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Abstract

In this paper we explore how a structured light depth
sensor, in the form of the Microsoft Kinect, can assist with
indoor scene segmentation. We use a CRF-based model to
evaluate a range of different representations for depth in-
formation and propose a novel prior on 3D location. We
introduce a new and challenging indoor scene dataset, com-
plete with accurate depth maps and dense label coverage.
Evaluating our model on this dataset reveals that the com-
bination of depth and intensity images gives dramatic per-
formance gains over intensity images alone. Our results
clearly demonstrate the utility of structured light sensors
for scene understanding.

1. Introduction

The use of depth or range sensors as well as depth-
from-stereo has been the subject of a number of impor-
tant, recent works for various vision-related tasks such as
scene understanding and detection. Many approaches use
a scene’s depth as a channel for extracting features in a
detection pipeline. Gould et al. [6] combine laser range
finder data with images for detection of several small ob-
jects. Quigley et al. [16] use a laser-line scanner to recog-
nize several classes and aid a robotic door-opening task.

Rather than use depth as a feature directly, a number of
works use the depth of a scene to guide the detection process
itself. Helmer and Lowe [&] explore how depth-from-stereo
can limit the number of detection windows required while
Hedau et al. [19] recovers the 3D structure of the room from
a single image, which then provides context for recognition.
Leibe et al. [12] use a car-mounted stereo rig to reason about
the depth of a scene, detect pedestrians and cars, and track
them over time.

In most works that utilize the depth signal of a scene,
the dataset used is often collected from a very limited do-
main, specific to an application, and rarely made public.
Consequently, while research has demonstrated that depth
is a useful supplementary signal for vision tasks, competing
approaches are rarely directly compared due to the lack of
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Figure 1. A typical indoor scene captured by the Microsoft Kinect.
(a): Webcam image. (b) Raw depth map (red=close, blue=far). (c)
Labels obtained via Amazon Mechanical Turk. (d) After a ho-
mography, followed by pre-processing to fill in missing regions,
the depth map (hue channel) can be seen to closely aligned with
the image (intensity channel).

publicly available datasets. Additionally, researchers with-
out access to the required, specialized hardware needed to
produce these depth images cannot contribute to this area.

To ammend this shortcoming, we introduce a new dataset
complete with densely labeled pairs of RGB and depth im-
ages. These images have been collected using the Microsoft
Kinect. This device uses structured light methods to give an
accurate depth map of the scene, which can be aligned spa-
tially and temporally with the device’s webcam (see Fig. 1).
The choice of this device over other depth-measurement
tools (LIDARs and time-of-flight cameras) was motivated
by its accuracy, compactness, portability (after a few mod-
ifications) and its price. These qualities make use of the
device viable in numerous vision applications, such as as-
sisting the visually impaired and robot navigation.

One clear limitation of the Kinect is that it can only op-
erate reliably indoors, since the projected pattern is over-
whelmed by exterior lighting conditions. We therefore fo-
cus our attention on indoor scenes.



The closest work to ours is that of Lai et al. [10] which
contributed a depth-based dataset. Their images, however,
are limited to isolated objects with uncluttered backgrounds
rather than entire scenes making their dataset qualitatively
similar to COIL [14].

This paper makes a number of contributions: (1) we in-
troduce a new indoor scene dataset of which every frame
has an accurate depth map as well as a dense manually-
provided labeling - to our knowledge, the first of its kind,
(2) we describe simple modifications that make the Kinect
fully portable, hence usable for indoor recognition, (3) we
provide baselines on the new dataset for the scene classifica-
tion and multi-class segmentation tasks using several com-
monly used features and (4) we introduce a new 3D location
prior improving recognition performance.

2. Approach

We now describe how the Kinect was made portable in
order to facilitate data capture, as well as the image pre-
processing necessary to make the Kinect output usable.

2.1. Capture Setup

The Kinect has two cameras: the first is a conventional
VGA resolution webcam that records color video at 30Hz.
The second is an infra-red (IR) camera that records a non-
visible structured light pattern generated by the Kinect’s IR
projector. The IR camera’s output is processed within the
Kinect to provide a smoothed VGA resolution depth map,
also at 30Hz, with an effective range of ~0.7-6 meters. See
Fig. 1(a) & (b) for typical output.

The Kinect requires a 12V input for the Peltier cooler
on the IR depth camera, necessitating a mains adapter to
power the device (USB sockets only provide 5V at limited
currents). Since the mains adapter severely limits portabil-
ity of the device, we remove it and connect a rechargeable
4200mAh 12V battery pack in its place. This is capable of
powering the device for 12 hours of operation. The output
from the Kinect was logged on a laptop carried in a back-
pack, using open-source Kinect drivers [13] to acquire time
synchronized image, depth and accelerometer feeds. The
overall system is shown in Fig. 2(a). To avoid camera shake
and blur when capturing data, the Kinect was strapped to
a motion-damping rig built from metal piping, shown in
Fig. 2(b). The weights damp the motion and have a sig-
nificant smoothing effect on the captured video.

Both the depth and image cameras on the Kinect were
calibrated using a set of checkerboard images in conjunc-
tion with the calibration tool of Burrus [4]. This also pro-
vided the homography between the two cameras, allowing
us to obtain precise spatial alignment between the depth and
RGB images, as demonstrated in Fig. 1(d).
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Figure 2. (a): Our capture system with a Kinect modified to run
from a battery pack. (b) Our capture platform, with counter-
weights to damp camera movements.

2.2. Dataset Collection

We visited a range of indoor locations within a large US
city, gathering video footage with our capture rig. These
mainly consisted of residential apartments, having living
rooms, bedrooms, bathrooms and kitchens. We also cap-
tured workplace and university campus settings. From the
acquired video, we extracted frames every 2-3 seconds to
give a dataset of 2347 unique frames, spread over 64 dif-
ferent indoor environments. The dataset is summarized in
Table 1. These frames were then uploaded to Amazon Me-
chanical Turk and manually annotated using the LabelMe
interface [17]. The annotators were instructed to provide
dense labels that covered every pixel in the image (see
Fig. 1(c)). Further details of the resulting label set are given
in Section 4.2.

2.3. Pre-processing

Following alignment with the RGB webcam images, the
depth maps still contain numerous artifacts. Most notable of
these is a depth “shadow” on the left edges of objects. These
regions are visible from the depth camera, but not reached
by the infra-red laser projector pattern. Consequently their
depth cannot be estimated, leaving a hole in the depth map.
A similar issue arises with specular and low albedo surfaces.
The internal depth estimation algorithm also produces nu-
merous fleeting noise artifacts, particularly near edges.

Before extracting features for recognition, these artifacts
must be removed. To do this, we filtered each image using

| Scene class “ Scenes [ Frames [ Labeled Frames ‘

Bathroom 6 5588 76
Bedroom 17 22764 480
Bookstore 3 27173 784

Cafe 1 1933 48
Kitchen 10 12643 285
Living Room 13 19262 355
Office 14 19254 319

Total [ 64 [ 108617 | 2347 |

Table 1. Statistics of captured sequences.



the cross-bilateral filter of Paris [15]. Using the RGB image
intensities, it guides the diffusion of the observed depth val-
ues into the missing shadow regions, respecting the edges
in intensity. An example result is shown in Fig. 1(d).

The Kinect contains a 3-axis accelerometer that allows
us to directly measure the gravity vector' and hence esti-
mate the pitch and roll for each frame. Fig. 3 shows the es-
timate of the horizon for two examples. We rotate the RGB
image, depth map and labels to eliminate any pitch and roll,
leaving the horizon horizontal and centered in the image.
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Figure 3. Examples of images with significant pitch and roll
overlaid with horizon estimates, computed from the Kinect’s ac-
celerometer.

3. Model

We now describe the model used to measure baseline
performance for the dataset. In common with several other
multi-class segmentation approaches [7, 18], we use a con-
ditional random field (CRF) model as its flexibility makes
it easy to explore a variety of different potential functions.
A further benefit is that inference can be performed effi-
ciently with the graph-cuts optimization scheme of Boykov
et al. [2]>.

The CRF energy function E(y) measures the cost of a
latent label y; over each pixel ¢ in the image N. y; can take
on a discrete set of values {1,...,C}, C being the number
of classes. The energy is composed of three potential terms:
(1) a unary cost function ¢, which depends on the pixel lo-
cation 14, local descriptor x; and learned parameters 6; (2)
a class transition cost (y;, ;) between pairs of adjacent
pixels 7 and j and (3) a spatial smoothness term 7(%, j), also
between adjacent pixels, that varies across the image.

E(y) =Y é(zi,i:0) + Y ¥y, y;)n(i,5) (1)

iEN i,jEN
Before applying the CRF, we generate super-pixels
{s1,..., sk} using the low-level segmentation approach of

Felzenszwalb and Huttenlocher [5]. We compute two dif-
ferent sets of super-pixels: Srgp using the RGB image and
SrceDp, Which is computed using both RGB and depth im-
ages®. We make use of super-pixels when aggregating the

'During capture the device was moved slowly to minimize direct ac-
celerations.

2In practice we use Bagon’s Matlab wrapper [1].

3Here, the input to [5] is the RGB image, with the blue channel replaced
by an appropriately scaled depth map.

predictions from the unary potentials ¢, as explained in Sec-
tion 3.1.1. We also have the option of using them in the
spatial smoothness potential  (Section 3.3).

3.1. Unary Potentials

The unary potential function ¢ is the product of two com-
ponents, a local appearance model and a location prior.

¢(z:,i]0) = —log(P(yilzi,0) P(yi,i)) 2)
———— ——~

Appearance Location

3.1.1 Appearance Model

Our appearance model P(y;|x;,0) is discriminatively
trained using a range of different local descriptors z; of di-
mension D, as detailed below. For each descriptor type, we
use the same training framework, which we now describe:

Descriptors are first extracted over the same dense grid*
at S scales’. If z\*) is the descriptor extracted at grid point
i and scale s, then x; = concat(a:l(.l), 3352), ...x§S>)

Given the set of descriptors X = {z; : i = 1..N}
extracted from training images, we train a neural network
with a single hidden layer of size H(= 1000) and a soft-
max output layer of dimension C, which is interpreted as
P(y;|x;,0). It has parameters 6 (two weight matricies of
sizes (D + 1) x H and (H + 1) x C) which are learned
using back-propagation and a cross-entropy loss function.

The ground truth labels y; for each descriptor z; are
taken from the dense image labels obtained from Amazon
Mechanical Turk. The value of y; is set to the label pro-
vided at grid location .

Following training, the neural network model maps a lo-
cal descriptor x; directly to P(y;|x;,0). Then, for each
super-pixel s, within an image, we average the probabilities
P(y;i|z;,0) from each descriptor that falls into it and assign
every pixel within sj, the resulting mean class probabilities.

We use a range of descriptor types as input x; to the
scheme above.

e RGB-SIFT: SIFT descriptors are extracted from the
RGB image. This is our baseline approach.

e Depth-SIFT: SIFT descriptors are extracted from the
depth image. These capture both large magnitude gra-
dients caused by depth discontinuities, as well as small
gradients that reveal surface orientation.

e Depth-SPIN: Spin image descriptors [9] are extracted
from the depth map. To review, this is a descriptor
designed for matching 3D point clouds and surfaces.
Around each point in the depth image, a 2D histogram
is built that counts nearby points as a function of ra-
dius and depth. The histogram is vectorized to form a
descriptor.

“Stride: 10 pixels; Patch size: 40 x 40 pixels.
SScales: 1,.707, 0.5



We also propose several approach that combine informa-
tion from the RGB and depth images:

e RGBD-SIFT: SIFT descriptors are extracted from
both depth and RGB images. At each location, the
128D descriptors both images are concatenated to

form a single 256D descriptor xl(-s) at each scale s.

o RGB-SIFT/D-SPIN: Spin image descriptors are ex-
tracted from the depth map, while SIFT is extracted
from the RGB image.

3.1.2 Location Prior

Our location prior P(y;,%) can take on two different forms.
The first captures the 2D location of objects, similar to other
context and segmentation approaches (e.g [18]). The sec-
ond is a novel 3D location prior that leverages the depth
information.

2D location priors: The 2D priors for each class are
built by averaging over every training image’s ground truth
label map y*. To provide a degree of 2D spatial invariance,
we then smooth the averaged map with an 11 x 11 Gaussian
filter. To compute the actual prior distribution P(y;,1), we
normalize each map so it sums to 1/C, i.e. Y . P(y;, 1) =
1/C. Note that this assumes the prior class distribution to
be uniform®. Figure Fig. 4 shows the resulting distributions
for 4 classes.
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Figure 4. 2D location priors for select object classes.

3D location priors: The depth information provided by
the Kinect allows us to estimate the 3D position of each
object in the scene. However, the problem when building
a 3D prior is how to combine this information from scenes
of differing size and shape. The design of our 3D prior is
motivated by three empirical constraints (C1-C3):

C1: While the absolute depth of an individual object in a
scene is arbitrary with respect to the location of the viewer,
objects of different classes exhibit a high degree of regular-
ity with respect to their relative depths in a room. Fig. 6
highlights several examples. Walls are obviously at the far-
thest depths of rooms, televisions tend to placed just in front
of them, and tables and beds are much more likely to occupy
regions near the center of a scene.

C2: Many objects tend to be clustered near the edges of a
room, such as walls, blinds, curtains, windows and pictures.
Consequently, we want a non-linear scaling function that

®In practice, if the true class frequencies are used, common classes
would be overly dominant in the CRF output.

places increased emphasis on depths near the boundaries of
a room.

C3: While objects show regularity in relative depth, any
representation of an objects prior location must be some-
what invariant to the viewer moving around the room.

Our solution, therefore, is to normalize the depth of an
object, using the depth of the room itself. We assume that
in any given column’ of the depth map, the point furthest
from the camera is on the bounding hull of the room. Fig. 5
demonstrates the reliability of the procedure in separating
the boundaries of the room from objects of similar depth.
We scale the depths of all points in a given column so that
the furthest point has relative depth z = 1. This effectively
maps each room to a lie within a cylinder of radius 1. This
allows us to build the highly regular depth profiles for each
class.

Figure 5. A demonstration of our scheme for finding the bound-
aries of the room. In this scene, the blue channel has been re-
placed by a binary mask, set to 1 if the depth of point is within 4%
of the maximum depth within each column (and O otherwise). The
walls of the room are cleanly identified, while segmenting objects
of similar depth such as the fire extinguisher and towel dispenser.
On the right, the cabinets and sink are correctly resolved as being
in the room interior, rather on the boundary.

Within this normalized reference frame, we then build
histograms from the 3D positions of objects in the training
set. These 3D histograms are over (h,w, Z) where h is the
absolute scene height relative to the horizon (in meters); w
is angle about the vertical axis and Z is relative depth.

In addition, we use a non-linear binning for z. This pro-
duces very fine bins near the boundaries of the room, al-
lowing us to discriminate between the many objects at the
extremal edges of the room (satisfying C2), and coarse bins
at the center of the room, giving us a degree of invariance
to the camera’s position (satisfying C3).

7This is assisted by the pitch and roll correction made in pre-processing.
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Figure 6. Relative depth histograms for table, television, bed and
wall. As walls usually are on the boundary, they cluster near z =
1. Televisions lie just inside the room boundary, while tables and
beds are found in the room interior.

Similar to the 2D versions, the 3D histograms are nor-
malized so that they sum to 1/C for each class (see Fig. 7
for examples). During testing, the extremal depth for each
column in the depth map is found and the relative 3D co-
ordinate of each point can be computed. Looking up these
coordinates in the 3D histograms gives the value of P(y;, ).
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Figure 7. 3D location priors for wall, television and table. Each
column shows a different relative depth Z. For each subplot, the
z-axis is orientation w about the vertical and the y-axis is height
h (relative to the horizon). The non-linear bin spacing in Z gives a
more balanced distribution than linear spacing used in Fig. 6.

3.2. Class Transition Potentials

For this term we chose a simple Potts model [3]:

V(i ys) = { d otherwise )
The deliberate use of a simple class transition model allows
us to clearly see the benefits of the depth on the other two
potentials in the CRF. In our experiments we use d = 3.

3.3. Spatial Transition Potentials

The spatial transition cost 7)(, j) provides a mechanism
for inhibiting or encouraging a label transition at each loca-
tion (independently of the proposed label class). We explore
several options using a potential of the form:

77(%]) = e« max(|I(i)—I(j)|—t,0) (4)

where | (i) — I(j)] is gradient between adjacent pixels 7, j
in image I, t is a threshold and « and 7 are scaling factors.
We use 179 = 100 for all the following methods:

e None: The baseline method is to keep 7(7, j) = 1 for
all ¢, 7 in the CRF. The smoothness of the labels y is
then solely induced by the class transition potential .

o RGB Edges: We use Irgp in Eqn. 4, thus encouraging
transitions at intensity edges in the RGB image. o =
40 and t = 0.04.

e Depth Edges: We use Ipepn in Eqn. 4, with o = 30
and ¢ = 0.1. This encourages transitions at depth dis-
continuities.

e RGB + Depth Edges: We combine edges from both
RGB and depth images, with 1(4,j) = Bnres(i,7) +
(1 — ﬁ)nDepth(iaj) and ﬁ =0.8.

e Super-Pixel Edges: We only allow transitions on the
boundaries defined by the super-pixels, so set n(i, j) =
1 on super-pixel boundaries and 79 elsewhere.

e Super-Pixel + RGB Edges: As for RGB-Edges
above, but now we multiply |I(¢) — I(j)| in Eqn. 4
by the binary super-pixel boundary mask.

e Super-Pixel + Depth Edges: As for Depth-Edges
above, but now we apply the binary super-pixel bound-
ary mask to |I(z) — I(j)|

4. Experiments

Before performing multi-class segmentation using our
CRF-based model, we first try the simpler task of scene
recognition to gauge the difficulty of our dataset.

4.1. Scene Classification

Table 1 shows the 7 scene-level classes in our dataset.
After removing the *Cafe’ scene images (since using a sin-
gle scene of this class would not make sense for scene clas-
sification) we split each of these into disjoint sets of equal
size, careful to ensure frames from the same scene are not
in both train and test sets. We apply the spatial pyramid
matching scheme of Lazebnik ef al. [11], using SIFT ex-
tracted from the RGB image (standard features), as well as
SIFT on the depth image and both images (using the com-
bination methods explained in Section 3.1.1). The mean
confusion matrix diagonal is plotted in Fig. 8 as a function
of k-means dictionary size for the different methods. Note
that when using the RGB images, the accuracy is only 55%,



far less than the 81% achieved by the same method on the
15-class scene dataset used in [11]. This demonstrates the
challenging nature of our data.
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Figure 8. Scene classification performance for our dataset, using
the approach of [11]. A significant performance gain is observed
when depth and RGB information are combined with a large dic-
tionary.

4.2. Multi-class Segmentation

We now evaluate our CRF-based model using the fully
labeled set of 2347 frames. The annotations cover over
1000 classes, which we reduce using a Wordnet syn-
onym/homonym structure to 12 common categories plus a
generic background class (containing rare objects). We gen-
erated 10 different train/test splits, each of which divides
the data into roughly 60% train and 40% test (see Table 2
for object counts). The error metric used throughout is the
mean diagonal of the confusion matrix, computed for per-
pixel classification over the 13 classes on the test set.

4.2.1 Unary Appearance

We first use our dataset to compare the local appearance
models listed in Section 3.1.1, with the results shown in
Table 3. We show the performance of the unary potential
(with no location prior) in isolation, as well as the full CRF

[ Objectclass [ Train | Test | Overall [ % Pixels |
Bed 164.5 104.5 269 1.1
Blind 88.3 67.7 156 0.6

Bookshelf 685.5 283.5 969 6.4
Cabinet 520.0 311.0 831 3.1
Ceiling 947.0 525.0 1472 3.1
Floor 1213.8 578.2 1792 33
Picture 976.2 540.8 1517 1.4
Sofa 195.8 142.2 338 1.1
Table 1162.7 527.3 1690 3.1
Television 98.2 67.8 166 0.6
Wall 2564.1 1484.9 4049 22.4
Window 235.5 157.5 393 1.0
Background - - - 34.1
[ Unlabeled T - [ - [ - [ 184 ]

[ Object Total [[ 8851.6 | 47904 [ 13642 | 472 |

Table 2. Statistics of objects present in our 2347 frame dataset.
Train and test counts are averaged over the 10 folds.

(sans spatial transition potential). The first row in the table,
which makes no use of depth information achieves 43.4%
accuracy. We note that: (i) combining RGB and depth in-
formation gives a significant performance gain of ~5%; (ii)
the CRF model gives a gain of ~2.5% and (iii) the SIFT-
based descriptors outperform the SPIN-based ones.

l Descriptor [ Unary Only [ CRF ‘
| RGB-SIFT (Skes) | 40.9+3.0 [ 43.4£33 |
RGB-SIFT (Srcep) | 404 £28 | 433 +3.1
Depth-SIFT 393£22 | 41.1 £25
Depth-SPIN 340+28 | 35.8+3.1
RGBD-SIFT 458 +2.6 | 48.1+29
RGB-SIFT/D-SPIN | 425+ 15 | 450£1.6

Table 3. A comparison of unary appearance terms. Mean per-
pixel classification accuracy (in %) using the test set of Table 2.
All methods in this table compute appearance using Srgep super-
pixels apart from the 1st row.

4.2.2 Unary Location

We now investigate the effect of location priors in our
model. Table 4 compares the effect of the 2D and 3D lo-
cation priors detailed in Section 3.1.2. All methods used
Srgep super-pixels and no spatial transition potentials in
the CRF. The 2D priors give a modest boost of 2.8% when
used in the CRF model. However, by contrast, our novel
3D priors give a gain of 10.3%. We also tried bulding a
prior using absolute 3D locations (3D priors (abs) in Ta-
ble 4), which did not use our depth normalization scheme.
This performed very poorly, demonstrating the value of our
novel prior using relative depth. The overall performance
gains for each of the 13 classes, relative to the RGB-SIFT
(Srag) model (1st row of Table 3, which makes no use of
depth information), is shown in Fig. 9. Using RGBD-SIFT
and 3D priors, gains of over to 29% are achieved for some
classes.

l Descriptor [ Unary Only [ CRF ‘
RGB-SIFT 409+30 | 434+33
RGB-SIFT+2D Priors 4577+28 | 46.2+£28
RGBD-SIFT 458+26 | 48.1+£29
RGBD-SIFT+2D Priors 4924+22 | 499+£23
RGBD-SIFT+3D Priors 53.0+£22 | 53.7+23
RGBD-SIFT+3D Priors (abs) | 38.7+3.2 | 399+3.5

Table 4. A comparison of unary location priors.

In Fig. 10 we show six example images, each with la-
bel maps output by the RGB-SIFT+2D Priors and RGBD-
SIFT+3D Priors models. The RGB model (2nd column)
makes mistakes which are implausible based on the object’s
3D location. The RGBD and 3D prior model gives a more
powerful spatial context, with its label map (3rd column)
being close to that of ground truth (4th column).



I RGB-SIFT + 2D prior + CRF (Mean = 46.2%)
[EEIRGBD-SIFT + CRF (Mean = 48.1%)
[ RGB-SIFT + 3D prior + CRF (Mean = 53.7%)

mean diagonal gain
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Figure 9. The per-class improvement over RGB-SIFT (Sggs) +
CRF (which uses no depth information), for models that add depth
and 3D location priors. The large gains show benefits of adding
depth information to both the appearance and location potentials.

4.2.3 Spatial Transition Potentials

Table 5 explores different forms for the spatial transition
potential. All methods use unary potentials based on Srgep
super-pixels and RGBD-SIFT + 3D prior. The results show
that using an RGB-based spatial transition gives a perfor-
mance gain of 2.8%. Using the depth or super-pixel con-
straints does not give a significant gain however.

[ Type | CRF |
None 53.7£23
RGB Edges 56.6 2.9
Depth Edges 539 +3.1
RGB + Depth Edges 56.5+£29
Super-Pixel Edges 547 +24
Super-Pixel + RGB Edges 56.4 £3.0
Super-Pixel + Depth Edges | 53.0 &+ 3.0

Table 5. A comparison of spatial transition potentials. Mean per-
pixel classification accuracy (in %).

5. Discussion

We have introduced a new indoor scene dataset that com-
bines intensities, depth maps and dense labels. Using this
data, our experiments clearly show that the depth informa-
tion provided by the Kinect gives a significant performance
gain over methods limited to intensity information. These
gains have been achieved using a range of simple tech-
niques, including novel 3D location priors. The magnitude
of the gains achieved makes a compelling case for the use of
devices such as the Kinect for indoor scene understanding.
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Figure 10. Six example scenes, along with outputs from 2 different models. See text for details. This figure is best viewed in color.



