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Hardware and Data enable Deep Learning
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Dally, NIPS’2015 tutorial on High-Performance Hardware for Machine Learning

Stanford University



The Need for Speed

More data = Bigger Models =
More Need for Compute

But Moore's law Is no longer providing
more compute...

Dally, NIPS’2015 tutorial on High-Performance Hardware for Machine Learning
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Goal: Improve the Efficiency of Deep Learning

For Mobile + Cloud
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Embedded Applications: Self-Driving Cars

nVidia Drive PX2
24 Tps/sec @ 20W




Challenges for Efficient Deep Learning
Model Size!

This item is over T00MB.

Microsoft Excel will not download
until you connect to Wi-Fi.

Cancel OK
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Challenges for Efficient Deep Learning

Relative Energy Cost
Operation Energy [pJ] Relative Cost
32 bit int ADD 0.1 1
32 bit float ADD 0.9 9
32 bit Register File 1 10
32 bit int MULT 3.1 31
32 bit float MULT 3.7 37
32 bit SRAM Cache 5 50
32 bit DRAM Memory 640 6400

1 10 100 1000 10000

Figure 1: Energy table for 45nm CMOS process. Memory access is 2 orders of magnitude more
energy expensive than arithmetic operations.
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Part 1: Deep Compression

Song Han
CVA group, Stanford University

Han et al. “Learning both Weights and Connections for Efficient Neural Networks”, NIPS’15
Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Deep Compression

Problem 1: DNN Model Size too Large
Solution 1: Deep Compression
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Problem 1: DNN Model Size too Large
Solution 1: Deep Compression
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Deep Compression

; Problem 1: DNN Model Size too Large
Solution 1: Deep Compression
g

Smaller Size

90% zeros in weights
4-bit weight
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Deep Compression

Problem 1: DNN Model Size too Large
Solution 1: Deep Compression

<

Smaller Size Accuracy

90% zeros in weights No loss of accuracy /
4-bit weight Improved accuracy
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Deep Compression

Problem 1: DNN Model Size too Large
Solution 1: Deep Compression

Smaller Size Accuracy On-chip

90% zeros in weights No loss of accuracy / State-of-the-art DNN
4-bit weight Improved accuracy fit on-chip SRAM

Stanford University



Deep Compression Overview

 AlexNet: 35%x, 240MB => 6.9MB

* VGG16: 49x, 552MB => 11.3MB
 GooglLeNet: 10x, 28MB => 2.8MB
 SqueezeNet: 10x, 4.8MB => 0.47MB
* No loss of accuracy on ImageNet12

* Weights fits on-chip SRAM cache, taking 120x less energy than
DRAM memory

Stanford University



Deep Compression Pipeline

 Network Pruning: 60M weights I
10x fewer weights 6M weights [
* Weight Sharing: 32 bit

only 4-bits per remaining weight 4ot

 Huffman Coding:
—ntropy of the Total Remaining Weights

Stanford University



Deep Compression Pipeline

* Network Pruning:
Less Number of Weights

Pruning Stanford University



1. Pruning

before pruning after pruning

pruning
synapses

-_— = =

pruning
neurons

-_— =3

[1] LeCun et al. Optimal Brain Damage NIPS’90
[2] Hassibi, et al. Second order derivatives for network pruning: Optimal brain surgeon. NIPS’93
[3] Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS’15
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Pruning: Motivation

Age Number of Connections  Stage

at birth 50 Trillion newly formed

1 year old [1000 Trillion peak

10 year old | 500 Trillion pruned and stabilized

Table 1: The synapses pruning mechanism in human brain development

Trillion of synapses are generated in the human brain during the first few months of birth.

1 year old, peaked at 1000 trillion

Pruning begins to occur.

10 years old, a child has nearly 500 trillion synapses

This ’pruning’ mechanism removes redundant connections in the brain.

Pruning Stanford University



AlexNet & VGGNet

B Remaining Parameters B Pruned Parameters
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B Remaining Parameters M Pruned Parameters
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Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015
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Retrain to Recover Accuracy

Train Connectivity

@

Prune Connections
y
7
~ )
Train Weights
- y

Pruning Stanford University
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Pruning: Result

Network Top-1 Error  Top-5 Error | Parameters gggp ression
LeNet-300-100 Ref 1.64% - 267K '
LeNet-300-100 Pruned | 1.59% - 22K

LeNet-5 Ref 0.80% - 431K

LeNet-5 Pruned 0.77% - 36K

AlexNet Ref 42.78% 19.73% 61M

AlexNet Pruned 42.77% 19.67% 6. "M

VGG16 Ref 31.50% 11.32% 138M

VGG16 Pruned 31.34% 10.88% 10.3M

Table 1: Network pruning can save 9 X to 13X parameters with no drop in predictive performance

Pruning Stanford University



Pruning RNN and LSTM

“straw” “hat” END

Karpathy, et al, "Deep Visual-
Semantic Alignments for
Generating Image Descriptions'

START “straw” “hat”

- Pruning away 90% parameters in NeuralTalk doesn’t hurt BLUE score with proper retrair

25| _
1
™ 20/ <
o o
- -
o 15] o 10|
—©— no retrain - —©— no retrain
10
= = = pretrained gl| ==~ pretrained
—©— retrain ~—©— retrain
5 A A A A A
50 60 70 80 90 95 50 60 70 80 90 95
Pruned Weights (%) Pruned Weights (%))
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Pruning NeuralTalk and LSTM

- Original: a basketball player in a white uniform is
playing with a ball

- Pruned 90%: a basketball player in a white uniform is
playing with a basketball

« Original : a brown dog is running through a grassy field

e+ Pruned 90%: a brown dog is running through a grassy
area

- Original : a man is riding a surfboard on a wave

" |+ Pruned 90%: a man in a wetsuit is riding a wave on a
=~ beach

- Original : a soccer player in red is running in the field

¥ - Pruned 95%: a man in a red shirt and black and white
black shirt is running through a field

Pruning Stanford University




Deep Compression Pipeline

* Weight Sharing:
Reduce Storage for Each Remaining Weight

Weight Sharing Stanford University



Weight Sharing: Overview

weights
(32 bit float)

-0.98

-0.14

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016

Weight Sharing Stanford University



Weight Sharing: Overview

weights
(32 bit float) centroids
-0.98 3:-
-0.14 cluster 2:( 1.50
I:> 1:| 0.00
0:| -1.00

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Weight Sharing: Overview

weights cluster index
(32 bit float) (2 bit uint) centroids

-0.98 3 0 2 1 3:-

-0.14 cluster 1 1 0 3 2:| 1.50

=

0 3 1 0 1:| 0.00

3 1 2 2 0:( -1.00

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Weight Sharing: Overview

weights cluster index
(32 bit float) (2 bit uint) centroids

-0.98 3 0 2 1 3:-

-0.14 cluster 1 1 0 3 2:| 1.50

=

0 3 1 0 1:| 0.00

3 1 2 2 0:( -1.00

gradient

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Weight Sharing: Overview

weights cluster index
(32 bit float) (2 bit uint) centroids

-0.98 3 0 2 1 3:-

-0.14 cluster 1 1 0 3 2:| 1.50

=

0 3 1 0 1:| 0.00

3 1 2 2 0:( -1.00

gradient

0.03 | 0.01 | -0.02

0.02 | -0.01| 0.01 | 0.04 | -0.02

-0.01 | -0.02 | -0.01 | 0.01

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Weight Sharing: Overview

weights cluster index
(32 bit float) (2 bit uint) centroids

-0.98 3 0 2 1 3:-

-0.14 cluster 1 1 0 3 2:| 1.50

=

0 3 1 0 1:| 0.00

3 1 2 2 0:( -1.00

gradient

0.03 | 0.01 | -0.02 reduce | 0.02
0.02 | -0.01| 0.01 | 0.04 | -0.02 0.04
-0.01 | -0.02 | -0.01 | 0.01 -0.03

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Weight Sharing: Overview

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids
-0.98 3 0 2 1 3:- -
-0.14 cluster | 1 1 0 3 2:( 1.50 1.48
:> 0 3 1 0 1:| 0.00 ’Q -0.04
3 1 2 2 0:| -1.00 ®Ir |.0.97
gradient
o
0.03 | 0.01 | -0.02 rge 0.02
0.02 | -0.017 | 0.01 | 0.04 | -0.02 0.04
-0.01| -0.02 | -0.01 | 0.01 -0.03

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Bits Per Weight

4 top5, quantized only < top5, pruned + quantized “ top5, quantized only < top5, pruned + quantized

top1, quantized only © top1, pruned + quantized top1, quantized only © top1, pruned + quantized

85% 85% . —O—O— o
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ibit 2bits 3bits @ Sbits  Bbits  7bits  8bits
Number of bits per effective weight in all Number of bits per effective weight in all
FC layers Conv layers

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Pruning + Trained Quantization

Top-1 Error  Top-5 Error

#CONYV bits / #FC bits | Top-1 Error  Top-5 Error I
ncrease Increase
32bits / 32bits 42.78% 19.73% - -
42.78% 19.70%
42.79% 19.73% 0.01% 0.00%
44.77% 22.33% 1.99% 2.60%

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016

Weight Sharing

Stanford University



Pruning + Trained Quantization

“O-Pruning + Quantization 2~ Pruning Only Quantization Only - SVD

-4.0% /'

2% 5% 8% 1% 14% 17% 20%
Compression Rate

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Deep Compression Pipeline

- Huffman Coding:
Entropy of the Total Remaining Weights

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016

Huffman Coding Stanford University



Huffman Coding

100000
75000

50000

Count

25000

0
1 3 5§ 7 9 1 13 15 17 19 21 23 256 27 29 31

Weight Index (32 Effective Weights)

® Frequent weights: use less bits to represent
* |n-frequent weights: use more bits to represent

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Deep Compression Results

Original Compressed Compression Original Compressed
Size Size Ratio Accuracy Accuracy

Ho\ e 1070KB — 27KB —> 98.42%

Network

98.36%
LeNet-5 1720KB — 44KB 39x 99.20% —> 99.26%
AlexNet 240MB — 6.9MB 35X 80.27% —> 80.30%
VGGNet 550MB — 11.3MB 49x 88.68% —> 89.09%

GoogleNet 28MB — 2.8MB 10x 88.90% — 88.92%

SN 4.8MB — 0.47MB 10x 80.32% —— 80.35%

* No loss of accuracy after compression.

* Fits in SRAM cache (120x less energy than DRAM).

Deep Compression Stanford University



660KB model, AlexNet-accuracy

https://github.com/songhan/SqueezeNet_compressed

Deep Compression Stanford University


https://github.com/songhan/SqueezeNet_compressed

Conclusion

- Complex DNNs can be put in mobile applications (<10MB total)
—500MB with-FC network (125M weights) becomes 10MB
—10MB all-CONV network (2.5M weights) becomes 1MB

* Memory bandwidth reduced by 10-50x
— Particularly for FC layers in real-time applications with no reuse

- Faster Prediction
—Works well for sparsity level 10%-20%. Ads, Speech...

Deep Compression Stanford University



What happens once DNN size is so smali
that it fits in SRAM Cache?

Stanford University



Speedup/Energy Efficiency on CPU/GPU

CPU Dense (Baseline) [] GPU Dense [l mGPU Dense
100x
g_ 2:: 24x 22%
B 14x 14x N N ox o 15x o 15x
10x
2
(7))
1 1% 1% 1x ix1.1x 1x % 1x 1% 1x % X H]x 1x H]x x 1% X H]x x 1x
y hLY Lix X Jx ALY RLY ALY RLY x X
Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8" NT-We' NT-Wd®  NT-LSTM  Geo Mean
B CPU Dense (Baseline) [0 GPU Dense B mGPU Dense
100x
.y
o c 12X &
— .2 X - :' x 10x [ )
g it : I | zg 0O ] = T
W i ; i : 7 it : i X
1x 1x 1x [N 1x [ 1x 1x |8 1x B x 1x [N 1x B x 1x o] 1x [ 1x u ix B 1x lx % |b 1x 1x | 1x [ 1X lx x| 1% 1x 0] 1x ii
Alex-6 Alex-7 Alex-8 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

CPU: Core i-7 5930k; GPU: GTX TitanX ; mobile GPU: Tegra K1; All scenarios: batchsize = 1

Stanford University



Speedup/Energy Efficiency on CPU/GPU

Facebook is using this to speedup ads click prediction

B CPU Dense (Baseline) B CPU Compressed GPU Dense [ GPU Compressed [ mGPU Dense B mGPU Compressed

94x 210x 135x
100x 56x N N 48x
N ' . 34x 33x . N
g. 4x : : ldxx 2:‘ 16x , : ' 25 '
N | 1l 10x) | ox 10xl 9x | ax [N |
g 10x RS | § 8x N s | i | |
Z | | Y N =R =, M |
1 ' LI - 1% 1x 1X \ X 1x 1x N [ Ix 1Ix : , 1 I > 1 :
X X
Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8" NT-We ' NT-Wd~  NT-LSTM  Geo Mean
B CPU Dense (Baseline) B CPU Compressed [ GPU Dense E GPU Compressed E mGPU Dense B mGPU Compressed
100x 78x 101x 102x
61x
- 37x \| 39x 36x
55 = B y 2
=0 Lo . 10x 8 10x :7 N i , )
e 5x N NS N 6x 6x | l '
w E \ \ \ \ WY : : | i |
w § \ WY 3 § \ LN N : : :
Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

CPU: Core i-7 5930k; GPU: GTX TitanX ; mobile GPU: Tegra K1; All scenarios: batchsize = 1
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Part 2: EIE

Efficient Inference Engine on Compressed Deep
Neural Network

Song Han
CVA group, Stanford University

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016
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Problem 2: Faster, Energy Efficient

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016
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Problem 2: Faster, Energy Efficient
Solution 2: EIE accelerator

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016

Stanford University



EIE: First Accelerator for Compressed
Sparse Neural Network

Problem 2: Faster, Energy Efficient
Solution 2: EIE accelerator

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016

Stanford University



EIE: First Accelerator for Compressed
Sparse Neural Network

Problem 2: Faster, Energy Efficient
Solution 2: EIE accelerator

Sparse Matrix
90% static sparsity

in the weights,
10x less computation,
5x less memory footprint

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016

Stanford University



EIE: First Accelerator for Compressed
Sparse Neural Network

Problem 2: Faster, Energy Efficient
Solution 2: EIE accelerator

Sparse Matrix § Sparse Vector
90% static sparsity 70% dynamic sparsity

in the weights, In the activation

10x less computation, 3x less computation
5x less memory footprint

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016

Stanford University



EIE: First Accelerator for Compressed
Sparse Neural Network

Problem 2: Faster, Energy Efficient
Solution 2: EIE accelerator

Sparse Matrix § Sparse Vector | Weight Sharing

90% static sparsity 70% dynamic sparsity 4bits weights

in the weights, in the activation 8x less memory

10x less computation, 3x less computation footprint
5x less memory footprint

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016

Stanford University



EIE: First Accelerator for Compressed
Sparse Neural Network

Problem 2: Faster, Energy Efficient
Solution 2: EIE accelerator

Sparse Matrix § Sparse Vector | Weight Sharing

90% static _sparsity 70% dynamic sparsity 4bits weights
in the weights, in the activation 8x less memory

10x less computation, 3x less computation footprint
5x less memory footprint

Fully fits in SRAM

120x less energy than DRAM

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016
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EIE: First Accelerator for Compressed
Sparse Neural Network

Problem 2: Faster, Energy Efficient
Solution 2: EIE accelerator

Sparse Matrix § Sparse Vector | Weight Sharing

90_% static _sparsity 70% dynamic sparsity 4bits weights
in the weights, in the activation 8x less memory

10x less computation, 3x less computation footprint
5x less memory footprint

Fully fits in SRAM

120x less energy than DRAM

Savings are multiplicative: 5x3x8x120=14,400 theoretical energy improvement.

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016

Stanford University



Benchmark

e (CPU: Intel Core-i7 5930k
e GPU: NVIDIA TitanX
e Mobile GPU: NVIDIA Jetson TK1

Weight Activation

Layer FLOP % Description

Density Density
9% 35.1% 3%

AlexNet-6 4096 x 9216

AlexNet for
AlexNet-7 4096 x 4096 9% 35.3% 3% image
AlexNet-8 1000 x 4096  25% 37.5% 109  classification
VGG-6 4096 x 25088 4% 18.3% 1% VGG-16 for
VGG-7 4096 x 4096 4% 37.5% 2% image
VGG-8 1000 x 4096  23% 41.1% gy  Classification

AR A 600 x 4096 10%  100%  10%  RNNand
TS 8791 x 600 1%  100%  11%  -oIMior

iImage
NEENEILG BB 2400 x 1201 10% 100% 11% caption

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016
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Result of EIE

SpMat

At 0 Act 1l

Ptr_Even Arithm Ptr_Odd

SpMat

Technology
# PEs
on-chip SRAM
Max Model Size

Static Sparsity

Dynamic Sparsity

Quantization
ALU Width
Area
MxV Throughput

Power

1. Post layout result

2. Throughput measured on AlexNet FC-7

Stanford University

45 nm

64

8 MB

84 Million

10x

3x

4-bit

16-bit

40.8 mmA2

81,967 layers/s

586 mW




Speedup on EIE

B CPU Dense (Baseline) BECPU Compressed O GPU Dense GPU Compressed MmGPU Dense B mGPU Compressed BEIE

1000x 507x 1018x 618x
2 94x 115x 2X 135x 92x 63x 98x 189x
Q. 100x 56x . N
= [ 254 | 1x ouf | o4 | ) 34x 30x
®  10x 14 5x % 5x 14)? - § > = § = 101 | 15 N
o 2x \ 3x § \ \ § \ ox § 3x 3x § 2x
o 1x N 1x 11 1x 1x 1% 1x _o 1x _o 1X 1x § 1x 1x N 1x N 1x
(7)) X p §'| %5! §|| %f_;! § g '3 g» §l| .5
oo b DI FU L P LT P R P LR e R TR T
Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

Compared to CPU and GPU:
189x and 13x faster

Baseline:
e |ntel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV

« NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV
 NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Stanford University




Energy Efficiency on EIE

@ CPU Dense (Baseline) BECPU Compressed B GPU Dense GPU Compressed MGPU Dense B mGPU Compressed BEIE
119,797x 76,784x

100000x 34,522x 61,533x 24,207
o 14,826x 11,828x 9,485x 10,904x 8,053x 207
€ 10000x
2
‘©  1000x
[
= 50 78X 101 61x 102
I.I; 100x o6x 37X 1237x 18 17x ]} 20X ‘ 14 25x SN 1ax 5% 15x 20X 23x 38
o)) 10X 7X 9x \ 2 7x1 0 \ 8x 6x 6X 6x 6X ax 5X 6x 7X
= * e N E l 2x == El m rv
s | m I\H Nﬁ\ o) LR ol PR ol LB E PR TR EreE] E
Ll

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

Compared to CPU and GPU:
24,000x and 3,400x more energy efficient

Baseline:

e Intel Core i7 5930K: reported by pcm-power utility

 NVIDIA GeForce GTX Titan X: reported by nvidia-smi utility
 NVIDIA Tegra K1: measured with power-meter, 60% AP+DRAM power

Stanford University




Where are the savings from?

e Four factors for energy saving:

* 10x static weight sparsity;
less work to do; less bricks to carry.

 3x dynamic activation sparsity;
carry only good bricks; ignore broken bricks.

* Weight sharing with only 4-bits per weight;
ighter bricks to carry.

« DRAM => SRAM, no need to go off-chip;
carry bricks from NY to Stanford => SF to Stanford.

Stanford University



Conclusion

 EIE: first accelerator for compressed, sparse neural network.
 Compression => Acceleration, no loss accuracy.

* Distributed storage/computation to parallelize/load balance
across PEs.

* 13x faster and 3,400x more energy efficient than GPU.
2.9x taster and 19x more energy efficient than past ASICs.

Stanford University



