Lecture 7 and 1 Transcendental Computation

Chee Yap Courant Institute of Mathematical Sciences New York University

Overview 2

We give a brief introduction to transcendental number theory, and issues of transcendental computation. Then we describe a recent result showing a first non-trivial transcendental geometric computation that is computable in the EGC sense. \bullet 0. Review

• I. Intro to Transcendental Number Theory

• II. A Solved Problem that Isn't: Shortest Path amidst Discs

0. REVIEW

ANSWERS and DISCUSSIONS 4

- REMEMBER: the prize for best exercises
- SHOW: If a reduced rational p/q is the zero of an integer polynomial $A(X) = \sum_{i=0}^{m} a_i X^i$ then $q|a_m$ and $p|a_0$
	- $\overline{\ast}$ Corollary: if p/q is algebraic integer, then $q=1$
	- \ast Corollary: $\sqrt{2}$ is irrational

ANSWERS and DISCUSSIONS 4

- REMEMBER: the prize for best exercises
- SHOW: If a reduced rational p/q is the zero of an integer polynomial $A(X) = \sum_{i=0}^{m} a_i X^i$ then $q|a_m$ and $p|a_0$
	- ∗ Corollary: if p/q is algebraic integer, then $q = 1$
	- \ast Corollary: $\sqrt{2}$ is irrational

⁴ ANSWERS and DISCUSSIONS

- REMEMBER: the prize for best exercises
- SHOW: If a reduced rational p/q is the zero of an integer polynomial $A(X) = \sum_{i=0}^{m} a_i X^i$ then $q|a_m$ and $p|a_0$
	- ∗ Corollary: if p/q is algebraic integer, then $q = 1$
	- \ast Corollary: $\sqrt{2}$ is irrational

What have we learned so far? The Superior State

- EGC is an effective method to achieve robust numerical algorithms
- The central problem of EGC are the ZERO PROBLEMS
- EGC can be achieved for all algebraic problems
- This lecture: Which non-algebraic problems can we solve?

- EGC is an effective method to achieve robust
- The central problem of EGC are the ZERO PROBLEMS
- EGC can be achieved for all algebraic problems
- This lecture: Which non-algebraic problems can we solve?

- EGC is an effective method to achieve robust
- The central problem of EGC are the ZERO PROBLEMS
- EGC can be achieved for all algebraic problems
- This lecture: Which non-algebraic problems can we solve?

- EGC is an effective method to achieve robust
- The central problem of EGC are the ZERO PROBLEMS
- EGC can be achieved for all algebraic problems
- This lecture: Which non-algebraic problems can we solve?

- EGC is an effective method to achieve robust
- The central problem of EGC are the ZERO PROBLEMS
- EGC can be achieved for all algebraic problems
- This lecture: Which non-algebraic problems can we solve?

I. Transcendental Numbers

Introduction

• What is between A and R ?

∗ DEFINE: A transcendental number is a non-algebraic number.

- $*$ Is e and π algebraic?
- ∗ This is the topic of transcendental number theory

• Easier questions

- ∗ Are there any transcendental numbers? Yes (Cantor)
- ∗ Is e rational?
- $*$ Whiteboard Aside: Proof that e is irrational
- $*$ Whiteboard Aside: Proof that e is not quadratic irrational

 \bullet What is between $\mathbb A$ and $\mathbb R$?

∗ DEFINE: A transcendental number is a non-algebraic number.

- $*$ Is e and π algebraic?
- ∗ This is the topic of transcendental number theory

• Easier questions

- ∗ Are there any transcendental numbers? Yes (Cantor)
- ∗ Is e rational?
- ∗ Whiteboard Aside: Proof that e is irrational
- ∗ Whiteboard Aside: Proof that e is not quadratic irrational

• What is between A and \mathbb{R} ?

∗ DEFINE: A transcendental number is a non-algebraic number.

- $*$ Is e and π algebraic?
- ∗ This is the topic of transcendental number theory

• Easier questions

- ∗ Are there any transcendental numbers? Yes (Cantor)
- ∗ Is e rational?
- $*$ Whiteboard Aside: Proof that e is irrational
- ∗ Whiteboard Aside: Proof that e is not quadratic irrational

• Louisville's Theorem (1844)

 $∗$ If α is algebraic of degree $m > 1$ then for all $p/q ∈ Q$, $|\alpha - (p/q)| > Cq^{-2}$

 $∗$ Proof: let $A(X)$ be minimal polynomial of $α$

* Then $q^{-m} \le |A(p/q)| = |A(p/q) - A(\alpha)| = |(p/q) \alpha$ | \cdot | $A'(\beta)$ |

 $*$ But $|A'(\beta)| \leq C$ for some constant depending on α

• Corollary: $\sum_{n=1}^{\infty} 2^{-n!}$ is transcendental \ast Proof: take $q=2^{n!}$ for sufficiently large n

• Progress is slow: $*$ Hermite 1873, e is transcendental $*$ Lindemann 1882, π is transcendental

• Louisville's Theorem (1844)

 $∗$ If α is algebraic of degree $m > 1$ then for all $p/q ∈ Q$, $|\alpha - (p/q)| > Cq^{-2}$

 $∗$ Proof: let $A(X)$ be minimal polynomial of $α$

* Then $q^{-m} \le |A(p/q)| = |A(p/q) - A(\alpha)| = |(p/q) \alpha$ | \cdot | $A'(\beta)$ |

 $*$ But $|A'(\beta)| \leq C$ for some constant depending on α

• Corollary: $\sum_{n=1}^{\infty} 2^{-n!}$ is transcendental \ast Proof: take $q=2^{n!}$ for sufficiently large n

• Progress is slow: $*$ Hermite 1873, e is transcendental $*$ Lindemann 1882, π is transcendental

• Louisville's Theorem (1844)

 $∗$ If α is algebraic of degree $m > 1$ then for all $p/q \in \mathbb{Q}$, $|\alpha - (p/q)| > Cq^{-2}$

 $∗$ Proof: let $A(X)$ be minimal polynomial of $α$

* Then $q^{-m} \le |A(p/q)| = |A(p/q) - A(\alpha)| = |(p/q) \alpha$ | \cdot | $A'(\beta)$ |

 $*$ But $|A'(\beta)| \leq C$ for some constant depending on α

• Corollary: $\sum_{n=1}^{\infty} 2^{-n!}$ is transcendental \ast Proof: take $q=2^{n!}$ for sufficiently large n

• Progress is slow: $*$ Hermite 1873, e is transcendental $*$ Lindemann 1882, π is transcendental

- * Roth 1955 (culmination of Thue, Siegel) 31 and 1955
- $*$ Gelfond Schneider: e^{π} is transcendental. But is π^{e} ?
- * Roth 1955 (culmination of Thue, Siegel) 3
- $*$ Gelfond Schneider: e^{π} is transcendental. But is π^{e} ?

PART II. A SOLVED-PROBLEM THAT ISN'T (Joint with E.Chien, S.Choi, D.Kwon, H.Park)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

10

Shortest Path Amidst Disc Obstacles 11

- \bullet Given: Points $p,q\in\mathbb{R}^2$ and a collection S of discs
- Find: shortest path from p to q which avoids the obstacles in S

- \bullet Given: Points $p,q\in\mathbb{R}^2$ and a collection S of discs
- \bullet Find: shortest path from p to q which avoids the obstacles in S

Shortest Path Amidst Disc Obstacles 11

- \bullet Given: Points $p,q\in\mathbb{R}^2$ and a collection S of discs
- Find: shortest path from p to q which avoids the obstacles in S

- \bullet Given: Points $p,q\in\mathbb{R}^2$ and a collection S of discs
- Find: shortest path from p to q which avoids the obstacles in S

- \bullet Given: Points $p,q\in\mathbb{R}^2$ and a collection S of discs
- Find: shortest path from p to q which avoids the obstacles in S

- \bullet Given: Points $p,q\in\mathbb{R}^2$ and a collection S of discs
- Find: shortest path from p to q which avoids the obstacles in S

- \bullet Given: Points $p,q\in\mathbb{R}^2$ and a collection S of discs
- Find: shortest path from p to q which avoids the obstacles in S

Shortest Path Amidst Disc Obstacles 11

- \bullet Given: Points $p,q\in\mathbb{R}^2$ and a collection S of discs
- Find: shortest path from p to q which avoids the obstacles in S

- \bullet Given: Points $p,q\in\mathbb{R}^2$ and a collection S of discs
- Find: shortest path from p to q which avoids the obstacles in S

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

12

- Feasible paths: $\mu = \mu_1; \mu_2; \cdots; \mu_k$
	- $*$ $\;\mu_i$ is a straightline segment iff μ_{i+1} is an arc
	- ∗ Straightline segments are common tangents to 2 discs
- Apply Dijkstra's shortest path algorithm to a combinatorial graph $G = (V, E)$

• Size of G is $O(n^2)$ and algorithm is $O(n^2 \log n)$.

- Feasible paths: $\mu = \mu_1; \mu_2; \cdots; \mu_k$
	- $*$ μ_i is a straightline segment iff μ_{i+1} is an arc
	- ∗ Straightline segments are common tangents to 2 discs
- Apply Dijkstra's shortest path algorithm to a combinatorial graph $G = (V, E)$

• Size of G is $O(n^2)$ and algorithm is $O(n^2 \log n)$.

- Feasible paths: $\mu = \mu_1; \mu_2; \cdots; \mu_k$
	- $*$ $\;\mu_i$ is a straightline segment iff μ_{i+1} is an arc
	- ∗ Straightline segments are common tangents to 2 discs
- Apply Dijkstra's shortest path algorithm to a combinatorial graph $G = (V, E)$

• Size of G is $O(n^2)$ and algorithm is $O(n^2 \log n)$.

- Feasible paths: $\mu = \mu_1; \mu_2; \cdots; \mu_k$
	- $*$ $\;\mu_i$ is a straightline segment iff μ_{i+1} is an arc
	- ∗ Straightline segments are common tangents to 2 discs
- Apply Dijkstra's shortest path algorithm to a combinatorial graph $G = (V, E)$

• Size of G is $O(n^2)$ and algorithm is $O(n^2 \log n)$.

What is Wrong? 14

• Real RAM model assumed!

• Length of a feasible path is

$$
d(\mu)=\sum_{i=1}^k d(\mu_i)=\alpha+\sum_{i=1}^m \theta_i r_i \qquad \quad \ \textbf{(1)}
$$

 $* \alpha \geq 0$ is algebraic

 $* 0 < r_1 < \cdots < r_m$ are distinct radii of discs

 $*$ θ_i is total angle (in radians) around discs of radii r_i
• Real RAM model assumed!

• Length of a feasible path is

$$
d(\mu)=\sum_{i=1}^k d(\mu_i)=\alpha+\sum_{i=1}^m \theta_i r_i \qquad \quad \ \textbf{(1)}
$$

 $* \alpha \geq 0$ is algebraic

 $* 0 < r_1 < \cdots < r_m$ are distinct radii of discs

 $*$ θ_i is total angle (in radians) around discs of radii r_i

• Real RAM model assumed!

• Length of a feasible path is

$$
d(\mu)=\sum_{i=1}^k d(\mu_i)=\alpha+\sum_{i=1}^m \theta_i r_i \qquad \qquad (1)
$$

 $* \alpha \geq 0$ is algebraic

 $* 0 < r_1 < \cdots < r_m$ are distinct radii of discs

 $*$ θ_i is total angle (in radians) around discs of radii r_i

• Real RAM model assumed!

• Length of a feasible path is

$$
d(\mu)=\sum_{i=1}^k d(\mu_i)=\alpha+\sum_{i=1}^m \theta_i r_i \qquad \quad \ \textbf{(1)}
$$

 $* \alpha \geq 0$ is algebraic

 $* 0 < r_1 < \cdots < r_m$ are distinct radii of discs

 $*$ θ_i is total angle (in radians) around discs of radii r_i

• Real RAM model assumed!

• Length of a feasible path is

$$
d(\mu)=\sum_{i=1}^k d(\mu_i)=\alpha+\sum_{i=1}^m \theta_i r_i \qquad \quad \ \textbf{(1)}
$$

 $* \alpha \geq 0$ is algebraic

 $* 0 < r_1 < \cdots < r_m$ are distinct radii of discs

 $*$ θ_i is total angle (in radians) around discs of radii r_i

• Real RAM model assumed!

• Length of a feasible path is

$$
d(\mu)=\sum_{i=1}^k d(\mu_i)=\alpha+\sum_{i=1}^m \theta_i r_i \qquad \quad \ \textbf{(1)}
$$

 $* \alpha \geq 0$ is algebraic

 $* 0 < r_1 < \cdots < r_m$ are distinct radii of discs

 $*$ θ_i is total angle (in radians) around discs of radii r_i

• Real RAM model assumed!

• Length of a feasible path is

$$
d(\mu)=\sum_{i=1}^k d(\mu_i)=\alpha+\sum_{i=1}^m \theta_i r_i \qquad \quad \ \textbf{(1)}
$$

 $* \alpha \geq 0$ is algebraic

 $* 0 < r_1 < \cdots < r_m$ are distinct radii of discs

 $*$ θ_i is total angle (in radians) around discs of radii r_i

- E.g., if $\theta = \pi$, then transcendental.
- LEMMA: $\cos\theta_i$ is algebraic
- COROLLARY (Lindemann): A non-zero θ_i is transcendental

- E.g., if $\theta = \pi$, then transcendental.
- LEMMA: $\cos\theta_i$ is algebraic
- COROLLARY (Lindemann): A non-zero θ_i is transcendental

- E.g., if $\theta = \pi$, then transcendental.
- LEMMA: $\cos\theta_i$ is algebraic
- COROLLARY (Lindemann): A non-zero θ_i is transcendental

- E.g., if $\theta = \pi$, then transcendental.
- LEMMA: $\cos\theta_i$ is algebraic
- COROLLARY (Lindemann): A non-zero θ_i is transcendental

- Let $d(\mu) = \alpha + \theta$, and $d(\mu') = \alpha' + \theta'$ ∗ E.g., all discs have unit radius
- LEMMA: $d(\mu) = d(\mu')$ iff $\alpha = \alpha'$ and $\theta = \theta'$
- Hence, we need to ability to add arc lengths

- Let $d(\mu) = \alpha + \theta$, and $d(\mu') = \alpha' + \theta'$
	- ∗ E.g., all discs have unit radius
- LEMMA: $d(\mu) = d(\mu')$ iff $\alpha = \alpha'$ and $\theta = \theta'$
- Hence, we need to ability to add arc lengths

• Let $d(\mu) = \alpha + \theta$, and $d(\mu') = \alpha' + \theta'$ ∗ E.g., all discs have unit radius

• LEMMA:
$$
d(\mu) = d(\mu')
$$
 iff $\alpha = \alpha'$ and $\theta = \theta'$

• Hence, we need to ability to add arc lengths

• Let $d(\mu) = \alpha + \theta$, and $d(\mu') = \alpha' + \theta'$

∗ E.g., all discs have unit radius

• LEMMA: $d(\mu) = d(\mu')$ iff $\alpha = \alpha'$ and $\theta = \theta'$

• Hence, we need to ability to add arc lengths

• Let $d(\mu) = \alpha + \theta$, and $d(\mu') = \alpha' + \theta'$

∗ E.g., all discs have unit radius

• LEMMA:
$$
d(\mu) = d(\mu')
$$
 iff $\alpha = \alpha'$ and $\theta = \theta'$

• Hence, we need to ability to add arc lengths

• Let A be a directed arc of a circle C ∗ Represent A by [C, p, q, n].

\bullet Let A be a directed arc of a circle C ∗ Represent A by [C, p, q, n].

• Let A be a directed arc of a circle C ∗ Represent A by [C, p, q, n].

• Let A be a directed arc of a circle C * Represent A by $[C, p, q, n]$.

Representation of arc length by $[C, p, q, n]$.

\bullet Let A be a directed arc of a circle C $*$ Represent A by $[C, p, q, n]$.

\bullet Let A be a directed arc of a circle C $*$ Represent A by $[C, p, q, n]$.

\bullet Let A be a directed arc of a circle C $*$ Represent A by $[C, p, q, n]$.

\bullet Let A be a directed arc of a circle C $*$ Represent A by $[C, p, q, n]$.

\bullet Let A be a directed arc of a circle C ∗ Represent A by [C, p, q, n].

\bullet Let A be a directed arc of a circle C $*$ Represent A by $[C, p, q, n]$.

Addition of Arc Lengths 18 • Let $A = [C, p, q, n]$ and $A' = [C', p', q', n']$ $*$ Say A and A' are compatible if $r(C) = r(C')$ and $q - o(C) = \pm (p' - o(C'))$

 \ast Special case: line qp' is common tangent

Addition of Arc Lengths 18 • Let $A = [C, p, q, n]$ and $A' = [C', p', q', n']$ $*$ Say A and A' are compatible if $r(C) = r(C')$ and $q - o(C) = \pm (p' - o(C'))$

 \ast Special case: line qp' is common tangent

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

19

• THEOREM: Shortest Path for unit disc obstacles is computable.

• Extensions:

- ∗ When Radii of discs are "commensurable"
- ∗ Complexity Bound?
- ∗ Baker's Linear Form in Logarithms:

$$
\left|\alpha_0 + \sum_{i=1}^n \alpha_i \log \beta_i \right| > B
$$

• THEOREM: Shortest Paths for algebraic discs is computable.

• THEOREM: Shortest Path for unit disc obstacles

• Extensions:

- ∗ When Radii of discs are "commensurable"
- ∗ Complexity Bound?
- ∗ Baker's Linear Form in Logarithms:

$$
\left|\alpha_0 + \sum_{i=1}^n \alpha_i \log \beta_i \right| > B
$$

• THEOREM: Shortest Paths for algebraic discs is computable.

• THEOREM: Shortest Path for unit disc obstacles

• Extensions:

- ∗ When Radii of discs are "commensurable"
- ∗ Complexity Bound?
- ∗ Baker's Linear Form in Logarithms:

$$
\left|\alpha_0 + \sum_{i=1}^n \alpha_i \log \beta_i \right| > B
$$

• THEOREM: Shortest Paths for algebraic discs is computable.

• THEOREM: Shortest Path for unit disc obstacles

• Extensions:

- ∗ When Radii of discs are "commensurable"
- ∗ Complexity Bound?
- ∗ Baker's Linear Form in Logarithms:

$$
\left|\alpha_0 + \sum_{i=1}^n \alpha_i \log \beta_i \right| > B
$$

• THEOREM: Shortest Paths for algebraic discs is computable.

• THEOREM: Shortest Path for unit disc obstacles

• Extensions:

- ∗ When Radii of discs are "commensurable"
- ∗ Complexity Bound?
- ∗ Baker's Linear Form in Logarithms:

$$
\left|\alpha_0 + \sum_{i=1}^n \alpha_i \log \beta_i\right| > B
$$

• THEOREM: Shortest Paths for algebraic discs is computable.

• THEOREM: Shortest Path for unit disc obstacles

• Extensions:

- ∗ When Radii of discs are "commensurable"
- ∗ Complexity Bound?
- ∗ Baker's Linear Form in Logarithms:

$$
\left|\alpha_0 + \sum_{i=1}^n \alpha_i \log \beta_i \right| > B
$$

• THEOREM: Shortest Paths for algebraic discs is computable.

• THEOREM: Shortest Path for unit disc obstacles

• Extensions:

- ∗ When Radii of discs are "commensurable"
- ∗ Complexity Bound?
- ∗ Baker's Linear Form in Logarithms:

$$
\left|\alpha_0 + \sum_{i=1}^n \alpha_i \log \beta_i \right| > B
$$

• THEOREM: Shortest Paths for algebraic discs is computable.

• THEOREM: Shortest Paths for rational discs is in ²¹ single exponential time.

• THEOREM: Shortest Paths for rational discs is in ²¹

• First computability result for a (combinatorially non-trivial) transcendental computational problem

- Positive Result from Transcendental Number Theory! ∗ Also: Lyapunov (1955)
- Open Problems:
	- ∗ Extend to ellipse obstacles
	- ∗ Extend to sphere obstacles
- Other examples of transcendental problems ∗ Helical motion in robot motion planning

- First computability result for a (combinatorially non-trivial)
- Positive Result from Transcendental Number Theory! ∗ Also: Lyapunov (1955)
- Open Problems:
	- ∗ Extend to ellipse obstacles
	- ∗ Extend to sphere obstacles
- Other examples of transcendental problems ∗ Helical motion in robot motion planning

- First computability result for a (combinatorially non-trivial)
- Positive Result from Transcendental Number Theory! ∗ Also: Lyapunov (1955)
- Open Problems:
	- ∗ Extend to ellipse obstacles
	- ∗ Extend to sphere obstacles
- Other examples of transcendental problems ∗ Helical motion in robot motion planning

- First computability result for a (combinatorially non-trivial)
- Positive Result from Transcendental Number Theory! ∗ Also: Lyapunov (1955)
- Open Problems:
	- ∗ Extend to ellipse obstacles
	- ∗ Extend to sphere obstacles
- Other examples of transcendental problems ∗ Helical motion in robot motion planning

- First computability result for a (combinatorially non-trivial)
- Positive Result from Transcendental Number Theory! ∗ Also: Lyapunov (1955)
- Open Problems:
	- ∗ Extend to ellipse obstacles
	- ∗ Extend to sphere obstacles
- Other examples of transcendental problems ∗ Helical motion in robot motion planning

²³ EXERCISES

• Assume n is not a square. Generalize the usual proof for Assume *n* is not a square. Generanze the u $*$ Try to extend to odd n

• Locate the zero problem for the following: $*$ There is a point p that is rotating with constant angular velocity about the origin O . $*$ A unit disc D is translating with known constant velocity. $*$ You want to decide whether p collides with D

²³ EXERCISES

• Assume n is not a square. Generalize the usual proof for $*$ Try to extend to odd n

• Locate the zero problem for the following: $*$ There is a point p that is rotating with constant angular velocity about the origin O. $*$ A unit disc D is translating with known constant velocity. $*$ You want to decide whether p collides with D

²³ EXERCISES

• Assume n is not a square. Generalize the usual proof for $*$ Try to extend to odd n

• Locate the zero problem for the following: $*$ There is a point p that is rotating with constant angular velocity about the origin O. $*$ A unit disc D is translating with known constant velocity. $*$ You want to decide whether p collides with D

REFERENCE 24

• "Shortest Paths for Disc Obstacles is Computable" ∗ E.Chang, S.Choi, D.Kwon, H.Park, C.Yap. 21st SoCG, 2005.

"A rapacious monster lurks within every computer, and it dines exclusively on accurate digits."

– B.D. McCullough (2000)

THE END