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Admin

* Please fill in feedback sheets
Image Blending & Compositing « Assignment 2 due today

— Can have extension until Wed. if you need it
— But MUST be in by then

— I need to submit mid-term grades

Overview Overview

¢ Image blending & compositing
— Poisson blending
— Cutting images (GraphCuts)

¢ Image blending & compositing
— Poisson blending
— Cutting images (GraphCuts)

* Panoramas
— RANSAC/Homographies
— Brown and Lowe ‘03

* Panoramas
— RANSAC/Homographies
— Brown and Lowe ‘03

Image Blending -- Recap

¢ Pyramid blending
— Multi-scale decomposition of image

—Scale of feathering given by Gaussian pyramid of
mask

— In assignment 2
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Overview

¢ Image blending & compositing
— Poisson blending
— Cutting images (GraphCuts)

* Panoramas
— RANSAC/Homographies
— Brown and Lowe ‘03

Gradient manipulation

Idea:
¢ Human visual system is very sensitive to gradient
« Gradient encode edges and local contrast quite well

¢ Do your editing in the gradient domain
¢ Reconstruct image from gradient v

Various instances of this idea, 1’ll mostly follow Perez et al. Siggraph 2003
http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

Slide credit: F. Durand

Cloning of intensities

cloning

sources/destinations

Gradient domain cloning

seamiless cloning
sources/destinations

Gradient domain
view of image
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Membrane interpolation Fesar

¢ Laplace equation (a.k.a. membrane equation )

min /[ V47 with flog = £"lsq

1D example: minimization

» Minimize derivatives to interpolate s

S

012345867

. Min (f,f,)2
o Min (f,f,)2

« Min (f,f,)2 o
« Min (f5-f,)2 =1

o Min (fs-f.)2

Slide credit: F. Durand

i
y,
<Y
1D example: derivatives
* Minimize derivatives to interpolate 6
5
4
3
2
1 2.2 72 2
. 2 2 9
01234567
Min (fzz+36‘212f; 37?_: =2fa+2f,—-2f3—12
+ 124,226, p
RS, B=2fs—2f+2fs—2f
+ f24f,2-2ff, aQ _
+f;2+1-2f;) dafs — 2f4 - 2f3 + 2f4 - 2f5
Denote it Q
F=2fs—2at2f5-2

Slide credit: F. Durand

1D example: set derivatives to zero.

« Minimize derivatives to interpolate

or M WA GO

012345867

9 =2fy+2fr—2fs — 12
W =2fs—2fr+2fs—2f
B =2fi-2fs+2f1 -2
I 4 =2 0 0 f: 12
Foe ()0

. 0 -2 4 =2 fa 0

0 0 -2 4 fs 2
Slide credit: F. Durand

1D example 28l

¢ Minimize derivatives to interpolate

« Pretty much says that second -
derivative should be zero .
(-12-1) :
is a second derivative filter 5123455 1

———Sffecredit. . Durand

Membrane interpolation Hesn

 Laplace equation (a.k.a. membrane equation )

min /[ 192 with flog = £"loe

* Mathematicians will tell you there isan ==
Associated Euler-Lagrange equation: | =

¥
Af =0 over Q with fly0 = *|s0 a5

— Where the Laplacian A is similar to -1 2 -1in 1D

» Kind of the idea that we want a minimum, so we kind
of derive and get a simpler equation
Slide credit: F. Durand
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Seamless Poisson cloning

« Given vector field v (pasted gradient), find the value
of f in unknown region that optimize:

¢ Previouslv. v was null
. . L . -
min //Q [Vf—v|” with fl30 = ["|ag

Pasted gradient Mask
= s f
S 5 3
M Ry
I e L ] \“
e e ]
A i
A\ R LU
Sl & T 791
b 8
Figuee 1 Guided interpelathon notathons. Unknown function §
interpo dosmain £2 the destination function f*, under guid-
ance

field v, which might be or st the grabent ‘gl db'credit: F. Durand

What if v is not null: 2D

 Variational minimization (integral of a functional)
with boundary condition

min [ 194~ v with fla0 = "o,
1 L¢]

* Euler-Lagrange equation:

i |

P—
dit — J ldsi

S PP
SHCC O ¥V = (L V)

» (Compared to Laplace,
we have replaced A =0 by A = div)

Slide credit: F. Durand

Discrete 1D example: minimizatiof.

* Copy

2220

01234567

01234567

Min ((f,-f,)-1)2
Min ((fs-f,)-(-1))? i
Min ((ffy)-22  With
Min ((f-f)-(-1))2  T1=6
Min ((fo-fy)-(-1))2  T6~

Slide credit: F. Durand

1D example: big quadratic
* Copy ¢ 6

5 5

4 4

3 3

2 2

1 1 2 2 2 ?

01 23465¢67

012345867

« Min (f,2+49-14f,
+ £ 2+f,2+1-2f,f, +2f,-2f,
+ f,2+824+4-21,f, -4, +41,
+ f2+f 2+ 1-2ff, +2f;-2f,
+ f52+4-4f;)

Denote it Q
Slide credit: F. Durand

1D example: minimization
» Copy ¢ 6

5 5

4 4

3 3

2 2

1 1

0 012345867 ¢ 012345867
* Min ((f,-6)-1) ==> f2+49-14f,
o Min ((fF)-(-1)2  ==> f2+,2+1-2f .5, +2f-2f,
o Min ((f,-f,)-2)? ==> f2+f,244-20.F, -4f +4f,
o Min ((fs-f)-(-1))2  ==> f2+f2+1-2ff, +2f-2f,
o Min ((I-fy)-(-1))2  ==> f2+4-4f,

Slide credit: F. Durand
1D example: derivatives
» Copy ¢ 6

5 5
4 4
3 3
2 2
1 1
0 0

01234567 01234567

in (f,2+49- d
Min (f, +49214fi df% =2fo +2fo —2f3 — 16
+ f,2+1,2+1-2f f, +2f;-2f, d
+ £ 24 2HA-0Ef, -4f HAf, d—fo; =2fs—=2fr+24+2f3-2f1+4
+ 2241268, 42152, g

+ f,2+4-41;) df_'A—2f4_2f3_4+2f4_2f5_2

Denote it Q
W=ofs—2fs+2+2fs—4

Slide credit: F. Durand




1D example: set derivatives to zero.

e Copy ¢

2?2?72

orRr N WA O
orRr M WA OO

01 2345¢67

01 2345¢67
W =2f,+2f,—2f3— 16
9 =2fy = 2fs+242fs — 2fs+4
B=2i -2y —d+2f -2 -2

WB=2fs - 2fs+242f5—4

4 =2 0 0 f 16

-2 4 -2 0 fs | | -6
- 0 -2 4 =2 fa 6
0 -2 4 fs 2

Slide credit: F. Durand
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1D example

o P N W s~ o
o R N W A~ O o

01234567 012345867

4 -2 0 0\/fg\ /16\ fo

6
-2 4 -2 0 fs 11 -6 4
0 -2 4 -2 nl=l s ;j = 5
0 0 -2 4 ¥ 2 " 3

—— e Tt Durand

1D example: remarks
" Coy h. 0 II ( T4 8)({;) (
: : 0 -2 4 -2 . 6
: B 0 0 -2 4 f5 2

* Matrix is sparse
« Matrix is symmetric
« Everything is a multiple of 2
— because square and derivative of square
* Matrix is a convolution (kernel -2 4 -2)
* Matrix is independent of gradient field. Only RHS is
* Matrix is a second derivative

Slide credit: F. Durand

What if v is not null: 2D

 Variational minimization (integral of a functional)
with boundary condition

min [ 194 =¥ with fla0 = o,
[ Y]

» Euler-Lagrange equation:

Af =divy over Q. with /36 = " |aa
where divy = %‘—: + g—\ is the divergence of v = (i, v)
» (Compared to Laplace,
we have replaced A =0 by A = div)

Slide credit: F. Durand

Discrete Poisson solver

« Two approaches:
— Minimize variational problem i /[ 197 v wits £l = f*laa
— Solve Euler-Lagrange equation af = divw over 2. with flsq = " lig
In practice, variational is best

« In both cases, need to discretize derivatives
— Finite differences over 4 pixel neighbors
— We are going to work using pairs

« Partial derivatives are easy on pairs
_ Same for the discretization of v

L]

Slide credit: F. Durand

Discrete Poisson solver
« Minimize variational problem min /[ 7=+ it fn = f"a.
Discretized
gradient ,
min E (fp—fg—vpg)™. with f, = j;.forall pedQ
fla i iy oot
4 (P20 Discretized -
(allqpairs that v: 9(p)-(0) Boundary condition

arein Q)
* Rearrange and call N, the neighbors of p
forall pe Q. | [N,|f, — 2 fy= Z fot L vy
g N qEN, W0 eNp
=

» Big yet sparse linear system Only for
] boundary pixels

L]

Slide credit: F. Durand




Discrete Poisson solver

« Minimize variational problem min /[ ¥/~ wit £l = £ 0

Discretized

gradient R
min E (fp—fy—vpg)™. with f — fy.forall p € IQ
flo o e . .
IR {pag) Q0 Discretized .
(all pairs that v: 9(p)-g(a) Boundary condition

arein Q)

* Rearrange and call N, the neighbors of p
Torall pc Q| [Nyl fp z fe= Z i z Vg

gEN, 0 qEN,

. . —
* Big yet sparse linear system Only for
] boundary pixels

L]

L_J Slide credit: F. Durand
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source/destination cloning seambess cloning

Perez et al. SIGGRAPH 03

Figure 2: Concealment. By importing seamlessly a piece of the
background, complete objects, parts of objects, and undesirable ar-
tifacts can easily be hidden. In both examples, multiple strokes (not
shown) were used.

Perez et al. SIGGRAPH 03

source/destination

calor transfer manachrame fransfer

Figure 5: Monochrome transfer. In some cases, such as tex-
ture transfer, the part of the source color remaining after seamless
cloning might be undesirable. This is fixed by turning the source
image monochrome beforehand.

Perez et al. SIGGRAPH 03

Seamless Image Stitching in the Gradient Domain™

Anat Levin, Assaf Zomet **, Shinuel Peleg. and Yair Weiss

lspus iage 1 Stitehiang sesult

Fig. 1. Image stitching, On the left are the input images. o is the averlap region. On top right is a
sinple pasting of the input images. O the bottons right is the revult of the GIST] algorithm.

E LN W) adTETh U W d T Tl e U =W i

where [/ is a nxiform image, and 4,0 S, Lo 18] is the distance between J,, 1. on &
Ay do e WY Eu Sy - gy 5]

with | - | , demoting the { -norm.

Fig. 2. Compasing stitching methods with varions sources for inconsistencies berween the imput
images. The left sade of £, is stitched bo right side of J2. Optimal seam metbods produce a sexm
astifact in case of photometric inconsistencies between the images (first row). Featbering and
pyramid lending produce double edges in case of horizotal misalipsments (second row). Iy
case there is a vertical misalignnsents (third row), the stitching is less visible with Feathering and
GIST.
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What about Photoshop? Photoshop healing brush

+ Healing brush tool | 7 T ——
o4 . £
Q Patch Tool 1 |

& 1

»
+

‘)‘ gy Red Eye Tool
¢ Uses Poisson
blending

Todor Georgiev
Sr. Research Scientist, Photoshop Group, Adobe Systems

v

http://www.photoshopsupport.com/tutorials/jf/retouching-tutorial/remove-wrinkles-healing-brush.html

Covariant Derivative = Perceptual Derivative

a El : .

& — gp HAlEs) Our covariant Laplace equation:

) a Af L grodf grady  Sg | (grode) - (grodg) o
. +Ay(x.y) f oo £ g i

dy v

Compare this to Poisson equation:

Afiry) = Aglz.y)

Both define gradient domam clomng. Which one 1s better?

Differences to Laplacian pyramid blending

¢ No long-range mixing
— Mixing of pixels at large scale in pyramid
¢ Gives exact solution to Poisson equation

— First layer of Laplacian pyramid only gives
approximate solution
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Todor Georgiev
Sr. Research Scientist, Photoshop Group, Adobe Systems

Todor Georgiev
Sr. Research Scientist, Photoshop Group, Adobe Systems

Todor Georgiev Todor Georgiev
Sr. Research Scientist, Photoshop Group, Adobe Systems Sr. Research Scientist, Photoshop Group, Adobe Systems

Todor Georgiev Todor Georgiev
Sr. Research Scientist, Photoshop Group, Adobe Systems Sr. Research Scientist, Photoshop Group, Adobe Systems




3/16/2008

Overview

¢ Image blending & compositing
— Poisson blending
— Cutting images (GraphCuts)

* Panoramas
— RANSAC/Homographies
— Brown and Lowe ‘03

Todor Georgiev
Sr. Research Scientist, Photoshop Group, Adobe Systems

Don't blend, CUT! Davis, 1998

Segment the mosaic
« Single source image per segment
« Avoid artifacts along boundries
— Dijkstra’s algorithm

Moving objects become ghosts

So far we only tried to blend between two images.

What about finding an optimal seam?
Slide credit: A. Efros Slide credit: A. Efros

Minimal error boundary Graphcuts

What if we want similar “cut-where-things-
agree” idea, but for closed regions?
« Dynamic programming can’t handle loops

overlapping blocks vertical boundary

d

overlap error min. error boundary
Slide credit: A. Efros
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Graph cuts

(simple example a la Boykov&Jolly, ICCV'01)

hard t :a cut

constraint

hard
constraint

=)
=

S

Minimum cost cut can be computed in polynomial time

(max-flow/min-cut algorithms)

Slide credit: A. Efros

Kwatra et al, 2003

Actually, for this example, DP will work just as well...

Slide credit: A. Efros

Lazy Snapping

Seamless Image Stitching in the Gradient Domain®

At Levim, Aveaf Zouset **, Shunsel Peles, snd Yaur Weiss

Optisual seniz Optimmal seamn on the gradients

Pyrmid blending Pyraid blending on the grad

Interactive segmentation using graphcuts

Slide credit: A. Efros

Feathering GIST1

Fig. 3, Stitching in the gradient domsin. The ipist images appear in Figure 1, with the overlap
region emarked by n back rectangle. With the image domssin nscthods (1op pancls) the stitching i
abservable. Gradi

canais missthods (bottons pasels) avercome global iscansisteusies

T r————

Inpent imange | Tisput inage 2

ish k) (e) iy (&) i g i)

Flg. 4. Comparing various stitching nsethads, O top are the fnpet inuape and the rewlt of GIST]
wnder ¢, The imsges on bonom are cropped results of various methods. (a}-Opeimal sean
Feathering, (c}-Pyvamid blending, (d)-Optimal seam ou the gradients, (¢)-Fentbering cu the gra-
dignts. (£i-Pyramid blending on the gradients, (g)-Poisson editing [10] and (h) GIST1 - (. The

b)-

Photomontage video

10



Interactive Digital Photomontage

Aseem Agarwala!  Mira Dontcheva!  Mancesh Agrawala®  Steven Drucker”
Brian Curless'  David Salesin’®  Michael Cohen?

! University of Washington Microsoft Research

Alex Colburn?
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Interactive Digital Photomontage

Ascem Agarwala!  Mira Dontcheva'  Mancesh Agrawala®  Steven Drucker®
Brian Curless'  David Salesin'?  Michael Cohen’

!University of Washington

Microsoft Research

Alex Colburn®

Overview

¢ Image blending & compositing
— Poisson blending
— Cutting images (GraphCuts)

Panoramas
— RANSAC/Homographies
— Brown and Lowe ‘03

Recognising Panora

[P M. Brown and D. Lowe,

University of British Columbia

— ComT)act Camera FO
— Human FOV

11
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— Human FOV “ .
— Panoramic Mosaic = 360 x 180°

e 2D Rottions ®, ¢)
— Ordering % matching

virtual wide-angle camera Slide credit: F. Durand

How to do it? A pencil of rays contains all views.:.

« Basic Procedure
— Take a sequence of images from the same position real aynihetic
* Rotate the camera about its optical center camera camera
— Compute transformation between second image and

first \¥
— Transform the second image to overlap with the first /’ >
— Blend the two together to create a mosaic /
— If there are more images, repeat
¢ ...but wait, why should this work at all?

— What about the 3D geometry of the scene?

_ 3 ; %) Can generate any synthetic camera view
Why aren’t we using It as long as it has the same center of projection!

Slide credit: F. Durand

Slide credit: F. Durand
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Aligning images: translation

left on top i : right on top

Translations are not enough to align the images

3/16/2008

Back to Image Warping

Slide credit: F. Durand

Which t-form is the right one for warping PP1 into PP2?
e.g. translation, Euclidean, affine, projective

Translation Affine Perspective
2 unknowns 6 unknowns 8 unknowns

Slide credit: F. Durand

Homography

* Projective — mapping between any two PPs with
the same center of projection

— rectangle should map to arbitrary quadrilateral
— parallel lines aren’t
— but must preserve straight lines
— same as: project, rotate, reproject
« called Homography .
i
é PP1

wx' *
wy'| = |*
W *
P
To apply a homography H

« Compute p’'=Hp (regular matrix multiply)

« Convert p’ from homogeneous to image
coordinates

PP

* % %

H

Slide credit: F. Durand

Feature Matching
— SIFT Features
— Nearest Nei

Homography for Rotation

Parameterize each camera by rotation and focal length

fi 00 ot 0 —0i3 0
Ki= [0 fi 0 R;=elI, [6]x=]063 0 —0;
0 01 —0in  0;1 0

u; = Hijﬁj: Hij = KlR,R’]TK;l

B
For small changes in image position: ui =g + Du, Ay
g
- - an d1z M3
;= Ay, Aj=|an amp amn
(U 1

Slide credit: F. Duran

13



3/16/2008

Feature matching

it: A Efros

Feature matching

¢ Exhaustive search

« for each feature in one image, look at all the other features in
the other image(s)

* Hashing

« compute a short descriptor from each feature vector, or hash
longer descriptors (randomly)

* Nearest neighbor techniques
« k-trees and their variants

Slide credit: A Efros

What about outliers?

it: A Efros

Feature-space outlier rejection

Let's not match all features, but only these that have
“similar enough” matches?
How can we do it?
* SSD(patchl,patch2) < threshold
* How to set threshold?

Slide credit: A Efros

Feature-space outliner rejection

Can we now compute H from the blue points?
« No! Still too many outliers...
« What can we do?

Slide credit: A Efros

14



/la N i no
— RANSAC for Homogra

3/16/2008

Matching features

What do we do about the “bad” matches?

Slide credit: A Efros

RAndom SAmple Consensus

Select one match, count inliers

RAndom SAmple Consensus

Select one match, count inliers

Slide credit: A Efros

Slide credit: A Efros

Least squares fit

Find “average” translation vector

Slide credit: A Efros

RANSAC for estimating homography

wx
Hil
RANSAC loop: pvy
1. Select four feature pairs (at random)
< 2. Compute homography H (exact)
3. Compute inliers where SSD(p,’, Hp, <&
4. Keep largest set of inliers

5. Re-compute least-squares H estimate on all of the
inliers

Slide credit: A Efros
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RANSAC

Slide credit: A Efros

if x| < Zma

it X[ > Zma

= Bundle Adjus
— Error function
e Multi-band Blending

3/16/2008
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1
_..li?._

: _ =
= LA CR D N—

r F—' ™
y #hligh frequency (A < 2 pixels)

Results

- Bundle Adjustme
— Error function

17



