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The concave-convex procedure (CCCP) is a way to construct discrete-time
iterative dynamical systems that are guaranteed to decrease global op-
timization and energy functions monotonically. This procedure can be
applied to almost any optimization problem, and many existing algo-
rithms can be interpreted in terms of it. In particular, we prove that all
expectation-maximization algorithms and classes of Legendre minimiza-
tion and variational bounding algorithms can be reexpressed in terms of
CCCP. We show that many existing neural network and mean-field theory
algorithms are also examples of CCCP. The generalized iterative scaling
algorithm and Sinkhorn’s algorithm can also be expressed as CCCP by
changing variables. CCCP can be used both as a new way to understand,
and prove the convergence of, existing optimization algorithms and as a
procedure for generating new algorithms.

1 Introduction

This article describes a simple geometrical concave-convex procedure
(CCCP) for constructing discrete time dynamical systems that are guaran-
teed to decrease almost any global optimization or energy function mono-
tonically. Such discrete time systems have advantages over standard grad-
ient descent techniques (Press, Flannery, Teukolsky, & Vetterling, 1986) be-
cause they do not require estimating a step size and empirically often con-
verge rapidly.

We first illustrate CCCP by giving examples of neural network, mean
field, and self-annealing (which relate to Bregman distances; Bregman, 1967)
algorithms, which can be reexpressed in this form. As we will show, the en-
tropy terms arising in mean field algorithms make it particularly easy to
apply CCCP. CCCP has also been applied to develop an algorithm that
minimizes the Bethe and Kikuchi free energies and whose empirical con-
vergence is rapid (Yuille, 2002).
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Next, we prove that many existing algorithms can be directly reexpressed
in terms of CCCP. This includes expectation-maximization (EM) algorithms
(Dempster, Laird, & Rubin, 1977) and minimization algorithms based on
Legendre transforms (Rangarajan, Yuille, & Mjolsness, 1999). CCCP can
be viewed as a special case of variational bounding (Rustagi, 1976; Jor-
dan, Ghahramani, Jaakkola, & Saul, 1999) and related techniques includ-
ing lower-bound and upper-bound minimization (Luttrell, 1994), surrogate
functions, and majorization (Lange, Hunter, & Yang, 2000). CCCP gives a
novel geometric perspective on these algorithms and yields new conver-
gence proofs.

Finally, we reformulate other classic algorithms in terms of CCCP by
changing variables. These include the generalized iterative scaling (GIS)
algorithm (Darroch & Ratcliff, 1972) and Sinkhorn’s algorithm for obtaining
doubly stochastic matrices (Sinkhorn, 1964). Sinkhorn’s algorithm can be
used to solve the linear assignment problem (Kosowsky & Yuille, 1994),
and CCCP variants of Sinkhorn can be used to solve additional constraint
problems.

We introduce CCCP in section 2 and prove that it converges. Section 3
illustrates CCCP with examples from neural networks, mean field theory,
self-annealing, and EM. In section 4, we prove the relationships between
CCCP and the EM algorithm, Legendre transforms, and variational bound-
ing. Section 5 shows that other algorithms such as GIS and Sinkhorn can be
expressed in CCCP by a change of variables.

2 The Basics of CCCP

This section introduces the main results of CCCP and summarizes them in
three theorems. Theorem 1 states the general conditions under which CCCP
can be applied, theorem 2 defines CCCP and proves its convergence, and
theorem 3 describes an inner loop that may be necessary for some CCCP
algorithms.

Theorem 1 shows that any function, subject to weak conditions, can be
expressed as the sum of a convex and concave part (this decomposition is
not unique) (see Figure 1). This will imply that CCCP can be applied to
almost any optimization problem.

Theorem 1. Let E(�x) be an energy function with bounded Hessian ∂2E(�x)/∂�x∂�x.
Then we can always decompose it into the sum of a convex function and a concave
function.

Proof. Select any convex function F(�x) with positive definite Hessian with
eigenvalues bounded below by ε > 0. Then there exists a positive constant
λ such that the Hessian of E(�x) + λF(�x) is positive definite and hence E(�x) +
λF(�x) is convex. Hence, we can express E(�x) as the sum of a convex part,
E(�x) + λF(�x), and a concave part, −λF(�x).
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Figure 1: Decomposing a function into convex and concave parts. The original
function (top panel) can be expressed as the sum of a convex function (bottom
left panel) and a concave function (bottom right panel).

Theorem 2 defines the CCCP procedure and proves that it converges to
a minimum or a saddle point of the energy function. (After completing this
work we found that a version of theorem 2 appeared in an unpublished
technical report: Geman, 1984).

Theorem 2. Consider an energy function E(�x) (bounded below) of form E(�x) =
Evex(�x) + Ecave(�x) where Evex(�x), Ecave(�x) are convex and concave functions of �x,
respectively. Then the discrete iterative CCCP algorithm �xt �→ �xt+1 given by

�∇Evex(�xt+1) = −�∇Ecave(�xt) (2.1)

is guaranteed to monotonically decrease the energy E(�x) as a function of time and
hence to converge to a minimum or saddle point of E(�x) (or even a local maxima if
it starts at one). Moreover,

E(�xt+1) = E(�xt) − 1
2
(�xt+1 − �xt)

T{ �∇ �∇Evex(�x∗) − �∇ �∇Ecave(�x∗∗)}

× (�xt+1 − �xt), (2.2)

for some �x∗ and �x∗∗, where �∇ �∇E(.) is the Hessian of E(.).
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Figure 2: A CCCP algorithm illustrated for convex minus convex. We want
to minimize the function in the left panel. We decompose it (right panel) into
a convex part (top curve) minus a convex term (bottom curve). The algorithm
iterates by matching points on the two curves that have the same tangent vectors.
See the text for more detail. The algorithm rapidly converges to the solution at
x = 5.0.

Proof. The convexity and concavity of Evex(.) and Ecave(.) means that
Evex(�x2) ≥ Evex(�x1)+(�x2 −�x1) · �∇Evex(�x1) and Ecave(�x4) ≤ Ecave(�x3)+(�x4 −�x3) ·�∇Ecave(�x3), for all �x1, �x2, �x3, �x4. Now set �x1 = �xt+1, �x2 = �xt, �x3 = �xt, �x4 = �xt+1.
Using the algorithm definition ( �∇Evex(�xt+1) = −�∇Ecave(�xt)), we find that
Evex(�xt+1) + Ecave(�xt+1) ≤ Evex(�xt) + Ecave(�xt), which proves the first claim.
The second claim follows by computing the second-order terms of the Taylor
series expansion and applying Rolle’s theorem.

We can get a graphical illustration of this algorithm by the reformulation
shown in Figure 2. Think of decomposing the energy function E(�x) into
E1(�x) − E2(�x), where both E1(�x) and E2(�x) are convex. (This is equivalent to
decomposing E(�x) into a a convex term E1(�x) plus a concave term −E2(�x).)
The algorithm proceeds by matching points on the two terms that have the
same tangents. For an input �x0, we calculate the gradient �∇E2(�x0) and find
the point �x1 such that �∇E1(�x1) = �∇E2(�x0). We next determine the point �x2

such that �∇E1(�x2) = �∇E2(�x1), and repeat.
The second statement of theorem 2 can be used to analyze the conver-

gence rates of the algorithm by placing lower bounds on the (positive semi-
definite) matrix { �∇ �∇Evex(�x∗) − �∇ �∇Ecave(�x∗∗)}. Moreover, if we can bound
this by a matrix B, then we obtain E(�xt+1) − E(�xt) ≤ −(1/2){ �∇E−1

vex(−�∇Ecave

(�xt)) − �xt}TB{ �∇E−1
vex(−�∇Ecave(�xt)) − �xt} ≤ 0, where �∇Evex(�x)−1 is the in-

verse of �∇Evex(�x). We can therefore think of (1/2){ �∇E−1
vex(−�∇Ecave(�xt)) −

�xt}TB{ �∇E−1
vex(−�∇Ecave(�xt)) − �xt} as an auxiliary function (Della Pietra, Della

Pietra, & Lafferty, 1997).
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We can extend theorem 2 to allow for linear constraints on the variables �x,
for example,

∑
i cµ

i xi = αµ, where the {cµ
i }, {αµ} are constants. This follows

directly because properties such as convexity and concavity are preserved
when linear constraints are imposed. We can change to new coordinates
defined on the hyperplane defined by the linear constraints. Then we apply
theorem 1 in this coordinate system.

Observe that theorem 2 defines the update as an implicit function of �xt+1.
In many cases, as we will show in section 3, it is possible to solve for �xt+1

analytically. In other cases, we may need an algorithm, or inner loop, to
determine �xt+1 from �∇Evex(�xt+1). In these cases, we will need the following
theorem where we reexpress CCCP in terms of minimizing a time sequence
of convex update energy functions Et+1(�xt+1) to obtain the updates �xt+1 (i.e.,
at the tth iteration of CCCP, we need to minimize the energy Et+1(�xt+1)).

Theorem 3. Let E(�x) = Evex(�x) + Ecave(�x) where �x is required to satisfy the
linear constraints

∑
i cµ

i xi = αµ, where the {cµ
i }, {αµ} are constants. Then the

update rule for �xt+1 can be formulated as setting �xt+1 = arg min�x Et+1(�x) for a
time sequence of convex update energy functions Et+1(�x) defined by

Et+1(�x) = Evex(�x) +
∑

i
xi

∂Ecave

∂xi
(�xt) +

∑
µ

λµ

{∑
i

ciµxi − αµ

}
, (2.3)

where the Lagrange parameters {λµ} impose linear constraints.

Proof. Direct calculation.

The convexity of Et+1(�x) implies that there is a unique minimum �xt+1 =
arg min�x Et+1(�x). This means that if an inner loop is needed to calculate �xt+1,
then we can use standard techniques such as conjugate gradient descent.

An important special case is when Evex(�x) = ∑
i xi log xi. This case occurs

frequently in our examples (see section 3). We will show in section 5 that
Et(�x) can be minimized by a CCCP algorithm.

3 Examples of CCCP

This section illustrates CCCP by examples from neural networks, mean-
field algorithms, self-annealing (which relate to Bregman distances; Breg-
man, 1967), EM, and mixture models. These algorithms can be applied to
a range of problems, including clustering, combinatorial optimization, and
learning.

3.1 Example 1. Our first example is a neural net or mean field Potts
model. These have been used for content addressable memories (Waugh &
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Westervelt, 1993; Elfadel, 1995) and have been applied to clustering for un-
supervised texture segmentation (Hofmann & Buhmann, 1997). An original
motivation for them was based on a convexity principle (Marcus & Wester-
velt, 1989). We now show that algorithms for these models can be derived
directly using CCCP.

Example. Discrete-time dynamical systems for the mean-field Potts model
attempt to minimize discrete energy functions of form E[V] = (1/2)

∑
i,j,a,b

CijabViaVjb +∑ia θiaVia, where the {Via} take discrete values {0, 1} with linear
constraints

∑
i Via = 1, ∀a.

Mean-field algorithms minimize a continuous effective energy Eef f [S; T]
to obtain a minimum of the discrete energy E[V] in the limit as T �→ 0.
The {Sia} are continuous variables in the range [0, 1] and correspond to
(approximate) estimates of the mean states of the {Via} with respect to the
distribution P[V] = e−E[V]/T/Z, where T is a temperature parameter and Z
is a normalization constant. As described in Yuille and Kosowsky (1994), to
ensure that the minima of E[V] and Eef f [S; T] all coincide (as T �→ 0), it is
sufficient that Cijab be negative definite. Moreover, this can be attained by
adding a term −K

∑
ia V2

ia to E[V] (for sufficiently large K) without altering
the structure of the minima of E[V]. Hence, without loss of generality, we
can consider (1/2)

∑
i,j,a,b CijabViaVjb to be a concave function.

We impose the linear constraints by adding a Lagrange multiplier term∑
a pa{

∑
i Via − 1} to the energy where the {pa} are the Lagrange multipliers.

The effective energy is given by

Eef f [S] = (1/2)
∑
i,j,a,b

CijabSiaSjb +
∑

ia
θiaSia + T

∑
ia

Sia log Sia

+
∑

a
pa

{∑
i

Sia − 1

}
. (3.1)

We decompose Eef f [S] into a convex part Evex = T
∑

ia Sia log Sia +∑
a pa

{∑i Sia − 1} and a concave part Ecave[S] = (1/2)
∑

i,j,a,b CijabSiaSjb +∑ia θiaSia.
Taking derivatives yields ∂

∂Sia
Evex[S] = T log Sia + pa and ∂

∂Sia
Ecave[S] =∑

j,b CijabSjb + θia. Applying CCCP by setting ∂Evex
∂Sia

(St+1) = − ∂Ecave
∂Sia

(St) gives
T{1 + log St+1

ia } + pa = −∑j,b CijabSt
jb − θia. We solve for the Lagrange multi-

pliers {pa} by imposing the constraints
∑

i St+1
ia = 1, ∀a. This gives a discrete

update rule:

St+1
ia = e

(−1/T){2
∑

j,b
CijabSt

jb+θia}

∑
c e

(−1/T){2
∑

j,b
CijcbSt

jb+θic}
. (3.2)
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3.2 Example 2. The next example concerns mean field methods to model
combinatorial optimization problems such as the quadratic assignment
problem (Rangarajan, Gold, & Mjolsness, 1996; Rangarajan et al., 1999) or
the traveling salesman problem. It uses the same quadratic energy function
as example 1 but adds extra linear constraints. These additional constraints
prevent us from expressing the update rule analytically and require an inner
loop to implement theorem 3.

Example. Mean-field algorithms to minimize discrete energy functions of
form E[V] = ∑

i,j,a,b CijabViaVjb +∑
ia θiaVia with linear constraints

∑
i Via =

1, ∀a and
∑

a Via = 1, ∀i.

This differs from the previous example because we need to add an ad-
ditional constraint term

∑
i qi(

∑
a Sia − 1) to the effective energy Eef f [S] in

equation 3.1 where {qi} are Lagrange multipliers. This constraint term is also
added to the convex part of the energy Evex[S], and we apply CCCP. Unlike
the previous example, it is no longer possible to express St+1 as an analytic
function of St. Instead we resort to theorem 3. Solving for St+1 is equivalent
to minimizing the convex cost function:

Et+1[St+1; p, q] = T
∑

ia
St+1

ia log St+1
ia +

∑
a

pa

{∑
i

St+1
ia − 1

}

+
∑

i
qi

{∑
a

St+1
ia − 1

}
+
∑

ia
St+1

ia
∂Ecave

Sia
(St

ia). (3.3)

It can be shown that minimizing Et+1[St+1; p, q] can also be done by CCCP
(see section 5.3). Therefore, each step of CCCP for this example requires an
inner loop, which can be solved by a CCCP algorithm.

3.3 Example 3. Our next example is self-annealing (Rangarajan, 2000).
This algorithm can be applied to the effective energies of examples 1 and 2
provided we remove the “entropy term”

∑
ia Sia log Sia. Hence, self-anneal-

ing can be applied to the same combinatorial optimization and clustering
problems. It can also be applied to the relaxation labeling problems studied
in computer vision, and indeed the classic relaxation algorithm (Rosenfeld,
Hummel, & Zucker, 1976) can be obtained as an approximation to self-
annealing by performing a Taylor series approximation (Rangarajan, 2000).
It also relates to linear prediction (Kivinen & Warmuth, 1997).

Self-annealing acts as if it has a temperature parameter that it continu-
ously decreases or, equivalently, as if it has a barrier function whose strength
is reduced automatically as the algorithm proceeds (Rangarajan, 2000). This
relates to Bregman distances (Bregman, 1967), and, indeed, the original
derivation of self-annealing involved adding a Bregman distance to the en-
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ergy function, followed by taking Legendre transforms (see section 4.2). As
we now show, however, self-annealing can be derived directly from CCCP.

Example. In this example of self-annealing for quadratic energy functions,
we use the effective energy of example 1 (see equation 3.1) but remove the
entropy term T

∑
ia Sia log Sia. We first apply both sets of linear constraints

on the {Sia} (as in example 2). Next we apply only one set of constraints (as
in example 1).

Decompose the energy function into convex and concave parts by adding
and subtracting a term γ

∑
i,a Sia log Sia, where γ is a constant. This yields

Evex[S] = γ
∑

ia
Sia log Sia+

∑
a

pa

(∑
i

Sia − 1

)
+
∑

i
qi

(∑
a

Sia − 1

)
,

Ecave[S] = 1
2

∑
i,j,a,b

CijabSiaSjb +
∑
i,a

θiaSia − γ
∑

ia
Sia log Sia. (3.4)

Applying CCCP gives the self-annealing update equations:

St+1
ia = St

iae(1/γ ){−∑jbCijabSt
jb−θia−pa−qi}

, (3.5)

where an inner loop is required to solve for the {pa}, {qi} to ensure that the
constraints on {St+1

ia } are satisfied. This inner loop is a small modification of
the one required for example 2 (see section 5.3).

Removing the constraints
∑

i qi(
∑

a Sia −1) gives us an update rule (com-
pare example 1),

St+1
ia = St

iae(−1/γ ){∑jbCijabSt
jb+θia}∑

c St
ice

(−1/γ ){∑jbCijbcSt
bj+θic} , (3.6)

which, by expanding the exponential by a Taylor series, gives the equa-
tions for relaxation labeling (Rosenfeld et al., 1976; see Rangarajan, 2000, for
details).

3.4 Example 4. Our final example is the elastic net (Durbin & Willshaw,
1987; Durbin, Szeliski, & Yuille, 1989) in the formulation presented in Yuille
(1990). This is an example of constrained mixture models (Jordan & Jacobs,
1994) and uses an EM algorithm (Dempster et al., 1977).

Example. The elastic net (Durbin & Willshaw, 1987) attempts to solve the
traveling salesman problem (TSP) by finding the shortest tour through a set
of cities at positions {�xi}. The net is represented by a set of nodes at positions
{�ya}, and the algorithm performs steepest descent on a cost function E[�y].
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This corresponds to a probability distribution P(�y) = e−E[�y]/Z on the node
positions, which can be interpreted (Durbin et al., 1989) as a constrained
mixture model (Jordan & Jacobs, 1994). The elastic net can be reformulated
(Yuille, 1990) as minimizing an effective energy Eef f [S, �y] where the variables
{Sia} determine soft correspondence between the cities and the nodes of
the net. Minimizing Eef f [S, �y] with respect to S and �y alternatively can be
reformulated as a CCCP algorithm. Moreover, this alternating algorithm
can also be reexpressed as an EM algorithm for performing maximum a
posteriori estimation of the node variables {�ya} from P(�y) (see section 4.1).

The elastic net can be formulated as minimizing an effective energy
(Yuille, 1990):

Eef f [S, �y] =
∑

ia
Sia(�xi − �ya)

2 + γ
∑
a,b

�yT
a Aab�yb + T

∑
i,a

Sia log Sia

+
∑

i
λi

(∑
a

Sia − 1

)
, (3.7)

where the {Aab} are components of a positive definite matrix representing
a spring energy and {λa} are Lagrange multipliers that impose the con-
straints

∑
a Sia = 1, ∀ i. By setting E[�y] = Eef f [S∗(�y), �y] where S∗(�y) =

arg minS Eef f [S, �y], we obtain the original elastic net cost function E[�y] =
−T

∑
i log

∑
a e−|�xi−�ya|2/T +γ

∑
a,b �yT

a Aab�yb (Durbin & Willshaw, 1987). P[�y] =
e−E[�y]/Z can be interpreted (Durbin et al., 1989) as a constrained mixture
model (Jordan & Jacobs, 1994).

The effective energy Eef f [S, �y] can be decreased by minimizing it with
respect to {Sia} and {�ya} alternatively. This gives update rules,

St+1
ia = e−|�xi−�yt

a|2/T∑
j e−|�xj−�yt

a|2/T
, (3.8)

∑
i

St+1
ia (�yt+1

a − �xi) +
∑

b

Aab�yt+1
b = 0, ∀a, (3.9)

where {�yt+1
a } can be computed from the {St+1

ia } by solving the linear equa-
tions.

To interpret equations 3.8 and 3.9 as CCCP, we define a new energy
function E[S] = Eef f [S, �y∗(S)] where �y∗(S) = arg min�y Eef f [S, �y] (which can
be obtained by solving the linear equation 3.9 for {�ya}). We decompose E[S] =
Evex[S] + Ecave[S] where

Evex[S] = T
∑

ia
Sia log Sia +

∑
i

λi

(∑
a

Sia − 1

)
,

Ecave[S] =
∑

ia
Sia|�xi − �y∗

a(S)|2 + γ
∑

ab

�y∗
a(S) · �y∗

b(S)Aab. (3.10)
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It is clear that Evex[S] is a convex function of S. It can be verified alge-
braically that Ecave[S] is a concave function of S and that its first derivative is

∂
∂Sia

Ecave[S] = |�xi − �y∗
a(S)|2 (using the definition of �y∗(S) to remove additional

terms). Applying CCCP to E[S] = Evex[S] + Ecave[S] gives the update rule

St+1
ia = e−|�xi−�y∗

a (S
t)|2∑

b e−|�xi−�y∗
b (S

t)|2 , �y∗(St) = arg min
�y

Eef f [St, �y], (3.11)

which is equivalent to the alternating algorithm described above (see equa-
tions 3.8 and 3.9).

More understanding of this particular CCCP algorithm is given in the
next section, where we show that is a special case of a general result for EM
algorithms.

4 EM, Legendre Transforms, and Variational Bounding

This section proves that two standard algorithms can be expressed in terms
of CCCP: all EM algorithms and a class of algorithms using Legendre trans-
forms. In addition, we show that CCCP can be obtained as a special case
of variational bounding and equivalent methods known as lower-bound
maximization and surrogate functions.

4.1 The EM Algorithm and CCCP. The EM algorithm (Dempster et al.,
1977) seeks to estimate a variable �y∗ = arg max�y log

∑
{V} P(�y, V), where

{�y}, {V} are variables that depend on the specific problem formulation (we
will soon illustrate them for the elastic net). The distribution P(�y, V) is usu-
ally conditioned on data which, for simplicity, we will not make explicit.

Hathaway (1986) and Neal and Hinton (1998) showed that EM is equiv-
alent to minimizing the following effective energy with respect to the vari-
ables �y and P̂(V),

Eem[�y, P̂] = −
∑

V

P̂(V) log P(�y, V) +
∑

V

P̂(V) log P̂(V)

+ λ
{∑

P̂(V) − 1
}

, (4.1)

where λ is a Lagrange multiplier.
The EM algorithm proceeds by minimizing Eem[�y, P̂] with respect to P̂(V)

and �y alternatively:

P̂t+1(V) = P(�yt, V)∑
V̂ P(�yt, V̂)

,

�yt+1 = arg min
�y

−
∑

V

P̂t+1(V) log P(�y, V). (4.2)
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These update rules are guaranteed to lower Eem[�y, P̂] and give conver-
gence to a saddle point or a local minimum (Dempster et al., 1977; Hathaway,
1986; Neal & Hinton, 1998).

For example, this formulation of the EM algorithm enables us to rederive
the effective energy for the elastic net and show that the alternating algo-
rithm is EM. We let the {�ya} correspond to the positions of the nodes of the net
and the {Via} be binary variables indicating the correspondences between
cities and nodes (related to the {Sia} in example 4). P(�y, V) = e−E[�y,V]/T/Z
where E[�y, V] = ∑

ia Via|�xi − �ya|2 + γ
∑

ab �ya · �ybAab with the constraint that∑
a Via = 1, ∀ i. We define Sia = P̂(Via = 1), ∀ i, a. Then Eem[�y, S] is equal to

the effective energy Eef f [�y, S] in the elastic net example (see equation 3.7).
The update rules for EM (see equation 4.2) are equivalent to the alternating
algorithm to minimize the effective energy (see equations 3.8 and 3.9).

We now show that all EM algorithms are CCCP. This requires two inter-
mediate results, which we state as lemmas.

Lemma 1. Minimizing Eem[�y, P̂] is equivalent to minimizing the function E[P̂]
= Evex[P̂] + Ecave[P̂] where Evex[P̂] = ∑

V P̂(V) log P̂(V) + λ{∑ P̂(V) − 1} is a
convex function and Ecave[P̂] = −∑V P̂(V) log P(�y∗(P̂), V) is a concave function,
where we define �y∗(P̂) = arg min�y −∑V P̂(V) log P(�y, V).

Proof. Set E[P̂] = Eem[�y∗(P̂), P̂], where �y∗(P̂) = arg min�y −∑V P̂(V) log
P(�y, V). It is straightforward to decompose E[P̂] as Evex[P̂] + Ecave[P̂] and
verify that Evex[P̂] is a convex function. To determine that Ecave[P̂] is concave
requires showing that its Hessian is negative semidefinite. This is performed
in lemma 2.

Lemma 2. Ecave[P̂] is a concave function and ∂

∂P̂(V)
Ecave = − log P(�y∗(P̂), V),

where �y∗(P̂) = arg min�y −∑V P̂(V) log P(�y, V).

Proof. We first derive consequences of the definition of �y∗, which will be
required when computing the Hessian of Ecave. The definition implies:

∑
V

P̂(V)
∂

∂ �yµ

log P(�y∗, V) = 0, ∀µ (4.3)

∂

∂ �yµ

log P(�y∗, Ṽ)+
∑

V

P̂(V)
∑

ν

∂ �y∗
ν

∂P̂(Ṽ)

∂2

∂ �yµ∂ �yν

log P(�y∗, V) = 0, ∀µ, (4.4)

where the first equation is an identity that is valid for all P̂ and the second
equation follows by differentiating the first equation with respect to P̂. More-
over, since �y∗ is a minimum of −∑V P̂(V) log P(�y, V), we also know that the
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matrix
∑

V P̂(V) ∂2

∂yµ∂yν
log P(�y∗, V) is negative definite. (We use the conven-

tion that ∂
∂ �yµ

log P(�y∗, V) denotes the derivative of the function log P(�y, V)

with respect to �yµ evaluated at �y = �y∗.)
We now calculate the derivatives of Econv[P̂] with respect to P̂. We obtain:

∂

∂P̂(Ṽ)
Ecave = − log P(�y∗(P̂), Ṽ) −

∑
V

P̂(V)
∑
mu

∂ �y∗
µ

∂P̂(Ṽ)

∂ log P(�y∗, V)

∂ fµ

= − log P(�y∗, V), (4.5)

where we have used the definition of �y∗ (see equation 4.3) to eliminate the
second term on the right-hand side. This proves the first statement of the
theorem.

To prove the concavity of Ecave, we compute its Hessian:

∂2

∂P̂(V)∂P̂(Ṽ)
Ecave = −

∑
ν

∂ �y∗
ν

∂P̂(Ṽ)

∂

∂ �yν

log P(�y∗, V). (4.6)

By using the definition of �y∗(P̂) (see equation 4.4), we can reexpress the
Hessian as:

∂2

∂P̂(V)∂P̂(Ṽ)
Ecave =

∑
V,µ,ν

∂ �y∗
ν

∂P̂(Ṽ)

∂ �y∗
µ

∂P̂(V)

∂2 log P(�y∗, V)

∂ �yµ∂ �yν

. (4.7)

It follows that Ecave has a negative definite Hessian, and hence Ecave is
concave, recalling that −∑V P̂(V) ∂2

∂yµ∂yν
log P(�y∗, V) is negative definite.

Theorem 4. The EM algorithm for P(�y, V) can be expressed as a CCCP algorithm
in P̂(V) with Evex[P̂] = ∑

V P̂(V) log P̂(V) + λ{∑ P̂(V) − 1} and Ecave[P̂] =
−∑V P̂(V) log P(�y∗(P̂), V), where �y∗(P̂) = arg min�y −∑V P̂(V) log P(�y, V).
After convergence to P̂∗(V), the solution is calculated to be �y∗∗ = arg min�y −∑

V P̂∗(V) log P(�y, V).

Proof. The update rule for P̂ determined by CCCP is precisely that speci-
fied by the EM algorithm. Therefore, we can run the CCCP algorithm until
it has converged to P̂∗(.) and then calculate the solution �y∗∗ = arg min�y −∑

V P̂∗(V) log P(�y, V).

Finally, we observe that Geman’s technical report (1984) gives an alter-
native way of relating EM to CCCP for a special class of probability dis-
tributions. He assumes that P(�y, V) is of form e�y· �φ(V)/Z for some functions
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��(.). He then proves convergence of the EM algorithm to estimate �y by ex-
ploiting his version of theorem 2. Interestingly, he works with convex and
concave functions of �y, while our results are expressed in terms of convex
and concave functions of P̂.

4.2 Legendre Transformations. The Legendre transform can be used
to reformulate optimization problems by introducing auxiliary variables
(Mjolsness & Garrett, 1990). The idea is that some of the formulations may
be more effective and computationally cheaper than others.

We will concentrate on Legendre minimization (Rangarajan et al., 1996,
1999) instead of Legendre min-max emphasized in Mjolsness and Garrett
(1990). In the latter (Mjolsness & Garrett, 1990), the introduction of auxiliary
variables converts the problem to a min-max problem where the goal is to
find a saddle point. By contrast, in Legendre minimization (Rangarajan et
al., 1996), the problem remains a minimization one (and so it becomes easier
to analyze convergence).

In theorem 5, we show that Legendre minimization algorithms are equiv-
alent to CCCP provided we first decompose the energy into a convex plus
a concave part. The CCCP viewpoint emphasizes the geometry of the ap-
proach and complements the algebraic manipulations given in Rangarajan
et al. (1999). (Moreover, the results of this article show the generality of
CCCP, while, by contrast, Legendre transform methods have been applied
only on a case-by-case basis.)

Definition 1. Let F(�x) be a convex function. For each value �y, let F∗(�y) =
min�x{F(�x) + �y · �x.}. Then F∗(�y) is concave and is the Legendre transform of F(�x).

Two properites can be derived from this definition (Strang, 1986):

Property 1. F(�x) = max�y{F∗(�y) − �y · �x}.

Property 2. F(.) and F∗(.) are related by ∂F∗
∂ �y (�y) = { ∂F

∂�x }−1(−�y), − ∂F
∂�x (�x) =

{ ∂F∗
∂ �y }−1(�x). (By { ∂F∗

∂ �y }−1(�x) we mean the value �y such that ∂F∗
∂ �y (�y) = �x.)

The Legendre minimization algorithms (Rangarajan et al., 1996, 1999)
exploit Legendre transforms. The optimization function E1(�x) is expressed
as E1(�x) = f (�x) + g(�x), where g(�x) is required to be a convex function. This
is equivalent to minimizing E2(�x, �y) = f (�x) + �x · �y + ĝ(�y), where ĝ(.) is
the inverse Legendre transform of g(.). Legendre minimization consists of
minimizing E2(�x, �y) with respect to �x and �y alternatively.

Theorem 5. Let E1(�x) = f (�x) + g(�x) and E2(�x, �y) = f (�x) + �x · �y + h(�y), where
f (.), h(.) are convex functions and g(.) is concave. Then applying CCCP to E1(�x)
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is equivalent to minimizing E2(�x, �y) with respect to �x and �y alternatively, where
g(.) is the Legendre transform of h(.). This is equivalent to Legendre minimization.

Proof. We can write E1(�x) = f (�x) + min�y{g∗(�y) + �x · �y} where g∗(.) is the
Legendre transform of g(.) (identify g(.) with F∗(.) and g∗(.) with F(.) in
definition 1 and property 1). Thus, minimizing E1(�x) with respect to �x is
equivalent to minimizing Ê1(�x, �y) = f (�x) + �x · �y + g∗(�y) with respect to �x
and �y. (Alternatively, we can set g∗(�y) = h(�y) in the expression for E2(�x, �y)

and obtain a cost function Ê2(�x) = f (�x) + g(�x).) Alternatively minimiza-
tion over �x and �y gives (i) ∂ f/∂�x = �y to determine �xt+1 in terms of �yt, and
(ii) ∂g∗/∂ �y = �x to determine �yt in terms of �xt, which, by property 2 of the
Legendre transform, is equivalent to setting �y = −∂g/∂�x. Combining these
two stages gives CCCP:

∂ f
∂�x (�xt+1) = −∂g

∂�x (�xt).

4.3 Variational Bounding. In variational bounding, the original objec-
tive function to be minimized gets replaced by a new objective function that
satisfies the following requirements (Rustagi, 1976; Jordan et al., 1999). Other
equivalent techniques are known as surrogate functions and majorization
(Lange et al., 2000) or as lower-bound maximization (Luttrell, 1994). These
techniques are more general than CCCP, and it has been shown that algo-
rithms like EM can be derived from them (Minka, 1998; Lange et al., 2000).
(This, of course, does not imply that EM can be derived from CCCP.)

Let E(�x), �x ∈ RD be the original objective function that we seek to mini-
mize. Assume that we are at a point �x(n) corresponding to the nth iteration.
If we have a function Ebound(�x) that satisfies the following properties (see
Figure 3),

E(�x(n)) = Ebound(�x(n)), and (4.8)

E(�x) ≤ Ebound(�x), (4.9)

then the next iterate �x(n+1) is chosen such that

Ebound(�x(n+1)) ≤ E(�x(n)) which implies E(�x(n+1)) ≤ E(�x(n)). (4.10)

Consequently, we can minimize Ebound(�x) instead of E(�x) after ensuring that
E(�x(n)) = Ebound(�x(n)).

We now show that CCCP is equivalent to a class of variational bounding
provided we first decompose the objective function E(�x) into a convex and
a concave part before bounding the concave part by its tangent plane (see
Figure 3).
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E
E

bound

E(x)

x(n)

E(x)

Ecave

x*
Figure 3: (Left) Variational bounding bounds a function E(�x) by a function
Ebound(�x) such that E(�x(n)) = Ebound(�x(n)). (Right) We decompose E(�x) into con-
vex and concave parts, Evex(�x) and Ecave(�x), and bound Ecave(�x) by its tangent
plane at �x∗. We set Ebound(�x) = Evex(�x) + Ecave(�x).

Theorem 6. Any CCCP algorithm to extremize E(�x) can be expressed as vari-
ational bounding by first decomposing E(�x) as a convex Evex(�x) and a concave
Ecave(�x) function and then at each iteration starting at �xt set Et

bound(�x) = Evex(�x)+
Ecave(�xt) + (�x − �xt) · ∂Ecave(�xt)

∂�x ≥ Ecave(�x).

Proof. Since Ecave(�x) is concave, we have Ecave(�x∗) + (�x − �x∗) · ∂Ecave
∂�x ≥

Ecave(�x) for all �x. Therefore, Et
bound(�x) satisfies equations 4.8 and 4.9 for varia-

tional bounding. Minimizing Et
bound(�x) with respect to �x gives ∂

∂�x Evex(�xt+1) =
− ∂Ecave(�xt)

∂�x , which is the CCCP update rule.

Note that the formulation of CCCP given by theorem 3, in terms of a
sequence of convex update energy functions, is already in the variational
bounding form.

5 CCCP by Changes in Variables

This section gives examples where the algorithms are not CCCP in the
original variables, but they can be transformed into CCCP by changing
coordinates. In this section, we first show that both generalized iterative
scaling (GIS; Darroch & Ratcliff, 1972) and Sinkhorn’s algorithm (Sinkhorn,
1964) can be formulated as CCCP. Then we obtain CCCP generalizations of
Sinkhorn’s algorithm, which can minimize many of the inner-loop convex
update energy functions defined in theorem 3.
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5.1 Generalized Iterative Scaling. This section shows that the GIS al-
gorithm (Darroch & Ratcliff, 1972) for estimating parameters of probability
distributions can also be expressed as CCCP. This gives a simple conver-
gence proof for the algorithm.

The parameter estimation problem is to determine the parameters �λ of a
distribution P(�x : �λ) = e�λ· �φ(�x)/Z[�λ] so that

∑
�x P(�x; �λ) �φ(�x) = �h, where �h are

observation data (with components indexed by µ). This can be expressed as
finding the minimum of the convex energy function log Z[λ] − �h · �λ, where
Z[�λ] = ∑

�x e�λ· �φ(�x) is the partition problem. All problems of this type can be
converted to a standard form where φµ(�x) ≥ 0, ∀ µ, �x, hµ ≥ 0, ∀ µ, and∑

µ φµ(�x) = 1, ∀ �x and
∑

µ hµ = 1 (Darroch & Ratcliff, 1972). From now on,
we assume this form.

The GIS algorithm is given by

λt+1
µ = λt

µ − log ht
µ + log hµ, ∀µ, (5.1)

where ht
µ = ∑

�x P(�x; �λt)φµ(�x). It is guaranteed to converge to the (unique)
minimum of the energy function log Z[λ] − �h · �λ and hence gives a solution
to
∑

�x P(�x; �λ) �φ(�x) = �h, (Darroch & Ratcliff, 1972).
We now show that GIS can be reformulated as CCCP, which gives a

simple convergence proof of the algorithm.

Theorem 7. We can express GIS as a CCCP algorithm in the variables {rµ = eλµ}
by decomposing the cost function E[�r] into a convex term −∑µ hµ log rµ and a
concave term log Z[{log rµ}].

Proof. Formulate the problem as finding the �λ that minimizes log Z[λ]−�h ·
�λ. This is equivalent to minimizing the cost function E[�r] = log Z[{log rµ}]−∑

µ hµ log rµ with respect to {rµ} where rµ = eλµ, ∀ µ. Define Evex[�r] =
−∑µ hµ log rµ and Ecave[�r] = log Z[{log rµ}]. It is straightforward to verify
that Evex[�r] is a convex function (recall that hµ ≥ 0, ∀µ).

To show that Ecave is concave, we compute its Hessian:

∂2Ecave

∂rµ∂rν

= −δµν

r2
ν

∑
�x

P(�x : �r)φν(�x) − δµν

r2
ν

∑
�x

P(�x : �r)φν(�x)φµ(�x)

− 1
rνrµ

{∑
�x

P(�x : �r)φν(�x)

}{∑
�x

P(�x : �r)φµ(�x)

}
, (5.2)

where P(�x; �r) = e
∑

µ
(log rµ)φµ(�x)

/Z[{log rµ}].
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The third term is clearly negative semidefinite. To show that the sum of
the first two terms is negative semidefinite requires proving that

∑
�x

P(�x : �r)
∑

ν

(ζν/rν)
2φν(�x)

≥
∑

�x
P(�x : �r)

∑
µ,ν

(ζµ/rµ)(ζν/rν)φν(�x)φµ(�x) (5.3)

for any set of {ζµ}. This follows by applying the Cauchy-Schwarz inequality
to the vectors {(ζν/rν)

√
φν(�x)} and {

√
φν(�x)}, recalling that

∑
µ φµ(�x) = 1, ∀�x.

We now apply CCCP by setting ∂
∂rν

Evex[rt+1] = − ∂
∂rν

Ecave[rt]. We calculate
∂

∂rµ
Evex = −hµ/rµ and ∂

∂rµ
Ecave = (1/rµ)

∑
�x P(�x : �r)φµ(�x). This gives

1

rt+1
µ

= 1
rt
µ

1
hµ

∑
�x

P(�x : �rt)φν(�x), (5.4)

which is the GIS algorithm after setting rµ = eλµ, ∀µ.

5.2 Sinkhorn’s Algorithm. Sinkhorn’s algorithm was designed to make
matrices doubly stochastic (Sinkhorn, 1964). We now show that it can re-
formulated as CCCP. In the next section, we describe how Sinkhorn’s algo-
rithm, and variations of it, can be used to minimize convex energy functions
such as those required for the inner loop of CCCP (see Theorem 3).

We first introduce Sinkhorn’s algorithm. Recall that an n × n matrix � is
a doubly stochastic matrix if all its rows and columns sum to 1. Matrices are
strictly positive if all their elements are positive. Then Sinkhorn’s theorem
states:

Theorem (Sinkhorn, 1964). Given a strictly positive n × n matrix M, there
exists a unique doubly stochastic matrix � = EMD where D and E are strictly
positive diagonal matrices (unique up to a scaling factor). Moreover, the iterative
process of alternatively normalizing the rows and columns of M to each sum to 1
converges to �.

Theorem 8. Sinkhorn’s algorithm is CCCP with a cost function E[r] = Evex[r]+
Ecave[r] where

Evex[r] = −
∑

a
log ra, Ecave[r] =

∑
i

log
∑

a
raMia, (5.5)

where the {ra} are the diagonal elements of E and the diagonal elements of D are
given by 1/{∑a raMia}.
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Proof. It is straightforward to verify that Sinkhorn’s algorithm is equiva-
lent (Kosowsky & Yuille, 1994) to minimizing an energy function Ê[r, s] =
−∑a log ra − ∑

i log si + ∑
ia Miarasi with respect to r and s alternatively,

where {ra} and {si} are the diagonal elements of E and D. We calculate
E(r) = Ê[r, s∗(r)] where s∗(r) = arg mins Ê[r, s]. It is a direct calculation that
Evex[r] is convex. The Hessian of Ecave[r] can be calculated to be

∂2

∂ra∂rb
Ecave[r] = −

∑
i

MiaMib

{∑c rcMic}2 , (5.6)

which is negative semidefinite. The CCCP algorithm is

rt+1
a =

∑
i

Mia∑
c rt

cMic
, (5.7)

which corresponds to one step of minimizing Ê[r, s] with respect to r and s,
and hence is equivalent to Sinkhorn’s algorithm.

This algorithm in theorem 8 has similar form to an algorithm proposed
by Saul and Lee (2002) which generalizes GIS (Darroch & Ratcliff, 1972) to
mixture models. This suggests that Saul and Lee’s algorithm is also CCCP.

5.3 Linear Constraints and Inner Loop. We now derive CCCP algo-
rithms to minimize many of the update energy functions that can occur
in the inner loop of CCCP algorithms. These algorithms are derived using
similar techniques to those used by Kosowsky and Yuille (1994) to red-
erive Sinkhorn’s algorithm; hence, they can be considered generalizations
of Sinkhorn. The linear assignment problem can also be solved using these
methods (Kosowsky & Yuille, 1994).

From theorem 3, the update energy functions for the inner loop of CCCP
are given by

E(�x; �λ) =
∑

i
xi log xi +

∑
i

xiai +
∑
µ

λµ

(∑
i

cµ
i xi − αµ

)
. (5.8)

Theorem 9. Update energy functions, of form 5.8, can be minimized by a CCCP
algorithm for the dual variables {λµ} provided the linear constraints satisfy the
conditions αi ≥ 0, ∀i and cν

i ≥ 0, ∀i, ν. The algorithm is

αµ

rt+1
µ

= e−1
∑

i
e−ai

cµ
i

rt
µ

e
∑

ν
cν

i log rν . (5.9)

Proof. First, we scale the constraints we can require that
∑

ν cν
i ≤ 1, ∀ i.

Then we calculate the (negative) dual energy function to be Ê[λ] = −E[�x∗
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(�λ) : �λ], where �x∗(�λ) = arg min�x E[�x; �λ]. It is straightforward to calculate

x∗
i (

�λ)=e−1−ai−
∑

µ
λµcµ

i , ∀i, Ê[�λ]=
∑

i
e−1−ai−

∑
µ

λµcµ
i +
∑
µ

αµλµ. (5.10)

To obtain CCCP, we set λµ = − log rµ, ∀µ. We set

Evex[r] = −
∑
µ

αµ log rµ, Ecave[r] = e−1
∑

i
e−ai e

∑
µ

cµ
i log rµ . (5.11)

It is clear that Evex[r] is a convex function. To verify that Ecave[r] is concave,
we differentiate it twice:

∂Ecave

∂rν

= e−1
∑

i
e−ai

cν
i

rν

e
∑

µcµ
i log rµ ,

∂2Ecave

∂rν∂rτ

= −e−1
∑

i
e−ai

cν
i

rν

δντ e
∑

µcµ
i log rµ

+ e−1
∑

i
e−ai

cν
i

rν

cτ
i

rτ

e
∑

µcµ
i log rµ . (5.12)

To ensure that this is negative semidefinite, it is sufficient to require that∑
ν cν

i x2
v/r2

ν ≥ {∑nu cν
i xν/rν}2 for any set of {xν}. This will always be true

provided that cν
i ≥ 0, ∀i, ν and if

∑
ν cν

i ≤ 1, ∀i.
Applying CCCP to Evex[r] and Ecave[r] gives the update algorithm.

An important special case of equation 5.8 is the energy function,

Eef f [S; p, q] =
∑

ia
AiaSia +

∑
a

pa

(∑
i

Sia − 1

)

+
∑

i
qi

(∑
a

Sia − 1

)
+ 1/β

∑
ia

Sia log Sia, (5.13)

where we have introduced a new parameter β.
As Kosowsky and Yuille (1994) showed, the minima of Eef f [S; p, q] at

sufficiently large β correspond to the solutions of the linear assignment
problem whose goal is to select the permutation matrix {∏ia} that minimizes
the energy E[

∏
] = ∑

ia
∏

ia Aia, where {Aia} is a set of assignment values.
Moreover, the CCCP algorithm for this case is directly equivalent to

Sinkhorn’s algorithm once we identify {e−1−βAia} with the components of
M, {e−βpa} with diagonal elements of E, and {e−βqi} with the diagonal ele-
ments of D (see the statement of Sinkhorn’s theorem). Therefore, Sinkhorn’s
algorithm can be used to solve the linear assignment problem (Kosowsky
& Yuille, 1994).
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6 Conclusion

CCCP is a general principle for constructing discrete time iterative dynam-
ical systems for almost any energy minimization problem. We have shown
that many existing discrete time iterative algorithms can be reinterpreted in
terms of CCCP, including EM algorithms, Legendre transforms, Sinkhorn’s
algorithm, and generalized iterative scaling. Alternatively, CCCP can be
seen as a special case of variational bounding, lower-bound maximization
(upper-bound minimization), and surrogate functions. CCCP gives a novel
geometrical way for understanding, and proving convergence of, existing
algorithms.

Moreover, CCCP can also be used to construct novel algorithms. See,
for example, recent work (Yuille, 2002) where CCCP was used to construct
a double loop algorithm to minimize the Bethe and Kikuchi free energies
(Yedidia, Freeman, & Weiss, 2000). CCCP is a design principle and does
not specify a unique algorithm. Different choices of the decomposition into
convex and concave parts will give different algorithms with, presumably,
different convergence rates. It is interesting to explore the effectiveness of
different decompositions.

There are interesting connections between our results and those known
to mathematicians. After much of this work was done, we obtained an
unpublished technical report by Geman (1984) that states theorem 2 and has
results for a subclass of EM algorithms. There also appear to be similarities
to the work of Tuy (1997), who has shown that any arbitrary closed set is
the projection of a difference of two convex sets in a space with one more
dimension. Byrne (2000) has also developed an interior point algorithm for
minimizing convex cost functions that is equivalent to CCCP and has been
applied to image reconstruction.
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