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Overview

* Unsupervised learning of
mid and high-level image representations

* Feature hierarchy built from alternating layers of:

— Convolutional sparse coding (Deconvolution)

— Max pooling

* Application to object recognition



Motivation

* Good representations are key to many tasks in vision

* Edge-based representations are basis of many models
— SIFT [Lowe’04], HOG [Dalal & Triggs ’05] & others
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Beyond Edges?

 Mid-level cues

Continuation| | Parallelism | | Junctions Corners

“Tokens” from Vision by D.Marr

* High-level object parts:
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Two Challenges

1. Grouping mechanism

*  Want edge structures to group into more complex forms

*  But hard to define explicit rules

2. Invariance to local distortions

*  Corners, T-junctions, parallel lines etc. can look quite different




Recap: Sparse Coding (Patch-based)

of input y using dictionary [
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{1 regularization yields solutions
with few non-zero elements

* Qutput is sparse vector: z = [0,0.3,0,...,0.5,...,0.2,...,0]
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Single Deconvolutional Layer

Input Image

* Convolutional form of sparse coding
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Single Deconvolutional Layer
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Top-down Decomposition
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Single Deconvolutional Layer
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Single Deconvolutional Layer

Feature Maps |+ ], Sparsity

a /2

qﬁa D @D D @mm @@ Filters

~ A

Input Image Planes




Toy Example
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Objective for Single Layer

R K
min z: () = §||sz@fk _y||3+2|2k‘1
k=1 k=1

Y = Input, 2 = Feature maps, f = Filters



Inference for Single Layer

. A
Objective: O — §HFZ — |12 + |2]1

Known: ¥ =Input, F'= Filter weights. | Solve for: 2 = Feature maps



Effect of Sparsity

* Introduces local competition in feature maps

* Explaining away
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Local Inhibition/Explaining Away

* How many different line segments (filters) are
needed to represent this image?
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Local Inhibition/Explaining Away

Filters



Talk Overview

* Single layer
— Convolutional Sparse Coding
— Max Pooling

* Multiple layers

— Multi-layer inference

— Filter learning

* Comparison to related methods

* Experiments



3D Max Pooling
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» Take absolute max value (& preserve sign)

e Record locations of max in switches



3D Max Pooling

3D Max
Pooling (P)

. Poolmg/unpoohng is linear, given max locations:

* Pooling: |p, | = P(z) Unpooling: 2 = Ugp



Role of Switches

* Permit reconstruction path back to input

— Record position of local max

— Important for multi-layer inference

* Set during inference of each layer

— Held fixed for subsequent layers’ inference

* Provide invariance:
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Overall Architecture (1 layer)
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Toy Example
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Effect of Pooling

* Reduces size of feature maps

* So we can have more of them in layers above

* Pooled maps are dense

* Ready to be decomposed by sparse coding of layer

above

 Additional competition

* For 3D pooling
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Stacking the Layers

* Take pooled maps as input to next
deconvolution/pooling layer

* Learning & inference is layer-by-layer

* Objective is reconstruction error
— Key point:

— Constraint of using filters in layers below

* Sparsity & pooling make model non-linear

— No sigmoid-type non-linearities



Overall Architecture (2 layers)
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Layer2pooled features p,

Multi-layer Inference

* Consider layer 2 inference:

— Want to minimize reconstruction error of
| — y||3> subject to sparsity.

— Don’t care about reconstructing layers below

« ISTA:
— Update 27 :

| L1 switches s;




Filter Learning

. A
Objective: O — §HFZ — |12 + |2]1

Known: ¥ =Input, 2 = Feature maps. | Solve for: F'= Filter weights



Overall Algorithm

* For Layer 1 to L: % Train each layer in turn
* For Epoch 1 to E: % Loops through dataset
* For Image 1 to N: % Loop over images
* For ISTA_ step 1 to T: % ISTA iterations
- Reconstruct ?)l % Gradient

- Compute error €] = (f&l — y) % Gradient

- Propagate error g; = R;‘Fel % Gradient

- Gradient step 2] = 27 — A\ 0191 % Gradient

- Skrink 2] = Sh(Zl) % Shrinkage

- Pool/Update Switches [pl, S l] % Update Switches
* Update filters % Learning, via linear CG system



2nd layer pooled maps

2nd layer feature maps

2nd layer filters

1%t layer pooled maps

1%t layer feature maps

1%t layer filters
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Related Work

* Convolutional Sparse Coding

— Zeiler, Krishnan, Taylor & Fergus [CVPR10]
— Kavukcuoglu, Sermanet, Boureau, Gregor, Mathieu & LeCun [NIPS'10]
— Chen, Spario, Dunson & Carin [ JMLR submitted]

= Only 2 layer models

* Deep Learning

— Hinton & Salakhutdinov [Science ‘06]

— Ranzato, Poultney, Chopra & LeCun [NIPS ‘06]

— Bengio, Lamblin, Popovici & Larochelle [NIPS ‘05]
— Vincent, Larochelle, Bengio & Manzagol [ICML ‘08]
— Lee, Grosse, Ranganth & Ng [ICML ‘09]

— Jarrett, Kavukcuoglu, Ranzato & LeCun [ICCV ‘09]
— Ranzato, Mnih, Hinton [CVPR’11]

= Reconstruct layer below, not input



Comparison: Convolutional Nets

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

HEIR S2: f. maps ‘ C5: |
N2 layer Y TPUT
6@14x14 \120 FSE; layer ?BJ u

AN 1

‘ FuIIcoanection \ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

- B

bk

LeCun et al. 1989

Convolutional Networks Deconvolutional Networks
*  Bottom-up filtering with convolutions | * Top-down decomposition with
in image space. convolutions in feature space.
* Trained supervised requiring labeled * Non-trivial unsupervised optimization

data. procedure involving sparsity.




Related Work

e Hierarchical vision models

— Zhu & Mumford [F&T ‘06]
— Tu & Zhu [IJCV 06]
— Serre, Wolf & Poggio [CVPR ‘05]
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Jin & Geman [CVPR’06] Zhu & Yuille [NIPS’07]
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Training Details

* 3060 training images from Caltech 101
— 30 images/class, 102 classes  (Caltech 101 training set)

* Resized/padded to 150x150 grayscale

e Subtractive & divisive contrast normalization
* Unsupervised

* 6 hrs total training time (Matlab, 6 core CPU)



Model Parameters/Statistics

~ Property || Layer | | Layer2 | Layer3 | Layerd

Fheawremaps K, | 15 | 50 | 100 | 150 _
 Poolingsize | 3x3 | 33x | 3ox | 3w
2 o0 0005 | 000l

* /x/ tilters at all layers
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Layer 1 Filters
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Layer 2 Filters

* 50 filters/feature maps, showing max for each map
projected down to image
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Layer 3 filters
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Relative Size of Receptive Fields

(to scale)



Largest 3 activations at top layer




Largest 5 activations at top layer

Max 1 Max 2 Max 4 Max 5 Input Image
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Top-down Decomposition

* Pixel visualizations of strongest features activated from
top-down reconstruction from single max in top layer.

Sunflower Schooner




Largest 5 activations at top layer

Max 1 Max 2 Max 4 Max 5 Input Image
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Application to Object Recognition

* Use Spatial Pyramid Matching of Lazebnik et al. [CVPR0¢]

Spatial
Pyramid
= [ = B —

-

ire Vectors

Featu



Classification Results: Caltech 101

* Use 1* layer activations as input to Spatial Pyramid

Matching (SPM) of Lazebnik et al. [CVPR06]

Our model - layer 1 67.8 +1.2%

Chen et al. [3] layer-1+2 (ConvFA) | 65.7 & 0.7%
Kavukcuoglu et al. [8] (ConvSC) 65.7 + 0.7%
Zeiler et al. [13] layer-1+2 (DN) 66.9 £ 1.1%

Boureau et al. [2] (Macrofeatures) 70.9 + 1.0%
Jarrett et al. [7] (PSD) 65.6 = 1.0%
Lazebnik et al. [9] (SPM) 64.6 £ 0.7%
Lee et al. [11] layer-1+2 (CDBN) 65.4 + 0.5%

Convolutional

~ Sparse Coding

)\

Other approaches
. using SPM with

Hard quantization




Classification Results: Caltech 256

* Use 1* layer activations as input to Spatial Pyramid

Matching (SPM) of Lazebnik et al. [CVPR06]

Our model - layer 1 31.2 £ 1.0%
Other approaches

Yang et al. [17] (SPM) 29.5 + 0.5% } using SPM with

Hard quantization




Classification Results:

* Training filters on one dataset, classify in another.

* Classifying Caltech 101

— Using Caltech 101 Filters: 71.0 = 1.0 %

— Using Caltech 256 Filters: 70.5 = 1.1 % (transfer)
* Classifying Caltech 256

— Using Caltech 256 Filters: 33.2 + 0.8 %
— Using Caltech 101 Filters: 33.9 + 1.1 % (transfer)



Classification/Reconstruction
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Effect of Sparsity
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Number of ISTA iterations in inference

* Explaining away, as induced by ISTA, helps performance
* But direct feed-forward (0 ISTA iterations) works pretty well

 cf. Rapid object categorization in humans (Thorpe et al.)



Analysis of Switch Settings

W T B Layer 2
Reconstructions [T [ Layer 3
from Layer 3 g AR [ JLayer 4
using Modified
Switches

N
o

Mean confusion (%)
W
o

0 a) Original c) Max d) Avg
Indices with only K withonlyK  Unpool
switches switches




* Introduced multi-layer top-down model.
* Non-linearity induced by sparsity & pooling
switches, rather than explicit function.

* Inference performed with quick ISTA iterations.
* Tractable for large & deep models.

* Obtains rich features, grouping and useful
decompositions from 4-layer model.
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Single Deconvolutional Layer
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Single Deconvolutional Layer
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Single Deconvolutional Layer

Feature Maps -1, Sparsity
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Context and Hierarchy in a Probabilistic Image Model
Jin & Geman (2006)
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e.g. discontinuities,
_ gradient

e.g. Imelets,

\
animal head instantiated by
bear head



A Hierarchical Compositional System

for Rapid Object Detection
Long Zhu, Alan L. Yuille, 2007.
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Able to learn #parts at each level



Comparison: Convolutional Nets

C3:f. maps 16@10x10
C1:feature maps S4:f. maps 16@5x5
INPUT 6@28x28
32x32 S2: f. maps

6@14x14 r B 5% FS: layer  OUITPUT
I|_|— 5
=
r F

Fullcoml.ection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection
LeCun et al. 1989
Convolutional Networks Deconvolutional Networks
Bottom-up filtering with convolutions | ®* Top-down decomposition with
in image space. convolutions in feature space.
Trained supervised requiring labeled * Non-trivial unsupervised optimization

data. procedure involving sparsity.




Learning a Comng

Fidler & Leonardis, C ’07; Fidler, Bobe
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Figure 7. The first row depicts the final parts comprising Layer Il obtained for (a) Cliparts and (b)
Airplanes. The variances of position distributions of parts, relative to the central part, are depicted
in the middle. The feature probabilities are listed in the last row.

Figure 8. (a) Examples of Layer 3 parts, (b) variances of positions of the surrounding subparts

Learned parts




