t)
Fix z find parameters ✓(t+1) to maximize log likelihood

Emily Denton Deep generative models of natural images

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Parameter estimation

Standard EM requires access to
posterior p(z|x)

For the deep neural net models we
care about this is infeasible

Solution: introduce variational
approximation q(z;�) to p(z|x)

Will give bound on log likelihood

:���

:���

:���

]���

]���

]���

[

Emily Denton Deep generative models of natural images

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Bounding the marginal likelihood

Recall Jenson’s inequality: When f is concave, f(E[x]) � E[f(x)]

log p(x) = log

Z

z
p(x, z)

= log

Z

z
q(z)

p(x, z)

q(z)

�
Z

z
q(z) log

p(x, z)

q(z)
= L(x; ✓,�) (by Jensons inequality)

=

Z

z
q(z) log p(x, z)�

Z

z
q(z) log q(z)

= Eq(z)[log p(x, z)]| {z }
Expectation of joint distribution

+H(q(z))| {z }
Entropy

Emily Denton Deep generative models of natural images

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Bound is tight when variational approximation matches true
posterior:

log p(x)� L(x; ✓,�) = log p(x)�
Z

z
q(z) log

p(x, z)

q(z)

=

Z

z
q(z) log p(x)�

Z

z
q(z) log

p(x, z)

q(z)

=

Z

z
q(z) log

q(z)p(x)

p(x, z)

=

Z

z
q(z) log

q(z)

p(z|x)
= DKL(q(z;�)||p(z|x))

Emily Denton Deep generative models of natural images

Evidence Lower
BOund (ELBO)

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Learning directed graphical models

Maximize bound on likelihood of data:

max
✓

NX

i=1

log p(xi; ✓) � max
✓,�1,...,�N

NX

i=1

L(xi; ✓,�i)

Historically, used di↵erent �i for every data point
But we’ll move away from this soon..

Can still use EM style algorithm to iteratively optimize

For more info see Blei et al. (2003)

Emily Denton Deep generative models of natural images

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

New method of learning: approximate inference model

Instead of having di↵erent variational parameters for each
data point, fit a conditional parametric function

The output of this function will be the parameters of the
variational distribution q(z|x)

Instead of q(z) we have q�(z|x)

ELBO becomes:

L(x; ✓,�) = Eq�(z|x)[log p✓(x, z)]| {z }
Expectation of joint distribution

+H(q�(z|x))| {z }
Entropy

Emily Denton Deep generative models of natural images

Evidence Lower BOund (ELBO)

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

Variational autoencoder

Encoder network maps from
image space to latent space

Outputs parameters of
q�(z|x)

Decoder maps from latent
space back into image space

Outputs parameters of
p✓(x|z)

[Kingma & Welling (2013)]

(QFRGHU�
,QIHUHQFH�QHWZRUN

]�a�TṞ��]_[�

[

'HFRGHU�
*HQHUDWLYH�QHWZRUN

]

[�a�SḎ��[_]�
A

Emily Denton Deep generative models of natural images

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

Example

Encoder network outputs
mean and variance of Normal
distribution

q�(z|x) = N (µ�(x),��(x))

Decoder network outputs
mean (and optionally
variance) of Normal
distribution

p✓(x|z) = N (µ✓(z), I)

[Kingma & Welling (2013)]

(QFRGHU�
,QIHUHQFH�QHWZRUN

]�a�TṞ��]_[�

[

'HFRGHU�
*HQHUDWLYH�QHWZRUN

]

[�a�SḎ��[_]�
A

Emily Denton Deep generative models of natural images

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

Variational autoencoder

Rearranging the ELBO:

L(x; ✓,�) =

Z

z
q(z|x) log p(x, z)

q(z|x)

=

Z

z
q(z|x) log p(x|z)p(z)

q(z|x)

=

Z

z
q(z|x) log p(x|z) +

Z

z
q(z|x) log p(z)

q(z|x)

= Eq(z|x) log p(x|z)� Eq(z|x) log
q(z|x)
p(z)

= Eq(z|x) log p(x|z)| {z }
Reconstruction term

�DKL(q(z|x)||p(z))| {z }
Prior term

Emily Denton Deep generative models of natural images

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

Variational autoencoder

Inference network outputs
parameters of q�(z|x)

Generative network outputs
parameters of p✓(x|z)

Optimize ✓ and � jointly by
maximizing ELBO:

L(x; ✓,�) = Eq(z|x) log p(x|z)| {z }
Reconstruction term

�DKL(q(z|x)||p(z))| {z }
Prior term

(QFRGHU�
,QIHUHQFH�QHWZRUN

]�a�TṞ��]_[�

[

'HFRGHU�
*HQHUDWLYH�QHWZRUN

]

[�a�SḎ��[_]�
A

Emily Denton Deep generative models of natural images

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

Stochastic gradient variation bayes (SGVB) estimator

Reparameterization trick : re-parameterize z ⇠ q�(z|x) as

z = g�(x, ✏) with ✏ ⇠ p(✏)

For example, with a Gaussian can write z ⇠ N (µ,�2) as

z = µ+ ✏�2 with ✏ ⇠ N (0, 1)

[Kingma & Welling (2013); Rezende et al. (2014)]

Emily Denton Deep generative models of natural images

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

Stochastic gradient variation bayes (SGVB) estimator

L(x; ✓,�) = Eq(z|x) log p(x|z)| {z }
Reconstruction term

�DKL(q(z|x)||p(z))| {z }
Prior term

Using reparameterization trick we form Monte Carlo
estimate of reconstruction term:

Eq�(z|x) log p✓(x|z) = Ep(✏) log p✓(x|g�(x, ✏))

' 1

L

LX

i=1

log p✓(x|g�(x, ✏)) where ✏ ⇠ p(✏)

KL divergence term can often be computed analytically
(eg. Gaussian)

Emily Denton Deep generative models of natural images

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

VAE learned manifold

[Kingma & Welling (2013)]

Emily Denton Deep generative models of natural images

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

VAE samples

[Kingma & Welling (2013)]

Emily Denton Deep generative models of natural images

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

VAE tradeo↵s

Pros:
Theoretically pleasing
Optimizes bound on likelihood
Easy to implement

Cons:
Samples tend to be blurry

Maximum likelihood minimizes DKL(pdata||pmodel)

[Theis et al. (2016)]

Emily Denton Deep generative models of natural images

Generative Adversarial Networks

Discriminator
D

Generator
G

Sample x

Features z

• Mini—max game between G and D

Decoder-only
model but with
adversarial loss term

Prior p(z)
[Goodfellow et al. 2014]

e.g. N(0,I)

^

outputs different. The output in question is a single scalar. In GANs, one network produces a rich,
high dimensional vector that is used as the input to another network, and attempts to choose an input
that the other network does not know how to process. 3) The specification of the learning process
is different. Predictability minimization is described as an optimization problem with an objective
function to be minimized, and learning approaches the minimum of the objective function. GANs
are based on a minimax game rather than an optimization problem, and have a value function that
one agent seeks to maximize and the other seeks to minimize. The game terminates at a saddle point
that is a minimum with respect to one player’s strategy and a maximum with respect to the other
player’s strategy.

Generative adversarial networks has been sometimes confused with the related concept of “adversar-
ial examples” [28]. Adversarial examples are examples found by using gradient-based optimization
directly on the input to a classification network, in order to find examples that are similar to the
data yet misclassified. This is different from the present work because adversarial examples are
not a mechanism for training a generative model. Instead, adversarial examples are primarily an
analysis tool for showing that neural networks behave in intriguing ways, often confidently clas-
sifying two images differently with high confidence even though the difference between them is
imperceptible to a human observer. The existence of such adversarial examples does suggest that
generative adversarial network training could be inefficient, because they show that it is possible to
make modern discriminative networks confidently recognize a class without emulating any of the
human-perceptible attributes of that class.

3 Adversarial nets

The adversarial modeling framework is most straightforward to apply when the models are both
multilayer perceptrons. To learn the generator’s distribution pg over data x, we define a prior on
input noise variables pz(z), then represent a mapping to data space as G(z; ✓g), where G is a
differentiable function represented by a multilayer perceptron with parameters ✓g . We also define a
second multilayer perceptron D(x; ✓d) that outputs a single scalar. D(x) represents the probability
that x came from the data rather than pg . We train D to maximize the probability of assigning the
correct label to both training examples and samples from G. We simultaneously train G to minimize
log(1 � D(G(z))). In other words, D and G play the following two-player minimax game with
value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. The procedure is formally presented in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Stacked Auto-Encoders

Encoder1Decoder1

Input

High-level features

Features

Encoder2Decoder2

Features

Encoder3Decoder3

• Ladder Networks
[Rasmus et al. 2015]
• Reconstruction

constraint at each
layer

• Trained end-to-end

• Can be trained layer-wise
- Stacked RBMs
[Hinton & Salakhutdinov 2006]

Many Others Approaches

• Autoencoder (most unsupervised Deep Learning methods)
– Restricted / Deep Boltzmann Machines
– Denoising autoencoders
– Predictive sparse decomposition

• Decoder-only
– Sparse coding & hierarchical variants

Motivation
Background

Recent algorithms
Evaluating generative models

Extensions

Variational autoencoders
Autoregressive models
Generative adversarial networks
Generative moment matching networks

Autoregressive models

Tractably model a joint distribution of the pixels in the
image

Learn to predict the next pixel given all the previously
generated pixels

Joint distribution of all pixels just product of conditionals:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1)

Emily Denton Deep generative models of natural images

Pixel-CNN
• Conditional generative model of images
• Generate each pixel, in raster-scan order
• Just predict distribution over a single pixel (can be multi-modal)
• See also Video Pixel Networks [Kalchbrenner et al., 2016],
• NADE [Larochelle & Murray 2011] & RIDE [Theis and Bethge, NIPS 2015].

0 255 1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Blind spot

Horizontal stack

Vertical stack

Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel xi the model can only condition on the previously generated pixels
x1, . . . xi�1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
We show that a single Conditional PixelCNN model can be used to generate images from diverse
classes such as dogs, lawn mowers and coral reefs, by simply conditioning on a one-hot encoding
of the class. Similarly one can use embeddings that capture high level information of an image to
generate a large variety of images with similar features. This gives us insight into the invariances
encoded in the embeddings — e.g., we can generate different poses of the same person based on a
single image. The same framework can also be used to analyse and interpret different layers and
activations in deep neural networks.

2 Gated PixelCNN

PixelCNNs (and PixelRNNs) [30] model the joint distribution of pixels over an image x as the
following product of conditional distributions, where xi is a single pixel:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1). (1)

The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi�1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
sure the CNN can only use information about pixels above and to the left of the current pixel, the
filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is

2

0 255 1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Blind spot

Horizontal stack

Vertical stack

Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel xi the model can only condition on the previously generated pixels
x1, . . . xi�1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
We show that a single Conditional PixelCNN model can be used to generate images from diverse
classes such as dogs, lawn mowers and coral reefs, by simply conditioning on a one-hot encoding
of the class. Similarly one can use embeddings that capture high level information of an image to
generate a large variety of images with similar features. This gives us insight into the invariances
encoded in the embeddings — e.g., we can generate different poses of the same person based on a
single image. The same framework can also be used to analyse and interpret different layers and
activations in deep neural networks.

2 Gated PixelCNN

PixelCNNs (and PixelRNNs) [30] model the joint distribution of pixels over an image x as the
following product of conditional distributions, where xi is a single pixel:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1). (1)

The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi�1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
sure the CNN can only use information about pixels above and to the left of the current pixel, the
filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is

2

African elephant Coral Reef

Sandbar Sorrel horse

Lhasa Apso (dog) Lawn mower

Brown bear Robin (bird)

Figure 3: Class-Conditional samples from the Conditional PixelCNN.

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.

7

[van den Oord et al., arXiv 1606.05328, 2016]

Wavenet

• Generative model of raw speech waveform
• Condition on previous parts of waveform
• Dilated causal convolution layers
• Discrete output distribution (use softmax)

• In order to deal with long-range temporal dependencies needed for raw audio generation,
we develop new architectures based on dilated causal convolutions, which exhibit very
large receptive fields.

• We show that when conditioned on a speaker identity, a single model can be used to gener-
ate different voices.

• The same architecture shows strong results when tested on a small speech recognition
dataset, and is promising when used to generate other audio modalities such as music.

We believe that WaveNets provide a generic and flexible framework for tackling many applications
that rely on audio generation (e.g. TTS, music, speech enhancement, voice conversion, source sep-
aration).

2 WAVENET

In this paper we introduce a new generative model operating directly on the raw audio waveform.
The joint probability of a waveform x = {x1, . . . , xT } is factorised as a product of conditional
probabilities as follows:

p (x) =
TY

t=1

p (xt | x1, . . . , xt�1) (1)

Each audio sample xt is therefore conditioned on the samples at all previous timesteps.

Similarly to PixelCNNs (van den Oord et al., 2016a;b), the conditional probability distribution is
modelled by a stack of convolutional layers. There are no pooling layers in the network, and the
output of the model has the same time dimensionality as the input. The model outputs a categorical
distribution over the next value xt with a softmax layer and it is optimized to maximize the log-
likelihood of the data w.r.t. the parameters. Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting.

2.1 DILATED CAUSAL CONVOLUTIONS

Input

Hidden Layer

Hidden Layer

Hidden Layer

Output

Figure 2: Visualization of a stack of causal convolutional layers.

The main ingredient of WaveNet are causal convolutions. By using causal convolutions, we
make sure the model cannot violate the ordering in which we model the data: the prediction
p (xt+1 | x1, ..., xt) emitted by the model at timestep t cannot depend on any of the future timesteps
xt+1, xt+2, . . . , xT as shown in Fig. 2. For images, the equivalent of a causal convolution is a
masked convolution (van den Oord et al., 2016a) which can be implemented by constructing a mask
tensor and doing an elementwise multiplication of this mask with the convolution kernel before ap-
plying it. For 1-D data such as audio one can more easily implement this by shifting the output of a
normal convolution by a few timesteps.

At training time, the conditional predictions for all timesteps can be made in parallel because all
timesteps of ground truth x are known. When generating with the model, the predictions are se-
quential: after each sample is predicted, it is fed back into the network to predict the next sample.

2

[van den Oord et al., arXiv 1609.03499, 2016]

Generative Adversarial Networks

Slides from: Emily Denton, Ian Goodfellow, Soumith Chintala

Generative Adversarial Networks
• [Generative Adversarial Nets, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,

Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, NIPS 2014]
• Focus on sample generation

(Goodfellow 2018)

Generative Modeling: Density
Estimation

Training Data Density Function

(Goodfellow 2018)

Generative Modeling:
Sample Generation

Training Data Sample Generator
(CelebA) (Karras et al, 2017)

Generative Adversarial Network
▪ Initial application to still images

▪ Way to train generative model to match distribution of data

▪ Discriminator network predicts if input image is from data (real) or model (fake)

Discriminator
Network

Real

Dataset

[Goodfellow et al. NIPS 2014]

Random
index

Generative Adversarial Network
▪ Initial application to still images

▪ Way to train generative model to match distribution of data

▪ Discriminator network predicts if input image is from data (real) or model (fake)

Discriminator
Network

Fake

Dataset

[Goodfellow et al. NIPS 2014]

Random
index Update

parameters

Generative Adversarial Network
▪ Initial application to still images

▪ Way to train generative model to match distribution of data

▪ Discriminator network predicts if input image is from data (real) or model (fake)

▪ Generator network tries to confuse Discriminator

Discriminator
Network

Fake

[Goodfellow et al. NIPS 2014]

Generator
Network

Random
noise

Update
parameters

Generative Adversarial Network
▪ Initial application to still images

▪ Way to train generative model to match distribution of data

▪ Discriminator network predicts if input image is from data (real) or model (fake)

▪ Generator network tries to confuse discriminator

Discriminator
Network

Real

[Goodfellow et al. NIPS 2014]

Generator
Network

Random
noise

Update
parameters

Update
parameters

Generative Adversarial Network
▪ Initial application to still images

▪ Way to train generative model to match distribution of data

▪ Discriminator network predicts if input image is from data (real) or model (fake)

▪ Generator network tries to confuse Discriminator

Discriminator
Network

Real/
Fake

[Goodfellow et al. NIPS 2014]

Generator
Network

Noise
Distribution

Data
Distribution

Model
Distribution

Generative Adversarial Networks

(Goodfellow 2018)

Adversarial Nets Framework

x sampled from
data

Differentiable
function D

D(x) tries to be
near 1

Input noise z

Differentiable
function G

x sampled from
model

D

D tries to make
D(G(z)) near 0,
G tries to make
D(G(z)) near 1

(Goodfellow et al., 2014)

Generative Adversarial Networks

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

• Minimax value function:

Zero-sum game

17

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Generator
pushes
down

Discriminator
pushes up

Discriminator’s
ability to

recognize data as
being real

Discriminator’s
ability to
recognize
generator

samples as being
fake

[Generative Adversarial Nets, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, Yoshua Bengio, NIPS 2014]

[Slide: Ian Goodfellow, Deep Learning workshop, ICML 2015]

Generative Adversarial Networks

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Learning process

22

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Poorly fit model After updating D After updating G Mixed strategy
equilibrium

Data distribution
Model distribution

D(x)

[Slide: Ian Goodfellow, Deep Learning workshop, ICML 2015]

Generative Adversarial Networks

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Learning process

22

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Poorly fit model After updating D After updating G Mixed strategy
equilibrium

Data distribution
Model distribution

D(x)

[Slide: Ian Goodfellow, Deep Learning workshop, ICML 2015]

Generative Adversarial Networks

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Learning process

22

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Poorly fit model After updating D After updating G Mixed strategy
equilibrium

Data distribution
Model distribution

D(x)

[Slide: Ian Goodfellow, Deep Learning workshop, ICML 2015]

Generative Adversarial Networks

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Learning process

22

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Poorly fit model After updating D After updating G Mixed strategy
equilibrium

Data distribution
Model distribution

D(x)

[Slide: Ian Goodfellow, Deep Learning workshop, ICML 2015]

Adversarial Network Samples

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Visualization of model samples

25

MNIST TFD

CIFAR-10 (fully connected) CIFAR-10 (convolutional)[Slide: Ian Goodfellow, Deep Learning workshop, ICML 2015]

DCGAN
● First to generate plausible results at 64x64.
● Improved architectures for

generator/discriminator
● Most GAN architectures used now are

similar

● Lots of tricks
to get GANs to
train well

Under review as a conference paper at ICLR 2016

UNSUPERVISED REPRESENTATION LEARNING
WITH DEEP CONVOLUTIONAL
GENERATIVE ADVERSARIAL NETWORKS

Alec Radford & Luke Metz
indico Research
Boston, MA
{alec,luke}@indico.io

Soumith Chintala
Facebook AI Research
New York, NY
soumith@fb.com

ABSTRACT

In recent years, supervised learning with convolutional networks (CNNs) has
seen huge adoption in computer vision applications. Comparatively, unsupervised
learning with CNNs has received less attention. In this work we hope to help
bridge the gap between the success of CNNs for supervised learning and unsuper-
vised learning. We introduce a class of CNNs called deep convolutional generative
adversarial networks (DCGANs), that have certain architectural constraints, and
demonstrate that they are a strong candidate for unsupervised learning. Training
on various image datasets, we show convincing evidence that our deep convolu-
tional adversarial pair learns a hierarchy of representations from object parts to
scenes in both the generator and discriminator. Additionally, we use the learned
features for novel tasks - demonstrating their applicability as general image repre-
sentations.

1 INTRODUCTION

Learning reusable feature representations from large unlabeled datasets has been an area of active
research. In the context of computer vision, one can leverage the practically unlimited amount of
unlabeled images and videos to learn good intermediate representations, which can then be used on
a variety of supervised learning tasks such as image classification. We propose that one way to build
good image representations is by training Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014), and later reusing parts of the generator and discriminator networks as feature extractors
for supervised tasks. GANs provide an attractive alternative to maximum likelihood techniques.
One can additionally argue that their learning process and the lack of a heuristic cost function (such
as pixel-wise independent mean-square error) are attractive to representation learning. GANs have
been known to be unstable to train, often resulting in generators that produce nonsensical outputs.
There has been very limited published research in trying to understand and visualize what GANs
learn, and the intermediate representations of multi-layer GANs.

In this paper, we make the following contributions

• We propose and evaluate a set of constraints on the architectural topology of Convolutional
GANs that make them stable to train in most settings. We name this class of architectures
Deep Convolutional GANs (DCGAN)

• We use the trained discriminators for image classification tasks, showing competitive per-
formance with other unsupervised algorithms.

• We visualize the filters learnt by GANs and empirically show that specific filters have
learned to draw specific objects.

1

ar
X

iv
:1

51
1.

06
43

4v
2

 [c
s.L

G
]

7
Ja

n
20

16 ICLR 2016

Under review as a conference paper at ICLR 2016

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

4.3 IMAGENET-1K

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We
train on 32⇥ 32 min-resized center crops. No data augmentation was applied to the images.

5

(Goodfellow 2018)

3.5 Years of Progress on Faces

2014 2015 2016 2017

(Brundage et al, 2018)

(Goodfellow 2018)

<2 Years of Progress on ImageNet

monarch butterfly goldfinch daisy grey whaleredshank

Published as a conference paper at ICLR 2018

Figure 7: 128x128 pixel images generated by SN-GANs trained on ILSVRC2012 dataset. The
inception score is 21.1±.35.

14

monarch butterfly goldfinch daisy grey whaleredshank

monarch butterfly goldfinch daisy grey whaleredshank

Odena et al
2016

Miyato et al
2017

Zhang et al
2018

The GAN Zoo

https://github.com/hindupuravinash/the-gan-zoo

https://github.com/hindupuravinash/the-gan-zoo

Evaluation of GANs
• Short answer: hard; look at quality of samples
• Computing log-likelihood not directly possible

LLH is problematic.
See [A note on the evaluation of generative models, Lucas
Theis, Aäron van den Oord, Matthias Bethge, ICLR 2016]

• Inception score
• User-study: can humans tell fake from real?

https://arxiv.org/abs/1511.01844

Evaluation of GANs
• Short answer: look at quality of samples
• Computing log-likelihood not directly possible

LLH is problematic.
See [A note on the evaluation of generative models, Lucas
Theis, Aäron van den Oord, Matthias Bethge, ICLR 2016]

• Inception score
• User-study: can humans tell fake from real?

Inception Score
Proposed in 2016

https://arxiv.org/abs/1511.01844

Inception Score
• Send generated image through Inception model (trained

on Imagenet)

Inception Score
• Send generated image through Inception model (trained

on Imagenet)

Conditional generative adversarial networks (CGAN)

Condition generation on additional info y (e.g. class label,

another image)

D has to determine if samples are realistic given y

[Mirza and Osindero (2014); Gauthier (2014)]

E. Denton, S. Chintala, et al. Laplacian Pyramid of Generative Adversarial Nets

Deep Generative Image Models using a Laplacian

Pyramid of Adversarial Networks

Emily Denton
1⇤
, Soumith Chintala

2⇤
,

Arthur Szlam
2
, Rob Fergus

2

1New York University
2Facebook AI Research

⇤Denotes equal contribution

December 16, 2015

E. Denton, S. Chintala, et al. Laplacian Pyramid of Generative Adversarial Nets

Laplacian pyramid (Burt & Adelson, 1983)

E. Denton, S. Chintala, et al. Laplacian Pyramid of Generative Adversarial Nets

Training procedure

Train conditional

GAN for each level of

Laplacian pyramid

G learns to generate

high frequency

structure consistent

with low frequency

image

E. Denton, S. Chintala, et al. Laplacian Pyramid of Generative Adversarial Nets

Training procedure

Each level of Laplacian pyramid trained independently

E. Denton, S. Chintala, et al. Laplacian Pyramid of Generative Adversarial Nets

Sampling procedure

G2

~ I3

G3

z2

~ h2

z3

G1

z1
G0

z0

~ I2 l2

~ I0

h0
~

I1
~

~ h1

l1

l0

E. Denton, S. Chintala, et al. Laplacian Pyramid of Generative Adversarial Nets

LSUN coarse-to-fine chain

E. Denton, S. Chintala, et al. Laplacian Pyramid of Generative Adversarial Nets

LSUN church samples

E. Denton, S. Chintala, et al. Laplacian Pyramid of Generative Adversarial Nets

ICLR 2018

(Probably) current state-of-art generations

Published as a conference paper at ICLR 2018

PROGRESSIVE GROWING OF GANS FOR IMPROVED
QUALITY, STABILITY, AND VARIATION

Tero Karras

NVIDIA
{tkarras,taila,slaine,jlehtinen}@nvidia.com

Timo Aila

NVIDIA
Samuli Laine

NVIDIA
Jaakko Lehtinen

NVIDIA and Aalto University

ABSTRACT

We describe a new training methodology for generative adversarial networks. The
key idea is to grow both the generator and discriminator progressively: starting
from a low resolution, we add new layers that model increasingly fine details as
training progresses. This both speeds the training up and greatly stabilizes it, al-
lowing us to produce images of unprecedented quality, e.g., CELEBA images at
10242. We also propose a simple way to increase the variation in generated im-
ages, and achieve a record inception score of 8.80 in unsupervised CIFAR10.
Additionally, we describe several implementation details that are important for
discouraging unhealthy competition between the generator and discriminator. Fi-
nally, we suggest a new metric for evaluating GAN results, both in terms of image
quality and variation. As an additional contribution, we construct a higher-quality
version of the CELEBA dataset.

1 INTRODUCTION

Generative methods that produce novel samples from high-dimensional data distributions, such as
images, are finding widespread use, for example in speech synthesis (van den Oord et al., 2016a),
image-to-image translation (Zhu et al., 2017; Liu et al., 2017; Wang et al., 2017), and image in-
painting (Iizuka et al., 2017). Currently the most prominent approaches are autoregressive models
(van den Oord et al., 2016b;c), variational autoencoders (VAE) (Kingma & Welling, 2014), and gen-
erative adversarial networks (GAN) (Goodfellow et al., 2014). Currently they all have significant
strengths and weaknesses. Autoregressive models – such as PixelCNN – produce sharp images but
are slow to evaluate and do not have a latent representation as they directly model the conditional
distribution over pixels, potentially limiting their applicability. VAEs are easy to train but tend
to produce blurry results due to restrictions in the model, although recent work is improving this
(Kingma et al., 2016). GANs produce sharp images, albeit only in fairly small resolutions and with
somewhat limited variation, and the training continues to be unstable despite recent progress (Sali-
mans et al., 2016; Gulrajani et al., 2017; Berthelot et al., 2017; Kodali et al., 2017). Hybrid methods
combine various strengths of the three, but so far lag behind GANs in image quality (Makhzani &
Frey, 2017; Ulyanov et al., 2017; Dumoulin et al., 2016).

Typically, a GAN consists of two networks: generator and discriminator (aka critic). The generator
produces a sample, e.g., an image, from a latent code, and the distribution of these images should
ideally be indistinguishable from the training distribution. Since it is generally infeasible to engineer
a function that tells whether that is the case, a discriminator network is trained to do the assessment,
and since networks are differentiable, we also get a gradient we can use to steer both networks to
the right direction. Typically, the generator is of main interest – the discriminator is an adaptive loss
function that gets discarded once the generator has been trained.

There are multiple potential problems with this formulation. When we measure the distance between
the training distribution and the generated distribution, the gradients can point to more or less random
directions if the distributions do not have substantial overlap, i.e., are too easy to tell apart (Arjovsky
& Bottou, 2017). Originally, Jensen-Shannon divergence was used as a distance metric (Goodfellow
et al., 2014), and recently that formulation has been improved (Hjelm et al., 2017) and a number of
more stable alternatives have been proposed, including least squares (Mao et al., 2016b), absolute
deviation with margin (Zhao et al., 2017), and Wasserstein distance (Arjovsky et al., 2017; Gulrajani

1

ar
X

iv
:1

71
0.

10
19

6v
3

 [c
s.N

E]
 2

6
Fe

b
20

18

Published as a conference paper at ICLR 2018

4x4
G

D

4x4

8x8

Reals

4x4

4x4

Reals

8x8

4x4

Latent

Reals

4x4

…

Training progresses

LatentLatent

1024x1024

1024x1024

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4⇥4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here N ⇥N refers to convolutional layers operating on N ⇥ N spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024⇥ 1024.

Another benefit is the reduced training time. With progressively growing GANs most of the itera-
tions are done at lower resolutions, and comparable result quality is often obtained up to 2–6 times
faster, depending on the final output resolution.

The idea of growing GANs progressively is related to the work of Wang et al. (2017), who use mul-
tiple discriminators that operate on different spatial resolutions. That work in turn is motivated by
Durugkar et al. (2016) who use one generator and multiple discriminators concurrently, and Ghosh
et al. (2017) who do the opposite with multiple generators and one discriminator. Hierarchical
GANs (Denton et al., 2015; Huang et al., 2016; Zhang et al., 2017) define a generator and discrimi-
nator for each level of an image pyramid. These methods build on the same observation as our work
– that the complex mapping from latents to high-resolution images is easier to learn in steps – but
the crucial difference is that we have only a single GAN instead of a hierarchy of them. In contrast
to early work on adaptively growing networks, e.g., growing neural gas (Fritzke, 1995) and neuro
evolution of augmenting topologies (Stanley & Miikkulainen, 2002) that grow networks greedily,
we simply defer the introduction of pre-configured layers. In that sense our approach resembles
layer-wise training of autoencoders (Bengio et al., 2007).

3 INCREASING VARIATION USING MINIBATCH STANDARD DEVIATION

GANs have a tendency to capture only a subset of the variation found in training data, and Salimans
et al. (2016) suggest “minibatch discrimination” as a solution. They compute feature statistics not
only from individual images but also across the minibatch, thus encouraging the minibatches of
generated and training images to show similar statistics. This is implemented by adding a minibatch
layer towards the end of the discriminator, where the layer learns a large tensor that projects the
input activation to an array of statistics. A separate set of statistics is produced for each example in a
minibatch and it is concatenated to the layer’s output, so that the discriminator can use the statistics
internally. We simplify this approach drastically while also improving the variation.

Our simplified solution has neither learnable parameters nor new hyperparameters. We first compute
the standard deviation for each feature in each spatial location over the minibatch. We then average
these estimates over all features and spatial locations to arrive at a single value. We replicate the
value and concatenate it to all spatial locations and over the minibatch, yielding one additional (con-
stant) feature map. This layer could be inserted anywhere in the discriminator, but we have found it
best to insert it towards the end (see Appendix A.1 for details). We experimented with a richer set
of statistics, but were not able to improve the variation further. In parallel work, Lin et al. (2017)
provide theoretical insights about the benefits of showing multiple images to the discriminator.

3

Smooth blending with scale increase

Published as a conference paper at ICLR 2018

16x16G

D

16x16

toRGB

fromRGB

16x16

16x16

toRGB

fromRGB
32x32

32x32
2x

0.5x

16x16

16x16

32x32

32x32

2x

+

toRGB

fromRGB

+

toRGB

0.5x

⍺

⍺1-⍺

1-⍺

(a) (b) (c)

0.5xfromRGB

Figure 2: When doubling the resolution of the generator (G) and discriminator (D) we fade in the
new layers smoothly. This example illustrates the transition from 16 ⇥ 16 images (a) to 32 ⇥ 32
images (c). During the transition (b) we treat the layers that operate on the higher resolution like a
residual block, whose weight ↵ increases linearly from 0 to 1. Here 2⇥ and 0.5⇥ refer to doubling
and halving the image resolution using nearest neighbor filtering and average pooling, respectively.
The toRGB represents a layer that projects feature vectors to RGB colors and fromRGB does
the reverse; both use 1 ⇥ 1 convolutions. When training the discriminator, we feed in real images
that are downscaled to match the current resolution of the network. During a resolution transition,
we interpolate between two resolutions of the real images, similarly to how the generator output
combines two resolutions.

Alternative solutions to the variation problem include unrolling the discriminator (Metz et al., 2016)
to regularize its updates, and a “repelling regularizer” (Zhao et al., 2017) that adds a new loss term
to the generator, trying to encourage it to orthogonalize the feature vectors in a minibatch. The
multiple generators of Ghosh et al. (2017) also serve a similar goal. We acknowledge that these
solutions may increase the variation even more than our solution – or possibly be orthogonal to it –
but leave a detailed comparison to a later time.

4 NORMALIZATION IN GENERATOR AND DISCRIMINATOR

GANs are prone to the escalation of signal magnitudes as a result of unhealthy competition between
the two networks. Most if not all earlier solutions discourage this by using a variant of batch nor-
malization (Ioffe & Szegedy, 2015; Salimans & Kingma, 2016; Ba et al., 2016) in the generator, and
often also in the discriminator. These normalization methods were originally introduced to elimi-
nate covariate shift. However, we have not observed that to be an issue in GANs, and thus believe
that the actual need in GANs is constraining signal magnitudes and competition. We use a different
approach that consists of two ingredients, neither of which include learnable parameters.

4.1 EQUALIZED LEARNING RATE

We deviate from the current trend of careful weight initialization, and instead use a trivial N (0, 1)
initialization and then explicitly scale the weights at runtime. To be precise, we set ŵi = wi/c,
where wi are the weights and c is the per-layer normalization constant from He’s initializer (He
et al., 2015). The benefit of doing this dynamically instead of during initialization is somewhat
subtle, and relates to the scale-invariance in commonly used adaptive stochastic gradient descent
methods such as RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2015). These
methods normalize a gradient update by its estimated standard deviation, thus making the update
independent of the scale of the parameter. As a result, if some parameters have a larger dynamic
range than others, they will take longer to adjust. This is a scenario modern initializers cause, and
thus it is possible that a learning rate is both too large and too small at the same time. Our approach
ensures that the dynamic range, and thus the learning speed, is the same for all weights. A similar
reasoning was independently used by van Laarhoven (2017).

4

Published as a conference paper at ICLR 2018

CELEBA LSUN BEDROOM

Training configuration Sliced Wasserstein distance ⇥103 MS-SSIM Sliced Wasserstein distance ⇥103 MS-SSIM
128 64 32 16 Avg 128 64 32 16 Avg

(a) Gulrajani et al. (2017) 12.99 7.79 7.62 8.73 9.28 0.2854 11.97 10.51 8.03 14.48 11.25 0.0587

(b) + Progressive growing 4.62 2.64 3.78 6.06 4.28 0.2838 7.09 6.27 7.40 9.64 7.60 0.0615
(c) + Small minibatch 75.42 41.33 41.62 26.57 46.23 0.4065 72.73 40.16 42.75 42.46 49.52 0.1061
(d) + Revised training parameters 9.20 6.53 4.71 11.84 8.07 0.3027 7.39 5.51 3.65 9.63 6.54 0.0662
(e⇤) + Minibatch discrimination 10.76 6.28 6.04 16.29 9.84 0.3057 10.29 6.22 5.32 11.88 8.43 0.0648
(e) Minibatch stddev 13.94 5.67 2.82 5.71 7.04 0.2950 7.77 5.23 3.27 9.64 6.48 0.0671
(f) + Equalized learning rate 4.42 3.28 2.32 7.52 4.39 0.2902 3.61 3.32 2.71 6.44 4.02 0.0668
(g) + Pixelwise normalization 4.06 3.04 2.02 5.13 3.56 0.2845 3.89 3.05 3.24 5.87 4.01 0.0640
(h) Converged 2.42 2.17 2.24 4.99 2.96 0.2828 3.47 2.60 2.30 4.87 3.31 0.0636

Table 1: Sliced Wasserstein distance (SWD) between the generated and training images (Section 5)
and multi-scale structural similarity (MS-SSIM) among the generated images for several training
setups at 128⇥ 128. For SWD, each column represents one level of the Laplacian pyramid, and the
last one gives an average of the four distances.

(a) (b) (c) (d) (e⇤) (e) (f) (g) (h) Converged

Figure 3: (a) – (g) CELEBA examples corresponding to rows in Table 1. These are intentionally
non-converged. (h) Our converged result. Notice that some images show aliasing and some are not
sharp – this is a flaw of the dataset, which the model learns to replicate faithfully.

resolution. CELEBA is particularly well suited for such comparison because the training images
contain noticeable artifacts (aliasing, compression, blur) that are difficult for the generator to repro-
duce faithfully. In this test we amplify the differences between training configurations by choosing a
relatively low-capacity network structure (Appendix A.2) and terminating the training once the dis-
criminator has been shown a total of 10M real images. As such the results are not fully converged.

Table 1 lists the numerical values for SWD and MS-SSIM in several training configurations, where
our individual contributions are cumulatively enabled one by one on top of the baseline (Gulrajani
et al., 2017). The MS-SSIM numbers were averaged from 10000 pairs of generated images, and
SWD was calculated as described in Section 5. Generated CELEBA images from these configu-
rations are shown in Figure 3. Due to space constraints, the figure shows only a small number of
examples for each row of the table, but a significantly broader set is available in Appendix H. Intu-
itively, a good evaluation metric should reward plausible images that exhibit plenty of variation in
colors, textures, and viewpoints. However, this is not captured by MS-SSIM: we can immediately
see that configuration (h) generates significantly better images than configuration (a), but MS-SSIM
remains approximately unchanged because it measures only the variation between outputs, not sim-
ilarity to the training set. SWD, on the other hand, does indicate a clear improvement.

The first training configuration (a) corresponds to Gulrajani et al. (2017), featuring batch normaliza-
tion in the generator, layer normalization in the discriminator, and minibatch size of 64. (b) enables
progressive growing of the networks, which results in sharper and more believable output images.
SWD correctly finds the distribution of generated images to be more similar to the training set.

Our primary goal is to enable high output resolutions, and this requires reducing the size of mini-
batches in order to stay within the available memory budget. We illustrate the ensuing challenges in
(c) where we decrease the minibatch size from 64 to 16. The generated images are unnatural, which
is clearly visible in both metrics. In (d), we stabilize the training process by adjusting the hyperpa-
rameters as well as by removing batch normalization and layer normalization (Appendix A.2). As an
intermediate test (e⇤), we enable minibatch discrimination (Salimans et al., 2016), which somewhat
surprisingly fails to improve any of the metrics, including MS-SSIM that measures output variation.
In contrast, our minibatch standard deviation (e) improves the average SWD scores and images. We
then enable our remaining contributions in (f) and (g), leading to an overall improvement in SWD

6

Published as a conference paper at ICLR 2018

Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

Our contributions allow us to deal with high output resolutions in a robust and efficient fashion.
Figure 5 shows selected 1024 ⇥ 1024 images produced by our network. While megapixel GAN
results have been shown before in another dataset (Marchesi, 2017), our results are vastly more
varied and of higher perceptual quality. Please refer to Appendix F for a larger set of result images
as well as the nearest neighbors found from the training data. The accompanying video shows latent
space interpolations and visualizes the progressive training. The interpolation works so that we first
randomize a latent code for each frame (512 components sampled individually from N (0, 1)), then
blur the latents across time with a Gaussian (� = 45 frames @ 60Hz), and finally normalize each
vector to lie on a hypersphere.

We trained the network on 8 Tesla V100 GPUs for 4 days, after which we no longer observed
qualitative differences between the results of consecutive training iterations. Our implementation
used an adaptive minibatch size depending on the current output resolution so that the available
memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1 shows six
examples of 10242 images produced using our method using LSGAN. Further details of this setup
are given in Appendix B.

8

Published as a conference paper at ICLR 2018

Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

Our contributions allow us to deal with high output resolutions in a robust and efficient fashion.
Figure 5 shows selected 1024 ⇥ 1024 images produced by our network. While megapixel GAN
results have been shown before in another dataset (Marchesi, 2017), our results are vastly more
varied and of higher perceptual quality. Please refer to Appendix F for a larger set of result images
as well as the nearest neighbors found from the training data. The accompanying video shows latent
space interpolations and visualizes the progressive training. The interpolation works so that we first
randomize a latent code for each frame (512 components sampled individually from N (0, 1)), then
blur the latents across time with a Gaussian (� = 45 frames @ 60Hz), and finally normalize each
vector to lie on a hypersphere.

We trained the network on 8 Tesla V100 GPUs for 4 days, after which we no longer observed
qualitative differences between the results of consecutive training iterations. Our implementation
used an adaptive minibatch size depending on the current output resolution so that the available
memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1 shows six
examples of 10242 images produced using our method using LSGAN. Further details of this setup
are given in Appendix B.

8

Published as a conference paper at ICLR 2018

POTTEDPLANT HORSE SOFA BUS CHURCHOUTDOOR BICYCLE TVMONITOR

Figure 7: Selection of 256⇥ 256 images generated from different LSUN categories.

6.4 LSUN RESULTS

Figure 6 shows a purely visual comparison between our solution and earlier results in LSUN BED-
ROOM. Figure 7 gives selected examples from seven very different LSUN categories at 2562. A
larger, non-curated set of results from all 30 LSUN categories is available in Appendix G, and the
video demonstrates interpolations. We are not aware of earlier results in most of these categories,
and while some categories work better than others, we feel that the overall quality is high.

6.5 CIFAR10 INCEPTION SCORES

The best inception scores for CIFAR10 (10 categories of 32 ⇥ 32 RGB images) we are aware of
are 7.90 for unsupervised and 8.87 for label conditioned setups (Grinblat et al., 2017). The large
difference between the two numbers is primarily caused by “ghosts” that necessarily appear between
classes in the unsupervised setting, while label conditioning can remove many such transitions.

When all of our contributions are enabled, we get 8.80 in the unsupervised setting. Appendix D
shows a representative set of generated images along with a more comprehensive list of results
from earlier methods. The network and training setup were the same as for CELEBA, progres-
sion limited to 32 ⇥ 32 of course. The only customization was to the WGAN-GP’s regularization
term Ex̂⇠Px̂ [(||rx̂D(x̂)||2 � �)2/�2]. Gulrajani et al. (2017) used � = 1.0, which corresponds to
1-Lipschitz, but we noticed that it is in fact significantly better to prefer fast transitions (� = 750) to
minimize the ghosts. We have not tried this trick with other datasets.

7 DISCUSSION

While the quality of our results is generally high compared to earlier work on GANs, and the training
is stable in large resolutions, there is a long way to true photorealism. Semantic sensibility and un-
derstanding dataset-dependent constraints, such as certain objects being straight rather than curved,
leaves a lot to be desired. There is also room for improvement in the micro-structure of the images.
That said, we feel that convincing realism may now be within reach, especially in CELEBA-HQ.

9

Nearest-Neighbor Sanity Check

Published as a conference paper at ICLR 2018

Figure 10: Top: Our CELEBA-HQ results. Next five rows: Nearest neighbors found from the train-
ing data, based on feature-space distance. We used activations from five VGG layers, as suggested
by Chen & Koltun (2017). Only the crop highlighted in bottom right image was used for comparison
in order to exclude image background and focus the search on matching facial features.

18

Unpaired Image-to-Image Translation
with CycleGAN

Jun-Yan Zhu and Taesung Park
Joint work with Phillip Isola and Alexei A. Efros

Image-to-Image Translation with pix2pix

Image-to-image Translation with Conditional Adversarial Nets
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. CVPR 2017

Paired

⋯

- Expensive to collect pairs.
- Impossible in many scenarios.

Label ↔ photo: per-pixel labeling

Horse ↔ zebra: how to get zebras?

Paired

⋯

……

Paired Unpaired

⋯

x G(x)

Generator

G
D

No input-output pairs!

Discriminator

x G(x)

D
Generator

G Real!

Discriminator

x G(x)

D
Generator

G Real too!

GANs do not force output to
correspond to input

mode collapse!

⋯

Cycle-Consistent Adversarial Networks

⋯

[Zhu*, Park*, Isola, and Efros, ICCV 2017]

[Mark Twain, 1903]

⋯ ⋯

[Zhu*, Park*, Isola, and Efros, ICCV 2017]

Cycle-Consistent Adversarial Networks

G(x) F(G x)x

F G x − x '
[Zhu*, Park*, Isola, and Efros, ICCV 2017]

D)(G x)

Reconstruction
error

Cycle-Consistent Adversarial Networks

Cycle Consistency Loss
G(x) F(G x)x

F G x − x '

Large cycle lossSmall cycle loss

[Zhu*, Park*, Isola, and Efros, ICCV 2017]

D)(G x)

Reconstruction
error

G(x) F(G x)x F(y) G(F x)'

Cycle Consistency Loss

F G x − x) G F y − ')
[Zhu*, Park*, Isola, and Efros, ICCV 2017]

D+(G x)

Reconstruction
error

Reconstruction
error

D,(F x)

See similar formulations [Yi et al. 2017], [Kim et al. 2017]

Results

Collection Style Transfer

Photograph
@ Alexei Efros Monet Van Gogh

Cezanne Ukiyo-e

Cezanne Ukiyo-eMonetInput Van Gogh

Monet’s paintings→ photos

Monet’s paintings→ photos

AMT ‘real vs fake’ test on maps ↔ aerial

FCN scores on cityscapes labels→ photos

Classification performance of photo→labels

PyTorch

Torch

20+ implementations by researchers/developers:
• Tensorflow, Chainer, mxnet, Lasagne, Keras…

CycleGAN implementations

Disentangling Content and Pose
with an Adversarial loss

Emily Denton

CVPR GAN Tutorial
June 2018

Generator

x

Adversarial
objective

Discriminator

Generative adversarial network framework:

z

Encoder
network

x

Task objective:
(e.g. classification,
reconstruction, etc.)

Adversarial
objective

DiscriminatorTask
network

Generator

z

x

Adversarial
objective

Discriminator

Generative adversarial network framework: Adversarial losses to shape representations:

Content	encoder
Time invariant
information:
Lighting/Background
Identity/clothing

Pose	encoder

Time varying
information:
Pose of body

DrNet: two seperate encoders
Denton and Birodkar. Unsupervised
Learning of Disentangled Representations
from Video. NIPS, 2017

Frame	decoder

Pose	encoder

Content	encoder

Can transfer content from one
image and pose from another to
synthesize a new image

Content
image

Pose
image

Image synthesis by analogy Denton and Birodkar. Unsupervised
Learning of Disentangled Representations
from Video. NIPS, 2017

Image synthesis by analogy Denton and Birodkar. Unsupervised
Learning of Disentangled Representations
from Video. NIPS, 2017

Interpolation in pose space Denton and Birodkar. Unsupervised
Learning of Disentangled Representations
from Video. NIPS, 2017

LSTM

ht-1

LSTM LSTM

ht
~ ht+1

~

Decoder maps
back to pixels:

KTH long term video generation

Denton and Birodkar. Unsupervised
Learning of Disentangled Representations
from Video. NIPS, 2017

Part I: Disentangling content and pose with an adversarial loss
Denton and Birodkar. Unsupervised Learning of Disentangled Representations
from Video. NIPS, 2017

Part II: Survey of adversarial
losses in feature space

Encoder
network

x

Task objective:
(e.g. classification,

reconstruction, etc.)
Adversarial
objective

DiscriminatorTask
network

Domain adaptation

Labelled examples from source domain,
few or no labels from target domain

Source domain Target domain

Domain adaptation

Source encoder

Classifier

Classification loss Labelled examples from source domain,
few or no labels from target domain

Target domain

Domain adaptation

Target encoderSource encoder

Domain
discriminatorClassifier

Classification loss Adversarial loss

Adversarial loss can be used to
learn domain invariant features,
allowing source classifier to
transfer to target domain

Domain adaptation

Target encoderSource encoder

Domain
discriminatorClassifier

Classification loss Adversarial loss

Gradient reversal [Ganin and
Lempitsky, 2015]

Label flip [Tzeng et al. 2017]

Uniform target [Tzeng et al. 2015]

Encoder
network

Learning fair representations

x

Predict label
Predict sensitive

attribute

DiscriminatorTask
network

● Closely related to problem of domain
adaptation

○ source/transfer domain vs. demographic
groups

● Different formulations of adversarial objectives
achieve different notions of fairness

○ Edwards & Storkey, 2016
○ Beutel et al. 2017
○ Zhang et al. 2018
○ Madras et al. 2018

Independent components

● Discriminate marginal distribution vs. product of marginals: q(z1, ..., zn) vs. q(zi)

● Earlier work on discrete code setting by Schmidhuber (1992)

Kim and Mnih. Disentangling by Factorising.
ICML, 2018

Prior distributions of generative models
Adversarial autoencoders:
Match aggregate approx posterior q(z)
[Makhzani et al. 2016]

Adversarial variational bayes:
Match approx posterior q(z|x)
[Mescheder et al. 2017]

Adversarial feature learning:
GAN loss in image space and latent space
[Dumoulin et al. 2017; Donahue et al. 2017]

References
Beutel et al. Data decisions and theoretical implications when adversarially learning fair representations. arXiv:1707.00075, 2017.

Denton and Birodkar. Unsupervised Learning of Disentangled Representations from Video. NIPS, 2017.

Donahue et al. Adversarial Feature Learning. ICLR, 2017.

Dumoulin et al. Adversarially Learned Inference. ICLR, 2017

Edwards & Storkey. Censoring Representations with an Adversary. ICLR, 2016.

Ganin and Lempitsky. Unsupervised domain adaptation by backpropagation. ICML, 2015.

Kim and Mnih. Disentangling by Factorising. ICML, 2018.

Madras et al. Learning Adversarially Fair and Transferable Representations. ICML, 2018.

Makhzani et al. Adversarial Autoencoders. ICLR Workshop, 2016.

Mescheder et al. Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks. ICML,
2017.

Schmidhuber. Learning factorial codes by predictability minimization. Neural Computation, 1992.

Tzeng et al. Simultaneous deep transfer across domains and tasks. ICCV, 2015.

Tzeng et al. Adversarial discriminative domain adaptation. CVPR, 2017.

Villegas, et al. Decomposing motion and content for natural video sequence prediction. In ICLR, 2017.

Zhang et al. Mitigating Unwanted Biases with Adversarial Learning. AIES, 2018.

