Lecture 7 Transcendental Computation

Chee Yap Courant Institute of Mathematical Sciences New York University

KAIST/JAIST Summer School of Algorithms

Overview

We give a brief introduction to transcendental number theory, and issues of transcendental computation. Then we describe a recent result showing a first non-trivial transcendental geometric computation that is computable in the EGC sense. • 0. Review

• I. Intro to Transcendental Number Theory

 II. A Solved Problem that Isn't: Shortest Path amidst Discs

KAIST/JAIST Summer School of Algorithms

0. REVIEW

KAIST/JAIST Summer School of Algorithms

ANSWERS and **DISCUSSIONS**

- REMEMBER: the prize for best exercises
- SHOW: If a reduced rational p/q is the zero of an integer polynomial $A(X) = \sum_{i=0}^{m} a_i X^i$ then $q|a_m$ and $p|a_0$
 - * Corollary: if p/q is algebraic integer, then q = 1
 - * Corollary: $\sqrt{2}$ is irrational

What have we learned so far?

- EGC is an effective method to achieve robust numerical algorithms
- The central problem of EGC are the ZERO PROBLEMS
- EGC can be achieved for all algebraic problems
- This lecture: Which non-algebraic problems can we solve?

I. Transcendental Numbers

KAIST/JAIST Summer School of Algorithms

Introduction

• What is between $\mathbb A$ and $\mathbb R?$

* DEFINE: A transcendental number is a non-algebraic number.

- * Is e and π algebraic?
- * This is the topic of transcendental number theory

Easier questions

- * Are there any transcendental numbers? Yes (Cantor)
- * Is *e* rational?
- * Whiteboard Aside: Proof that e is irrational
- \ast Whiteboard Aside: Proof that e is not quadratic irrational

KAIST/JAIST Summer School of Algorithms

Louisville's Theorem (1844)

* If α is algebraic of degree m>1 then for all $p/q\in\mathbb{Q}$, $|\alpha-(p/q)|>Cq^{-2}$

* Proof: let A(X) be minimal polynomial of α

* Then $q^{-m} \leq |A(p/q)| = |A(p/q) - A(\alpha)| = |(p/q) - \alpha| \cdot |A'(\beta)|$

* But $|A'(\beta)| \leq C$ for some constant depending on α

• Corollary: $\sum_{n=1}^{\infty} 2^{-n!}$ is transcendental * Proof: take $q = 2^{n!}$ for sufficiently large n

Progress is slow:
 * Hermite 1873, e is transcendental
 * Lindemann 1882, π is transcendental

KAIST/JAIST Summer School of Algorithms

- * Roth 1955 (culmination of Thue, Siegel)
- * Gelfond Schneider: e^{π} is transcendental. But is π^{e} ?

PART II. A SOLVED-PROBLEM THAT ISN'T (Joint with E.Chien, S.Choi, D.Kwon, H.Park)

KAIST/JAIST Summer School of Algorithms

- Given: Points $p, q \in \mathbb{R}^2$ and a collection S of discs
- \bullet Find: shortest path from p to q which avoids the obstacles in S

Two Discs	

- Given: Points $p,q \in \mathbb{R}^2$ and a collection S of discs
- Find: shortest path from p to q which avoids the obstacles in ${\cal S}$

KAIST/JAIST Summer School of Algorithms

- Given: Points $p,q \in \mathbb{R}^2$ and a collection S of discs
- Find: shortest path from p to q which avoids the obstacles in ${\cal S}$

KAIST/JAIST Summer School of Algorithms

- Given: Points $p,q \in \mathbb{R}^2$ and a collection S of discs
- Find: shortest path from p to q which avoids the obstacles in ${\cal S}$

KAIST/JAIST Summer School of Algorithms

- Given: Points $p,q \in \mathbb{R}^2$ and a collection S of discs
- Find: shortest path from p to q which avoids the obstacles in ${\cal S}$

KAIST/JAIST Summer School of Algorithms

- Given: Points $p,q \in \mathbb{R}^2$ and a collection S of discs
- Find: shortest path from p to q which avoids the obstacles in ${\cal S}$

KAIST/JAIST Summer School of Algorithms

Standard Solution: Reduce to Dijkstra's Algorithm

• Feasible paths: $\mu = \mu_1; \mu_2; \cdots; \mu_k$

- st $\ \mu_i$ is a straightline segment iff μ_{i+1} is an arc
- * Straightline segments are common tangents to 2 discs
- Apply Dijkstra's shortest path algorithm to a combinatorial graph G = (V, E)

• Size of G is $O(n^2)$ and algorithm is $O(n^2 \log n)$.

KAIST/JAIST Summer School of Algorithms

What is Wrong?

- Real RAM model assumed!
- Length of a feasible path is

$$d(\mu) = \sum_{i=1}^{k} d(\mu_i) = \alpha + \sum_{i=1}^{m} \theta_i r_i$$
 (1)

- * $\alpha \geq 0$ is algebraic
- $* \ 0 < r_1 < \cdots < r_m$ are distinct radii of discs
- $* \theta_i$ is total angle (in radians) around discs of radii r_i

KAIST/JAIST Summer School of Algorithms

Is it really Transcendental?

- E.g., if $\theta = \pi$, then transcendental.
- LEMMA: $\cos \theta_i$ is algebraic
- COROLLARY (Lindemann): A non-zero θ_i is transcendental

Approach for Comparing Lengths

• Let
$$d(\mu) = \alpha + \theta$$
, and $d(\mu') = \alpha' + \theta'$
* E.g., all discs have unit radius

• LEMMA:
$$d(\mu) = d(\mu')$$
 iff $\alpha = \alpha'$ and $\theta = \theta'$

• Hence, we need to ability to add arc lengths

KAIST/JAIST Summer School of Algorithms

Let A be a directed arc of a circle C
* Represent A by [C, p, q, n].

 $Val[C, p, q, r] = (\phi(p, q) + n\pi)r$

KAIST/JAIST Summer School of Algorithms

Let A be a directed arc of a circle C * Represent A by [C, p, q, n].

KAIST/JAIST Summer School of Algorithms

• Let A be a directed arc of a circle C * Represent A by [C, p, q, n].

• Let A be a directed arc of a circle C * Represent A by [C, p, q, n].

Let A be a directed arc of a circle C * Represent A by [C, p, q, n].

KAIST/JAIST Summer School of Algorithms

Let A be a directed arc of a circle C * Represent A by [C, p, q, n].

KAIST/JAIST Summer School of Algorithms

• Let A be a directed arc of a circle C* Represent A by [C, p, q, n].

KAIST/JAIST Summer School of Algorithms

* Special case: line qp' is common tangent

17

KAIST/JAIST Summer School of Algorithms

* Special case: line qp' is common tangent

17

KAIST/JAIST Summer School of Algorithms

* Special case: line qp' is common tangent

17

KAIST/JAIST Summer School of Algorithms

* Special case: line qp' is common tangent

17

KAIST/JAIST Summer School of Algorithms

* Special case: line qp' is common tangent

KAIST/JAIST Summer School of Algorithms

Lectures on Exact Computation. Aug 8-12, 2005

* Special case: line qp' is common tangent

KAIST/JAIST Summer School of Algorithms

Lectures on Exact Computation. Aug 8-12, 2005

* Special case: line qp' is common tangent

KAIST/JAIST Summer School of Algorithms

Lectures on Exact Computation. Aug 8-12, 2005

* Special case: line qp' is common tangent

Lectures on Exact Computation. Aug 8-12, 2005

* Special case: line qp' is common tangent

KAIST/JAIST Summer School of Algorithms

Lectures on Exact Computation. Aug 8-12, 2005

Decidability

• THEOREM: Shortest Path for unit disc obstacles is computable.

• Extensions:

- * When Radii of discs are "commensurable"
- * Complexity Bound?
- * Baker's Linear Form in Logarithms:

$$\left|\alpha_0 + \sum_{i=1}^n \alpha_i \log \beta_i\right| > B$$

• THEOREM: Shortest Paths for algebraic discs is computable.

KAIST/JAIST Summer School of Algorithms

• THEOREM: Shortest Paths for rational discs is in ¹⁹ single exponential time.

KAIST/JAIST Summer School of Algorithms

Conclusions

 First computability result for a (combinatorially non-trivial) transcendental computational problem

Positive Result from Transcendental Number Theory!
 * Also: Lyapunov (1955)

• Open Problems:

- * Extend to ellipse obstacles
- * Extend to sphere obstacles

Other examples of transcendental problems
 * Helical motion in robot motion planning

KAIST/JAIST Summer School of Algorithms

EXERCISES

• Assume n is not a square. Generalize the usual proof for n = 2 to show \sqrt{n} is irrational when n is even * Try to extend to odd n

Locate the zero problem for the following:

 There is a point p that is rotating with constant angular velocity about the origin O.
 A unit disc D is translating with known constant velocity.
 You want to decide whether p collides with D

REFERENCE

"Shortest Paths for Disc Obstacles is Computable"
 * E.Chang, S.Choi, D.Kwon, H.Park, C.Yap. 21st SoCG, 2005.

"A rapacious monster lurks within every computer, and it dines exclusively on accurate digits."

– B.D. McCullough (2000)

THE END

KAIST/JAIST Summer School of Algorithms