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Hardware and Data enable Deep Learning

Dally, NIPS’2015 tutorial on High-Performance Hardware for Machine Learning



The Need for Speed

But Moore’s law is no longer providing 
more compute…

Dally, NIPS’2015 tutorial on High-Performance Hardware for Machine Learning

More data ➔ Bigger Models ➔ 
More Need for Compute



Goal: Improve the Efficiency of Deep Learning

For Mobile + Cloud



6

Embedded Applications: Self-Driving Cars

nVidia Drive PX2 
24 Tps/sec @ 20W 



Challenges for Efficient Deep Learning
Model Size!



Figure 1: Energy table for 45nm CMOS process. Memory access is 2 orders of magnitude more 
energy expensive than arithmetic operations. 

Operation Energy [pJ] Relative Cost

32 bit int ADD 0.1 1
32 bit float ADD 0.9 9
32 bit Register File 1 10
32 bit int MULT 3.1 31
32 bit float MULT 3.7 37
32 bit SRAM Cache 5 50
32 bit DRAM Memory 640 6400

1 10 100 1000 10000

Relative Energy Cost 

Figure 1: Energy table for 45nm CMOS process [7]. Memory access is 3 orders of magnitude more
energy expensive than simple arithmetic.

To achieve this goal, we present a method to prune network connections in a manner that preserves the
original accuracy. After an initial training phase, we remove all connections whose weight is lower
than a threshold. This pruning converts a dense, fully-connected layer to a sparse layer. This first
phase learns the topology of the networks — learning which connections are important and removing
the unimportant connections. We then retrain the sparse network so the remaining connections can
compensate for the connections that have been removed. The phases of pruning and retraining may
be repeated iteratively to further reduce network complexity. In effect, this training process learns
the network connectivity in addition to the weights - much as in the mammalian brain [8][9], where
synapses are created in the first few months of a child’s development, followed by gradual pruning of
little-used connections, falling to typical adult values.

2 Related Work

Neural networks are typically over-parameterized, and there is significant redundancy for deep learn-
ing models [10]. This results in a waste of both computation and memory. There have been various
proposals to remove the redundancy: Vanhoucke et al. [11] explored a fixed-point implementation
with 8-bit integer (vs 32-bit floating point) activations. Denton et al. [12] exploited the linear
structure of the neural network by finding an appropriate low-rank approximation of the parameters
and keeping the accuracy within 1% of the original model. With similar accuracy loss, Gong et al.

[13] compressed deep convnets using vector quantization. These approximation and quantization
techniques are orthogonal to network pruning, and they can be used together to obtain further gains
[14].

There have been other attempts to reduce the number of parameters of neural networks by replacing
the fully connected layer with global average pooling. The Network in Network architecture [15]
and GoogLenet [16] achieves state-of-the-art results on several benchmarks by adopting this idea.
However, transfer learning, i.e. reusing features learned on the ImageNet dataset and applying them
to new tasks by only fine-tuning the fully connected layers, is more difficult with this approach. This
problem is noted by Szegedy et al. [16] and motivates them to add a linear layer on the top of their
networks to enable transfer learning.

Network pruning has been used both to reduce network complexity and to reduce over-fitting. An
early approach to pruning was biased weight decay [17]. Optimal Brain Damage [18] and Optimal
Brain Surgeon [19] prune networks to reduce the number of connections based on the Hessian of the
loss function and suggest that such pruning is more accurate than magnitude-based pruning such as
weight decay. However, second order derivative needs additional computation.

HashedNets [20] is a recent technique to reduce model sizes by using a hash function to randomly
group connection weights into hash buckets, so that all connections within the same hash bucket
share a single parameter value. This technique may benefit from pruning. As pointed out in Shi et al.

[21] and Weinberger et al. [22], sparsity will minimize hash collision making feature hashing even
more effective. HashedNets may be used together with pruning to give even better parameter savings.
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Part 1: Deep Compression

Song Han 
CVA group, Stanford University 

Han et al. “Learning both Weights and Connections for Efficient Neural Networks”, NIPS’15
Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016



Problem 1: DNN Model Size too Large
Solution 1: Deep Compression 
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Accuracy
No loss of accuracy / 
Improved accuracy  

On-chip
State-of-the-art DNN  

 fit on-chip SRAM
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Deep Compression Overview

• AlexNet: 35×, 240MB => 6.9MB

• VGG16: 49×, 552MB => 11.3MB

• GoogLeNet: 10x, 28MB => 2.8MB

• SqueezeNet: 10x, 4.8MB => 0.47MB

• No loss of accuracy on ImageNet12

• Weights fits on-chip SRAM cache, taking 120x less energy than 
DRAM memory
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• Network Pruning:  
10x fewer weights 

• Weight Sharing:  
only 4-bits per remaining weight 

• Huffman Coding: 
Entropy of the Total Remaining Weights

Deep Compression Pipeline

60M weights
6M weights

32 bit
4 bit



• Network Pruning:  
Less Number of Weights 

• Weight Sharing:  
Reduce Storage for Each Remaining Weight 

• Huffman Coding: 
Entropy of the Total Remaining Weights

Pruning Weight Sharing Huffman Coding

Deep Compression Pipeline



1. Pruning

[1] LeCun et al. Optimal Brain Damage NIPS’90
[2] Hassibi, et al. Second order derivatives for network pruning: Optimal brain surgeon. NIPS’93
[3] Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS’15

Pruning Weight Sharing Huffman Coding



Pruning: Motivation

• Trillion of synapses are generated in the human brain during the first few months of birth. 

• 1 year old, peaked at 1000 trillion 

• Pruning begins to occur.

• 10 years old, a child has nearly 500 trillion synapses

• This ’pruning’ mechanism removes redundant connections in the brain.

[1] Christopher A Walsh. Peter Huttenlocher (1931-2013). Nature, 502(7470):172–172, 2013.  

Pruning Weight Sharing Huffman Coding



AlexNet & VGGNet

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015

CONV: 3x FC: 10x

Pruning Weight Sharing Huffman Coding



Retrain to Recover Accuracy
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L2 regularization w/o retrain L1 regularization w/o retrain 
L1 regularization w/ retrain L2 regularization w/ retrain 
L2 regularization w/ iterative prune and retrain 

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015
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Pruning: Result

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015

Pruning Weight Sharing Huffman Coding



Pruning RNN and LSTM

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201651

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning

Karpathy, et al, "Deep Visual-
Semantic Alignments for 
Generating Image Descriptions"

• Pruning away 90% parameters in NeuralTalk doesn’t hurt BLUE score with proper retraining

Pruning Weight Sharing Huffman Coding



• Original: a basketball player in a white uniform is 
playing with a ball

• Pruned 90%: a basketball player in a white uniform is 
playing with a basketball

• Original : a brown dog is running through a grassy field
• Pruned 90%: a brown dog is running through a grassy 

area

• Original : a soccer player in red is running in the field
• Pruned 95%: a man in a red shirt and black and white 

black shirt is running through a field

• Original : a man is riding a surfboard on a wave
• Pruned 90%: a man in a wetsuit is riding a wave on a 

beach

Pruning NeuralTalk and LSTM

Pruning Weight Sharing Huffman Coding



• Network Pruning:  
Less Number of Weights 

• Weight Sharing:  
Reduce Storage for Each Remaining Weight 

• Huffman Coding: 
Entropy of the Total Remaining Weights

Pruning Weight Sharing Huffman Coding

Deep Compression Pipeline



Weight Sharing: Overview

Published as a conference paper at ICLR 2016

Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

cluster

   weights 
(32 bit float) centroids

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

cluster index
  (2 bit uint)

2.00

1.50

0.00

-1.00

1:

0:

2:

3:

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each

3

Pruning Weight Sharing Huffman Coding

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016



Weight Sharing: Overview

Published as a conference paper at ICLR 2016

Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Table 6: Accuracy of AlexNet with different aggressiveness of weight sharing and quantization. 8/5
bit quantization has no loss of accuracy; 8/4 bit quantization, which is more hardware friendly, has
negligible loss of accuracy of 0.01%; To be really aggressive, 4/2 bit quantization resulted in 1.99%
and 2.60% loss of accuracy.

#CONV bits / #FC bits Top-1 Error Top-5 Error Top-1 Error
Increase

Top-5 Error
Increase

32bits / 32bits 42.78% 19.73% - -
8 bits / 5 bits 42.78% 19.70% 0.00% -0.03%
8 bits / 4 bits 42.79% 19.73% 0.01% 0.00%
4 bits / 2 bits 44.77% 22.33% 1.99% 2.60%

loss, 85% regulator efficiency and 15% power consumed by peripheral components (NVIDIA, a) to
report the AP+DRAM power for Tegra K1.

The ratio of memory access over computation characteristic with and without batching is different.
When the input activations are batched to a matrix the computation becomes matrix-matrix multipli-
cation, where locality can be improved by blocking. Matrix could be blocked to fit in caches and
reused efficiently. In this case, the amount of memory access is O(n2), and that of computation is
O(n3), the ratio between memory access and computation is in the order of 1/n.

In real time processing when batching is not allowed, the input activation is a single vector and the
computation is matrix-vector multiplication. In this case, the amount of memory access is O(n2), and
the computation is O(n2), memory access and computation are of the same magnitude (as opposed
to 1/n). That indicates MV is more memory-bounded than MM. So reducing the memory footprint
is critical for the non-batching case.

Figure 9 illustrates the speedup of pruning on different hardware. There are 6 columns for each
benchmark, showing the computation time of CPU / GPU / TK1 on dense / pruned network. Time is
normalized to CPU. When batch size = 1, pruned network layer obtained 3⇥ to 4⇥ speedup over the
dense network on average because it has smaller memory footprint and alleviates the data transferring
overhead, especially for large matrices that are unable to fit into the caches. For example VGG16’s
FC6 layer, the largest layer in our experiment, contains 25088⇥ 4096⇥ 4 Bytes ⇡ 400MB data,
which is far from the capacity of L3 cache.

In those latency-tolerating applications , batching improves memory locality, where weights could
be blocked and reused in matrix-matrix multiplication. In this scenario, pruned network no longer
shows its advantage. We give detailed timing results in Appendix A.

Figure 10 illustrates the energy efficiency of pruning on different hardware. We multiply power
consumption with computation time to get energy consumption, then normalized to CPU to get
energy efficiency. When batch size = 1, pruned network layer consumes 3⇥ to 7⇥ less energy over
the dense network on average. Reported by nvidia-smi, GPU utilization is 99% for both dense
and sparse cases.

6.4 RATIO OF WEIGHTS, INDEX AND CODEBOOK

Pruning makes the weight matrix sparse, so extra space is needed to store the indexes of non-zero
elements. Quantization adds storage for a codebook. The experiment section has already included
these two factors. Figure 11 shows the breakdown of three different components when quantizing
four networks. Since on average both the weights and the sparse indexes are encoded with 5 bits,
their storage is roughly half and half. The overhead of codebook is very small and often negligible.

7 RELATED WORK

Neural networks are typically over-parametrized, and there is significant redundancy for deep learning
models(Denil et al., 2013). This results in a waste of both computation and memory usage. There
have been various proposals to remove the redundancy: Vanhoucke et al. (2011) explored a fixed-
point implementation with 8-bit integer (vs 32-bit floating point) activations. Hwang & Sung
(2014) proposed an optimization method for the fixed-point network with ternary weights and 3-bit
activations. Anwar et al. (2015) quantized the neural network using L2 error minimization and
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• Network Pruning:  
Less Number of Weights 

• Weight Sharing:  
Reduce Storage for Each Remaining Weight

• Huffman Coding:  
Entropy of the Total Remaining Weights

Pruning Weight Sharing Huffman Coding

Deep Compression Pipeline
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Huffman Coding

•Frequent weights: use less bits to represent 
• In-frequent weights: use more bits to represent
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Deep Compression Results

Network Original 
Size

Compressed 
Size

Compression  
Ratio

Original 
Accuracy

Compressed 
Accuracy

LeNet-300 1070KB 27KB 40x 98.36% 98.42%

LeNet-5 1720KB 44KB 39x 99.20% 99.26%

AlexNet 240MB 6.9MB 35x 80.27% 80.30%

VGGNet 550MB 11.3MB 49x 88.68% 89.09%

GoogleNet 28MB 2.8MB 10x 88.90% 88.92%

SqueezeNet 4.8MB 0.47MB 10x 80.32% 80.35%

• No loss of accuracy after compression. 

• Fits in SRAM cache (120x less energy than DRAM).

Deep Compression DSD EIE



Iandola, Han,et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size” arXiv 2016

660KB model, AlexNet-accuracy

https://github.com/songhan/SqueezeNet_compressed

Deep Compression DSD EIE

https://github.com/songhan/SqueezeNet_compressed


• Complex DNNs can be put in mobile applications (<10MB total)
– 500MB with-FC network (125M weights) becomes 10MB
– 10MB all-CONV network (2.5M weights) becomes 1MB

• Memory bandwidth reduced by 10-50x
– Particularly for FC layers in real-time applications with no reuse

• Faster Prediction
– Works well for sparsity level 10%-20%. Ads, Speech…

Deep Compression EIE

Conclusion



What happens once DNN size is so small 
that it fits in SRAM Cache?
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CPU: Core i-7 5930k; GPU: GTX TitanX ; mobile GPU: Tegra K1; All scenarios: batchsize = 1
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CPU: Core i-7 5930k; GPU: GTX TitanX ; mobile GPU: Tegra K1; All scenarios: batchsize = 1

Facebook is using this to speedup ads click prediction 
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Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers pj and pj+1 to read the non-zero elements (if
any) of this PE’s slice of column Ij from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation bx = bx + v ⇥ aj . Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M⇥V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the
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Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and

EIE: First Accelerator for Compressed  
Sparse Neural Network
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Sparse Matrix
90% static sparsity 

in the weights, 
10x less computation, 

5x less memory footprint

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers pj and pj+1 to read the non-zero elements (if
any) of this PE’s slice of column Ij from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation bx = bx + v ⇥ aj . Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M⇥V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the
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Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
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Sparse Vector
70% dynamic sparsity 

 in the activation
3x less computation

Sparse Matrix
90% static sparsity 

in the weights, 
10x less computation, 

5x less memory footprint

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers pj and pj+1 to read the non-zero elements (if
any) of this PE’s slice of column Ij from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation bx = bx + v ⇥ aj . Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M⇥V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the
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Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
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Sparse Vector
70% dynamic sparsity 

 in the activation
3x less computation

Sparse Matrix
90% static sparsity 

in the weights, 
10x less computation, 

5x less memory footprint

Weight Sharing
4bits weights 

8x less memory 
footprint

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers pj and pj+1 to read the non-zero elements (if
any) of this PE’s slice of column Ij from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation bx = bx + v ⇥ aj . Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M⇥V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the
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Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
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Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers pj and pj+1 to read the non-zero elements (if
any) of this PE’s slice of column Ij from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation bx = bx + v ⇥ aj . Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M⇥V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the
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Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
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Savings are multiplicative: 5x3x8x120=14,400 theoretical energy improvement.

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers pj and pj+1 to read the non-zero elements (if
any) of this PE’s slice of column Ij from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation bx = bx + v ⇥ aj . Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M⇥V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the
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Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
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Benchmark
• CPU: Intel Core-i7 5930k 
• GPU: NVIDIA TitanX 
• Mobile GPU: NVIDIA Jetson TK1
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Layer Size Weight 
Density

Activation 
Density FLOP % Description

AlexNet-6 4096 × 9216 9% 35.1% 3% AlexNet for 
image 

classification
AlexNet-7 4096 × 4096 9% 35.3% 3%
AlexNet-8 1000 × 4096 25% 37.5% 10%

VGG-6 4096 × 25088 4% 18.3% 1% VGG-16 for 
image 

classification
VGG-7 4096 × 4096 4% 37.5% 2%
VGG-8 1000 × 4096 23% 41.1% 9%

NeuralTalk-We 600 × 4096 10% 100% 10% RNN and 
LSTM for 

image 
caption

NeuralTalk-Wd 8791 × 600 11% 100% 11%
NeuralTalk-LSTM 2400 × 1201 10% 100% 11%

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016



Result of EIE
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Technology 45 nm

# PEs 64

on-chip SRAM 8 MB

Max Model Size 84 Million

Static Sparsity 10x

Dynamic Sparsity 3x

Quantization 4-bit

ALU Width 16-bit

Area 40.8 mm^2

MxV Throughput 81,967 layers/s

Power 586 mW

1. Post layout result
2. Throughput measured on AlexNet FC-7 
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Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks.
We compare the performance on two sets of models:

uncompressed DNN model and the compressed DNN model.

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

The uncompressed DNN model is obtained from Caffe
model zoo [28] and NeuralTalk model zoo [7]; The com-
pressed DNN model is produced as described in [16], [23].
The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [28] deep learning framework
as golden model to verify the correctness of the hardware
design.

VI. EXPERIMENTAL RESULT

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102

Speedup on EIE

Baseline: 
• Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV 
• NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV 
• NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Compared to CPU and GPU:
189x and 13x faster
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks.
We compare the performance on two sets of models:

uncompressed DNN model and the compressed DNN model.

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

The uncompressed DNN model is obtained from Caffe
model zoo [28] and NeuralTalk model zoo [7]; The com-
pressed DNN model is produced as described in [16], [23].
The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [28] deep learning framework
as golden model to verify the correctness of the hardware
design.

VI. EXPERIMENTAL RESULT

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102

Energy Efficiency on EIE

Baseline: 
• Intel Core i7 5930K: reported by pcm-power utility  
• NVIDIA GeForce GTX Titan X: reported by nvidia-smi utility  
• NVIDIA Tegra K1: measured with power-meter, 60% AP+DRAM power

Compared to CPU and GPU:
24,000x and 3,400x more energy efficient



Where are the savings from?
• Four factors for energy saving: 

• 10× static weight sparsity;  
less work to do; less bricks to carry. 

• 3× dynamic activation sparsity; 
carry only good bricks; ignore broken bricks. 

• Weight sharing with only 4-bits per weight;  
lighter bricks to carry. 

• DRAM => SRAM, no need to go off-chip;  
carry bricks from NY to Stanford => SF to Stanford.
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Conclusion

• EIE: first accelerator for compressed, sparse neural network.  

• Compression => Acceleration, no loss accuracy. 

• Distributed storage/computation to parallelize/load balance 
across PEs. 

• 13x faster and 3,400x more energy efficient than GPU.  
2.9x faster and 19x more energy efficient than past ASICs.
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