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2Overview

What is the computational foundation of EGC? It is really a

theory of real computation. We will introduce the basic

elements of such a theory. We prove a transfer theorem that

locates the central problem that must be solved in exact real

computation.

• 0. Review

• I. Basics of Real Approximation

• II. Numerical Computational Model

• III. Transfer theorem
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I. TOWARDS A THEORY OF
REAL COMPUTATION
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5Dilemma of Real Computation

• Standard Complexity Theory

∗ Turing machines, countable domain

∗ Does not work for uncountable domain!

∗ Whiteboard Aside: Describe simple Turing machines

• Smale:

∗ “There is not even a formal definition of algorithm in

Numerical Analysis.” [BCSS, p.23]

∗ “Towards resolving the problem [conflict between

continuous and discrete] we are led to .. allow real numbers

as inputs” [BCSS, p.23]
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6Two Approaches to Real Computation

• Algebraic Approach (Smale, et al)

∗ Real numbers are directly represented as atomic objects,

and can be compared without error

∗ Algebraic operators can be carried out without error

∗ Whiteboard Aside: Straightline model augmented with

loops and access to infinite array

• Analytic Approach (Weihrauch, etc)

∗ Real numbers are represented by Cauchy sequences

∗ Whiteboard Aside: Extend Turing machines to input

and output infinite sequences
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7• Criticisms (see [Weihrauch] or [Traub])

∗ Real numbers are arbitrarily complex What about

the analytic approach?

• Problems from our viewpoint:

∗ Zero Problem is trivial in Algebraic Approach

∗ Zero Problem is undecidable in Analytic Approach
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8How We Solve Numerical Problems??

• E.g., Solving PDE model, Numerical Optimization

Problem, etc

• STEP A:

∗ Design an ideal Algorithm A

∗ Assume certain operations such as ±,×, exp()

• STEP B:

∗ Implements Algorithm A as a Numerical Program B

∗ Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



8How We Solve Numerical Problems??

• E.g., Solving PDE model, Numerical Optimization

Problem, etc

• STEP A:

∗ Design an ideal Algorithm A

∗ Assume certain operations such as ±,×, exp()

• STEP B:

∗ Implements Algorithm A as a Numerical Program B

∗ Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



8How We Solve Numerical Problems??

• E.g., Solving PDE model, Numerical Optimization

Problem, etc

• STEP A:

∗ Design an ideal Algorithm A

∗ Assume certain operations such as ±,×, exp()

• STEP B:

∗ Implements Algorithm A as a Numerical Program B

∗ Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



8How We Solve Numerical Problems??

• E.g., Solving PDE model, Numerical Optimization

Problem, etc

• STEP A:

∗ Design an ideal Algorithm A

∗ Assume certain operations such as ±,×, exp()

• STEP B:

∗ Implements Algorithm A as a Numerical Program B

∗ Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



8How We Solve Numerical Problems??

• E.g., Solving PDE model, Numerical Optimization

Problem, etc

• STEP A:

∗ Design an ideal Algorithm A

∗ Assume certain operations such as ±,×, exp()

• STEP B:

∗ Implements Algorithm A as a Numerical Program B

∗ Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



8How We Solve Numerical Problems??

• E.g., Solving PDE model, Numerical Optimization

Problem, etc

• STEP A:

∗ Design an ideal Algorithm A

∗ Assume certain operations such as ±,×, exp()

• STEP B:

∗ Implements Algorithm A as a Numerical Program B

∗ Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



8How We Solve Numerical Problems??

• E.g., Solving PDE model, Numerical Optimization

Problem, etc

• STEP A:

∗ Design an ideal Algorithm A

∗ Assume certain operations such as ±,×, exp()

• STEP B:

∗ Implements Algorithm A as a Numerical Program B

∗ Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



8How We Solve Numerical Problems??

• E.g., Solving PDE model, Numerical Optimization

Problem, etc

• STEP A:

∗ Design an ideal Algorithm A

∗ Assume certain operations such as ±,×, exp()

• STEP B:

∗ Implements Algorithm A as a Numerical Program B

∗ Accounts for numerical representation, errors, etc

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



9What is the Abstract View?

• Step A:

∗ Algorithm A belongs to an Algebraic Model (e.g., BSS)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:

∗ Program B belongs to ...?

∗ See below – numerical pointer machines

• Critical Questions:

∗ Can Algorithm A be implemented by some Program B?

∗ Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



9What is the Abstract View?

• Step A:

∗ Algorithm A belongs to an Algebraic Model (e.g., BSS)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:

∗ Program B belongs to ...?

∗ See below – numerical pointer machines

• Critical Questions:

∗ Can Algorithm A be implemented by some Program B?

∗ Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



9What is the Abstract View?

• Step A:

∗ Algorithm A belongs to an Algebraic Model (e.g., BSS)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:

∗ Program B belongs to ...?

∗ See below – numerical pointer machines

• Critical Questions:

∗ Can Algorithm A be implemented by some Program B?

∗ Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



9What is the Abstract View?

• Step A:

∗ Algorithm A belongs to an Algebraic Model (e.g., BSS)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:

∗ Program B belongs to ...?

∗ See below – numerical pointer machines

• Critical Questions:

∗ Can Algorithm A be implemented by some Program B?

∗ Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



9What is the Abstract View?

• Step A:

∗ Algorithm A belongs to an Algebraic Model (e.g., BSS)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:

∗ Program B belongs to ...?

∗ See below – numerical pointer machines

• Critical Questions:

∗ Can Algorithm A be implemented by some Program B?

∗ Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



9What is the Abstract View?

• Step A:

∗ Algorithm A belongs to an Algebraic Model (e.g., BSS)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:

∗ Program B belongs to ...?

∗ See below – numerical pointer machines

• Critical Questions:

∗ Can Algorithm A be implemented by some Program B?

∗ Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



9What is the Abstract View?

• Step A:

∗ Algorithm A belongs to an Algebraic Model (e.g., BSS)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:

∗ Program B belongs to ...?

∗ See below – numerical pointer machines

• Critical Questions:

∗ Can Algorithm A be implemented by some Program B?

∗ Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



9What is the Abstract View?

• Step A:

∗ Algorithm A belongs to an Algebraic Model (e.g., BSS)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:

∗ Program B belongs to ...?

∗ See below – numerical pointer machines

• Critical Questions:

∗ Can Algorithm A be implemented by some Program B?

∗ Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



9What is the Abstract View?

• Step A:

∗ Algorithm A belongs to an Algebraic Model (e.g., BSS)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:

∗ Program B belongs to ...?

∗ See below – numerical pointer machines

• Critical Questions:

∗ Can Algorithm A be implemented by some Program B?

∗ Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



9What is the Abstract View?

• Step A:

∗ Algorithm A belongs to an Algebraic Model (e.g., BSS)

∗ Basis Ω = {±,×, exp(), ...}

• Step B:

∗ Program B belongs to ...?

∗ See below – numerical pointer machines

• Critical Questions:

∗ Can Algorithm A be implemented by some Program B?

∗ Wanted: a Transfer Theorem!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



10

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



11Representable Reals

• Representation of reals is critical starting point

∗ cf. Analytic or Algebraic Approaches

• Axioms for the set F of representable reals

∗ F is a countable set dense subset of R
∗ F is a ring extension of Z
∗ F can be represented efficiently

∗ Comparisons and Ring operations are polynomial-time

in this representation

• E.g., F can be taken to be Q or bigfloats

• PRINCIPLE: all output and input of our
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12computation must be representable numbers

∗ HENCE: We can use Turing machines for our real

computations

∗ HENCE: We can only talk about approximating a real

function f

∗ HENCE: we do not worry about behavior of f at non-

representable inputs

∗ Unlike the analytic or algebraic approach, we deliberately

avoid representing all real numbers!
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13Theory of Real Approximation

• NOTATION: given f : R→ R
∗ let Af denote any function Af : F× F→ F such that

|Af(x, p)− f(x)| ≤ 2−p

∗ let Rf denote any function Rf : F× F→ F such that

|Rf(x, p)− f(x)| ≤ 2−p|f(x)|

• DEFINE: a real function f is absolutely

approximable if Af is computable by a Turing

Machine

∗ Similarly, define relatively approximable if Rf is

computable by a Turing machine

• DEFINE: Zero(f) = {x ∈ F : f(x) = 0}
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14∗ The Zero Problem for f is to decide the set Zero(f)

• Computation of partial functions

∗ We assume that the Turing machine detect undefined

inputs
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15Basic Properties

• THEOREM A:

∗ f is relatively approximable iff f is absolutely

approximable and Zero(f) is decidable.

• THEOREM B:

∗ There is a function f0 that is absolutely approximable

in polynomial time, but f0 is not relatively approximable.

• THEOREM C [with C.O’Dunlaing]:

∗ There exist functions g0, h0 that are relatively

approximable in polynomial time, but g0◦h0 is not absolutely

approximable.
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16• Whiteboard Aside: Do Proofs.
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17Proofs

• THEOREM A:

∗ Let f be relatively approximable. Then x ∈ Zero(f)
iff Rf(x, 1) = 0. Also, Af(x, p) can be computed
by computing y = Rf(x, 1), z = dlg ye and finally set
Af(x, p)← Rf(x, z + p + 1).
∗ Let Af be computable and Zero(f) decidable. To

compute Rf(x, p), we output 0 iff x ∈ Zero(f). Otherwise
we compute Af(x, i) in the ith step, stopping when
Af(x, i) ≥ 2−i+1. This implies |f(x)| ≥ 2i. We then
set Rf(x, p) ← Af(x, i + p). The correctness follows from
|f(x)| ≥ 2−i and hence |Af(x, i + p) − f(x)| ≤ 2−i−p ≤
|f(x)|2−p.

• THEOREM B:

∗ Let t(n) be the number of steps that the nth Turing
machine Mn takes, on input n. So t(n) =∞ if when Mn(n)
does not halt
∗ DEFINE f0(n) = 1/t(n) where 1/∞ = 0. NOTE that

Zero(f0) is the diagonal set in recursive function theory,
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18usually denoted K.
∗ CLAIM: f0 is absolutely approximable
∗Proof: on input n, p, check that n ∈ N and then simulate

Mn(n) for dpe steps. If Mn(n) halt in k ≤ dpe steps, we
output 1/k (with absolute error at most 2−p). Else we output
0.
∗ CLAIM: f0 is not relatively approximable
∗ Proof: if it is, then Zero(f0) = K would be decidable.

Contradiction

• LEMMA:

∗ If a function f : R → R is never 0, then then Af is
computable iff Rf is computable
∗ Proof: One direction is immediate from Theorem A. In

the other direction, suppose Af is computable. Then we can
compute Rf(x, p) using Af as in theorem A, because we
know f(x) 6= 0.

• THEOREM C:

∗ Define g0 and h0 via g0(x) = sign(x − 1) and
h0(x) = 1 + f0(x) where f0 is from proof of Theorem A.
∗ The function g0(x) is relatively approximable
∗ The function h0 is relatively approximable, by above
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19LEMMA
∗ But g0 ◦ h0(x) = sign(f0(x)) is not absolutely

approximable:
∗ If it were absolutely approximable by some function F ,

then we can decide K: if x ∈ K iff AF (x, 2) ≤ 1/2
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20Transfer Theorem

• THEOREM D: The following are equivalent:

∗ (I) V alΩ is relatively approximable over Ω

∗ (II) For all problems F , if F is Ω-computable (ideal

model!) then F is relative Ω-approximable (implementation

model!).

• Thus V alΩ is “universal” (or “complete”).

∗ Our computational scientist ought to choose his set Ω

carefully

• Rest of talk is to formalize this theorem!
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21Pointer Machine

• Schönhage’s storage modification machine (1978)

• Fix a finite set ∆ of “colors”

• A ∆-graph G = (V,E) is a finite digraph of out-

degree |∆|, where each the edges out of each node

has a unique color. One node is the origin.

• So any word w ∈ ∆∗ identifies a unique node [w]G
of G. Call edges of G a “pointer”

• Pointer Assignment: w ← w′

∗ This transforms G to G′ by making at most one pointer

modification so that [w]G′ = [w′]G
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22• A pointer machine M is specified by a sequence of

instructions of the form

∗ Assignment: w ← w′

∗ Test: IF (w ≡ w′) GOTO(L) where L is a label

∗ Termination: HALT

• Clearly, a pointer machine can simulate each step

of a multitape Turing machine in O(1) steps

∗ Need to encode the contents of Turing machine tape

cell

• Input/Output: all are conventions

∗ What does a pointer machine compute? Let G∆ be set

of ∆-graphs
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23∗ It computes f : G∆→ G∆ (partial)

• Discussion: pointer machines are more robust than

Turing machines

∗ Cf: evaluation problem, bigfloat number truncation
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24Algebraic Pointer Machine

• Let Ω be a set of real operators

• Let a real ∆-graph be a ∆-graph where each node

u stores a real number V al(u)

• Algebraic assignment instruction:

∗ w :=ω(w1, . . . , wn) where ω ∈ Ω is an n-ary operator

• Numerical comparison instruction:

∗ IF (w = w′) GOTO(L) where L is a label

• Let G∆(R) be the set of real ∆ graphs

∗ Then an Ω-pointer machine computes a function f :
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25G∆(R)→ G∆(R)

∗ DEFINITION: we say f is Ω-computable if there is an

Ω-pointer machine that computes it.

• These are what Knuth calls “semi-numerical

problems” Why a numeric model of computation?

Turing machines are twoo unstructured
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26Numerical Pointer Machine

• Let a numeric ∆-graph be a ∆-graph where each

node u stores a V al(u) ∈ F

• Replace each ω ∈ Ω be a relative approximation ω̃

taking an extra precision parameter

• Numeric assignment instruction:

∗ w := ω̃(w1, . . . , wn, p) where ω̃ is an relative

approximation of ω

• Let G∆(F) be the set of numeric ∆ graphs

∗ Then an Ω-pointer machine computes a function f̃ :
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27G∆(F)× F→ G∆(F)

∗ We say f̃ is numeric Ω-computable

• We say f̃ is an absolute/relative approximation of

f : G∆(R)→ G∆(R)
∗ if the value at each node of f̃(G, p) are p-bit

absolute/relative approximations of the corresponding values

of f(G)

∗ DEFINITION: we say f is Ω-approximable if If f̃ is

numeric Ω-computable NOTE: This corresponds to

EGC
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28Proof of Transfer Theorem

• One direction is easy: suppose V alΩ is not relatively

Ω-approximable

∗ Then not every Ω-computable functions are relatively

Ω-approximable. This is because V alΩ is Ω-computable.

• Conversely, suppose V alΩ is relatively Ω-

approximable

∗ Suppose f is a Ω-computable by some Ω-machine M .

We just simulate M by a numeric Ω-machine in a step by

step fashion. Whenever a branch step is taken, we call the

relative approximation function for V alΩ
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29Conclusions

• Our theory of real approximation

∗ Conforms to practice, and to the usual assumptions of

theoretical algorithms

• Complexity theory of real approximation

∗ Let PF be the class PF of polynomial-time approximable

functions

∗ It is not closed under composition!

∗ Need continuity conditions (e.g., Lipschitz functions)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



29Conclusions

• Our theory of real approximation

∗ Conforms to practice, and to the usual assumptions of

theoretical algorithms

• Complexity theory of real approximation

∗ Let PF be the class PF of polynomial-time approximable

functions

∗ It is not closed under composition!

∗ Need continuity conditions (e.g., Lipschitz functions)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



29Conclusions

• Our theory of real approximation

∗ Conforms to practice, and to the usual assumptions of

theoretical algorithms

• Complexity theory of real approximation

∗ Let PF be the class PF of polynomial-time approximable

functions

∗ It is not closed under composition!

∗ Need continuity conditions (e.g., Lipschitz functions)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



30REFERENCE

• “On Guaranteed Accuracy Computation”,

∗ C. Yap, in Geometric Computation, (eds. F. Chen & D. Wang),

World Scientific Pub. Co. (2004)

“A rapacious monster lurks within every

computer, and it dines exclusively on accurate

digits.”

– B.D. McCullough (2000)
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31

THE END
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