Depth and defocus

Lecture 11

Admin

• Next week:

- Anat Levin on Matting
- Tuesday 11am on her SIGGRAPH 2008 paper

• Projects

- Can everyone send me ½ page telling me where they are/what they've done
- Projects due Friday 9th 4pm (last class)

Obtaining depth

- Multiple viewpoints (Stereo)
- Special camera (last lecture on May 9th)
- Active methods - Change scene illumination
- Passive methods (require scene texture)
 - Defocus analysis
 - Multiple images
 - Single image

Depth from Stereo

- Huge amount of literature in Computer Vision
- Good survey paper: A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. Daniel Scharstein & Richard Szeliski

Depth map

Estimated Depth Map

Active methods • Illuminate scene with light Binary or colored patterns - Can use LCD projectors

Color Structured Light and Multi-pass Dynamic Programming by Li Zhang, Brian Curless, Steven M. Seitz

Active methods

- Use shadows:
 - 3D Photography using shadows in dual-space geometry (Bouguet, J.Y & Perona, P.)

Defocus & Depth of field

Slides from Fredo Durand (MIT)

 Assumption on print size, viewing distance, human vision Typically for 35mm film: diameter = 0.02mm Film/sensor resolution (8µ photosites for high-end SLR) Best lenses are around 60 lp/mm 	Size of permissible circle?
 Film/sensor resolution (8µ photosites for high-end SLR) Best lenses are around 60 lp/mm 	
 (8μ photosites for high-end SLR) Best lenses are around 60 lp/mm 	– Typically for 35mm film: diameter = 0.02mm
Best lenses are around 60 lp/mm	Film/sensor resolution
*	(8µ photosites for high-end SLR)
	Best lenses are around 60 lp/mm
Diffraction limit	Diffraction limit

(a)and csa

Important conclusion

• For a given image size and a given f number, the depth of field (in object space) is the same.

alan esa

- Might be counter intuitive.
- Very useful for macro where DoF is critical. You can change your working distance without affecting depth of field
- Now what happens to the background blur far far away?

Important conclusion

- For a given image size and a given f number, the depth of field (in object space) is the same.
 The depth of acceptable sharpness is the same
- But background far far away looks more blurry Because it gets magnified more
- Plus, usually, you don't keep magnification constant

From Macro Pho

Anat Levin, Rob Fergus, Frédo Durand, William Freeman

MIT CSAIL

Close-up

Naïve sharpening

5/13/2008

Coded aperture: pros and cons

- + Image AND depth at a single shot
- + No loss of image resolution
- + Simple modification to lens

Depth is coarse unable to get depth at untextured areas, might need manual corrections.

- + But depth is a pure bonus
- Loss some light
- + But deconvolution increases depth of field

Deconvolution code available

http://groups.csail.mit.edu/graphics/CodedAperture/

Bit Address Bit Address</t

Fill in feedback forms

 Can someone collect and return to 305WWH