
Semi-supervised Learning in

Gigantic Image Collections

Rob Fergus
Courant Institute, NYU,
715 Broadway,

New York, NY 10003
fergus@cs.nyu.edu

Yair Weiss
School of Computer Science,
Hebrew University,
91904, Jerusalem, Israel
yweiss@huji.ac.il

Antonio Torralba
CSAIL, EECS, MIT,
32 Vassar St.,

Cambridge, MA 02139
torralba@csail.mit.edu

Abstract

With the advent of the Internet it is now possible to collect hundreds of millions
of images. These images come with varying degrees of label information. “Clean
labels” can be manually obtained on a small fraction, “noisy labels” may be ex-
tracted automatically from surrounding text, while for most images there are no
labels at all. Semi-supervised learning is a principled framework for combining
these different label sources. However, it scales polynomially with the number
of images, making it impractical for use on gigantic collections with hundreds of
millions of images and thousands of classes. In this paper we show how to uti-
lize recent results in machine learning to obtain highly efficient approximations
for semi-supervised learning that are linear in the number of images. Specifically,
we use the convergence of the eigenvectors of the normalized graph Laplacian to
eigenfunctions of weighted Laplace-Beltrami operators. Our algorithm enables
us to apply semi-supervised learning to a database of 80 million images gathered
from the Internet.

1 Introduction

Gigantic quantities of visual imagery are present on the web and in off-line databases. Effective
techniques for searching and labeling this ocean of images and video must address two conflicting
problems: (i) the techniques to understand the visual content of an image and (ii) the ability to scale
to millions of billions of images or video frames. Both aspects have received significant attention
from researchers, the former being addressed by recent work on object and scene recognition, while
the latter is the focus of the content-based image retrieval community (CBIR) [7]. A key issue
pertaining to both aspects of the problem is the diversity of label information accompanying real
world image data. A variety of collaborative and online annotation efforts have attempted to build
large collections of human labeled images, ranging from simple image classifications, to bounding-
boxes and precise pixel-level segmentation [16, 21, 24]. While impressive, these manual efforts
have no hope of scaling to the many billions of images on the Internet. However, even though
most images on the web lack human annotation, they often have some kind of noisy label gleaned
from nearby text or from the image filename and often this gives a strong cue about the content of
the image. Finally, there are images where we have no information beyond the pixels themselves.
Semi-supervised learning (SSL) methods are designed to handle this spectrum of label information
[26, 28]. They rely on the density structure of the data itself to propagate known labels to areas
lacking annotations, and provide a natural way to incorporate labeling uncertainty. However, to
model the density of the data, each point must measure its proximity to every other. This requires
polynomial time – prohibitive for large-scale problems.

In this paper, we introduce a semi-supervised learning scheme that is linear in the number of im-
ages, enabling us to tackle very large scale problems. Building on recent results in spectral graph
theory, we efficiently construct accurate numerical approximations to the eigenvectors of the nor-
malized graph Laplacian. Using these approximations, we can easily propagate labels through huge
collections of images.

1

1.1 Related Work

Cleaning up Internet image data has been explored by several authors: Berg et al. [4], Fergus
et al. [8], Li et al. [13], Vijayanarasimhan et al. [22], amongst others. Unlike our approach, these
methods operate independently on each class and would be problematic to scale to millions or bil-
lions of images. A related group of techniques use active labeling, e.g. [10]. Semi-supervised learn-
ing is a rapidly growing sub-field of machine learning, dealing with datasets that have a large number
of unlabeled points and a much smaller number of labeled points (see [5] for a recent overview). The
most popular approaches are based on the graph Laplacian (e.g. [26, 28] and there has been much
theoretical work devoted to the asymptotics of these Laplacians [3, 6, 14]. However, these methods
require the explicit manipulation of an n × n Laplacian matrix (n being the number of data points),
for example [2] notes: “our algorithms compute the inverse of a dense Gram matrix which leads to
O(n3) complexity. This may be impractical for large datasets.”

The large computational complexity of standard graph Laplacian methods has lead to a number
of recent papers on efficient semi-supervised learning (see [27] for an overview). Many of these
methods (e.g. [18, 12, 29, 25] are based on calculating the Laplacian only for a smaller, backbone,
graph which reduces complexity to be cubic in the size of the small graph. In most cases [18, 12]
the smaller graph is built simply by randomly subsampling a subset of the points, while in [29]
a mixture model is learned on the original dataset and each mixture component defines a node in
the backbone graph. In [25] the backbone graph is found using non-negative matrix factorization.
In [9] the backbone graph is a uniform grid over the high dimensional space (so the number of nodes
grows exponentially with dimension). In [20] the number of datapoints is not reduced but rather the
number of edges. This allows the use of sparse numerical algebra techniques.

The problem with approaches based on backbone graphs is that the spectrum of the graph Laplacian
can change dramatically with different backbone construction methods [12]. This can also be seen
visually (see Fig. 3) by examining the clusterings suggested by the full data and a small subsample.
Even in cases where the “correct” clustering is obvious when the full data is considered, the smaller
subset may suggest erroneous clusterings (e.g. Fig. 3(left)). In our approach, we take an alternative
route. Rather than trying to reduce the number of points, we take the limit as the number of points
goes to infinity.

2 Semi-supervised Learning

We start by introducing semi-supervised learning in a graph setting and then describe an approxi-
mation that reduces the learning time from polynomial to linear in the number of images. Fig. 1
illustrates the semi supervised learning problem. Following the notations of Zhu et al. [28], we
are given a labeled dataset of input-output pairs (Xl, Yl) = {(x1, y1), ..., (xl, yl)} and an unlabeled
dataset Xu = {xl+1, ..., xn}. Thus in Fig. 1(a) we are given two labeled points and 500 unlabeled
points. Fig. 1(b) shows the output of a nearest neighbor classifier on the unlabeled points. The
purely supervised solution ignores the apparent clustering suggested by the data.

In order to use the unlabeled data, we form a graph G = (V,E) where the vertices V are the
datapoints x1, ..., xn, and the edges E are represented by an n×n matrixW . EntryWij is the edge

weight between nodes i, j and a common practice is to set Wij = exp(−‖xi − xj‖
2/2ǫ2). Let D

be a diagonal matrix whose diagonal elements are given byDii =
∑

j Wij , the combinatorial graph

Laplacian is defined as L = D − W , which is also called the unnormalized Laplacian.

In graph-based semi-supervised learning, the graph Laplacian L is used to define a smoothness
operator that takes into account the unlabeled data. The main idea is to find functions f which agree
with the labeled data but are also smooth with respect to the graph. The smoothness is measured by
the graph Laplacian:

fT Lf =
1

2

∑
i,j

Wij (f(i) − f(j))
2

Of course simply minimizing smoothness can be achieved by the trivial solution f = 1, but in
semi-supervised learning, we minimize a combination of the smoothness and the training loss. For
squared error training loss, this is simply:

J(f) = fT Lf +
l∑

i=1

λ(f(i) − yi)
2 = fT Lf + (f − y)T Λ(f − y)

2

(a) (b) (c)

Data Supervised Semi-Supervised

(c)

Figure 1: Comparison of supervised and semi-supervised learning on toy data. Semi-supervised
learning seeks functions that are smooth with respect to the input density.

φ1, σ1 = 0 φ3, σ3 = 0.038φ2, σ2 = 0.0002 Φ1, σ1 = 0 Φ2, σ2 = 0.0002 Φ3, σ3 = 0.035DensityData

Figure 2: Left: The three generalized eigenvectors of the graph Laplacian, for the toy data. Note
that the semi-supervised solution can be written as a linear combination of these eigenvectors (in this
case, the second eigenvector is enough). Using generalized eigenvectors (or equivalently normalized
Laplacians) increases robustness of the first eigenvectors, compared to using the un-normalized
eigenvectors. Right: The 2D density of the toy data, and the associated smoothness eigenfunctions
defined by that density. The plots use the Matlab jet colormap.

where Λ is a diagonal matrix whose diagonal elements are Λii = λ if i is a labeled point and Λii = 0
for unlabeled points. The minimizer is of course a solution to (L + Λ)f = Λy. Fig. 1(c) shows the
semi-supervised solution.

Although the solution can be given in closed form for the squared error loss, note that it requires
solving an n×n system of linear equations. For large n this poses serious problems with computation
time and robustness. But as suggested in [5, 17, 28], the dimension of the problem can be reduced
dramatically by only working with a small number of eigenvectors of the Laplacian.

Let Φi, σi be the generalized eigenvectors and eigenvalues of the graph Laplacian L (solutions to
Lφi = σiDφi). Note that the smoothness of an eigenvectorΦi is simply ΦT

i LΦi = σi so that eigen-
vectors with smaller eigenvalues are smoother. Since any vector inRn can be written f =

∑
i αiΦi,

the smoothness of a vector is simply
∑

i α2
i σi so that smooth vectors will be linear combinations of

the eigenvectors with small eigenvalues1.

Fig. 2(left) shows the three generalized eigenvectors of the Laplacian for the toy data shown in
Fig. 1(a). Note that the semi-supervised solution (Fig. 1(c)) is a linear combination of these three
eigenvectors (in fact just one eigenvector is enough). In general, we can significantly reduce the
dimension of f by requiring it to be of the form f = Uα where U is a n× k matrix whose columns
are the k eigenvectors with smallest eigenvalue. We now have:

J(α) = αT Σα + (Uα − y)T Λ(Uα − y)

The minimizing α is now a solution to the k × k system of equations:

(Σ + UT ΛU)α = UT Λy (1)

2.1 From Eigenvectors to Eigenfunctions

Given the eigenvectors of the graph Laplacian, we can now solve the semi-supervised problem in a
reduced dimensional space. But to find the eigenvectors in the first place, we need to diagonalize a
n × n matrix. How can we efficiently calculate the eigenvectors as the number of unlabeled points
increases?

We follow [23, 14] in assuming the data xi ∈ Rd are samples from a distribution p(x) and analyzing
the eigenfunctions of the smoothness operator defined by p(x). Fig. 2(right) shows the density in two

1This discussion holds for both ordinary and generalized eigenvectors, but the latter are much more stable
and we use them.

3

dimensions for the toy data. This density defines a weighted smoothness operator on any function
F (x) defined on Rd which we will denote by Lp(F):

Lp(F) =
1

2

∫
(F (x1) − F (x2))

2W (x1, x2)p(x1)p(x2)dx1x2

withW (x1, x2) = exp(−‖x1 − x2‖
2/2ǫ2). Just as the graph Laplacian defined eigenvectors of in-

creasing smoothness, the smoothness operator will define eigenfunctions of increasing smoothness.
We define the first eigenfunction of LP (f) by a minimization problem:

Φ1 = arg min
F :

∫
F 2(x)p(x)D(x)dx=1

Lp(F)

where D(x) =
∫

x2

W (x, x2)p(x2)dx2. Note that the first eigenfunction will always be the trivial

function Φ(x) = 1 since it has maximal smoothness LP (1) = 0. The second eigenfunction of
Lp(f) minimizes the same problem, with the additional constraint that it be orthogonal to the first
eigenfunction

∫
F (x)Φ1(x)D(x)p(x)dx = 0. More generally, the kth eigenfunction minimizes

Lp(f) under additional constraints that
∫

F (x)Φl(x)p(x)D(x)dx = 0 for all l < k. The eigen-
value of an eigenfunction Φk is simply its smoothness σk = Lp(Φk). Fig. 2(right) shows the first
three eigenfunctions corresponding to the density of the toy data. Similar to the eigenvectors of the
graph Laplacian, the second eigenfunction reveals the natural clustering of the data. Note that the
eigenvalue of the eigenfunctions is similar to the eigenvalue of the discrete generalized eigenvector.

How are these eigenfunctions related to the generalized eigenvectors of the Laplacian? It is easy

to see that as n → ∞, 1
n2 fT Lf = 1

2n2

∑
i,j Wij (f(i) − f(j))

2
will approach Lp(F), and

1
n

∑
i f2(i)D(i, i) will approach

∫
F 2(x)D(x)p(x)dx so that the minimization problems that de-

fine the eigenvectors approach the problems that define the eigenfunctions as n → ∞. Thus under
suitable convergence conditions, the eigenfunctions can be seen as the limit of the eigenvectors as
the number of points goes to infinity [1, 3, 6, 14]. For certain parametric probability functions (e.g.
uniform, Gaussian) the eigenfunctions can be calculated analytically [14, 23]. Thus for these cases,
there is a tremendous advantage in estimating p(x) and calculating the eigenfunctions from p(x)
rather than attempting to estimate the eigenvectors directly. For example, consider a problem with
80 million datapoints sampled from a 32 dimensional Gaussian. Instead of diagonalizing an 80 mil-
lion by 80 million matrix, we can simply estimate a 32 × 32 covariance matrix and get analytical
eigenfunctions. In low dimensions, we can calculate the eigenfunction numerically by discretizing
the density. Let g be the eigenfunction values at a set of discrete points, then g satisfies:

(D̃ − PW̃P)g = σPD̂g (2)

where W̃ is the affinity between the discrete points, P is a diagonal matrix whose diagonal elements
give the density at the discrete points, and D̃ is a diagonal matrix whose diagonal elements are the

sum of the columns of PW̃P , and D̂ is a diagonal matrix whose diagonal elements are the sum of
the columns of PW̃ . This method was used to calculate the eigenfunctions in Fig. 2(right).

Instead of assuming that p(x) has a simple, parametric form, we will use a more modest assumption,
that p(x) has a product form. Specifically, we assume that if we rotate the data s = Rx then
p(s) = p(s1)p(s2) · · · p(sd). This assumption allows us to calculate the eigenfunctions of Lp using
only the marginal distributions p(si).

Observation: Assume p(s) = p(s1)p(s2) · · · p(sd). Let pk be the marginal distribution of a single
coordinate in s. Let Φi(sk) be an eigenfunction of Lpk

with eigenvalue σi, then Φi(s) = Φi(sk) is
also an eigenfunction of Lp with the same eigenvalue σi.

Proof: This follows from the observation in [14, 23] that for separable distributions, the eigenfunc-
tions are also separable.

This observation motivates the following algorithm:

• Find a rotation of the data R, so that s = Rx are as independent as possible.

• For each “independent” component sk, use a histogram to approximate the density p(sk).
In order to regularize the solution (see below), we add a small constant to the value of the
histogram at each bin.

4

• Given the approximated density p(sk), solve numerically for eigenfunctions and eigenval-
ues of Lpk

using Eqn. 2. As discussed above, this can be done by solving a generalized
eigenvalue problem for a B × B matrix, where B is the number of bins in the histogram.

• Order the eigenfunctions from all components by increasing eigenvalue.

The need to add a small constant to the histogram comes from the fact that the smoothness operator
Lp(F) ignores the value of F wherever the density vanishes, p(x) = 0. Thus the eigenfunctions can
oscillate wildly in regions with zero density. By adding a small constant to the density we enforce
an additional smoothness regularizer, even in regions of zero density. Similar regularizers are used
in [2, 9].

This algorithm will recover eigenfunctions of Lp, which depend only on a single coordinate. As
discussed in [23], products of these eigenfunctions for different coordinates are also eigenfunctions,
but we will assume the semi-supervised solution is a linear combination of only the single-coordinate
eigenfunctions. By choosing the k eigenfunctions with smallest eigenvalue we now have k functions
Φk(x) whose value is given at a set of discrete points for each coordinate. We then use linear
interpolation in 1D to interpolate Φ(x) at each of the labeled points xl. This allows us to solve
Eqn. 1 in time that is independent of the number of unlabeled points.

Although this algorithm has a number of approximate steps, it should be noted that if the “inde-
pendent” components are indeed independent, and if the semi-supervised solution is only a linear
combination of the single-coordinate eigenfunctions, then this algorithm will exactly recover the
semi-supervised solution as n → ∞. Consider again a dataset of 80 million points in 32 dimensions
and assume 100 bins per dimension. If the independent components s = Rx are indeed indepen-
dent, then this algorithm will exactly recover the semi-supervised solution by solving 32 100 × 100
generalized eigenvector problems and a single k × k least squares problem. In contrast, directly
estimating the eigenvectors of the graph Laplacian will require diagonalizing an 80 million by 80
million matrix.

3 Experiments

In this section we describe experiments to illustrate the performance and scalability of our approach.
The results will be reported on the Tiny Images database [19], in combination with the CIFAR-10
label set [11]. This data is diverse and highly variable, having been collected directly from Internet
search engines. The set of labels allows us to accurately measure the performance of our algorithm,
while using data typical of the large-scale Internet settings for which our algorithm is designed.

We start with a toy example that illustrates our eigenfunction approach, compared to the Nystrom
method of Talwalker et al. [18], another approximate semi-supervised learning scheme that can scale
to large datasets. In Fig. 3 we show two different 2D datasets, designed to reveal the failure modes
of the two methods.

3.1 Features

For the experiments in this paper we use global image descriptors to represent the entire image
(there is no attempt to localize the objects within the images). Each image is thus represented
by a single Gist descriptor [15], which we then project down to 64 dimensions using PCA. As

Data Nystrom Eigenfunction Data Nystrom Eigenfunction

Figure 3: A comparison of the separable eigenfunction approach and the Nystrom method. Both
methods have comparable computational cost. The Nystrom method is based on computing the
graph Laplacian on a set of sparse landmark points and fails in cases where the landmarks do not ad-
equately summarize the density (left). The separable eigenfunction approach fails when the density
is far from a product form (right).

5

illustrated in Fig. 3, the eigenfunction approach assumes that the input distribution is separable
over dimension. In Fig. 4 we show that while the raw gist descriptors exhibit strong dependencies
between dimensions, this is no longer the case after the PCA projection. Note that PCA is one of the
few types of projection permitted: since distances between points must be preserved only rotations
of the data are allowed.

Dim. 2 vs 3, MI: 0.555 Dim. 2 vs 16, MI: 0.159Dim. 3 vs 4, MI: 0.484 Dim. 2 vs 3, MI: 0.017 Dim. 2 vs 16, MI: 0.007Dim. 3 vs 4, MI: 0.009

Log histogram of Gist descriptors Log histogram of PCA’d Gist descriptors

Figure 4: 2D log histograms formed from 1 million Gist descriptors. Red and blue correspond
to high and low densities respectively. Left: three pairs of dimensions in the raw Gist descriptor,
along with their mutual information score (MI), showing strong dependencies between dimensions.
Right: the dimensions in the Gist descriptors after a PCA projection, as used in our experiments.
The dependencies between dimensions are now much weaker, as the MI scores show. Hence the
separability assumption made by our approach is not an unreasonable one for this type of data.

3.2 Experiments with CIFAR label set

The CIFAR dataset [11] was constructed by asking human subjects to label a subset of classes of
the Tiny Images dataset. For a given keyword and image, the subjects determined whether the given
image was indeed an image of that keyword. The resulting labels span 386 distinct keywords in the
Tiny Images dataset. Our experiments use the sub-set of 126 classes which had at least 200 positive
labels and 300 negative labels, giving a total of 63,000 images.

Our experimental protocol is as follows: we take a random subset of C classes from the set of 126.
For each class c, we randomly choose a fixed test-set of 100 positive and 200 negative examples,
reflecting the typical signal-to-noise ratio found in images from Internet search engines. The training
examples consist of t positive/negative pairs drawn from the remaining pool of 100 positive/negative
images for each keyword.

For each class in turn, we use our scheme to propagate labels from the training examples to the test
examples. By assigning higher probability (values in f) to the genuine positive images of each class,
we are able to re-rank the images. We also make use of the the training examples from keywords
other than c by treating them as additional negative examples. For example, if we have C = 16
keywords and t = 5 training pairs per keyword, then we have 5 positive training examples and
(5+(16-1)*10)=155 negative training examples for each class. We use these to re-rank the 300 test
images of that particular class. Note that the propagation from labeled images to test images may go
through the unlabeled images that are not even in the same class. Our use of examples from other
classes as negative examples is motivated by real problems, where training labels are spread over
many keywords but relatively few labels are available per class.

In experiments using our eigenfunction approach, we compute a fixed set of k=256 eigenfunctions
on the entire 63,000 datapoints in the 64D space with ǫ = 0.2 and used these for all runs. For
approaches that require explicit formation of the affinity matrix, we calculate the distance between
the 64D image descriptors using ǫ = 0.125. All approaches use λ = 50. To evaluate performance,
we choose to measure the precision at a low recall rate of 15%, this being a sensible operating point
as it corresponds to the first webpage or so in an Internet retrieval setting. Given the split of +ve/-ve
examples in the test data, chance level performance corresponds to a precision of 33%. All results
were generated by averaging over 10 different runs, each with different random train/test draws, and
with different subsets of classes.

In our first set of experiments, shown in Fig. 5(left), we compare our eigenfunction approach to a
variety of alternative learning schemes. We use C = 16 different classes drawn randomly from
the 126, and vary the number of training pairs t from 0 up to 100 (thus the total number of labeled
points, positive and negative, varied from 0 to 3200). Our eigenfunction approach outperforms other
methods, particularly where relatively few training examples are available. We use two baseline
classifiers: (i) Nearest-Neighbor and (ii) RBF kernel SVM, with kernel width ǫ. The SVM approach

6

badly over-fits the data for small numbers of training examples, but catches up with the eigenfunction
approach once 64+ve/1984-ve labeled examples are used.

We also test a range of SSL approaches. The exact least-squares approach (f = (L + Λ)−1ΛY)
achieves comparable results to the eigenfunction method, although it is far more expensive. The
eigenvector approach (Eqn. 1) performs less well, being limited by the k = 256 eigenvectors used
(as k is increased, the performance converges to the exact least-squares solution). Neither of these
methods scale to large image collections as the affinity matrix W becomes too big and cannot be
inverted or have its eigenvectors computed. Fig. 5(left) also shows the efficient Nystrom method
[18], using 1000 landmark points, which has a somewhat disappointing performance. Evidently, as
in Fig. 3, the landmark points do not adequately summarize the density. As the number of landmarks
is increased, the performance approaches that of the least squares solution.

−Inf 0 1 2 3 4 5 6 7
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Log
2
 number of +ve training examples/class

M
e
a
n
 p

re
c
is

io
n
 a

t
1
5
%

 r
e
c
a
ll

 a
v
e
ra

g
e
d
 o

v
e
r

1
6
 c

la
s
s
e
s

Eigenfunction

Eigenfunction
w/noisy labels

Nystrom

Least−squares

Eigenvector

SVM

NN

Chance

Log
2
 # classes

0 1 2 3 4 5

0

1

2

3

5

8

10

15

20

40

60

100

Log
2
 # classes

#
 +

v
e

 t
ra

in
in

g
 e

xa
m

p
le

s/
cl

a
ss

0 1 2 3 4 5

Eigenfunctions

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

(a) Without noisy labels (b) With noisy labels

0.3

0.4

0.5

0.6

0.7
(c) Without noisy labels

Figure 5: Left: Performance (precision at 15% recall) on the Tiny Image CIFAR label set for differ-
ent learning schemes as the number of training pairs is increased, averaged over 16 different classes.
-Inf corresponds to the unsupervised case (0 examples). Our eigenfunction scheme (solid red) out-
performs standard supervised methods (nearest-neighbors (green) and a Gaussian SVM (blue)) for
small numbers of training pairs. Compared to other semi-supervised schemes, ours matches the
exact least squares solution (which is too expensive to run on a large number of images), while out-
performing approximate schemes, such as Nystrom [18]. By using noisy labels in addition to the
training pairs, the performance is boosted when few training examples are available (dashed red).
Right: (a): The performance of our eigenfunction approach as the number of training pairs per
class and number of classes is varied. Increasing the number of classes also aids performance since
labeled examples from other classes can be used as negative examples. (b): As for (a) but now us-
ing noisy label information (Section 3.3). Note the improvement in performance when few training
pairs are available. (c): The performance of our approach (using no noisy labels) as the number of
eigenfunctions is varied.

In Fig. 5(right)(a) we explore how our eigenfunction approach performs as the number of classes C
is varied, for different numbers of training pairs t per class. For a fixed t, as C increases, the number
of negative examples available increases thus aiding performance. Fig. 5(right)(c) shows the effect
of varying the number of eigenfunctions k for C = 16 classes. The performance is fairly stable
above k = 128 eigenfunctions (i.e. on average 2 per dimension), although some mild over-fitting
seems to occur for small numbers of training examples when a very large number is used.

3.3 Leveraging noisy labels

In the experiments above, only two types of data are used: labeled training examples and unlabeled
test examples. However, an additional source is the noisy labels from the Tiny Image dataset (the
keyword used to query the image search engine). These labels can easily be utilized by our frame-
work: all 300 test examples for a class c are given a positive label with a small weight (λ/10),
while the 300(C − 1) test examples from other classes are given negative label with the same small
weight. Note that these labels do not reveal any information about which of the 300 test images
are true positives. These noisy labels can provide a significant performance gain when few train-
ing (clean) labels are available, as shown in Fig. 5(left) (c.f. solid and dashed red lines). Indeed,
when no training labels are available, just the noisy labels, our eigenfunction scheme still performs
very well. The performance gain is explored in more detail in Fig. 5(right)(b). In summary, using

7

the eigenfunction approach with noisy labels, the performance obtained with a total of 32 labeled
examples is comparable to the SVM trained with 64*16=512 labeled examples.

3.4 Experiments on Tiny Images dataset

Our final experiment applies the eigenfunction approach to the whole of the Tiny Images dataset
(79,302,017 images). We map the gist descriptor for each image down to a 32D space using PCA
and precompute k = 64 eigenfunctions over the entire dataset. The 445,954 CIFAR labels (64,185
of which are +ve) cover 386 keywords, any of which can be re-ranked by solving Eqn. 1, which
takes around 1ms on a fast PC. In Fig. 6 we show our scheme on four different keywords, each using
3 labeled training pairs, resulting in a significant improvement in quality over the original ordering.
A nearest-neighbor classifier which is not regularized by the data density performs worse than our
approach.

Ranking from search engine Nearest Neighbor re-ranking Eigenfunction re-ranking

Figure 6: Re-ranking images from 4 keywords in an 80 million image dataset, using 3 labeled pairs
for each keyword. Rows from top: “Japanese spaniel”, “airbus”, “ostrich”, “auto”. From L to
R, the columns show the original image order, results of nearest-neighbors and the results of our
eigenfunction approach. By regularizing the solution using eigenfunctions computed from all 80
million images, our semi-supervised scheme outperforms the purely supervised method.

4 Discussion

We have proposed a novel semi-supervised learning scheme that is linear in the number of images,
and then demonstrated it on challenging datasets, including one of 80 million images. The approach
can easily be parallelized making it practical for Internet-scale image collections. It can also incor-
porate a variety of label types, including noisy labels, in one consistent framework.

Acknowledgments
The authors would like to thank Héctor Bernal and the anonymous reviewers and area chairs for their
constructive comments. We also thank Alex Krizhevsky and Geoff Hinton for providing the CIFAR
label set. Funding support came from: NSF Career award (ISI 0747120), ISF and a Microsoft
Research gift.

8

References

[1] M. Belkin and P. Niyogi. Towards a theoretical foundation for laplacian based manifold meth-
ods. Journal of Computer and System Sciences, 2007.

[2] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples. JMLR, 7:2399–2434, 2006.

[3] Y. Bengio, O. Delalleau, N. L. Roux, J.-F. Paiement, P. Vincent, and M. Ouimet. Learning
eigenfunctions links spectral embedding and kernel PCA. In NIPS, pages 2197–2219, 2004.

[4] T. Berg and D. Forsyth. Animals on the web. In CVPR, pages 1463–1470, 2006.

[5] O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised Learning. MIT Press, 2006.

[6] R. R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner, and S. Zucker. Geometric
diffusion as a tool for harmonic analysis and structure definition of data, part i: Diffusion maps.
PNAS, 21(102):7426–7431, 2005.

[7] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image retrieval: Ideas, influences, and trends of the
new age. ACM Computing Surveys, 2008.

[8] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning object categories from google’s
image search. In ICCV, volume 2, pages 1816–1823, Oct. 2005.

[9] J. Garcke and M. Griebel. Semi-supervised learning with sparse grids. In ICML workshop on
learning with partially classified training data, 2005.

[10] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Active learning with gaussian processes
for object categorization. In CVPR, 2007.

[11] A. Krizhevsky and G. E. Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, Computer Science Department, University of Toronto, 2009.

[12] S. Kumar, M. Mohri, and A. Talwalkar. Sampling techniques for the Nystrom method. In
AISTATS, 2009.

[13] L. J. Li, G. Wang, and L. Fei-Fei. Optimol: automatic object picture collection via incremental
model learning. In CVPR, 2007.

[14] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis. Diffusion maps, spectral cluster-
ing and reaction coordinates of dynamical systems. Applied and Computational Harmonic
Analysis, 21:113–127, 2006.

[15] A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the
spatial envelope. IJCV, 42:145–175, 2001.

[16] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: a database and web-
based tool for image annotation. IJCV, 77(1):157–173, 2008.

[17] B. Schoelkopf and A. Smola. Learning with Kernels Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press,, 2002.

[18] A. Talwalkar, S. Kumar, and H. Rowley. Large-scale manifold learning. In CVPR, 2008.

[19] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: a large database for non-
parametric object and scene recognition. IEEE PAMI, 30(11):1958–1970, November 2008.

[20] I. Tsang and J. Kwok. Large-scale sparsified manifold regularization. In NIPS, 2006.

[21] L. van Ahn. The ESP game, 2006.

[22] S. Vijayanarasimhan and K. Grauman. Keywords to visual categories: Multiple-instance learn-
ing for weakly supervised object categorization. In CVPR, 2008.

[23] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS, 2008.

[24] B. Yao, X. Yang, and S. C. Zhu. Introduction to a large scale general purpose ground truth
dataset: methodology, annotation tool, and benchmarks. In EMMCVPR, 2007.

[25] K. Yu, S. Yu, and V. Tresp. Blockwise supervised inference on large graphs. In ICML workshop
on learning with partially classified training data, 2005.

[26] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global
consistency. In NIPS, 2004.

[27] X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, University of
Wisconsin Madison, 2008.

[28] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and
harmonic functions. In In ICML, pages 912–919, 2003.

[29] X. Zhu and J. Lafferty. Harmonic mixtures: combining mixture models and graph-based meth-
ods for inductive and scalable semi-supervised learning. In ICML, 2005.

9

