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2Overview

We give a brief introduction to transcendental number theory,

and issues of transcendental computation. Then we describe a

recent result showing a first non-trivial transcendental

geometric computation that is computable in the EGC sense.

• 0. Review

• I. Intro to Transcendental Number Theory

• II. A Solved Problem that Isn’t: Shortest Path

amidst Discs
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0. REVIEW
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4ANSWERS and DISCUSSIONS

• REMEMBER: the prize for best exercises

• SHOW: If a reduced rational p/q is the zero of an

integer polynomial A(X) =
∑m

i=0 aiX
i then q|am

and p|a0

∗ Corollary: if p/q is algebraic integer, then q = 1

∗ Corollary:
√

2 is irrational
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5What have we learned so far?

• EGC is an effective method to achieve robust

numerical algorithms

• The central problem of EGC are the ZERO

PROBLEMS

• EGC can be achieved for all algebraic problems

• This lecture: Which non-algebraic problems can we

solve?
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I. Transcendental Numbers
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7Introduction

• What is between A and R?

∗ DEFINE: A transcendental number is a non-algebraic

number.

∗ Is e and π algebraic?

∗ This is the topic of transcendental number theory

• Easier questions

∗ Are there any transcendental numbers? Yes (Cantor)

∗ Is e rational?

∗ Whiteboard Aside: Proof that e is irrational

∗ Whiteboard Aside: Proof that e is not quadratic

irrational
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8• Louisville’s Theorem (1844)

∗ If α is algebraic of degree m > 1 then for all p/q ∈ Q,

|α− (p/q)| > Cq−2

∗ Proof: let A(X) be minimal polynomial of α

∗ Then q−m ≤ |A(p/q)| = |A(p/q) − A(α)| = |(p/q) −
α| · |A′(β)|

∗ But |A′(β)| ≤ C for some constant depending on α

• Corollary:
∑∞

n=1 2−n! is transcendental

∗ Proof: take q = 2n! for sufficiently large n

• Progress is slow:

∗ Hermite 1873, e is transcendental

∗ Lindemann 1882, π is transcendental
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9∗ Roth 1955 (culmination of Thue, Siegel)

∗ Gelfond Schneider: eπ is transcendental. But is πe?
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PART II. A
SOLVED-PROBLEM THAT

ISN’T
(Joint with E.Chien, S.Choi, D.Kwon, H.Park)
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11Shortest Path Amidst Disc Obstacles

• Given: Points p, q ∈ R2 and a collection S of discs

• Find: shortest path from p to q which avoids the

obstacles in S

•
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11Shortest Path Amidst Disc Obstacles

• Given: Points p, q ∈ R2 and a collection S of discs

• Find: shortest path from p to q which avoids the

obstacles in S

•

−p
p

q
B

A

Two Discs
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13Standard Solution: Reduce to
Dijkstra’s Algorithm

• Feasible paths: µ = µ1;µ2; · · · ;µk

∗ µi is a straightline segment iff µi+1 is an arc

∗ Straightline segments are common tangents to 2 discs

• Apply Dijkstra’s shortest path algorithm to a

combinatorial graph G = (V,E)

• Size of G is O(n2) and algorithm is O(n2 log n).
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14What is Wrong?

• Real RAM model assumed!

• Length of a feasible path is

d(µ) =
k∑

i=1

d(µi) = α +
m∑

i=1

θiri (1)

∗ α ≥ 0 is algebraic

∗ 0 < r1 < · · · < rm are distinct radii of discs

∗ θi is total angle (in radians) around discs of radii ri
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15Is it really Transcendental?

• E.g., if θ = π, then transcendental.

• LEMMA: cos θi is algebraic

• COROLLARY (Lindemann): A non-zero θi is

transcendental
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16Approach for Comparing Lengths

• Let d(µ) = α + θ, and d(µ′) = α′ + θ′

∗ E.g., all discs have unit radius

• LEMMA: d(µ) = d(µ′) iff α = α′ and θ = θ′

• Hence, we need to ability to add arc lengths
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17Representation of Arc Lengths

• Let A be a directed arc of a circle C

∗ Represent A by [C, p, q, n].

•
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17Representation of Arc Lengths

• Let A be a directed arc of a circle C

∗ Represent A by [C, p, q, n].

•

Representation of arc length by [C, p, q, n].

C

p q

φ(p, q)

V al[C, p, q, r] = (φ(p, q) + nπ)r

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



18Addition of Arc Lengths

• Let A = [C, p, q, n] and A′ = [C ′, p′, q′, n′]
∗ Say A and A′ are compatible if r(C) = r(C ′) and

q − o(C) = ±(p′ − o(C ′))

∗ Special case: line qp′ is common tangent

•
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20Decidability
• THEOREM: Shortest Path for unit disc obstacles

is computable.

• Extensions:
∗ When Radii of discs are “commensurable”

∗ Complexity Bound?

∗ Baker’s Linear Form in Logarithms:∣∣∣∣∣α0 +
n∑

i=1

αi log βi

∣∣∣∣∣ > B

• THEOREM: Shortest Paths for algebraic discs is

computable.
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21• THEOREM: Shortest Paths for rational discs is in

single exponential time.
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22Conclusions

• First computability result for a (combinatorially non-trivial)

transcendental computational problem

• Positive Result from Transcendental Number Theory!

∗ Also: Lyapunov (1955)

• Open Problems:

∗ Extend to ellipse obstacles

∗ Extend to sphere obstacles

• Other examples of transcendental problems

∗ Helical motion in robot motion planning
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23EXERCISES

• Assume n is not a square. Generalize the usual proof for

n = 2 to show
√

n is irrational when n is even

∗ Try to extend to odd n

• Locate the zero problem for the following:

∗ There is a point p that is rotating with constant angular

velocity about the origin O.

∗ A unit disc D is translating with known constant velocity.

∗ You want to decide whether p collides with D
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THE END
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