Efficient Methods for Deep Learning

Song Han

Stanford University Sep 2016

Hardware and Data enable Deep Learning

Dally, NIPS'2015 tutorial on High-Performance Hardware for Machine Learning

The Need for Speed

More data → Bigger Models → More Need for Compute

But Moore's law is no longer providing more compute...

Dally, NIPS'2015 tutorial on High-Performance Hardware for Machine Learning

Goal: Improve the Efficiency of Deep Learning For Mobile + Cloud

Embedded Applications: Self-Driving Cars

nVidia Drive PX2 24 Tps/sec @ 20W

6

Challenges for Efficient Deep Learning Model Size!

Microsoft Excel will not download until you connect to Wi-Fi.

Challenges for Efficient Deep Learning

Figure 1: Energy table for 45nm CMOS process. Memory access is 2 orders of magnitude more energy expensive than arithmetic operations.

Part 1: Deep Compression

Song Han CVA group, Stanford University

Han et al. "Learning both Weights and Connections for Efficient Neural Networks", NIPS'15

Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

Problem 1: DNN Model Size too Large Solution 1: Deep Compression

Problem 1: DNN Model Size too Large Solution 1: Deep Compression

Problem 1: DNN Model Size too Large Solution 1: Deep Compression

Smaller Size

90% zeros in weights 4-bit weight

Problem 1: DNN Model Size too Large Solution 1: Deep Compression

Smaller Size

90% zeros in weights 4-bit weight

Accuracy

No loss of accuracy / Improved accuracy

Problem 1: DNN Model Size too Large Solution 1: Deep Compression

Smaller Size

90% zeros in weights 4-bit weight

Accuracy

No loss of accuracy / Improved accuracy

On-chip

State-of-the-art DNN fit on-chip SRAM

Deep Compression Overview

- AlexNet: 35×, 240MB => 6.9MB
- VGG16: 49×, 552MB => 11.3MB
- GoogLeNet: 10x, 28MB => 2.8MB
- SqueezeNet: 10x, 4.8MB => 0.47MB
- No loss of accuracy on ImageNet12
- Weights fits on-chip SRAM cache, taking 120x less energy than DRAM memory

Deep Compression Pipeline

• Network Pruning: 10x fewer weights

- Weight Sharing: 32 bit |
 only 4-bits per remaining weight 4 bit |
- Huffman Coding: Entropy of the Total Remaining Weights

Deep Compression Pipeline

Network Pruning:

Less Number of Weights

- Weight Sharing:
 Reduce Storage for Each Remaining Weight
- Huffman Coding: Entropy of the Total Remaining Weights

Pruning

Weight Sharing

Huffman Coding

1. Pruning

[1] LeCun et al. Optimal Brain Damage NIPS'90

[2] Hassibi, et al. Second order derivatives for network pruning: Optimal brain surgeon. NIPS'93

[3] Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS'15

Pruning

Weight Sharing

Huffman Coding

Pruning: Motivation

Age	Number of Connections		Stage
at birth	50 Trillion		newly formed
1 year old	1000 Trillion		peak
10 year old	500 Trillion		pruned and stabilized

Table 1: The synapses pruning mechanism in human brain development

- Trillion of synapses are generated in the human brain during the first few months of birth.
- 1 year old, peaked at 1000 trillion
- Pruning begins to occur.
- 10 years old, a child has nearly 500 trillion synapses
- This 'pruning' mechanism removes redundant connections in the brain.

[1] Christopher A Walsh. Peter Huttenlocher (1931-2013). Nature, 502(7470):172–172, 2013.

Pruning

Weight Sharing

Huffman Coding

AlexNet & VGGNet

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015

Pruning

Weight Sharing

Huffman Coding

Retrain to Recover Accuracy

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015

Pruning

Weight Sharing

Huffman Coding

Pruning: Result

Network	Top-1 Error	Top-5 Error	Parameters	Comp Rate	ression
LeNet-300-100 Ref	1.64%	-	267K		
LeNet-300-100 Pruned	1.59%	-	22K	12 imes	
LeNet-5 Ref	0.80%	-	431K		
LeNet-5 Pruned	0.77%	-	36K	12 imes	
AlexNet Ref	42.78%	19.73%	61M		
AlexNet Pruned	42.77%	19.67%	6.7M	9 ×	
VGG16 Ref	31.50%	11.32%	138M		
VGG16 Pruned	31.34%	10.88%	10.3M	13 imes	
			-		

Table 1: Network pruning can save $9 \times$ to $13 \times$ parameters with no drop in predictive performance

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015

Weight Sharing

Huffman Coding

Pruning RNN and LSTM

Karpathy, et al, "Deep Visual-Semantic Alignments for Generating Image Descriptions"

Pruning away 90% parameters in NeuralTalk doesn't hurt BLUE score with proper retrain

Pruning

Weight Sharing

Huffman Coding

Pruning NeuralTalk and LSTM

- **Original**: a basketball player in a white uniform is playing with a ball
- Pruned 90%: a basketball player in a white uniform is playing with a basketball

- Original : a brown dog is running through a grassy field
- Pruned 90%: a brown dog is running through a grassy area

- Original : a man is riding a surfboard on a wave Pruned 90%: a man in a wetsuit is riding a wave on a beach
- Original : a soccer player in red is running in the field
 Pruned <u>95%</u>: a man in a red shirt and black and white black shirt is running through a field

Pruning

Weight Sharing

Huffman Coding

Deep Compression Pipeline

- Network Pruning: Less Number of Weights
- Weight Sharing:

Reduce Storage for Each Remaining Weight

Huffman Coding: Entropy of the Total Remaining Weights

Pruning

Weight Sharing

Huffman Coding

weights (32 bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Weight Sharing

Pruning

Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

Huffman Coding

	weig (32 bit	ghts t float)	
2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Weight Sharing

Pruning

centroids

3:	2.00	
2:	1.50	
1:	0.00	
0:	-1.00	

Stanford University

Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

Huffman Coding

weights (32 bit float)				cluster index (2 bit uint)			centroids				
2.09	-0.98	1.48	0.09		3	0	2	1	3:	2.00	
0.05	-0.14	-1.08	2.12	cluster	1	1	0	3	2:	1.50	
-0.91	1.92	0	-1.03		0	3	1	0	1:	0.00	
1.87	0	1.53	1.49		3	1	2	2	0:	-1.00	

Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

Pruning

Weight Sharing

Huffman Coding

	weig (32 bit	ghts t float)			cluster index (2 bit uint)				centroids		
9	-0.98	1.48	0.09		3	0	2	1	3:	2.00	
5	-0.14	-1.08	2.12	cluster	1	1	0	3	2:	1.50	
1	1.92	0	-1.03		0	3	1	0	1:	0.00	
7	0	1.53	1.49		3	1	2	2	0:	-1.00	

gradient -0.01 0.03 0.02 -0.03 -0.01 0.01 -0.02 0.12 0.04 -0.01 0.02 0.01 -0.07 -0.02 0.01 -0.02

Weight Sharing

2.0

0.0

-0.9

1.8

Pruning

Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

Huffman Coding

Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

Pruning

Weight Sharing

Huffman Coding

Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

Pruning

Weight Sharing

Huffman Coding

Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

Pruning

Weight Sharing

Huffman Coding

Bits Per Weight

Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

Pruning

Weight Sharing

Huffman Coding

Pruning + Trained Quantization

#CONV bits / #FC bits	Top-1 Error	Top-5 Error	Top-1 Error Increase	Top-5 Error Increase
32bits / 32bits	42.78%	19.73%	-	-
8 bits / 5 bits	42.78%	19.70%	0.00%	-0.03%
8 bits / 4 bits	42.79%	19.73%	0.01%	0.00%
4 bits / 2 bits	44.77%	22.33%	1.99%	2.60%

Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

Pruning

Weight Sharing

Huffman Coding

Pruning + Trained Quantization

Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

Pruning

Weight Sharing

Huffman Coding

Deep Compression Pipeline

- Network Pruning: Less Number of Weights
- Weight Sharing: Reduce Storage for Each Remaining Weight
- Huffman Coding: Entropy of the Total Remaining Weights

Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

Pruning

Weight Sharing

Huffman Coding

Huffman Coding

- Frequent weights: use less bits to represent
- In-frequent weights: use more bits to represent

Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

Pruning

Weight Sharing

Huffman Coding

Deep Compression Results

Network	Original Com Size	pressed Size	Compression Ratio	Original Accuracy	Compressed Accuracy
LeNet-300	1070KB → 2	27KB	40x	98.36%	→ 98.42%
LeNet-5	1720KB → 4	4KB	39x	99.20%	→ 99.26%
AlexNet	240MB → 6	.9MB	35x	80.27%	→ 80.30%
VGGNet	550MB → 11	I.3MB	49x	88.68%	→ 89.09%
GoogleNet	28MB → 2	.8MB	10x	88.90%	→ 88.92%
SqueezeNet	4.8MB → 0.4	47MB	10x	80.32%	→ 80.35%

- No loss of accuracy after compression.
- Fits in SRAM cache (120x less energy than DRAM).

660KB model, AlexNet-accuracy

https://github.com/songhan/SqueezeNet_compressed

landola, Han, et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size" arXiv 2016

Conclusion

Complex DNNs can be put in mobile applications (<10MB total)

- -500MB with-FC network (125M weights) becomes 10MB
- -10MB all-CONV network (2.5M weights) becomes 1MB
- Memory bandwidth reduced by 10-50x
 - -Particularly for FC layers in real-time applications with no reuse

Faster Prediction

– Works well for sparsity level 10%-20%. Ads, Speech...

What happens once DNN size is so small that it fits in SRAM Cache?

Speedup/Energy Efficiency on CPU/GPU

CPU: Core i-7 5930k; GPU: GTX TitanX ; mobile GPU: Tegra K1; All scenarios: batchsize = 1

Speedup/Energy Efficiency on CPU/GPU

Facebook is using this to speedup ads click prediction

CPU: Core i-7 5930k; GPU: GTX TitanX ; mobile GPU: Tegra K1; All scenarios: batchsize = 1

Part 2: EIE

Efficient Inference Engine on Compressed Deep Neural Network

Song Han CVA group, Stanford University

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Problem 2: Faster, Energy Efficient

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Problem 2: Faster, Energy Efficient Solution 2: EIE accelerator

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Problem 2: Faster, Energy Efficient Solution 2: EIE accelerator

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Problem 2: Faster, Energy Efficient Solution 2: EIE accelerator

Sparse Matrix

90% static sparsity in the weights,
10x less computation,
5x less memory footprint

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Problem 2: Faster, Energy Efficient Solution 2: EIE accelerator

Sparse Matrix

90% static sparsity
in the weights,
10x less computation,
5x less memory footprint

Sparse Vector

70% *dynamic* sparsity in the activation3x less computation

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Problem 2: Faster, Energy Efficient Solution 2: EIE accelerator

Sparse Matrix

90% static sparsity
in the weights,
10x less computation,
5x less memory footprint

Sparse Vector

70% *dynamic* sparsityin the activation**3x less** computation

Weight Sharing

4bits weights 8x less memory footprint

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Problem 2: Faster, Energy Efficient Solution 2: EIE accelerator

Sparse Matrix

90% static sparsity
in the weights,
10x less computation,
5x less memory footprint

Sparse Vector

70% *dynamic* sparsityin the activation**3x less** computation

Weight Sharing

4bits weights 8x less memory footprint

Fully fits in SRAM 120x less energy than DRAM

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Problem 2: Faster, Energy Efficient Solution 2: EIE accelerator

Sparse Matrix

90% static sparsity
in the weights,
10x less computation,
5x less memory footprint

Sparse Vector

70% *dynamic* sparsity in the activation3x less computation

Weight Sharing

4bits weights 8x less memory footprint

Fully fits in SRAM 120x less energy than DRAM

Savings are multiplicative: 5x3x8x120=14,400 theoretical energy improvement.

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Benchmark

- CPU: Intel Core-i7 5930k
- GPU: NVIDIA TitanX
- Mobile GPU: NVIDIA Jetson TK1

Layer	Size	Weight Density	Activation Density	FLOP %	Description
AlexNet-6	4096 × 9216	9%	35.1%	3%	AlexNet for
AlexNet-7	4096 × 4096	9%	35.3%	3%	image
AlexNet-8	1000 × 4096	25%	37.5%	10%	classification
VGG-6	4096 × 25088	4%	18.3%	1%	VGG-16 for
VGG-7	4096×4096	4%	37.5%	2%	image
VGG-8	1000 × 4096	23%	41.1%	9%	classification
NeuralTalk-We	600×4096	10%	100%	10%	RNN and
NeuralTalk-Wd	8791 × 600	11%	100%	11%	LSTM for
NeuralTalk-LSTM	2400 × 1201	10%	100%	11%	caption

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Result of EIE

	SpMat
Ptr_Even	Acto Acta Arithm Ptr_Odd
	SpMat

Technology	45 nm
# PEs	64
on-chip SRAM	8 MB
Max Model Size	84 Million
Static Sparsity	10x
Dynamic Sparsity	3х
Quantization	4-bit
ALU Width	16-bit
Area	40.8 mm^2
MxV Throughput	81,967 layers/s
Power	586 mW

- 1. Post layout result
- 2. Throughput measured on AlexNet FC-7

Speedup on EIE

Compared to CPU and GPU:

189x and 13x faster

Baseline:

- Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV
- NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV
- NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Energy Efficiency on EIE

Compared to CPU and GPU:

24,000x and 3,400x more energy efficient

Baseline:

- Intel Core i7 5930K: reported by pcm-power utility
- NVIDIA GeForce GTX Titan X: reported by nvidia-smi utility
- <u>NVIDIA Tegra K1</u>: measured with power-meter, 60% AP+DRAM power

Where are the savings from?

- Four factors for energy saving:
- 10× static weight sparsity; less work to do; less bricks to carry.

- Weight sharing with only 4-bits per weight; lighter bricks to carry.
- DRAM => SRAM, no need to go off-chip; carry bricks from NY to Stanford => SF to Stanford.

Conclusion

- EIE: first accelerator for compressed, sparse neural network.
- Compression => Acceleration, no loss accuracy.
- Distributed storage/computation to parallelize/load balance across PEs.
- 13x faster and 3,400x more energy efficient than GPU.
 2.9x faster and 19x more energy efficient than past ASICs.