Lecture 6 Theory of Real Approximation

Chee Yap Courant Institute of Mathematical Sciences New York University

KAIST/JAIST Summer School of Algorithms

Overview

What is the computational foundation of EGC? It is really a theory of real computation. We will introduce the basic elements of such a theory. We prove a transfer theorem that locates the central problem that must be solved in exact real computation.

- 0. Review
- I. Basics of Real Approximation
- II. Numerical Computational Model
- III. Transfer theorem

0. REVIEW

KAIST/JAIST Summer School of Algorithms

I. TOWARDS A THEORY OF REAL COMPUTATION

KAIST/JAIST Summer School of Algorithms

- Standard Complexity Theory
 - * Turing machines, countable domain
 - * Does not work for uncountable domain!
 - * Whiteboard Aside: Describe simple Turing machines
- Smale:

 * "There is not even a formal definition of algorithm in Numerical Analysis." [BCSS, p.23]

* "Towards resolving the problem [conflict between continuous and discrete] we are led to .. allow real numbers as inputs" [BCSS, p.23]

KAIST/JAIST Summer School of Algorithms

- Standard Complexity Theory
 - * Turing machines, countable domain
 - * Does not work for uncountable domain!
 - * Whiteboard Aside: Describe simple Turing machines
- Smale:

* "There is not even a formal definition of algorithm in Numerical Analysis." [BCSS, p.23]

* "Towards resolving the problem [conflict between continuous and discrete] we are led to .. allow real numbers as inputs" [BCSS, p.23]

KAIST/JAIST Summer School of Algorithms

- Standard Complexity Theory
 - * Turing machines, countable domain
 - * Does not work for uncountable domain!
 - * Whiteboard Aside: Describe simple Turing machines

• Smale:

* "There is not even a formal definition of algorithm in Numerical Analysis." [BCSS, p.23]

* "Towards resolving the problem [conflict between continuous and discrete] we are led to .. allow real numbers as inputs" [BCSS, p.23]

KAIST/JAIST Summer School of Algorithms

- Standard Complexity Theory
 - * Turing machines, countable domain
 - * Does not work for uncountable domain!
 - * Whiteboard Aside: Describe simple Turing machines

• Smale:

* "There is not even a formal definition of algorithm in Numerical Analysis." [BCSS, p.23]

* "Towards resolving the problem [conflict between continuous and discrete] we are led to .. allow real numbers as inputs" [BCSS, p.23]

• Algebraic Approach (Smale, et al)

 Real numbers are directly represented as atomic objects, and can be compared without error

* Algebraic operators can be carried out without error

* Whiteboard Aside: Straightline model augmented with loops and access to infinite array

Analytic Approach (Weihrauch, etc)

Real numbers are represented by Cauchy sequences
 Whiteboard Aside: Extend Turing machines to input and output infinite sequences

KAIST/JAIST Summer School of Algorithms

• Algebraic Approach (Smale, et al)

Real numbers are directly represented as atomic objects,
 and can be compared without error

* Algebraic operators can be carried out without error

* Whiteboard Aside: Straightline model augmented with loops and access to infinite array

- Analytic Approach (Weihrauch, etc)
 - Real numbers are represented by Cauchy sequences
 Whiteboard Aside: Extend Turing machines to input and output infinite sequences

KAIST/JAIST Summer School of Algorithms

• Algebraic Approach (Smale, et al)

Real numbers are directly represented as atomic objects,
 and can be compared without error

* Algebraic operators can be carried out without error

* Whiteboard Aside: Straightline model augmented with loops and access to infinite array

- Analytic Approach (Weihrauch, etc)
 - Real numbers are represented by Cauchy sequences
 Whiteboard Aside: Extend Turing machines to input and output infinite sequences

KAIST/JAIST Summer School of Algorithms

• Algebraic Approach (Smale, et al)

Real numbers are directly represented as atomic objects,
 and can be compared without error

* Algebraic operators can be carried out without error

* Whiteboard Aside: Straightline model augmented with loops and access to infinite array

- Analytic Approach (Weihrauch, etc)
 - * Real numbers are represented by Cauchy sequences

 Whiteboard Aside: Extend Turing machines to input and output infinite sequences

KAIST/JAIST Summer School of Algorithms

• Algebraic Approach (Smale, et al)

Real numbers are directly represented as atomic objects,
 and can be compared without error

* Algebraic operators can be carried out without error

* Whiteboard Aside: Straightline model augmented with loops and access to infinite array

- Analytic Approach (Weihrauch, etc)
 - Real numbers are represented by Cauchy sequences
 Whiteboard Aside: Extend Turing machines to input and output infinite sequences

KAIST/JAIST Summer School of Algorithms

• Criticisms (see [Weihrauch] or [Traub])

* Real numbers are arbitrarily complex What about the analytic approach?

• Problems from our viewpoint:

- * Zero Problem is trivial in Algebraic Approach
- * Zero Problem is undecidable in Analytic Approach

Criticisms (see [Weihrauch] or [Traub])

 Real numbers are arbitrarily complex
 What about the analytic approach?

• Problems from our viewpoint:

- * Zero Problem is trivial in Algebraic Approach
- * Zero Problem is undecidable in Analytic Approach

7

Criticisms (see [Weihrauch] or [Traub])

 Real numbers are arbitrarily complex
 What about the analytic approach?

- Problems from our viewpoint:
 - * Zero Problem is trivial in Algebraic Approach
 - * Zero Problem is undecidable in Analytic Approach

How We Solve Numerical Problems?? *

- E.g., Solving PDE model, Numerical Optimization Problem, etc
- STEP A:
 - * Design an ideal Algorithm A
 - * Assume certain operations such as $\pm, \times, \exp()$

• STEP B:

- * Implements Algorithm A as a Numerical Program B
- * Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms

- E.g., Solving PDE model, Numerical Optimization Problem, etc
- STEP A:
 - * Design an ideal Algorithm A
 - * Assume certain operations such as $\pm, \times, \exp()$

• STEP B:

- * Implements Algorithm A as a Numerical Program B
- * Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms

- E.g., Solving PDE model, Numerical Optimization Problem, etc
- STEP A:
 - * Design an ideal Algorithm A
 - * Assume certain operations such as $\pm, \times, \exp()$

• STEP B:

- * Implements Algorithm A as a Numerical Program B
- * Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms

- E.g., Solving PDE model, Numerical Optimization Problem, etc
- STEP A:
 - * Design an ideal Algorithm A
 - * Assume certain operations such as $\pm, \times, \exp()$
- STEP B:
 - * Implements Algorithm A as a Numerical Program B
 - * Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms

- E.g., Solving PDE model, Numerical Optimization Problem, etc
- STEP A:
 - * Design an ideal Algorithm A
 - * Assume certain operations such as $\pm, \times, \exp()$
- STEP B:
 - * Implements Algorithm A as a Numerical Program B
 - * Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms

- E.g., Solving PDE model, Numerical Optimization Problem, etc
- STEP A:
 - * Design an ideal Algorithm A
 - * Assume certain operations such as $\pm, \times, \exp()$
- STEP B:
 - * Implements Algorithm A as a Numerical Program B
 - * Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms

- E.g., Solving PDE model, Numerical Optimization Problem, etc
- STEP A:
 - * Design an ideal Algorithm A
 - * Assume certain operations such as $\pm, \times, \exp()$
- STEP B:
 - * Implements Algorithm A as a Numerical Program B
 - * Accounts for numerical representation, errors, etc

- E.g., Solving PDE model, Numerical Optimization Problem, etc
- STEP A:
 - * Design an ideal Algorithm A
 - * Assume certain operations such as $\pm, \times, \exp()$

• STEP B:

- * Implements Algorithm A as a Numerical Program B
- * Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms

• Step A:

- * Algorithm A belongs to an Algebraic Model (e.g., BSS)
- * Basis $\Omega = \{\pm, \times, \exp(), ...\}$
- Step B:
 - * Program B belongs to ...?
 - * See below numerical pointer machines
- Critical Questions:
 - * Can Algorithm A be implemented by some Program B?

* Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms

• Step A:

- * Algorithm A belongs to an Algebraic Model (e.g., BSS)
- * Basis $\Omega = \{\pm, \times, \exp(), ...\}$
- Step B:
 - * Program B belongs to ...?
 - * See below numerical pointer machines
- Critical Questions:
 - * Can Algorithm A be implemented by some Program B?

* Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms

• Step A:

- * Algorithm A belongs to an Algebraic Model (e.g., BSS)
- * Basis $\Omega = \{\pm, \times, \exp(), ...\}$
- Step B:
 - * Program B belongs to ...?
 - * See below numerical pointer machines
- Critical Questions:
 - * Can Algorithm A be implemented by some Program B?

* Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms

• Step A:

- * Algorithm A belongs to an Algebraic Model (e.g., BSS)
- * Basis $\Omega = \{\pm, \times, \exp(), ...\}$
- Step B:
 - * Program B belongs to ...?
 - * See below numerical pointer machines
- Critical Questions:
 - * Can Algorithm A be implemented by some Program B?

* Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms

• Step A:

- * Algorithm A belongs to an Algebraic Model (e.g., BSS)
- * Basis $\Omega = \{\pm, \times, \exp(), ...\}$
- Step B:
 - * Program B belongs to ...?
 - * See below numerical pointer machines
- Critical Questions:
 - * Can Algorithm A be implemented by some Program B?

* Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms

• Step A:

- * Algorithm A belongs to an Algebraic Model (e.g., BSS)
- * Basis $\Omega = \{\pm, \times, \exp(), ...\}$
- Step B:
 - * Program B belongs to ...?
 - * See below numerical pointer machines
- Critical Questions:
 - * Can Algorithm A be implemented by some Program B?

* Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms

• Step A:

- * Algorithm A belongs to an Algebraic Model (e.g., BSS)
- * Basis $\Omega = \{\pm, \times, \exp(), ...\}$
- Step B:
 - * Program B belongs to ...?
 - * See below numerical pointer machines
- Critical Questions:
 - * Can Algorithm A be implemented by some Program B?

* Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms

• Step A:

- * Algorithm A belongs to an Algebraic Model (e.g., BSS)
- * Basis $\Omega = \{\pm, \times, \exp(), ...\}$
- Step B:
 - * Program B belongs to ...?
 - * See below numerical pointer machines
- Critical Questions:
 - * Can Algorithm A be implemented by some Program B?

* Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms

• Step A:

- * Algorithm A belongs to an Algebraic Model (e.g., BSS)
- * Basis $\Omega = \{\pm, \times, \exp(), ...\}$
- Step B:
 - * Program B belongs to ...?
 - * See below numerical pointer machines
- Critical Questions:
 - * Can Algorithm A be implemented by some Program B?

* Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms

• Step A:

- * Algorithm A belongs to an Algebraic Model (e.g., BSS)
- * Basis $\Omega = \{\pm, \times, \exp(), ...\}$
- Step B:
 - * Program B belongs to ...?
 - * See below numerical pointer machines
- Critical Questions:
 - * Can Algorithm A be implemented by some Program B?

* Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms

KAIST/JAIST Summer School of Algorithms

Lectures on Exact Computation. Aug 8-12, 2005

10

Representable Reals

Representation of reals is critical starting point
 * cf. Analytic or Algebraic Approaches

• Axioms for the set $\mathbb F$ of representable reals

 $* \ \mathbb{F}$ is a countable set dense subset of \mathbb{R}

 $\ast~\mathbb{F}$ is a ring extension of \mathbb{Z}

 $* \mathbb{F}$ can be represented efficiently

* Comparisons and Ring operations are polynomial-time in this representation

• E.g., \mathbb{F} can be taken to be \mathbb{Q} or bigfloats

• PRINCIPLE: all output and input of our

KAIST/JAIST Summer School of Algorithms
Representation of reals is critical starting point
 * cf. Analytic or Algebraic Approaches

• Axioms for the set \mathbb{F} of representable reals

- $* \ \mathbb{F}$ is a countable set dense subset of \mathbb{R}
- $\ast~\mathbb{F}$ is a ring extension of \mathbb{Z}
- $* \mathbb{F}$ can be represented efficiently

* Comparisons and Ring operations are polynomial-time in this representation

• E.g., \mathbb{F} can be taken to be \mathbb{Q} or bigfloats

• PRINCIPLE: all output and input of our

KAIST/JAIST Summer School of Algorithms

Representation of reals is critical starting point
 * cf. Analytic or Algebraic Approaches

Axioms for the set F of representable reals
 * F is a countable set dense subset of R

* If is a countable set dense subset of

 $\ast~\mathbb{F}$ is a ring extension of \mathbb{Z}

 $* \mathbb{F}$ can be represented efficiently

* Comparisons and Ring operations are polynomial-time in this representation

• E.g., \mathbb{F} can be taken to be \mathbb{Q} or bigfloats

• PRINCIPLE: all output and input of our

KAIST/JAIST Summer School of Algorithms

Representation of reals is critical starting point
 * cf. Analytic or Algebraic Approaches

• Axioms for the set \mathbb{F} of representable reals

 $* \ \mathbb{F}$ is a countable set dense subset of \mathbb{R}

 $\ast~\mathbb{F}$ is a ring extension of \mathbb{Z}

 $* \mathbb{F}$ can be represented efficiently

* Comparisons and Ring operations are polynomial-time in this representation

• E.g., \mathbb{F} can be taken to be \mathbb{Q} or bigfloats

• PRINCIPLE: all output and input of our

KAIST/JAIST Summer School of Algorithms

Representation of reals is critical starting point
 * cf. Analytic or Algebraic Approaches

• Axioms for the set \mathbb{F} of representable reals

 $* \ \mathbb{F}$ is a countable set dense subset of \mathbb{R}

 $\ast~\mathbb{F}$ is a ring extension of \mathbb{Z}

 $* \mathbb{F}$ can be represented efficiently

* Comparisons and Ring operations are polynomial-time in this representation

• E.g., \mathbb{F} can be taken to be \mathbb{Q} or bigfloats

• PRINCIPLE: all output and input of our

KAIST/JAIST Summer School of Algorithms

Representation of reals is critical starting point
 * cf. Analytic or Algebraic Approaches

• Axioms for the set \mathbb{F} of representable reals

 $* \ \mathbb{F}$ is a countable set dense subset of \mathbb{R}

 $\ast~\mathbb{F}$ is a ring extension of \mathbb{Z}

 $* \mathbb{F}$ can be represented efficiently

* Comparisons and Ring operations are polynomial-time in this representation

• E.g., \mathbb{F} can be taken to be \mathbb{Q} or bigfloats

• PRINCIPLE: all output and input of our

KAIST/JAIST Summer School of Algorithms

Representation of reals is critical starting point
 * cf. Analytic or Algebraic Approaches

• Axioms for the set \mathbb{F} of representable reals

- $* \ \mathbb{F}$ is a countable set dense subset of \mathbb{R}
- $\ast~\mathbb{F}$ is a ring extension of \mathbb{Z}
- $* \ \mathbb{F}$ can be represented efficiently

* Comparisons and Ring operations are polynomial-time in this representation

E.g., F can be taken to be Q or bigfloats PRINCIPLE: all output and input of

KAIST/JAIST Summer School of Algorithms

Lectures on Exact Computation. Aug 8-12, 2005

our

Representation of reals is critical starting point
 * cf. Analytic or Algebraic Approaches

• Axioms for the set \mathbb{F} of representable reals

 $* \ \mathbb{F}$ is a countable set dense subset of \mathbb{R}

 $\ast~\mathbb{F}$ is a ring extension of \mathbb{Z}

 $* \mathbb{F}$ can be represented efficiently

* Comparisons and Ring operations are polynomial-time in this representation

• E.g., \mathbb{F} can be taken to be \mathbb{Q} or bigfloats

• PRINCIPLE: all output and input of our

KAIST/JAIST Summer School of Algorithms

computation must be representable numbers

* HENCE: We can use Turing machines for our real computations

* HENCE: We can only talk about approximating a real function f

* HENCE: we do not worry about behavior of f at non-representable inputs

* Unlike the analytic or algebraic approach, we deliberately avoid representing all real numbers!

computation must be representable numbers

* HENCE: We can use Turing machines for our real computations

* HENCE: We can only talk about approximating a real function f

* HENCE: we do not worry about behavior of f at non-representable inputs

* Unlike the analytic or algebraic approach, we deliberately avoid representing all real numbers!

• NOTATION: given $f : \mathbb{R} \to \mathbb{R}$ * let $\mathcal{A}f$ denote any function $\mathcal{A}f : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ such that $|\mathcal{A}f(x,p) - f(x)| \leq 2^{-p}$

* let $\mathcal{R}f$ denote any function $\mathcal{R}f : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ such that $|\mathcal{R}f(x,p) - f(x)| \leq 2^{-p}|f(x)|$

• DEFINE: a real function f is absolutely approximable if $\mathcal{A}f$ is computable by a Turing Machine

* Similarly, define relatively approximable if $\mathcal{R}f$ is computable by a Turing machine

• DEFINE: $Zero(f) = \{x \in \mathbb{F} : f(x) = 0\}$

KAIST/JAIST Summer School of Algorithms

• NOTATION: given $f: \mathbb{R} \to \mathbb{R}$ * let $\mathcal{A}f$ denote any function $\mathcal{A}f: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ such that $|\mathcal{A}f(x,p) - f(x)| \leq 2^{-p}$

* let $\mathcal{R}f$ denote any function $\mathcal{R}f:\mathbb{F}\times\mathbb{F}\to\mathbb{F}$ such that $|\mathcal{R}f(x,p)-f(x)|\leq 2^{-p}|f(x)|$

• DEFINE: a real function f is absolutely approximable if $\mathcal{A}f$ is computable by a Turing Machine

* Similarly, define relatively approximable if $\mathcal{R}f$ is computable by a Turing machine

• DEFINE: $Zero(f) = \{x \in \mathbb{F} : f(x) = 0\}$

KAIST/JAIST Summer School of Algorithms

• NOTATION: given $f: \mathbb{R} \to \mathbb{R}$ * let $\mathcal{A}f$ denote any function $\mathcal{A}f: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ such that $|\mathcal{A}f(x,p) - f(x)| \leq 2^{-p}$

* let $\mathcal{R}f$ denote any function $\mathcal{R}f:\mathbb{F}\times\mathbb{F}\to\mathbb{F}$ such that $|\mathcal{R}f(x,p)-f(x)|\leq 2^{-p}|f(x)|$

• DEFINE: a real function f is absolutely approximable if $\mathcal{A}f$ is computable by a Turing Machine

* Similarly, define relatively approximable if $\mathcal{R}f$ is computable by a Turing machine

• DEFINE: $Zero(f) = \{x \in \mathbb{F} : f(x) = 0\}$

KAIST/JAIST Summer School of Algorithms

• NOTATION: given $f: \mathbb{R} \to \mathbb{R}$ * let $\mathcal{A}f$ denote any function $\mathcal{A}f: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ such that $|\mathcal{A}f(x,p) - f(x)| \leq 2^{-p}$

* let $\mathcal{R}f$ denote any function $\mathcal{R}f:\mathbb{F}\times\mathbb{F}\to\mathbb{F}$ such that $|\mathcal{R}f(x,p)-f(x)|\leq 2^{-p}|f(x)|$

• DEFINE: a real function f is absolutely approximable if $\mathcal{A}f$ is computable by a Turing Machine

* Similarly, define relatively approximable if $\mathcal{R}f$ is computable by a Turing machine

• DEFINE: $Zero(f) = \{x \in \mathbb{F} : f(x) = 0\}$

KAIST/JAIST Summer School of Algorithms

• NOTATION: given $f: \mathbb{R} \to \mathbb{R}$ * let $\mathcal{A}f$ denote any function $\mathcal{A}f: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ such that $|\mathcal{A}f(x,p) - f(x)| \leq 2^{-p}$

* let $\mathcal{R}f$ denote any function $\mathcal{R}f:\mathbb{F}\times\mathbb{F}\to\mathbb{F}$ such that $|\mathcal{R}f(x,p)-f(x)|\leq 2^{-p}|f(x)|$

• DEFINE: a real function f is absolutely approximable if $\mathcal{A}f$ is computable by a Turing Machine

* Similarly, define relatively approximable if $\mathcal{R}f$ is computable by a Turing machine

• DEFINE: $Zero(f) = \{x \in \mathbb{F} : f(x) = 0\}$

KAIST/JAIST Summer School of Algorithms

* The Zero Problem for f is to decide the set Zero(f)

Computation of partial functions

 We assume that the Turing machine detect undefined
 inputs

KAIST/JAIST Summer School of Algorithms

Lectures on Exact Computation. Aug 8-12, 2005

14

* The Zero Problem for f is to decide the set Zero(f) ¹⁴

Computation of partial functions

 We assume that the Turing machine detect undefined
 inputs

* The Zero Problem for f is to decide the set Zero(f) ¹⁴

Computation of partial functions

 We assume that the Turing machine detect undefined
 inputs

KAIST/JAIST Summer School of Algorithms

• THEOREM A:

* f is relatively approximable iff f is absolutely approximable and Zero(f) is decidable.

• THEOREM B:

* There is a function f_0 that is absolutely approximable in polynomial time, but f_0 is not relatively approximable.

• THEOREM C [with C.O'Dunlaing]:

* There exist functions g_0, h_0 that are relatively approximable in polynomial time, but $g_0 \circ h_0$ is not absolutely approximable.

KAIST/JAIST Summer School of Algorithms

• THEOREM A:

* f is relatively approximable iff f is absolutely approximable and Zero(f) is decidable.

• THEOREM B:

* There is a function f_0 that is absolutely approximable in polynomial time, but f_0 is not relatively approximable.

• THEOREM C [with C.O'Dunlaing]:

* There exist functions g_0, h_0 that are relatively approximable in polynomial time, but $g_0 \circ h_0$ is not absolutely approximable.

KAIST/JAIST Summer School of Algorithms

• THEOREM A:

* f is relatively approximable iff f is absolutely approximable and Zero(f) is decidable.

• THEOREM B:

* There is a function f_0 that is absolutely approximable in polynomial time, but f_0 is not relatively approximable.

• THEOREM C [with C.O'Dunlaing]:

* There exist functions g_0, h_0 that are relatively approximable in polynomial time, but $g_0 \circ h_0$ is not absolutely approximable.

KAIST/JAIST Summer School of Algorithms

• THEOREM A:

* f is relatively approximable iff f is absolutely approximable and Zero(f) is decidable.

• THEOREM B:

* There is a function f_0 that is absolutely approximable in polynomial time, but f_0 is not relatively approximable.

• THEOREM C [with C.O'Dunlaing]:

* There exist functions g_0, h_0 that are relatively approximable in polynomial time, but $g_0 \circ h_0$ is not absolutely approximable.

KAIST/JAIST Summer School of Algorithms

• Whiteboard Aside: Do Proofs.

KAIST/JAIST Summer School of Algorithms

• Whiteboard Aside: Do Proofs.

KAIST/JAIST Summer School of Algorithms

Proofs

• THEOREM A:

* Let f be relatively approximable. Then $x \in Zero(f)$ iff $\mathcal{R}f(x,1) = 0$. Also, $\mathcal{A}f(x,p)$ can be computed by computing $y = \mathcal{R}f(x,1)$, $z = \lceil \lg y \rceil$ and finally set $\mathcal{A}f(x,p) \leftarrow \mathcal{R}f(x,z+p+1)$.

* Let $\mathcal{A}f$ be computable and Zero(f) decidable. To compute $\mathcal{R}f(x,p)$, we output 0 iff $x \in Zero(f)$. Otherwise we compute $\mathcal{A}f(x,i)$ in the *i*th step, stopping when $\mathcal{A}f(x,i) \geq 2^{-i+1}$. This implies $|f(x)| \geq 2^i$. We then set $\mathcal{R}f(x,p) \leftarrow \mathcal{A}f(x,i+p)$. The correctness follows from $|f(x)| \geq 2^{-i}$ and hence $|\mathcal{A}f(x,i+p) - f(x)| \leq 2^{-i-p} \leq$ $|f(x)|2^{-p}$.

• THEOREM B:

* Let t(n) be the number of steps that the *n*th Turing machine M_n takes, on input n. So $t(n) = \infty$ if when $M_n(n)$ does not halt * DEFINE $f_0(n) = 1/t(n)$ where $1/\infty = 0$. NOTE that $Zero(f_0)$ is the diagonal set in recursive function theory,

usually denoted K.

* CLAIM: f_0 is absolutely approximable

* Proof: on input n, p, check that $n \in \mathbb{N}$ and then simulate $M_n(n)$ for $\lceil p \rceil$ steps. If $M_n(n)$ halt in $k \leq \lceil p \rceil$ steps, we output 1/k (with absolute error at most 2^{-p}). Else we output 0.

* CLAIM: f_0 is not relatively approximable

* Proof: if it is, then $Zero(f_0) = K$ would be decidable. Contradiction

• LEMMA:

* If a function $f : \mathbb{R} \to \mathbb{R}$ is never 0, then then $\mathcal{A}f$ is computable iff $\mathcal{R}f$ is computable

* Proof: One direction is immediate from Theorem A. In the other direction, suppose $\mathcal{A}f$ is computable. Then we can compute $\mathcal{R}f(x,p)$ using $\mathcal{A}f$ as in theorem A, because we know $f(x) \neq 0$.

• THEOREM C:

* Define g_0 and h_0 via $g_0(x) = \operatorname{sign}(x-1)$ and $h_0(x) = 1 + f_0(x)$ where f_0 is from proof of Theorem A. * The function $g_0(x)$ is relatively approximable * The function h_0 is relatively approximable, by above

LEMMA

* But $g_0 \circ h_0(x) = \operatorname{sign}(f_0(x))$ is not absolutely approximable:

* If it were absolutely approximable by some function F, then we can decide K: if $x \in K$ iff $\mathcal{A}F(x,2) \leq 1/2$

THEOREM D: The following are equivalent:

 * (I) Val_Ω is relatively approximable over Ω
 * (II) For all problems F, if F is Ω-computable (ideal model!) then F is relative Ω-approximable (implementation model!).

Thus Val_Ω is "universal" (or "complete").
 * Our computational scientist ought to choose his set Ω carefully

THEOREM D: The following are equivalent:

 * (I) Val_Ω is relatively approximable over Ω
 * (II) For all problems F, if F is Ω-computable (ideal model!) then F is relative Ω-approximable (implementation model!).

Thus Val_Ω is "universal" (or "complete").
 * Our computational scientist ought to choose his set Ω carefully

THEOREM D: The following are equivalent:

 * (I) Val_Ω is relatively approximable over Ω
 * (II) For all problems F, if F is Ω-computable (ideal model!) then F is relative Ω-approximable (implementation model!).

Thus Val_Ω is "universal" (or "complete").
 * Our computational scientist ought to choose his set Ω carefully

THEOREM D: The following are equivalent:

 * (I) Val_Ω is relatively approximable over Ω
 * (II) For all problems F, if F is Ω-computable (ideal model!) then F is relative Ω-approximable (implementation model!).

Thus Val_Ω is "universal" (or "complete").
 * Our computational scientist ought to choose his set Ω carefully

THEOREM D: The following are equivalent:

 * (I) Val_Ω is relatively approximable over Ω
 * (II) For all problems F, if F is Ω-computable (ideal model!) then F is relative Ω-approximable (implementation model!).

Thus Val_Ω is "universal" (or "complete").
 * Our computational scientist ought to choose his set Ω carefully

THEOREM D: The following are equivalent:

 * (I) Val_Ω is relatively approximable over Ω
 * (II) For all problems F, if F is Ω-computable (ideal model!) then F is relative Ω-approximable (implementation model!).

Thus Val_Ω is "universal" (or "complete").
 * Our computational scientist ought to choose his set Ω carefully

THEOREM D: The following are equivalent:

 * (I) Val_Ω is relatively approximable over Ω
 * (II) For all problems F, if F is Ω-computable (ideal model!) then F is relative Ω-approximable (implementation model!).

Thus Val_Ω is "universal" (or "complete").
 * Our computational scientist ought to choose his set Ω carefully

Pointer Machine

• Schönhage's storage modification machine (1978)

• Fix a finite set Δ of "colors"

- A Δ-graph G = (V, E) is a finite digraph of outdegree |Δ|, where each the edges out of each node has a unique color. One node is the origin.
- So any word $w \in \Delta^*$ identifies a unique node $[w]_G$ of G. Call edges of G a "pointer"
- Pointer Assignment: w ← w'
 * This transforms G to G' by making at most one pointer modification so that [w]_{G'} = [w']_G

Pointer Machine

- Schönhage's storage modification machine (1978)
- Fix a finite set Δ of "colors"
- A Δ-graph G = (V, E) is a finite digraph of outdegree |Δ|, where each the edges out of each node has a unique color. One node is the origin.
- So any word $w \in \Delta^*$ identifies a unique node $[w]_G$ of G. Call edges of G a "pointer"
- Pointer Assignment: w ← w'
 * This transforms G to G' by making at most one pointer modification so that [w]_{G'} = [w']_G

Pointer Machine

• Schönhage's storage modification machine (1978)

• Fix a finite set Δ of "colors"

- A Δ-graph G = (V, E) is a finite digraph of outdegree |Δ|, where each the edges out of each node has a unique color. One node is the origin.
- So any word $w \in \Delta^*$ identifies a unique node $[w]_G$ of G. Call edges of G a "pointer"
- Pointer Assignment: w ← w'
 * This transforms G to G' by making at most one pointer modification so that [w]_{G'} = [w']_G
Pointer Machine

- Schönhage's storage modification machine (1978)
- Fix a finite set Δ of "colors"
- A Δ-graph G = (V, E) is a finite digraph of outdegree |Δ|, where each the edges out of each node has a unique color. One node is the origin.
- So any word $w \in \Delta^*$ identifies a unique node $[w]_G$ of G. Call edges of G a "pointer"

Pointer Assignment: w ← w'
 * This transforms G to G' by making at most one pointer modification so that [w]_{G'} = [w']_G

Pointer Machine

- Schönhage's storage modification machine (1978)
- Fix a finite set Δ of "colors"
- A Δ-graph G = (V, E) is a finite digraph of outdegree |Δ|, where each the edges out of each node has a unique color. One node is the origin.
- So any word $w \in \Delta^*$ identifies a unique node $[w]_G$ of G. Call edges of G a "pointer"
- Pointer Assignment: w ← w'
 * This transforms G to G' by making at most one pointer modification so that [w]_{G'} = [w']_G

Pointer Machine

- Schönhage's storage modification machine (1978)
- Fix a finite set Δ of "colors"
- A Δ-graph G = (V, E) is a finite digraph of outdegree |Δ|, where each the edges out of each node has a unique color. One node is the origin.
- So any word $w \in \Delta^*$ identifies a unique node $[w]_G$ of G. Call edges of G a "pointer"
- Pointer Assignment: w ← w'
 * This transforms G to G' by making at most one pointer modification so that [w]_{G'} = [w']_G

- A pointer machine M is specified by a sequence of $^{\rm 22}$ instructions of the form
 - * Assignment: $w \leftarrow w'$
 - * Test: IF $(w \equiv w')$ GOTO(L) where L is a label
 - * Termination: HALT

 Clearly, a pointer machine can simulate each step of a multitape Turing machine in O(1) steps
 * Need to encode the contents of Turing machine tape cell

Input/Output: all are conventions

 What does a pointer machine compute? Let G_Δ be set
 of Δ-graphs

KAIST/JAIST Summer School of Algorithms

- A pointer machine *M* is specified by a sequence of ²² instructions of the form
 - * Assignment: $w \leftarrow w'$
 - * Test: IF $(w \equiv w')$ GOTO(L) where L is a label
 - * Termination: HALT

 Clearly, a pointer machine can simulate each step of a multitape Turing machine in O(1) steps
 * Need to encode the contents of Turing machine tape cell

Input/Output: all are conventions

 What does a pointer machine compute? Let G_Δ be set
 of Δ-graphs

KAIST/JAIST Summer School of Algorithms

- A pointer machine *M* is specified by a sequence of ²² instructions of the form
 - * Assignment: $w \leftarrow w'$
 - * Test: IF $(w \equiv w')$ GOTO(L) where L is a label
 - * Termination: HALT

 Clearly, a pointer machine can simulate each step of a multitape Turing machine in O(1) steps
 * Need to encode the contents of Turing machine tape cell

Input/Output: all are conventions

 What does a pointer machine compute? Let G_Δ be set
 of Δ-graphs

KAIST/JAIST Summer School of Algorithms

- * It computes $f : \mathcal{G}_{\Delta} \to \mathcal{G}_{\Delta}$ (partial)
- Discussion: pointer machines are more robust than Turing machines
 - * Cf: evaluation problem, bigfloat number truncation

- * It computes $f : \mathcal{G}_{\Delta} \to \mathcal{G}_{\Delta}$ (partial)
- Discussion: pointer machines are more robust than Turing machines
 - * Cf: evaluation problem, bigfloat number truncation

- * It computes $f : \mathcal{G}_{\Delta} \to \mathcal{G}_{\Delta}$ (partial)
- Discussion: pointer machines are more robust than Turing machines
 - * Cf: evaluation problem, bigfloat number truncation

• Let Ω be a set of real operators

- Let a real Δ -graph be a Δ -graph where each node u stores a real number Val(u)
- Algebraic assignment instruction: $* w := \omega(w_1, \dots, w_n)$ where $\omega \in \Omega$ is an *n*-ary operator
- Numerical comparison instruction: * IF (w = w') GOTO(L) where L is a label
- Let $\mathcal{G}_{\Delta}(\mathbb{R})$ be the set of real Δ graphs * Then an Ω -pointer machine computes a function f:

KAIST/JAIST Summer School of Algorithms

• Let Ω be a set of real operators

• Let a real Δ -graph be a Δ -graph where each node u stores a real number Val(u)

• Algebraic assignment instruction: $* w := \omega(w_1, \dots, w_n)$ where $\omega \in \Omega$ is an *n*-ary operator

Numerical comparison instruction:
 * IF (w = w') GOTO(L) where L is a label

• Let $\mathcal{G}_{\Delta}(\mathbb{R})$ be the set of real Δ graphs * Then an Ω -pointer machine computes a function f:

KAIST/JAIST Summer School of Algorithms

• Let Ω be a set of real operators

• Let a real Δ -graph be a Δ -graph where each node u stores a real number Val(u)

• Algebraic assignment instruction: * $w := \omega(w_1, \dots, w_n)$ where $\omega \in \Omega$ is an *n*-ary operator

Numerical comparison instruction:
 * IF (w = w') GOTO(L) where L is a label

• Let $\mathcal{G}_{\Delta}(\mathbb{R})$ be the set of real Δ graphs * Then an Ω -pointer machine computes a function f:

KAIST/JAIST Summer School of Algorithms

• Let Ω be a set of real operators

- Let a real Δ -graph be a Δ -graph where each node u stores a real number Val(u)
- Algebraic assignment instruction: $* w := \omega(w_1, \dots, w_n)$ where $\omega \in \Omega$ is an *n*-ary operator
- Numerical comparison instruction:
 * IF (w = w') GOTO(L) where L is a label
- Let $\mathcal{G}_{\Delta}(\mathbb{R})$ be the set of real Δ graphs * Then an Ω -pointer machine computes a function f:

KAIST/JAIST Summer School of Algorithms

• Let Ω be a set of real operators

- Let a real Δ -graph be a Δ -graph where each node u stores a real number Val(u)
- Algebraic assignment instruction: $* w := \omega(w_1, \dots, w_n)$ where $\omega \in \Omega$ is an *n*-ary operator
- Numerical comparison instruction: * IF (w = w') GOTO(L) where L is a label
- Let $\mathcal{G}_{\Delta}(\mathbb{R})$ be the set of real Δ graphs * Then an Ω -pointer machine computes a function f:

 $\mathcal{G}_{\Delta}(\mathbb{R}) o \mathcal{G}_{\Delta}(\mathbb{R})$

* DEFINITION: we say f is Ω -computable if there is an Ω -pointer machine that computes it.

 These are what Knuth calls "semi-numerical problems" Why a numeric model of computation? Turing machines are twoo unstructured $\mathcal{G}_{\Delta}(\mathbb{R}) \to \mathcal{G}_{\Delta}(\mathbb{R})$

* DEFINITION: we say f is Ω -computable if there is an Ω -pointer machine that computes it.

 These are what Knuth calls "semi-numerical problems" Why a numeric model of computation? Turing machines are twoo unstructured $\mathcal{G}_{\Delta}(\mathbb{R}) \to \mathcal{G}_{\Delta}(\mathbb{R})$

* DEFINITION: we say f is Ω -computable if there is an Ω -pointer machine that computes it.

 These are what Knuth calls "semi-numerical problems" Why a numeric model of computation? Turing machines are twoo unstructured

• Let a numeric Δ -graph be a Δ -graph where each node u stores a $Val(u) \in \mathbb{F}$

- Replace each $\omega \in \Omega$ be a relative approximation $\widetilde{\omega}$ taking an extra precision parameter
- Numeric assignment instruction: * $w := \widetilde{\omega}(w_1, \dots, w_n, p)$ where $\widetilde{\omega}$ is an relative approximation of ω

• Let $\mathcal{G}_{\Delta}(\mathbb{F})$ be the set of numeric Δ graphs * Then an Ω -pointer machine computes a function \widetilde{f} :

KAIST/JAIST Summer School of Algorithms

• Let a numeric $\Delta\operatorname{-graph}$ be a $\Delta\operatorname{-graph}$ where each node u stores a $Val(u)\in\mathbb{F}$

• Replace each $\omega \in \Omega$ be a relative approximation $\widetilde{\omega}$ taking an extra precision parameter

• Numeric assignment instruction: * $w := \widetilde{\omega}(w_1, \dots, w_n, p)$ where $\widetilde{\omega}$ is an relative approximation of ω

• Let $\mathcal{G}_{\Delta}(\mathbb{F})$ be the set of numeric Δ graphs * Then an Ω -pointer machine computes a function \widetilde{f} :

KAIST/JAIST Summer School of Algorithms

• Let a numeric $\Delta\operatorname{-graph}$ be a $\Delta\operatorname{-graph}$ where each node u stores a $Val(u)\in\mathbb{F}$

- Replace each $\omega \in \Omega$ be a relative approximation $\widetilde{\omega}$ taking an extra precision parameter
- Numeric assignment instruction: * $w := \widetilde{\omega}(w_1, \dots, w_n, p)$ where $\widetilde{\omega}$ is an relative approximation of ω

• Let $\mathcal{G}_{\Delta}(\mathbb{F})$ be the set of numeric Δ graphs * Then an Ω -pointer machine computes a function \widetilde{f} :

KAIST/JAIST Summer School of Algorithms

• Let a numeric $\Delta\text{-graph}$ be a $\Delta\text{-graph}$ where each node u stores a $Val(u)\in\mathbb{F}$

- Replace each $\omega \in \Omega$ be a relative approximation $\widetilde{\omega}$ taking an extra precision parameter
- Numeric assignment instruction: * $w := \widetilde{\omega}(w_1, \dots, w_n, p)$ where $\widetilde{\omega}$ is an relative approximation of ω

• Let $\mathcal{G}_{\Delta}(\mathbb{F})$ be the set of numeric Δ graphs * Then an Ω -pointer machine computes a function \widetilde{f} :

KAIST/JAIST Summer School of Algorithms

 $\overline{\mathcal{G}_{\Delta}(\mathbb{F}) \times \mathbb{F}} \to \overline{\mathcal{G}_{\Delta}(\mathbb{F})}$

* We say f is numeric Ω -computable

• We say f is an absolute/relative approximation of $f: \mathcal{G}_{\Delta}(\mathbb{R}) \to \mathcal{G}_{\Delta}(\mathbb{R})$

* if the value at each node of $\widetilde{f(G,p)}$ are p-bit absolute/relative approximations of the corresponding values of f(G)

* DEFINITION: we say f is Ω -approximable if If f is numeric Ω -computable NOTE: This corresponds to EGC

$\mathcal{G}_{\Delta}(\mathbb{F}) \times \mathbb{F} \to \mathcal{G}_{\Delta}(\mathbb{F})$ * We say \widetilde{f} is numeric Ω -computable

• We say \widetilde{f} is an absolute/relative approximation of $f: \mathcal{G}_{\Delta}(\mathbb{R}) \to \mathcal{G}_{\Delta}(\mathbb{R})$

* if the value at each node of $\widetilde{f}(G,p)$ are p-bit absolute/relative approximations of the corresponding values of f(G)

* DEFINITION: we say f is Ω -approximable if If \overline{f} is numeric Ω -computable NOTE: This corresponds to EGC $\mathcal{G}_{\Delta}(\mathbb{F}) \times \mathbb{F} \to \mathcal{G}_{\Delta}(\mathbb{F})$

* We say f is numeric Ω -computable

• We say f is an absolute/relative approximation of $f: \mathcal{G}_{\Delta}(\mathbb{R}) \to \mathcal{G}_{\Delta}(\mathbb{R})$

* if the value at each node of $\widetilde{f(G,p)}$ are p-bit absolute/relative approximations of the corresponding values of f(G)

* DEFINITION: we say f is Ω -approximable if If f is numeric Ω -computable NOTE: This corresponds to EGC

Proof of Transfer Theorem

• One direction is easy: suppose Val_{Ω} is not relatively Ω -approximable

* Then not every Ω -computable functions are relatively Ω -approximable. This is because Val_{Ω} is Ω -computable.

• Conversely, suppose Val_{Ω} is relatively Ω -approximable

* Suppose f is a Ω -computable by some Ω -machine M. We just simulate M by a numeric Ω -machine in a step by step fashion. Whenever a branch step is taken, we call the relative approximation function for Val_{Ω}

KAIST/JAIST Summer School of Algorithms

Proof of Transfer Theorem

• One direction is easy: suppose Val_{Ω} is not relatively Ω -approximable

* Then not every Ω -computable functions are relatively Ω -approximable. This is because Val_{Ω} is Ω -computable.

- Conversely, suppose Val_{Ω} is relatively $\Omega\text{-}$ approximable

* Suppose f is a Ω -computable by some Ω -machine M. We just simulate M by a numeric Ω -machine in a step by step fashion. Whenever a branch step is taken, we call the relative approximation function for Val_{Ω}

KAIST/JAIST Summer School of Algorithms

Proof of Transfer Theorem

• One direction is easy: suppose Val_{Ω} is not relatively Ω -approximable

* Then not every Ω -computable functions are relatively Ω -approximable. This is because Val_{Ω} is Ω -computable.

- Conversely, suppose Val_{Ω} is relatively Ω -approximable

* Suppose f is a Ω -computable by some Ω -machine M. We just simulate M by a numeric Ω -machine in a step by step fashion. Whenever a branch step is taken, we call the relative approximation function for Val_{Ω}

KAIST/JAIST Summer School of Algorithms

Conclusions

 Our theory of real approximation

 Conforms to practice, and to the usual assumptions of theoretical algorithms

- Complexity theory of real approximation

 Let PF be the class PF of polynomial-time approximable
 functions
 - * It is not closed under composition!
 - * Need continuity conditions (e.g., Lipschitz functions)

Conclusions

• Our theory of real approximation

* Conforms to practice, and to the usual assumptions of theoretical algorithms

Complexity theory of real approximation

 Let PF be the class PF of polynomial-time approximable functions

- * It is not closed under composition!
- * Need continuity conditions (e.g., Lipschitz functions)

Conclusions

• Our theory of real approximation

* Conforms to practice, and to the usual assumptions of theoretical algorithms

• Complexity theory of real approximation

* Let PF be the class PF of polynomial-time approximable functions

- * It is not closed under composition!
- * Need continuity conditions (e.g., Lipschitz functions)

REFERENCE

"On Guaranteed Accuracy Computation",
 * C. Yap, in Geometric Computation, (eds. F. Chen & D. Wang),
 World Scientific Pub. Co. (2004)

"A rapacious monster lurks within every computer, and it dines exclusively on accurate digits."

– B.D. McCullough (2000)

THE END

KAIST/JAIST Summer School of Algorithms