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Abstract

With the advent of the Internet it is now possible to colleghtireds of millions
of images. These images come with varying degrees of laf@hiation. “Clean
labels” can be manually obtained on a small fraction, “ndéyels” may be ex-
tracted automatically from surrounding text, while for mosages there are no
labels at all. Semi-supervised learning is a principledniavork for combining
these different label sources. However, it scales polyatiynivith the number
of images, making it impractical for use on gigantic colieat with hundreds of
millions of images and thousands of classes. In this papeshee how to uti-
lize recent results in machine learning to obtain highlyc&nt approximations
for semi-supervised learning that digear in the number of images. Speci cally,
we use the convergence of the eigenvectors of the normatjmgah Laplacian to
eigenfunctions of weighted Laplace-Beltrami operatorsir @lgorithm enables
us to apply semi-supervised learning to a database of 8ibmilhages gathered
from the Internet.

1 Introduction

Gigantic quantities of visual imagery are present on the e in off-line databases. Effective
techniques for searching and labeling this ocean of imagds/mleo must address two con icting
problems: (i) the techniques to understand the visual coatiean image and (ii) the ability to scale
to millions of billions of images or video frames. Both asfgelave received signi cant attention
from researchers, the former being addressed by recentavoodkject and scene recognition, while
the latter is the focus of the content-based image retrieoaimunity (CBIR) [7]. A key issue
pertaining to both aspects of the problem is the diversitjab&l information accompanying real
world image data. A variety of collaborative and online atation efforts have attempted to build
large collections of human labeled images, ranging fronpnmage classi cations, to bounding-
boxes and precise pixel-level segmentation [16, 21, 24]. |&Mhipressive, these manual efforts
have no hope of scaling to the many billions of images on therhet. However, even though
most images on the web lack human annotation, they often $mwe kind of noisy label gleaned
from nearby text or from the image lename and often this giwestrong cue about the content of
the image. Finally, there are images where we have no infiomaeyond the pixels themselves.
Semi-supervised learning (SSL) methods are designed widéms spectrum of label information
[26, 28]. They rely on the density structure of the data fts@lpropagate known labels to areas
lacking annotations, and provide a natural way to incor@ofabeling uncertainty. However, to
model the density of the data, each point must measure itsmity to every other. This requires
polynomial time — prohibitive for large-scale problems.

In this paper, we introduce a semi-supervised learningreehghat is linear in the number of im-
ages, enabling us to tackle very large scale problems. Bgildn recent results in spectral graph
theory, we ef ciently construct accurate numerical appneations to the eigenvectors of the nor-
malized graph Laplacian. Using these approximations, weseaily propagate labels through huge
collections of images.



1.1 Related Work

Cleaning up Internet image data has been explored by seaathbrs: Berget al. [4], Fergus

et al. [8], Li et al.[13], Vijayanarasimhart al.[22], amongst others. Unlike our approach, these
methods operate independently on each class and would bkepratic to scale to millions or bil-
lions of images. A related group of techniques use activeliad, e.g. [10]. Semi-supervised learn-
ing is a rapidly growing sub- eld of machine learning, dewiwith datasets that have a large number
of unlabeled points and a much smaller number of labeledg¢see [5] for a recent overview). The
most popular approaches are based on the graph Laplaciarid@, 28] and there has been much
theoretical work devoted to the asymptotics of these Laptexc|3, 6, 14]. However, these methods
require the explicit manipulation of an n Laplacian matrix i being the number of data points),
for example [2] notes: “our algorithms compute the inverba dense Gram matrix which leads to
O(n®) complexity. This may be impractical for large datasets.”

The large computational complexity of standard graph Lapta methods has lead to a number
of recent papers on ef cient semi-supervised learning (2&¢ for an overview). Many of these
methods (e.g. [18, 12, 29, 25] are based on calculating tpéatin only for a smaller, backbone,
graph which reduces complexity to be cubic in the size of thalsgraph. In most cases [18, 12]
the smaller graph is built simply by randomly subsamplingubset of the points, while in [29]
a mixture model is learned on the original dataset and eagktumi component de nes a node in
the backbone graph. In [25] the backbone graph is found usimgnegative matrix factorization.
In [9] the backbone graph is a uniform grid over the high disienal space (so the number of nodes
grows exponentially with dimension). In [20] the number atapoints is not reduced but rather the
number of edges. This allows the use of sparse numericabdechniques.

The problem with approaches based on backbone graphs ihéhspectrum of the graph Laplacian

can change dramatically with different backbone consimaatnethods [12]. This can also be seen
visually (see Fig. 3) by examining the clusterings suggkbtethe full data and a small subsample.
Even in cases where the “correct” clustering is obvious wiherfull data is considered, the smaller
subset may suggest erroneous clusterings (e.g. Fig.)3(leftour approach, we take an alternative
route. Rather than trying to reduce the number of points,ake the limit as the number of points

goes to in nity.

2 Semi-supervised Learning

We start by introducing semi-supervised learning in a gragiting and then describe an approxi-
mation that reduces the learning time from polynomial t@#inin the number of images. Fig. 1
illustrates the semi supervised learning problem. Follgnihe notations of Zhet al. [28], we
are given a labeled dataset of input-output p@¥s; Y|) = f(x1;y1);:::; (X1;y;)g and an unlabeled
dataseX, = fXxj+1;:;Xng. Thus in Fig. 1(a) we are given two labeled points and 500heiéd
points. Fig. 1(b) shows the output of a nearest neighbosiciason the unlabeled points. The
purely supervised solution ignores the apparent clugjesuggested by the data.

In order to use the unlabeled data, we form a gr&ph= (V;E) where the vertice/ are the
datapointx; ::i; X, and the edgeB are represented by an n matrix W. EntryW;; is the edge
weight between noddsj and a common practice is to 98t =gxp( k X; X k?=2 2). LetD
be a diagonal matrix whose diagonal elements are giveDiby: i Wi, the combinatorial graph
Laplacianisdenedak = D W, which is also called the unnormalized Laplacian.

In graph-based semi-supervised learning, the graph Lepldc is used to de ne a smoothness
operator that takes into account the unlabeled data. The iché is to nd functiond which agree
with the labeled data but are alsmoothwith respect to the graph. The smoothness is measured by
the graph Laplacian: X
1 . .
L =20 Wy (F(Q) ()7

i5j
Of course simply minimizing smoothness can be achieved bytriftial solutionf = 1, but in
semi-supervised learning, we minimize a combination ofsim@othness and the training loss. For
squared error training loss, this is simply:

X
J(f)=fTLf + (FGQ) y)?=fTLE +(f YT (f )

i=1
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Figure 1: Comparison of supervised and semi-supervisaditfgpon toy data. Semi-supervised
learning seeks functions that are smooth with respect tongh density.
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Figure 2: Left: The three generalized eigenvectors of the graph Laplaéiarihe toy data. Note
that the semi-supervised solution can be written as a lice@bination of these eigenvectors (in this
case, the second eigenvector is enough). Using generaligedvectors (or equivalently normalized
Laplacians) increases robustness of the rst eigenvectmwmpared to using the un-normalized
eigenvectorsRight: The 2D density of the toy data, and the associated smootlegmsfunctions
de ned by that density. The plots use the Matlab jet colormap

where is a diagonal matrix whose diagonal elements gre=  if i is alabeled pointand; =0
for unlabeled points. The minimizer is of course a solutioflt + ) f = y. Fig. 1(c) shows the
semi-supervised solution.

Although the solution can be given in closed form for the sqdeerror loss, note that it requires

solvingam n system of linear equations. For lang¢his poses serious problems with computation
time and robustness. But as suggested in [5, 17, 28], thendilore of the problem can be reduced
dramatically by only working with a small number of eigentas of the Laplacian.

Let i; ; be the generalized eigenvectors and eigenvalues of thé gia@pacianL (solutions to

L ;= D ). Note that the smoothness of an eigenvectois simply iTL i = isotpateigen-
vectors with smaller eigenvalues ae smoother. Since actpvg R" can be writterf =, ; ,

the smoothness of a vector is simply, 2 ; so that smooth vectors will be linear combinations of
the eigenvectors with small eigenvalties

Fig. 2(left) shows the three generalized eigenvectors efltaplacian for the toy data shown in
Fig. 1(a). Note that the semi-supervised solution (Fig))li&a linear combination of these three
eigenvectors (in fact just one eigenvector is enough). Imega, we can signi cantly reduce the
dimension off by requiring it to be of the forni = U whereU isan k matrix whose columns
are thek eigenvectors with smallest eigenvalue. We now have:

J()=T +Uu (U Yy
The minimizing is now a solution to th&  k system of equations:
(+ Ut u) =uU"y 1)

2.1 From Eigenvectors to Eigenfunctions

Given the eigenvectors of the graph Laplacian, we can novwesble semi-supervised problem in a
reduced dimensional space. But to nd the eigenvectorsenrt place, we need to diagonalize a
n n matrix. How can we ef ciently calculate the eigenvectorgtas number of unlabeled points
increases?

We follow [23, 14] in assuming the data 2 RY are samples from a distributigafx) and analyzing
the eigenfunctions of the smoothness operator de nep(ky. Fig. 2(right) shows the density in two

This discussion holds for both ordinary and generalized eigenvetiorshe latter are much more stable
and we use them.



dimensions for the toy data. This density de nes a weighteda@hness operator on any function
F (x) de ned onRY which we will denote by, (F):

Lp(F)= 5 (FO)  F ()2 W (xa x2)POx)p0c)dxaxs

with W (x1;X2) = exp( k x1  x»k?=2 2). Just as the graph Laplacian de ned eigenvectors of in-
creasing smoothness, the smoothness operator will degenéinctions of increasing smoothness.
We de ne the rst eigenfunction of.p (f ) by a minimization problem:

1=arg R  min Lo(F)
F: F2(x)p(x)D(x)dx=1

whereD (x) = % W (x; X2)p(Xx2)dx2. Note that the rst eigenfunction will always be the trivial

function ( x) = 1 since it has maximal smoothneks (1) = 0. The second eigenfunction of
Lo (f) minimizgs the same problem, with the additional constrdiat it be orthogonal to the rst
eigenfunction F(x) 1(x)D(x)p(x)dxg= 0. More generally, theth eigenfunction minimizes
Lo(f) under additional constraints thatF (x) (x)p(x)D(x)dx = 0 for all | < k. The eigen-
value of an eigenfunction is simply its smoothnessy = L( «). Fig. 2(right) shows the rst
three eigenfunctions corresponding to the density of thelada. Similar to the eigenvectors of the
graph Laplacian, the second eigenfunction reveals thealatlustering of the data. Note that the
eigenvalue of the eigenfunctions is similar to the eigeumealf the discrete generalized eigenvector.

How are these eigenfunctions related to tlge generallzefme«g:tors of the Laplacian? It is easy
to see that am ! 1 LfT i Wi (@) f( )) will approachLy(F), and

' nZ 2n2
% f2(i)D(i;i) will approach F2(X)D(x)p(x)dx so that the minimization problems that de-
ne the eigenvectors approach the problems that de ne thger&unctions as ! 1 . Thus under
suitable convergence conditions, the eigenfunctions easelen as the limit of the eigenvectors as
the number of points goes to in nity [1, 3, 6, 14]. For cert@iarametric probability functions (e.g.
uniform, Gaussian) the eigenfunctions can be calculatatyacally [14, 23]. Thus for these cases,
there is a tremendous advantage in estimagif}d and calculating the eigenfunctions frap(x)
rather than attempting to estimate the eigenvectors djrdeor example, consider a problem with
80 million datapoints sampled from a 32 dimensional Gaussizstead of diagonalizing an 80 mil-
lion by 80 million matrix, we can simply estimate3 32 covariance matrix and get analytical
eigenfunctions. In low dimensions, we can calculate therdignction numerically by discretizing
the density. Leg be the eigenfunction values at a set of discrete points, dhetis es:

(D PWP)g= P Dg 2)

whereW is the af nity between the discrete poin,is a diagonal matrix whose diagonal elements
give the density at the discrete points, dbids a diagonal matrix whose diagonal elements are the
sum of the columns d® W P, andD is a diagonal matrix whose diagonal elements are the sum of
the columns oP W . This method was used to calculate the eigenfunctions inZight).

Instead of assuming thpx) has a simple, parametric form, we will use a more modest assom
that p(x) has a product form. Speci cally, we assume that if we rotdie datas = Rx then
p(s) = p(s1)p(s2)  p(sq). This assumption allows us to calculate the eigenfunctisiis, using
only the marginal distributionp(s;).

Observation: Assumep(s) = p(s1)p(s2) p(sq). Letpx be the marginal distribution of a single
coordinate irs. Let ;(sx) be an eigenfunction df,, with eigenvalue i, then ;(s) = i(sk)is
also an eigenfunction df,, with the same eigenvalug.

Proof: This follows from the observation in [14, 23] that for sefdaeadistributions, the eigenfunc-
tions are also separable.

This observation motivates the following algorithm:

Find a rotation of the datR, so thats = Rx are as independent as possible.

For each “independent” componesyt, use a histogram to approximate the denp(isk).
In order to regularize the solution (see below), we add alspoalstant to the value of the
histogram at each bin.



Given the approximated densitysk ), solve numerically for eigenfunctions and eigenval-
ues ofLp, using Eqn. 2. As discussed above, this can be done by solvijemeralized
eigenvalue problem forB B matrix, whereB is the number of bins in the histogram.

Order the eigenfunctions from all components by increasiggnvalue.

The need to add a small constant to the histogram comes frefaththat the smoothness operator
Lo (F) ignores the value df wherever the density vanishggx) = 0. Thus the eigenfunctions can

oscillate wildly in regions with zero density. By adding aahtonstant to the density we enforce
an additional smoothness regularizer, even in regions maf density. Similar regularizers are used
in[2,9].

This algorithm will recover eigenfunctions &fy,, which depend only on a single coordinate. As
discussed in [23], products of these eigenfunctions fderiht coordinates are also eigenfunctions,
but we will assume the semi-supervised solution is a lineartination of only the single-coordinate
eigenfunctions. By choosing theeigenfunctions with smallest eigenvalue we now hafienctions

k(X) whose value is given at a set of discrete points for each dcomiel We then use linear
interpolation in 1D to interpolatg x) at each of the labeled points. This allows us to solve
Eqn. 1 in time that isndependent of the number of unlabeled points

Although this algorithm has a number of approximate stefpshould be noted that if the “inde-
pendent” components are indeed independent, and if thesgmarvised solution is only a linear
combination of the single-coordinate eigenfunctionsnth@s algorithm will exactly recover the
semi-supervised solution as! 1 . Consider again a dataset of 80 million points in 32 dimeamsio
and assume 100 bins per dimension. If the independent caenfes= Rx are indeed indepen-
dent, then this algorithm will exactly recover the semi-aswmised solution by solving2 100 100
generalized eigenvector problems and a sirkgle k least squares problem. In contrast, directly
estimating the eigenvectors of the graph Laplacian wiluiegdiagonalizing an 80 million by 80
million matrix.

3 Experiments

In this section we describe experiments to illustrate théopeance and scalability of our approach.
The results will be reported on the Tiny Images database [i3Jombination with the CIFAR-10
label set [11]. This data is diverse and highly variable,iigibeen collected directly from Internet
search engines. The set of labels allows us to accuratelgurethe performance of our algorithm,
while using data typical of the large-scale Internet sg#ifor which our algorithm is designed.

We start with a toy example that illustrates our eigenfuortpproach, compared to the Nystrom
method of Talwalkeet al.[18], another approximate semi-supervised learning setthiat can scale
to large datasets. In Fig. 3 we show two different 2D datasketsigned to reveal the failure modes
of the two methods.

3.1 Features
For the experiments in this paper we use global image descsipo represent the entire image

(there is no attempt to localize the objects within the ing®geEach image is thus represented
by a single Gist descriptor [15], which we then project down6d dimensions using PCA. As

Nystrom Eigenfunction Data Nystrom Eigenfunction
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Figure 3: A comparison of the separable eigenfunction aggrand the Nystrom method. Both
methods have comparable computational cost. The Nystrothadds based on computing the
graph Laplacian on a set of sparse landmark points and failases where the landmarks do not ad-
equately summarize the density (left). The separable &igetion approach fails when the density
is far from a product form (right).



illustrated in Fig. 3, the eigenfunction approach assurhas the input distribution is separable
over dimension. In Fig. 4 we show that while the raw gist digsors exhibit strong dependencies
between dimensions, this is no longer the case after the RG&gbion. Note that PCA is one of the
few types of projection permitted: since distances betwasnts must be preserved only rotations
of the data are allowed.

Log histogram of Gist descriptors Log histogram of PCA'd Gist descriptors
Dim. 2\s 3 M:0.555  Dim. 3\ 4 M:0.484 Dim. 2 s 16,MI:0.159| Dim. 2 vs3,MI:0.07  Dim. 3 vs4,MI:0.009 _Dim. 2 vs16, MI: 0.0D

Figure 4: 2D log histograms formed from 1 million Gist deptors. Red and blue correspond
to high and low densities respectivelyeft: three pairs of dimensions in the raw Gist descriptor,
along with their mutual information score (Ml), showingastg dependencies between dimensions.
Right: the dimensions in the Gist descriptors after a PCA projectas used in our experiments.
The dependencies between dimensions are now much weakbe 84 scores show. Hence the
separability assumption made by our approach is not an sonadle one for this type of data.

3.2 Experiments with CIFAR label set

The CIFAR dataset [11] was constructed by asking human eisbje label a subset of classes of
the Tiny Images dataset. For a given keyword and image, thiesis determined whether the given
image was indeed an image of that keyword. The resultingdapan 386 distinct keywords in the

Tiny Images dataset. Our experiments use the sub-set ofla&6es which had at least 200 positive
labels and 300 negative labels, giving a total of 63,000 &sag

Our experimental protocol is as follows: we take a randonsstibfC classes from the set of 126.
For each class, we randomly choose a xed test-set of 100 positive and 2Qfatiee examples,
re ecting the typical signal-to-noise ratio found in imagfeom Internet search engines. The training
examples consist afpositive/negative pairs drawn from the remaining pool d positive/negative
images for each keyword.

For each class in turn, we use our scheme to propagate labgidtie training examples to the test
examples. By assigning higher probability (value$ )rio the genuine positive images of each class,
we are able to re-rank the images. We also make use of thedimng examples from keywords
other thanc by treating them as additional negative examples. For el@nfpve haveC = 16
keywords and = 5 training pairs per keyword, then we have 5 positive trainexgmples and
(5+(16-1)*10)=155 negative training examples for eaclsslaNe use these to re-rank the 300 test
images of that particular class. Note that the propagatimm fabeled images to test images may go
through the unlabeled images that are not even in the sarse dur use of examples from other
classes as negative examples is motivated by real problghesge training labels are spread over
many keywords but relatively few labels are available pass!

In experiments using our eigenfunction approach, we compuked set ofk=256 eigenfunctions
on the entire 63,000 datapoints in the 64D space with 0:2 and used these for all runs. For
approaches that require explicit formation of the af nityatrix, we calculate the distance between
the 64D image descriptors using= 0:125 All approaches use = 50. To evaluate performance,
we choose to measure the precision at a low recall rate of 1i%heing a sensible operating point
as it corresponds to the rst webpage or so in an Interneferedt setting. Given the split of +ve/-ve
examples in the test data, chance level performance camesgo a precision of 33%. All results
were generated by averaging over 10 different runs, eadhdiffierent random train/test draws, and
with different subsets of classes.

In our rst set of experiments, shown in Fig. 5(left), we coanp our eigenfunction approach to a
variety of alternative learning schemes. We @e= 16 different classes drawn randomly from
the 126, and vary the number of training paifsom O up to 100 (thus the total number of labeled
points, positive and negative, varied from 0 to 3200). Ogeefunction approach outperforms other
methods, particularly where relatively few training exdegpare available. We use two baseline
classi ers: (i) Nearest-Neighbor and (ii) RBF kernel SVMitlwkernel width . The SVM approach



badly over- ts the data for small numbers of training exaa®glbut catches up with the eigenfunction
approach once 64+ve/1984-ve labeled examples are used.

We also test a range of SSL approaches. The exact leastesqapproachf(= (L + ) ' Y)
achieves comparable results to the eigenfunction metHtdtuagh it is far more expensive. The
eigenvector approach (Eqn. 1) performs less well, beingdinby thek = 256 eigenvectors used
(ask is increased, the performance converges to the exactdgastes solution). Neither of these
methods scale to large image collections as the af nity mat¥ becomes too big and cannot be
inverted or have its eigenvectors computed. Fig. 5(leBpahows the ef cient Nystrom method
[18], using 1000 landmark points, which has a somewhat @isiating performance. Evidently, as
in Fig. 3, the landmark points do not adequately summarieelémsity. As the number of landmarks
is increased, the performance approaches that of the lgastes solution.
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Figure 5:Left: Performance (precision at 15% recall) on the Tiny Image GF&bel set for differ-
ent learning schemes as the number of training pairs is@sed averaged over 16 different classes.
-Inf corresponds to the unsupervised case (0 examples)ei@enfunction scheme (solid red) out-
performs standard supervised methods (nearest-neiglipaesn) and a Gaussian SVM (blue)) for
small numbers of training pairs. Compared to other semestiped schemes, ours matches the
exact least squares solution (which is too expensive to nuamlarge number of images), while out-
performing approximate schemes, such as Nystrom [18]. Bygusoisy labels in addition to the
training pairs, the performance is boosted when few trgiiRamples are available (dashed red).
Right: (a): The performance of our eigenfunction approach as the numbgaining pairs per
class and number of classes is varied. Increasing the nuofiloiasses also aids performance since
labeled examples from other classes can be used as negaivples.(b): As for (a) but now us-
ing noisy label information (Section 3.3). Note the impnment in performance when few training
pairs are available(c): The performance of our approach (using no noisy labelshastmber of
eigenfunctions is varied.

In Fig. 5(right)(a) we explore how our eigenfunction apmo@erforms as the number of classes
is varied, for different numbers of training pairper class. For a xed, asC increases, the number
of negative examples available increases thus aiding pesafoce. Fig. 5(right)(c) shows the effect
of varying the number of eigenfunctiomsfor C = 16 classes. The performance is fairly stable
abovek = 128 eigenfunctions (i.e. on average 2 per dimension), althagghe mild over- tting
seems to occur for small numbers of training examples whesnalarge number is used.

3.3 Leveraging noisy labels

In the experiments above, only two types of data are useéiddhraining examples and unlabeled
test examples. However, an additional source is the nolsgidadrom the Tiny Image dataset (the
keyword used to query the image search engine). These ladelsasily be utilized by our frame-
work: all 300 test examples for a classare given a positive label with a small weight (L0),
while the300(C 1) test examples from other classes are given negative latiekineé same small
weight. Note that these labels do not reveal any informagibaut which of the 300 test images
are true positives. These noisy labels can provide a signit@erformance gain when few train-
ing (clean) labels are available, as shown in Fig. 5(leftf (solid and dashed red lines). Indeed,
when no training labels are available, just the noisy Ighmis eigenfunction scheme still performs
very well. The performance gain is explored in more detaiFig. 5(right)(b). In summary, using



the eigenfunction approach with noisy labels, the perferceaobtained with a total of 32 labeled
examples is comparable to the SVM trained with 64*16=512lkdb examples.

3.4 Experiments on Tiny Images dataset

Our nal experiment applies the eigenfunction approachh® whole of the Tiny Images dataset
(79,302,017 images). We map the gist descriptor for eaclgéntiown to a 32D space using PCA
and precomput& = 64 eigenfunctions over the entire dataset. The 445,954 ClrehRl$ (64,185
of which are +ve) cover 386 keywords, any of which can be réwed by solving Eqn. 1, which
takes around 1ms on a fast PC. In Fig. 6 we show our scheme odiffarent keywords, each using
3 labeled training pairs, resulting in a signi cant impraowent in quality over the original ordering.
A nearest-neighbor classi er which is not regularized by thata density performs worse than our
approach.

Ranking fromsearch engine Nearest Neighbor rastking  Eigenfunction re-ranking

Figure 6: Re-ranking images from 4 keywords in an 80 milliorage dataset, using 3 labeled pairs
for each keyword. Rows from top: “Japanese spaniel”, “a@tpdostrich”, “auto”. From L to

R, the columns show the original image order, results of emtameighbors and the results of our
eigenfunction approach. By regularizing the solution gséigenfunctions computed from all 80

million images, our semi-supervised scheme outperforragptirely supervised method.

4 Discussion

We have proposed a novel semi-supervised learning scheahestinear in the number of images,
and then demonstrated it on challenging datasets, incjuztie of 80 million images. The approach
can easily be parallelized making it practical for Intersetile image collections. It can also incor-
porate a variety of label types, including noisy labels, me @onsistent framework.
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