Image Blending & Compositing

Admin

- Please fill in feedback sheets
- Assignment 2 due today
 - Can have extension until Wed. if you need it
 - But MUST be in by then
 - I need to submit mid-term grades

Overview

- Image blending & compositing
 - Poisson blending
 - Cutting images (GraphCuts)
- Panoramas
 - RANSAC/Homographies
 - Brown and Lowe '03

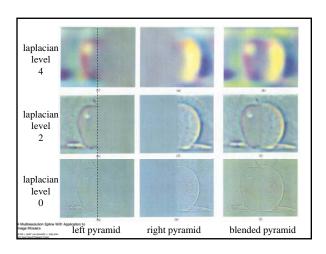
Overview

- Image blending & compositing
 - Poisson blending
 - Cutting images (GraphCuts)
- Panoramas
 - RANSAC/Homographies
 - Brown and Lowe '03

Image Blending -- Recap

- Pyramid blending
 - Multi-scale decomposition of image
 - Scale of feathering given by Gaussian pyramid of mask
 - In assignment 2

Pyramid Blending A Marine Marine Side With Agolation to (3) A Marine Marine Side With Agolation to (3) A Marine Marine Marine Side With Agolation to (3) A Marine Marine Marine Side With Agolation to (3) A Marine Marine Marine Side With Agolation to (3) A Marine Marine Marine Side With Agolation to (3)



Overview

- Image blending & compositing
 - Poisson blending
 - Cutting images (GraphCuts)
- Panoramas
 - RANSAC/Homographies
 - Brown and Lowe '03

Gradient manipulation

Idea:

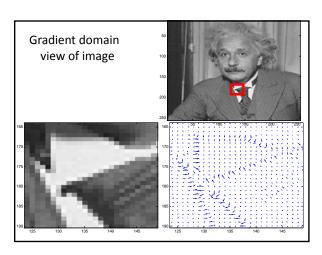
- Human visual system is very sensitive to gradient
- Gradient encode edges and local contrast quite well
- · Do your editing in the gradient domain
- Reconstruct image from gradient

 Various instances of this idea, I'll mostly follow Perez et al. Siggraph 2003 http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

Slide credit: F. Durand

Cloning of intensities

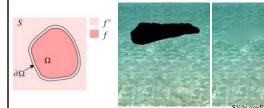
Gradient domain cloning



Membrane interpolation

• Laplace equation (a.k.a. membrane equation)

$$\min_{f} \iint_{\Omega} |\nabla f|^2 \text{ with } f|_{\partial \Omega} = f^*|_{\partial \Omega}$$



1D example: minimization

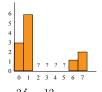
• Minimize derivatives to interpolate 6

- Min $(f_2-f_1)^2$
- Min $(f_3-f_2)^2$
- Min (f₄-f₃)²
- Min $(f_5-f_4)^2$
- Min (f₆-f₅)²

Slide credit: F. Durand

1D example: derivatives

· Minimize derivatives to interpolate



Min (f₂²+36-12f₂ $+ f_3^2 + f_2^2 - 2f_3f_2$ $+ f_4^2 + f_3^2 - 2f_3f_4$

$$\frac{dQ}{df_2} = 2f_2 + 2f_2 - 2f_3 - 12$$

$$+ f_4^2 + f_3^2 - 2f_3f_4 + f_5^2 + f_4^2 - 2f_5f_4$$

$$\frac{dQ}{df_3} = 2f_3 - 2f_2 + 2f_3 - 2f_4$$

$$\frac{dQ}{df_4} = 2f_4 - 2f_3 + 2f_4 - 2f_5$$

$$+\mathbf{f_5}^2 + \mathbf{1} - 2\mathbf{f_5}$$
)
 $\mathbf{t} \mathbf{Q}$

$$\frac{dQ}{df_-} = 2f_5 - 2f_4 + 2f_5 - 2$$

1D example: set derivatives to zero

· Minimize derivatives to interpolate

$$\begin{aligned} \frac{dQ}{df_2} &= 2f_2 + 2f_2 - 2f_3 - 12 \\ \frac{dQ}{df_3} &= 2f_3 - 2f_2 + 2f_3 - 2f_4 \end{aligned}$$

$$\frac{dQ}{dQ} = 2f_2 - 2f_2 + 2f_2 - 2f_3$$

$$\frac{dQ}{df_4} = 2f_4 - 2f_3 + 2f_4 - 2f_5$$

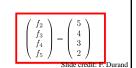
$$\frac{dQ}{df_5} = 2f_5 - 2f_4 + 2f_5 - 2 \\ = > \begin{pmatrix} 4 & -2 & 0 & 0 \\ -2 & 4 & -2 & 0 \\ 0 & -2 & 4 & -2 \\ 0 & 0 & -2 & 4 \end{pmatrix} \begin{pmatrix} f_2 \\ f_3 \\ f_4 \\ f_5 \end{pmatrix} = \begin{pmatrix} 12 \\ 0 \\ 2 \\ \end{pmatrix}$$
 Slide credit: F. Duran

1D example

- Minimize derivatives to interpolate
- · Pretty much says that second derivative should be zero

is a second derivative filter

$$\begin{pmatrix} 4 & -2 & 0 & 0 \\ -2 & 4 & -2 & 0 \\ 0 & -2 & 4 & -2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 2 & 4 \end{pmatrix} \begin{pmatrix} f_2 \\ f_3 \\ f_4 \\ f_4 \end{pmatrix} = \begin{pmatrix} 12 \\ 0 \\ 0 \\ 2 \end{pmatrix}$$

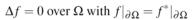


Membrane interpolation

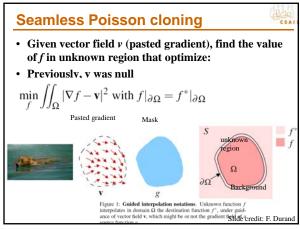
• Laplace equation (a.k.a. membrane equation)

$$\min_{f} \iint_{\Omega} |\nabla f|^2 \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

· Mathematicians will tell you there is an Associated Euler-Lagrange equation:



- Where the Laplacian Δ is similar to -1 2 -1in 1D
- Kind of the idea that we want a minimum, so we kind of derive and get a simpler equation



What if v is not null: 2D

Aces

• Variational minimization (integral of a functional) with boundary condition

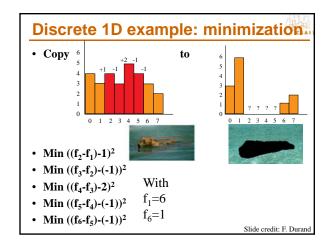
$$\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2 \text{ with } f|_{\partial \Omega} = f^*|_{\partial \Omega},$$

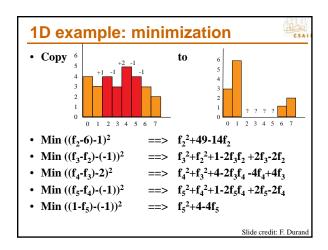
• Euler-Lagrange equation:

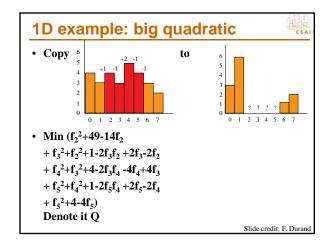
$$\Delta f = \text{div } \text{voer } \Omega, \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

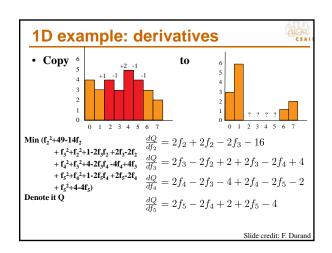
where $\text{div } \mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$ is the divergence of $\mathbf{v} = (u, v)$

• (Compared to Laplace, we have replaced $\Delta = 0$ by $\Delta = \text{div}$)

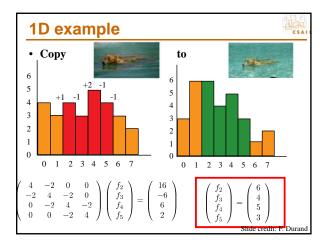








1D example: set derivatives to zero • Copy 0 1 2 3 4 5 6 7 $\frac{dQ}{df_2} = 2f_2 + 2f_2 - 2f_3 - 16$ $\frac{dQ}{df_3} = 2f_3 - 2f_2 + 2 + 2f_3 - 2f_4 + 4$ $\frac{dQ}{dt_4} = 2f_4 - 2f_3 - 4 + 2f_4 - 2f_5 - 2$ $\frac{dQ}{df_5} = 2f_5 - 2f_4 + 2 + 2f_5 - 4$



1D example: remarks • Сору · Matrix is sparse · Matrix is symmetric

- Everything is a multiple of 2
 - because square and derivative of square
- Matrix is a convolution (kernel -2 4 -2)
- · Matrix is independent of gradient field. Only RHS is
- · Matrix is a second derivative

Slide credit: F. Durand

What if v is not null: 2D

• Variational minimization (integral of a functional) with boundary condition

$$\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2 \text{ with } f|_{\partial \Omega} = f^*|_{\partial \Omega},$$

• Euler-Lagrange equation:

$$\Delta f = \operatorname{divv} \operatorname{over} \Omega$$
, with $f|_{\partial\Omega} = f^*|_{\partial\Omega}$

where div
$$\mathbf{v} = \frac{\partial u}{\partial \mathbf{v}} + \frac{\partial v}{\partial \mathbf{v}}$$
 is the divergence of $\mathbf{v} = (u, v)$

(Compared to Laplace, we have replaced $\Delta = 0$ by $\Delta = \text{div}$

Slide credit: F. Durand

Discrete Poisson solver

- · Two approaches:
 - Minimize variational problem $\min_{f} \iint_{\Omega} |\nabla f \mathbf{v}|^2 \operatorname{with} f|_{\partial\Omega} = f^*|_{\partial\Omega}$
 - Solve Euler-Lagrange equation $\Delta f = \text{div} \text{ over } \Omega$, with $f|_{\partial\Omega} = f^*|_{\partial\Omega}$ In practice, variational is best
- In both cases, need to discretize derivatives
 - Finite differences over 4 pixel neighbors
 - We are going to work using pairs
 - · Partial derivatives are easy on pairs
 - Same for the discretization of v

Slide credit: F. Durand

Discrete Poisson solver

• Minimize variational problem $\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2 \text{ with } f|_{\partial \Omega} = f^*|_{\partial \Omega}$.

 $\min_{\substack{f \mid \Omega \\ \text{(all pairs that are in } \Omega)}} \sum_{\substack{(p,q) \cap \Omega \neq \emptyset \\ \text{(all pairs that are in } \Omega)}}$ $\begin{array}{ll} & (f_p-f_q-v_{pq})^2, \text{ with } f_p=f_p^*, \text{for all } p\in\partial\Omega \\ & \text{Discretized} \\ & \text{hat} & \text{v: g(p)-g(q)} \end{array}$

• Rearrange and call N_p the neighbors of p

 $\text{ for all } p \in \Omega, \quad \overline{|N_p|} f_p - \sum_{q \in N_p \cap \Omega} f_q = \sum_{q \in N_p \cap \partial \Omega} f_q^* + \sum_{q \in N_p} v_{pq}$

• Big yet sparse linear system

boundary pixels

• Minimize variational problem $\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2 \operatorname{with} f|_{\partial\Omega} = f^*|_{\partial\Omega}$.

 $\min_{\substack{f \mid_{\Omega} \\ (p,q) \cap \Omega \neq \emptyset \\ (\text{all pairs that}}} \sum_{\substack{(gradient) \\ (f_p - f_q - v_{pq})^2, \text{ with } f_p = f_p^*, \text{ for all } p \in \partial \Omega}} \sum_{\substack{\text{Discretized} \\ \text{v: g(p)-g(q)}}} \sup_{\substack{\text{Boundary condition}}}$

- Rearrange and call $\boldsymbol{N}_{\boldsymbol{p}}$ the neighbors of \boldsymbol{p}

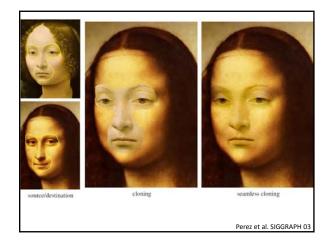
for all $p \in \Omega$, $N_p | f_p - \sum_{q \in N_p \cap \Omega} f_q = \sum_{q \in N_p \cap \partial \Omega} f_q^* + \sum_{q \in N_p} v_{pq}$

• Big yet sparse linear system

Only for boundary pixels

p q

Slide credit: F. Durand



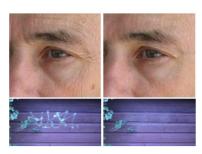


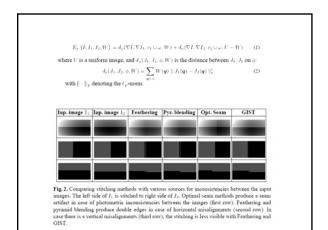
Figure 2: Concealment. By importing seamlessly a piece of the background, complete objects, parts of objects, and undesirable ar-tifacts can easily be hidden. In both examples, multiple strokes (not shown) were used.

Figure 5: Monochrome transfer. In some cases, such as texture transfer, the part of the source color remaining after seamless cloning might be undesirable. This is fixed by turning the source image monochrome beforehand.

Seamless Image Stitching in the Gradient Domain*

Anat Levin, Assaf Zomet **, Shmuel Peleg, and Yair Weiss

Fig. 1. Image stitching. On the left are the input images. ω is the overlap region. On top right simple pasting of the input images. On the bottom right is the result of the GIST1 algorithm



What about Photoshop?

• Healing brush tool

 Uses Poisson blending

Sr. Research Scientist, Photoshop Group, Adobe Systems

Covariant Derivative = Perceptual Derivative

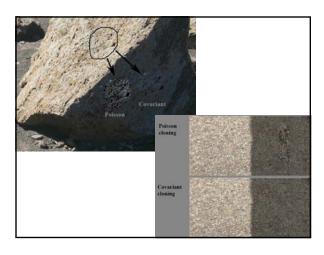
$$\frac{\partial}{\partial x} \rightarrow \frac{\partial}{\partial x} + A_x(x,y)$$

$$\frac{\partial}{\partial v}$$
 \rightarrow $\frac{\partial}{\partial v} + A_y(x, y)$

 $\triangle f(x,y) = \triangle g(x,y)$ Both define gradient domain cloning. Which one is better?

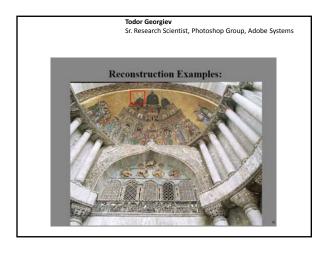
Our covariant Laplace equation: $\frac{\triangle f}{f} - 2\frac{gradf}{f} \cdot \frac{gradg}{g} - \frac{\triangle g}{g} + 2\frac{(gradg) \cdot (gradg)}{g^2} = 0$

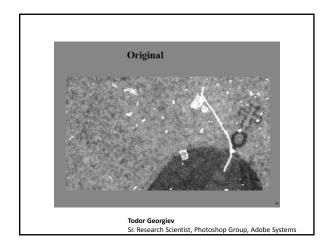
Compare this to Poisson equation:

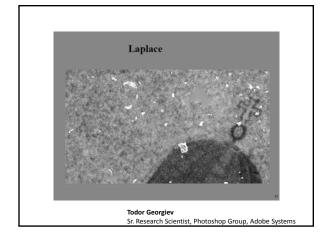


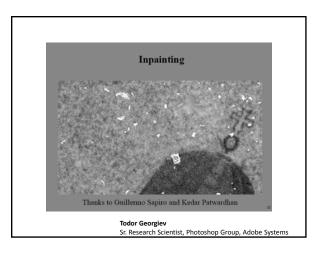
Differences to Laplacian pyramid blending

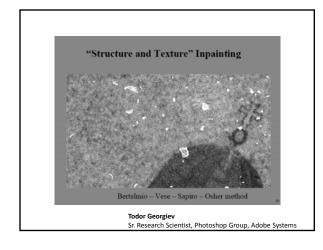
- No long-range mixing
 - Mixing of pixels at large scale in pyramid
- Gives exact solution to Poisson equation
 - First layer of Laplacian pyramid only gives approximate solution

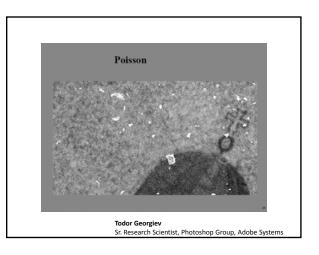


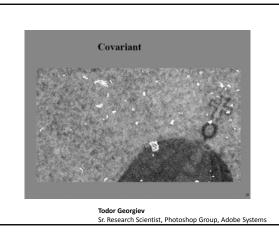












Overview

- Image blending & compositing
 - Poisson blending
 - Cutting images (GraphCuts)
- Panoramas
 - RANSAC/Homographies
 - Brown and Lowe '03

Don't blend, CUT!

Moving objects become ghosts

So far we only tried to blend between two images. o far we only the to blond 221
What about finding an optimal seam?

Slide credit: A. Efros

Davis, 1998

Segment the mosaic

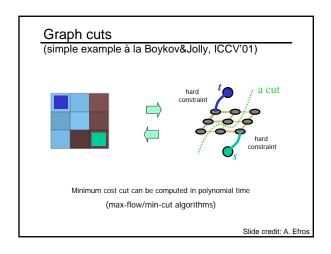
- Single source image per segment
- Avoid artifacts along boundries
 - Dijkstra's algorithm

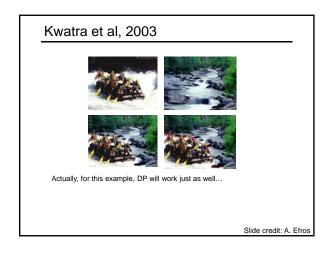
Minimal error boundary overlapping blocks vertical boundary Slide credit: A. Efros

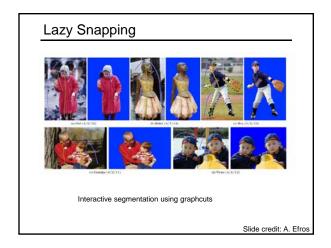
Graphcuts

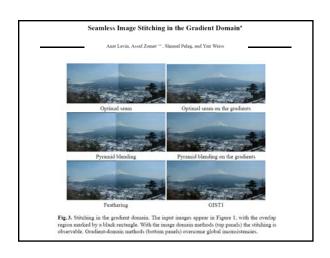
What if we want similar "cut-where-thingsagree" idea, but for closed regions?

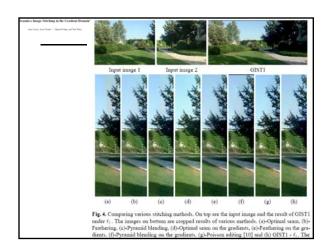
• Dynamic programming can't handle loops



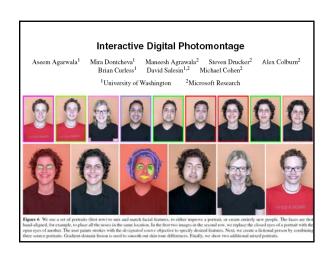






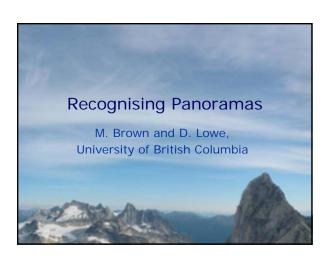


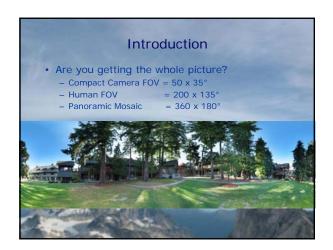
Photomontage video

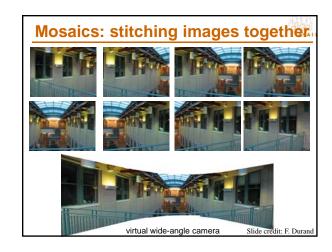


Overview

- Image blending & compositing
 - Poisson blending
 - Cutting images (GraphCuts)
- Panoramas
 - RANSAC/Homographies
 - Brown and Lowe '03







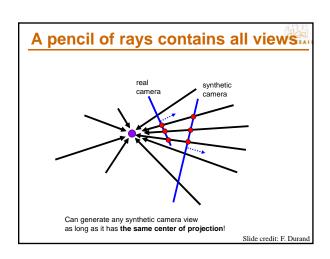
How to do it?

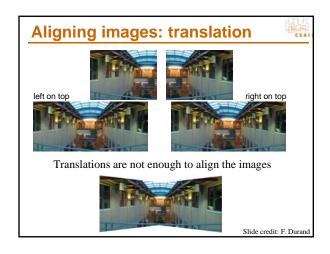
• Basic Procedure

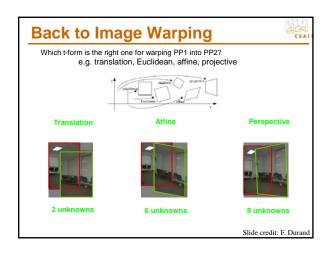
- Take a sequence of images from the same position
 - Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

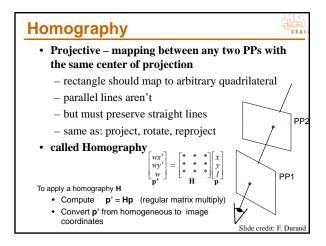
· ...but wait, why should this work at all?

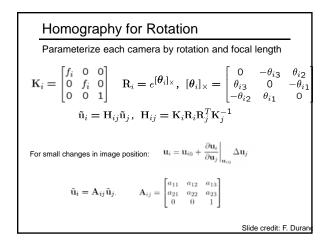
- What about the 3D geometry of the scene?
- Why aren't we using it?

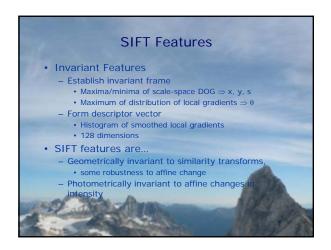


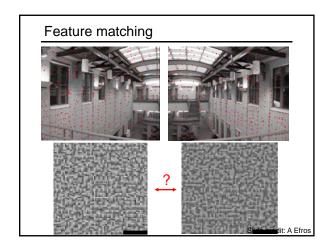








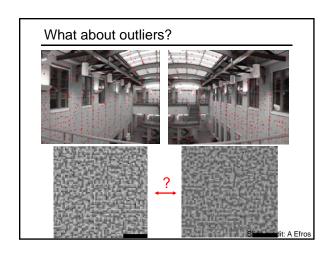




Feature matching

- · Exhaustive search
 - for each feature in one image, look at *all* the other features in the other image(s)
- Hashing
 - compute a short descriptor from each feature vector, or hash longer descriptors (randomly)
- · Nearest neighbor techniques
 - k-trees and their variants

Slide credit: A Efros

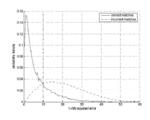


Feature-space outlier rejection

Let's not match all features, but only these that have "similar enough" matches?

How can we do it?

- SSD(patch1,patch2) < threshold
- · How to set threshold?



Slide credit: A Efros

Feature-space outliner rejection

Can we now compute H from the blue points?

- No! Still too many outliers...
- · What can we do?

Slide credit: A Efros

