
Computational Photography - Assignment 2.

March 6, 2008

1 Introduction

The objective of this assignment is for you to become familiar with some
simple image processing techniques using image pyramids.

The assignment has three main parts:

• (i) A demonstration of convolution using the Fast Fourier transform,
and how it can speed up simple processing operations.

• (ii) Image blending using Laplacian pyramids.

• (iii) Noise removal using a steerable pyramid.

2 Requirements

You should perform this assignment in Matlab. Please turn in all code and
result figures/images. The code should be clearly commented, explaining
what each line is doing.

Parts (ii) and (iii) of the assignment require the use of Eero Simon-
celli’s excellent Matlab Pyramid toolbox. This can be downloaded from
http://www.cns.nyu.edu/pub/eero/matlabPyrTools.tar.gz. Download
the code and unzip it (if you are using Windows then WinRAR can uncom-
press .tar.gz files). Add the path ../matlabPyrTools1 to your Matlab
path with the addpath command.

1Expert users only: If you want to use compiled versions of the functions (which prevent
the error messages happnening) you need to compile the MEX versions and then add
../matlabPyrTools/MEX to your Matlab path.

1



G22.3033-006 2

To check that you’ve got things setup correctly, load the einstein.pgm

image (in assign2.zip from the project webpage) with the imread com-
mand. Then try the following few lines:

[pyr,ind]=buildSFpyr(im,3,3); % 3 levels, 4 orientation bands

showSpyr(pyr,ind); % show steerable pyramid

res=reconSFpyr(pyr,ind); % invert pyramid

imshow(uint8(res)); % display reconstructed image

You can ignore the warning messages – you don’t need to build the MEX
files for this assignment, the code is plenty fast enough. Also, remember that
you can always get help in Matlab by typing help command name.

3 Convolution using Fast Fourier Transform

(FFT) [10%]

The Fast Fourier Transform (FFT) is a widely used trick for efficiently con-
volving two signals. Here you will explore the speed advantage it gives over
standard, spatial domain, convolution.

First, create a random 1 megapixel array (1024x1024 pixels) using the
rand command. If you have an actual image handy you can use this instead,
the exact size not being critical to the results. Next, generate some random
k by k filter of size k = 15 using the rand command again.

The straightforward approach to 2D convolution is to use the conv2 com-
mand. Use the same option, so the input is the same size as the output. Using
this command, measure how long it takes to convolve the 1 megapixel array
with the filter using the tic and toc commands.

An alternative approach is to transform both the image and filter into the
Fourier domain using the command fft2, multiply the two together (recall
that a convolution in the spatial domain becomes a multiplication in the
Fourier domain) and then invert back to the spatial domain with ifft2. Try
this out and time how long it takes. Check that you get the same answer as
with the conv2 command. You may need to remove the imaginary part of
the answer (due to numerical precision issues) with the command real.

Now loop over different values of k, using k = 3 upto k = 35, and plot a
graph showing the relative performance of the two methods. Please export
the plot to an image turn it in.



G22.3033-006 3

4 Image blending [35%]

On the course web-page, download the second Burt and Adelson 1983 paper,
“A Multiresolution Spline with Application to Image Mosaics”. You will be
implementing the algorithm that splines regions of arbitrary shape together,
as described in section 3.2 of the paper. I suggest that you read the whole
paper though – it is well written and will reinforce the concepts mentioned
in the lecture.

Pick two images containing objects that you want to blend together.
Extra credit will be given for the artistic/horror/shock value of the final
image, so choose something fun! Then generate the mask image to select the
blending boundary. The roipoly command may be useful.

Now implement the algorithm described on page 230 of the paper. The
matlabPyrTools contains functions for computing Gaussian and Laplacian
pyramids (and reconstructing them): buildGpyr, buildLpyr and reconLpyr.
Note that you should not directly manipulate the pyr or indices structure:
use the functions pyrBand and setPyrBand to set/get the sub-bands of the
pyramid. Save your blended image and turn it in.

5 Image denoising [45%]

Here you will implement an approach from the Simoncelli and Adelson 1996
paper, “Noise Removal Via Bayesian Wavelet Coring”, posted on the web-
page. The goal is to denoise an image using the distributions of sub-band
coefficients in a steerable pyramid. Since these distributions are different to
those produced by noise, it is possible to build a “coring function”, a 1-D
non-linear mapping of the sub-band coefficients that will reduce noise in the
sub-bands, yielding a denoised image.

The key equation in the paper is Equation 1 on page 2 of the Simoncelli
paper. This equation gives us a Bayesian estimator of the value of the true
sub-band coefficient value x, given a noisy value y. Note that both the top
and bottom parts of the equation are convolutions of the signal and noise
distributions (P

x
(x) and P

n
(x) respectively), with the added x term in the

top.
First, download assign2.zip from the project webpage. It contains two

images, feynman.pgm and einstein.pgm. Load them up into memory and
make the images in the range 0 . . . 1. The Feynman image will be used to



G22.3033-006 4

build the Bayesian estimators (note the plural – we will build a separate one
for each of the high-frequency sub-bands). Although the two images are quite
different to one another, their sub-band statistics will be similar (compared
to those of the noise), hence we can use one image as a prior for denoising
the other image.

The Einstein image will act as our test image. To make it noisy, add
zero mean Gaussian noise to it with standard deviation σ = 0.05 using the
function randn. Also, generate a pure Gaussian noise image of the same size
as the Einstein images with the same standard deviation.

You should now have 3 images: a noisy Einstein image (henceforth the
signal image); a clean Feynman image (henceforth the prior image); and
a noise image. Now compute the steerable pyramid of each image, using
the command: [s pyr,s ind]=buildSFpyr(signal im,3,3); for the signal
image and likewise for the other two. This gives us pyramids with 3 levels,
each having 4 orientations. s ind contains the indices of the different sub-
bands. Note the high-frequency ones (which have more elements) come first,
followed by the lower frequencies.

Now, we will only be denoising the high frequency residual and the 4
highest frequency sub-bands, since they contain most of the noise. In other
words, we are only going to alter the top 5 levels of the pyramid.

So, for each of the top 5 sub-bands:

1. Extract bands from the prior and noise pyramids using pyrBand.

2. Histogram the coefficients of the band from the prior image, using bins
from −0.3 to 0.3. Add a small regularization term of 0.1 to all bins
(having zero causes mayhem).

3. Histogram the coefficients of the band from the noise image, using bins
from −0.3 to 0.3. Add a tiny regularization term of eps to all bins
(having zero causes mayhem).

4. Use these two histograms as estimates of P
x
(x) and P

n
(x) and compute

the estimator for the sub-band using Equation 1. You can use the conv2
command with the ’same’ option, even though the signals are 1-D, to
get a same-sized vector as the input.

5. Store the estimator.



G22.3033-006 5

Ok, now plot the estimator curves out. Thy should be close to the diag-
onal but will wiggles near zero. Now we can use them to denoise the signal
image. In turn, extract the same 5 high-frequency sub-bands from the signal

steerable pyramid. Use interp1 to remap the sub-band coefficients, making
sure you use the estimator for that particular sub-band. Re-insert the re-
mapped sub-band into the pyramid using the command setPyrBand. Finally,
convert the signal pyramid back to an image using reconSFpyr. Hopefully
it is less noisy than the input image.

For a baseline comparison, use the function wiener2 to denoise the signal
image, using M = 3, N = 3 and a noise level of 0.052 (the function requires
the noise power, not the noise standard deviation).

Now compute Power Signal to Noise Ratios (PSNR’s) between the clean
Einstein image and the noisy version, the Wiener baseline and your output.
The function PSNR.m does this for you and is in the .zip file. Bigger numbers
are better here, so hopefully your code is able to beat the Wiener denoising.
Print out these figure and turn them in along with images of the signal image,
Wiener denoised image and your denoised image.


