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Admin stuff

» Change of office hours on Wed 4t April

— Mon 315t March 9.30-10.30pm (right after class)
4 — Image Pyramids
¢ Change of time/date of last class

— Currently Mon 5t May

— What about Thursday 8th May?

Projects Spatial Domain

¢ Time to pick! Basis functions:

¢ Every group must come and see my in the Tells you where things are....
next couple of weeks during office hours!

... but no concept of what it is

:

Fourier domain Fourier as a change of basis

Basis functions: . . . .
« Discrete Fourier Transform: just a big

§//A " mar

Tells you what is in the image....

% ) ... but not where it is
7

http://www.reindeergraphics.com
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Image Analysis

¢ Want representation that combines
what and where.

- Image Pyramids

GAUSSIAN PYRAMID

Keep filters same size

¢ Change image size
e Scale factor of 2

r GAUSSIAN PYRAMID

N
mﬂlu

Total number of pixels in pyramid?

1+%+1/16 +1/32........ =4/3
-> Over-complete representation
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Why Pyramid?

....equivalent to.... (‘Dn

Practical uses

* Compression

— Capture important structures with fewer bytes
* Denoising

— Model statistics of pyramid sub-bands
¢ Image blending
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Image pyramids

e Gaussian

* Laplacian

* Wavelet/QMF

« Steerable pyramid

GAUSSIAN PYRAMID

mﬂn,.
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sures 257 by 257 pincls and cach
4 piaels
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Fig. 4, First i bevels of the €
higher level seray is roughly balf the

For the “Lady”™ image The original image, level 0, =
ensdons of its peedcessor, Thus, level 5 measures just 9

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf RN TR AL CF IR A8 LB A TR, WO CORA 2, 04, M. B

The computational advantage of pyramids

GAUSSIAN PYRAMID
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Fig 1. A o | graphic repr ion of the process which
generates a Gaussian pyramid Each row of dots represents nodes
within a level of the pyramid. The value of each node in the zero
level is just the gray level of a corresponding image pixel. The value
of each node in a high level is the weighted average of node values
in the next lower level. Note that node spacing doubles from level
to level, while the same weighting pattern or “generating kernel” is
used to generate all levels.

A ATHIA VUL EALLL N 4 L s

http://www-bes. mit.edu/people/adelson/pub_pdfs/pyramid83 pdf

Sampling without smoothing. Top row shows the images,
sampled at every second pixel to get the next; bottom row
shows the magnitude spectrum of these images.
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Sampling with smoothing. Top row shows the images. We

get the next image by smoothing the image with a Gaussian with sigma 1 pixel,
then sampling at every second pixel to get the next; bottom row

shows the magnitude spectrum of these images.

256x256  128x128 64x64 32x32 16x16

Sampling with more smoothing. Top row shows the images. We

get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels,
then sampling at every second pixel to get the next; bottom row

shows the magnitude spectrum of these images.

256x256  128x128 6464 32x32 16x16

Slide credit: W.T. Freeman

Slide credit: W.T. Freeman

1D Convolution as a matrix operation

x @f = Cx

where f=(f_1...f N)
and

C= (. Nf(N-1)f (N2 ..f10..... 0
0 fN f(N1) ..f2f10..0
0 0 0...0f Nf(N-1)..f2f1)

Size of C is |x|-|f|+1 by |¥]|

2D Convolution as a matrix operation
X @ g = CyX()

where g=(g_11 ... g_1IN
g_21...g_2N

g_M1....g MN)

=

=

)

)
o
w
P
-
-
m
m

Size of Xis I x J
Size Cyis 13— MN +1 by 1J
(for ‘valid’ convolution)

8 pixels

Convolution and subsampling as a matrix multiply

(1-d case)

For 16 pixel 1-D image
ul= 16 pixels
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b * a, the combined effect of the two
pyramid levels

>>U2* Ul

ans = Im_1

4 10 20 31 40 44 40 31 20 10 4 1 0 0 O
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Image pyramids

e Gaussian

* Laplacian

* Wavelet/QMF

« Steerable pyramid

Image pyramids

» Gaussian
 Laplacian

* Wavelet/QMF

* Steerable pyramid

The Laplacian Pyramid

¢ Synthesis
— preserve difference between upsampled
Gaussian pyramid level and Gaussian
pyramid level
— band pass filter - each level represents spatial
frequencies (largely) unrepresented at other
levels
¢ Analysis
— reconstruct Gaussian pyramid, take top layer

Laplacian pyramid algorithm

@*I

—lﬂ

ﬂ

*IE "

http://www-bes.mit.edt pub_pdfs pdf




Why use these representations?

* Handle real-world size variations with a
constant-size vision algorithm.

* Remove noise

« Analyze texture

* Recognize objects

« Label image features
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512 256 128 64 32 16 8

E. H. Adelson | C. H. Anderson | J. R. Bergen | P. J. Burl | J. M. Ogden

Pyramid methods in image processing

The image pyramid offers a flexible, convenlent multiresolution
format that mirrors the multiple scales of processing in the
human visual system.

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

Efficient search

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

Image Blending




cathering

Encoding transparency
1(x,y) = (oR, oG, aB, o)

Iotend = liett + lright
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Affect of Windo_vv Size

Affect of Wlndow Slze

Good Wlndow Size

“Optimal” Window: smooth but not ghosted

What is the Optimal Window?
* To avoid seams

— window >= size of largest prominent feature

» To avoid ghosting
— window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain
« largest frequency <= 2*size of smallest frequency
« image frequency content should occupy one “octave” (power of two)

7

Z

What if the Frequency Spread is Wide

Idea (Burt and Adelson)
» Compute Figy = FFT(ler), Frigne = FFT(lighy)
« Decompose Fourier image into octaves (bands)
= Fiet = Fien" + Fien® + -
+ Feather corresponding octaves Fiq with Fgp
— Can compute inverse FFT and feather in spatial domain
« Sum feathered octave images in frequency domain

Better implemented in spatial domain
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Multiresolution Spline

When splining two images, transition from one image to Pyl’amld Blend | ng

the other should behave:

High Frequencies

| level k (= 1 pixel) level k(= 1 pixel)

X level k-1

0 o

Middle Frequencies

— level k-2 X level k-2
U A

s Low Frequencies

/ Left pyramid blend Right pyramid

o
f
>

level k-1

http://cs.haifa.ac.il/~dkeren/ip/lecture8.pdf

Pyramid Blending laplacian

level

o ekt pyramid right pyramid blended pyramid

T |

Laplacian Pyramid: Region Blending

Blendina Reaions

General Approach:
1. Build Laplacian pyramids LA and LB from images A and B
2. Build a Gaussian pyramid GR from selected region R
3. Form a combined pyramid LS from LA and LB using nodes
of GR as weights:
LS(i,j) = GR(1,j,)*LA(1,j) + (1-GR(1,j))*LB(l,j)
4. Collapse the LS pyramid to get the final blended image

A Multiresolution Spline With Application to
Image Mosaics

PETER J. BURT and EDWARD H. ADELSON
RCA Davic Samolf Research Center
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Horror Photo

Simplification: Two-band Blending

* Brown & Lowe, 2003
— Only use two bands: high freq. and low freqg.

© david dmartin (Boston College)

2-band Blending

High frequency (A < 2 pixels)

BN -

Gaussian
pyramid |
| —l— I + Fourier
. :
1
Laplacian L Eourier
pyramid I

Spatial

. - NS

nup://cs.alra4ac.||/~uKeren/iplIecture8.pdf




Image pyramids

Gaussian

Laplacian

Wavelet/Quadrature Mirror Filters (QMF)
Steerable pyramid
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Wavelets/QMF's

transformed image
F = Uf <~ \Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform

Orthogonal wavelets (e.g. QMF’s)

_ -
Forward / Analysis F — Uf

Inverse / Synthesis f

The simplest orthogonal wavelet transform:

the Haar transform

Haar basis is special case of Quadrature Mirror
Filter family

The inverse transform for the Haar wavelet

>> inv(U)

ans =

0.5000 0.5000
0.5000 -0.5000

Apply this over multiple spatial positions

U=
1100 00 00O
1 -1 00 0 0 0O
00 1 100 00O
00 1-1 0000
00 001 100
00 00 1-1 00
00 0 0 00 11
00 00 OO0 T1-1

10



The high frequencies

U=
11 0 0 0 0 0 O
1 -1 0 0 0 0 0 O
00 1 1 0 0 0O
0O 0 1 -1 0 0 0 O
0 0 0 0 1 1 0O
0O 0 0 0 1 -1 0 0
00 0 0 0 0 1 1
0O 0 0 0 0 0 1 -1
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The low frequencies

U=
11 0 0 0 0 0 O
1 -1 0 0 0 0 0 O
0O 0 1 1 0 0 0O
00 1-1 0000
00 0 0 1 1 0O
0O 0 0 0O 1 -1 00
0O 0 0 0 0 0 1 1
00 0 O0O0O0T1S-1

>> inv(U)

ans =

0.5000
0.5000

© © o o o

-0.5000 0 0

The inverse transform

0.5000 0 0 0 0
0 0
0 0.5000 0.5000 0 0
0 0.5000 -0.5000 0 0
0 0 0 0.5000 0.5000
0 0.5000 -0.5000
0 0 0 0.5000 0.5000
0 0 0 0.5000 -0.5000

o © o © o o
o © o © o ©o

o o o

0
0
0

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Analysis section Synthesis section

uin) - u,(n
Kiw) |-I-| k, ~L]—‘o—-{ k,

\-p{ Hn(uﬂlH Ky J«]—grf“—)h{ Ky T]--lsnliu)|->|

Figure 4.2: An analysis/synthesis filter bank.

Figure 4.4: Octave band
cade of a twoband A
of Lhe two-band ASS

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

g produced by a four-level pyTamid cas-

bottom picture gives the Anal foar-level partition of
. All frepuency axes cover Uhe rangy: from 0 to 7.

Now, in 2 dimensions...
|

orizonlal high pass

I

Frequericy domain

Slide credit:
Harizonfal low pas W. Freeman

11
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Apply the wavelet transform separable in both dimensions

T

—] Bothdiagonals —— ‘

Horizonlal high pass,

vertical high pass

HorizontéJI high pass,
vertical low-pass

Horizontiil low pass, Slide credit: W.

Horizontal'low pass, ;
P Vertical low-pass

vertical high-pass Freeman

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

To create 2-d filters, apply
the 1-d filters separably in
the two spatial dimensions

e T

Wi

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Wavelet/QMF representation

Simoncelli and Adelson, in “Subband ccding“, Kluwer, 1990.

Some other QMF'’s

oo fi
e Better .
localized in N L ,WL’,
frequency JL

Figure & Lell the seres of Jowpass 1.0 brmnels derved secusasvel 1y
from a gtap QMF kewmel Right: the senies of haghpass kemmels
denived i the samse way

http://web.mit.edu/persci/people/adelson/pub_pdfs/orthogonal87.pdf

Good and bad features of wavelet/QMF
filters

* Bad:

— Aliased subbands

— Non-oriented diagonal subband
« Good:

— Not overcomplete (so same number of
coefficients as image pixels).

— Good for image compression (JPEG 2000)

12
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Compression: JPEG 2000

. Progressive

Sub-i-plane Entragy
Coding

Oiriginal RGH Color Wavelet
?‘“199 Conversion Transfoom Coding

http://www.rii.ricoh.com/%7Egormish/pdf/dcc2000_jpeg2000_joint_charts.pdf

Compression: JPEG 2000

http://en.wikipedia.org/wiki/lmage:Jpeg2000_2-level_wavelet_transform-lichtenstein.png

Image pyramids

» Gaussian

* Laplacian
Wavelet/QMF
Steerable pyramid

Steerable filters

< Analyze image with oriented filters
« Avoid preferred orientation

 Said differently:

— We want to be able to compute the response
to an arbitrary orientation from the response
to a few basis filters

— By linear combination

— Notion of steerability
Filter Kernels

LN ==

Steerable basis filters

* Filters can measure local orientation
direction and strength and phase at any

orientation.
G2

’ IIDH
IEH EeLEEd

http://people.csail.mit.edu/billf/papers/steerpaper91FreemanAdelson.pdf

Steerability examples

http://people.csail.mit.edu/billf/papers/steerpaper91FreemanAdelson.pdf

13



Filter Kermnels

Coarsest :v-m]un

Image

Finest scale

Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE
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Laplacian Pyramid

Oriented Pyramid

Fourier construction

* Slice Fourier domair

— Concentric rings for
different scales

— Slices for orientation
— Feather cutoff to

Figure 1. Idealized illustration of the spectral

make steerable
decomposition performed by a steerable pyra-

— Tradeoff
mid with & = 4. Frequency axes range from
steerable/orthogonal -7 to =. The basis functions are related by

translations, dilations and rotations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
Hyfm} corresponds to the spectral support of a single
(vertically-oriented) subband.

But we need to get rid
of the corner regions
before starting the
recursive circular
filtering

Figure 1. [dealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with k = 4. Frequency axes range from
—a to @. The basis functions are related by
translations, dilations and rotations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.

i and Freeman, ICIP 1995

http://www.cns.nyu. i 11i95b.pdf

Non-oriented steerable pyramid

Figure 4: A 3-level & = 1 (non-oriented) steer-
able pyramid. Shown are the bandpass images.
and the final lowpass image.

http://iwww.merl.com/reports/docs/TR95-15.pdf

3-orientation steerable pyramid

Figure 5 A 3-level & = 3 (second derivative)
steerable pyramid. Shown are the three band-
pass images at cach scale and the final lowpass
image.

http://www.merl.com/reports/docs/TR95-15.pdf

14
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Steerable pyramids

» Good:
— Oriented subbands
— Non-aliased subbands
— Steerable filters
» Bad:
— Overcomplete

— Have one high frequency residual subband, required
in order to form a circular region of analysis in
frequency from a square region of support in
frequency.

Laplacian Pyramid | Dyvadic OMF/Wavelet | Steerable Pyramid
STl tmverting, (gt frame) || no Yo =y
overcompleteness i3 1 k3
aliasing in subbands perhaps yes o
rotated orientation bands no only on hex lattice [9] | ves

Table 1: Properties of the Steerable Pyramid relative to two other well-known multi-scale representations.

http://www.cns.nyu.edu/ftp/eero/simoncelli9sh.pdf  Simoncelli and Freeman, ICIP 1995

Application: Denoising

How to characterize the difference between the images?

How do we use the differences to clean up the image?

http://www.cns.nyu.edu/pub/lcv/simoncelli96c. pdf

Application: Denoising

Usually zero, sometimes big Usually close to zero, very rarely big
800
600
400
200
o
60 60 -30 Q 30 &0

Figure 1. Histograms of a mid-frequency subband
in an octave-bandwidth wavelet decomposition for
two different images.  Left: The“Einstein” image.
Right: A white noise image with uniform pdf.
http://www.cns.nyu.edu/pub/lcv/simoncelli96c. pdf

Application: Denoising

Coring function: 60
40

20

-20

=40

=60

-60 -30 i kY] 60
http://www.cns.nyu.edu/pub/lcv/simoncelli96c.pdf

Application: Denoising

Original Noise-corrupted
Wiener filter Steerable
pyramid
coring

http://www.cns.nyu.edu/pub/lcv/simoncelli96c. pdf
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« Summary of pyramid representations

Image Pyramids - Comparison

Frequency  characteristics

Transform  Basis

Mot localized in space

A
Fourier '} Y]
Localized in Frequency

vy vy
Sines+Cosines

o~ r 1

f.-ausslan /-" \ . Localized in space
Pyramid  Gaussian Fillers

Mot localized in Frequency

N T
Laplacian 2| =
Pyramid H

Laplaé:an"Ful:ers L

Localized in space
Mot localized in Frequency

Localized in space
Localized in Frequency

Wavelst

Pyramid

Wavelet Fiters

2/26/2008

» Gaussian

* Laplacian

* Wavelet/QM

http://cs.haifa.ac.il/~dkeren/ip/lecture8.pdf

» Steerable pyrami =
py subbands. Good for texture
and feature analysis.

Image pyramids

. \\ z@“ Progressively blurred and
subsampled versions of the
image. Adds scale invariance
to fixed-size algorithms.

Shows the information added in
Gaussian pyramid at each
'spatial scale. Useful for noise
reduction & coding.

Bandpassed representation, complete, but with
aliasing and some non-oriented subbands.

Shows components at each
cale and orientation
separately. Non-aliased

Gaussian pyramid

Gaussian —
pyramid —

pixel image

Overcomplete representation.
Low-pass filters, sampled

appropriately for their blusiide credit: W. Freeman

Fourier transform

Fourier Fourier bases pixel domain
transform are global: image
each transform
coefficient
depends on all
pixel locations.
Slide credit: W. Freeman
Laplacian pyramid
= — | *
Laplacian — pixel image
pyramid — |

Overcomplete representation.
Transformed pixels represent
bandpassed image informatige credit: w. Freeman

16
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Wavelet (QMF) transform Steerable pyramid
o muttiple | | T——
I - orientations at ]
Wavelet - — onescale 7*—77 *
pyramid = - — | * —
Steerable T pixel image
Ortho-normal pixel image pyramid ' - —
transform (like - Multiple | f T |
Fourier transform), The nnts;?::afé —
but with localized ] Over-complete
basis functions. =~ | representation,
the next scale... ——— | butnon-aliased
-~ subbands.
Slide credit: W. Freeman - —————$lide credit: W. Freeman
Matlab resources for pyramids (with tutorial) Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html http://www.cns.nyu.edu/~eero/software.html

CV
@ Laboratory for Computational Vision
| stoms [ Pospie | Ressaron [rustcmions| Sutwer |

Publicly Available Software Packages

Eero P. Simoncelli

Associate Investigator,
Heward Hughes Medical Institute

Associate Professor,

Meural Science and Mathematics, .
e » Taviure Anshysis/Syréasis - Matiab code s avadable for aratysing and
Mew York University wymthesiang b BEALME | Coments | Chan )
cade (UNDUPC, grip'ed tar fle]
» EPVAC - Embedded Progressie Wavelet Image Coder, C source code
eadatia,
b - MalabPyITooks - Matet seurce oo for si-sc e inige procetting
Inchudes ook for bralding and mangolating Laplacien pymeids,

Ted Adelson (MIT) Bill Freeman (MIT)

marry boundany-handing cptions. README. Contents. Modfication int.
LBIXPS serin o Masrtesh saues.

ey + Thet Stestatie Pyramd. r
mi-scale mage decomponton. Matlab (vee above) and C
imphemertatom me malsble

« EPIC - Efficiont Pyrarrid (Waveled) Irsage Coder. © sowse code avaliabie.

README I Changelog / Dus (225K | Source Gode (2.25M).
+ CL-SHELL [Gau Emacs <. Comenon Lisg Inteeface]:
README / Change Log / Source Code (119%).
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