1 Lecture 6 Theory of Real Approximation

Chee Yap Courant Institute of Mathematical Sciences New York University

Overview 2

What is the computational foundation of EGC? It is really a theory of real computation. We will introduce the basic elements of such a theory. We prove a transfer theorem that locates the central problem that must be solved in exact real computation.

- 0. Review
- I. Basics of Real Approximation
- II. Numerical Computational Model
- III. Transfer theorem

0. REVIEW

I. TOWARDS A THEORY OF REAL COMPUTATION

Dilemma of Real Computation 5

• Standard Complexity Theory

- ∗ Turing machines, countable domain
- ∗ Does not work for uncountable domain!
- ∗ Whiteboard Aside: Describe simple Turing machines

• Smale:

∗ "There is not even a formal definition of algorithm in Numerical Analysis." [BCSS, p.23]

∗ "Towards resolving the problem [conflict between continuous and discrete] we are led to .. allow real numbers as inputs" [BCSS, p.23]

Two Approaches to Real Computation ⁶

• Algebraic Approach (Smale, et al)

∗ Real numbers are directly represented as atomic objects, and can be compared without error

∗ Algebraic operators can be carried out without error

∗ Whiteboard Aside: Straightline model augmented with loops and access to infinite array

• Analytic Approach (Weihrauch, etc)

∗ Real numbers are represented by Cauchy sequences ∗ Whiteboard Aside: Extend Turing machines to input and output infinite sequences

• Criticisms (see [Weihrauch] or [Traub])

Real numbers are arbitrarily complex What about the analytic approach?

• Problems from our viewpoint:

- ∗ Zero Problem is trivial in Algebraic Approach
- ∗ Zero Problem is undecidable in Analytic Approach

7

How We Solve Numerical Problems?? ⁸

- E.g., Solving PDE model, Numerical Optimization Problem, etc
- STEP A:
	- ∗ Design an ideal Algorithm A
	- $*$ Assume certain operations such as \pm , \times , $\exp()$
- STEP B:
	- ∗ Implements Algorithm A as a Numerical Program B
	- ∗ Accounts for numerical representation, errors, etc

What is the Abstract View? **9**

• Step A:

- ∗ Algorithm A belongs to an Algebraic Model (e.g., BSS)
- $*$ Basis $\Omega = {\pm, \times, \exp(), \dots}$
- Step B:
	- ∗ Program B belongs to ...?
	- ∗ See below numerical pointer machines
- Critical Questions:
	- ∗ Can Algorithm A be implemented by some Program B?

∗ Wanted: a Transfer Theorem!

Representable Reals 10

• Representation of reals is critical starting point ∗ cf. Analytic or Algebraic Approaches

 \bullet Axioms for the set $\mathbb F$ of representable reals

- $*$ F is a countable set dense subset of \R
- $*$ F is a ring extension of $\mathbb Z$
- ∗ F can be represented efficiently

∗ Comparisons and Ring operations are polynomial-time in this representation

• E.g., F can be taken to be Q or bigfloats

• PRINCIPLE: all output and input of our

computation must be representable numbers 11

∗ HENCE: We can use Turing machines for our real computations

∗ HENCE: We can only talk about approximating a real function f

 $*$ HENCE: we do not worry about behavior of f at nonrepresentable inputs

∗ Unlike the analytic or algebraic approach, we deliberately avoid representing all real numbers!

Theory of Real Approximation 12

• NOTATION: given $f : \mathbb{R} \to \mathbb{R}$

∗ let $\mathcal{A}f$ denote any function $\mathcal{A}f : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ such that $|\mathcal{A}f(x,p) - f(x)| \leq 2^{-p}$

∗ let $\mathcal{R}f$ denote any function $\mathcal{R}f : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ such that $|\mathcal{R}f(x,p) - f(x)| \leq 2^{-p}|f(x)|$

 \bullet DEFINE: a real function f is absolutely approximable if Af is computable by a Turing Machine

 $*$ Similarly, define relatively approximable if $\mathcal{R}f$ is computable by a Turing machine

• DEFINE: $Zero(f) = \{x \in \mathbb{F} : f(x) = 0\}$

* The Zero Problem for f is to decide the set $Zero(f)$ ¹³

• Computation of partial functions ∗ We assume that the Turing machine detect undefined inputs

Basic Properties 14

• THEOREM A:

 $*$ f is relatively approximable iff f is absolutely approximable and $Zero(f)$ is decidable.

• THEOREM B:

 $*$ There is a function f_0 that is absolutely approximable in polynomial time, but f_0 is not relatively approximable.

• THEOREM C [with C.O'Dunlaing]:

 $*$ There exist functions g_0, h_0 that are relatively approximable in polynomial time, but $g_0 \circ h_0$ is not absolutely approximable.

• Whiteboard Aside: Do Proofs. 45

Proofs¹⁶

• THEOREM A:

by computing $y = \mathcal{R}f(x,1)$, $z = \lceil \lg y \rceil$ and finally set

* Let Af be computable and $Zero(f)$ decidable. To compute $\mathcal{R}f(x,p)$, we output 0 iff $x \in Zero(f)$. Otherwise we compute $Af(x, i)$ in the *i*th step, stopping when $\mathcal{A}f(x,i) \, \geq \, 2^{-i+1}.$ This implies $|f(x)| \, \geq \, 2^i.$ We then set $\mathcal{R}f(x,p) \leftarrow \mathcal{A}f(x,i+p)$. The correctness follows from $|f(x)| \geq 2^{-i}$ and hence $|\mathcal{A}f(x, i+p) - f(x)| \leq 2^{-i-p} \leq$ $|f(x)|2^{-p}$.

• THEOREM B:

 $*$ Let $t(n)$ be the number of steps that the nth Turing machine M_n takes, on input n. So $t(n) = \infty$ if when $M_n(n)$ does not halt ∗ DEFINE $f_0(n) = 1/t(n)$ where $1/\infty = 0$. NOTE that $Zero(f_0)$ is the diagonal set in recursive function theory,

usually denoted K . 17

 $*$ CLAIM: f_0 is not relatively approximable

* Proof: if it is, then $Zero(f_0) = K$ would be decidable. Contradiction

• LEMMA:

∗ If a function $f : \mathbb{R} \to \mathbb{R}$ is never 0, then then $\mathcal{A}f$ is computable iff $\mathcal{R}f$ is computable

∗ Proof: One direction is immediate from Theorem A. In the other direction, suppose Af is computable. Then we can compute $\mathcal{R}f(x,p)$ using $\mathcal{A}f$ as in theorem A, because we know $f(x) \neq 0$.

• THEOREM C:

∗ Define g_0 and h_0 via $g_0(x) =$ sign $(x - 1)$ and $h_0(x) = 1 + f_0(x)$ where f_0 is from proof of Theorem A. $*$ The function $g_0(x)$ is relatively approximable $*$ The function h_0 is relatively approximable, by above

¹⁸ LEMMA

Transfer Theorem 19

• THEOREM D: The following are equivalent: $∗$ (1) Val_{Ω} is relatively approximable over Ω $*$ (II) For all problems F, if F is Ω -computable (ideal model!) then F is relative Ω -approximable (implementation model!).

• Thus Val_{Ω} is "universal" (or "complete"). $*$ Our computational scientist ought to choose his set Ω carefully

• Rest of talk is to formalize this theorem!

Pointer Machine 20

- Schönhage's storage modification machine (1978)
- Fix a finite set Δ of "colors"
- A Δ -graph $G = (V, E)$ is a finite digraph of outdegree $|\Delta|$, where each the edges out of each node has a unique color. One node is the origin.
- \bullet So any word $w\in \Delta^*$ identifies a unique node $[w]_G$ of G . Call edges of G a "pointer"
- Pointer Assignment: $w \leftarrow w'$ $*$ This transforms G to G' by making at most one pointer modification so that $[w]_{G^\prime} = [w^\prime]_G$
- A pointer machine M is specified by a sequence of 21 instructions of the form
	- $*$ Assignment: $w \leftarrow w'$
	- $*$ Test: IF $(w \equiv w')$ GOTO (L) where L is a label
	- ∗ Termination: HALT

• Clearly, a pointer machine can simulate each step of a multitape Turing machine in $O(1)$ steps ∗ Need to encode the contents of Turing machine tape cell

• Input/Output: all are conventions ∗ What does a pointer machine compute? Let G[∆] be set of Δ -graphs

 $*$ It computes $\overline{f} : \mathcal{G}_{\Delta} \to \mathcal{G}_{\Delta}$ (partial) \overline{f} (22

• Discussion: pointer machines are more robust than Turing machines

∗ Cf: evaluation problem, bigfloat number truncation

Algebraic Pointer Machine 23

• Let Ω be a set of real operators

- Let a real Δ -graph be a Δ -graph where each node u stores a real number $Val(u)$
- Algebraic assignment instruction: $* w := \omega(w_1, \ldots, w_n)$ where $\omega \in \Omega$ is an *n*-ary operator

• Numerical comparison instruction: $*$ IF $(w = w')$ GOTO(L) where L is a label

• Let $\mathcal{G}_{\Delta}(\mathbb{R})$ be the set of real Δ graphs $*$ Then an Ω -pointer machine computes a function f :

 $\mathcal{G}_{\Delta}(\mathbb{R}) \rightarrow \mathcal{G}_{\Delta}(\mathbb{R})$ ²⁴

 $∗$ DEFINITION: we say f is $Ω$ -computable if there is an Ω -pointer machine that computes it.

• These are what Knuth calls "semi-numerical problems" Why a numeric model of computation? Turing machines are twoo unstructured

Numerical Pointer Machine 25

• Let a numeric Δ -graph be a Δ -graph where each node u stores a $Val(u) \in \mathbb{F}$

• Replace each $\omega \in \Omega$ be a relative approximation $\widetilde{\omega}$ taking an extra precision parameter

• Numeric assignment instruction: $\tilde{w} = \tilde{\omega}(w_1, \ldots, w_n, p)$ where $\tilde{\omega}$ is an relative approximation of ω

• Let $\mathcal{G}_{\Delta}(\mathbb{F})$ be the set of numeric Δ graphs $*$ Then an Ω -pointer machine computes a function \tilde{f} :

$\mathcal{G}_{\Delta}(\mathbb{F}) \times \mathbb{F} \to \mathcal{G}_{\Delta}(\mathbb{F})$ ²⁶

 $∗$ We say \widetilde{f} is numeric $Ω$ -computable

 \bullet We say \widetilde{f} is an absolute/relative approximation of $f : \mathcal{G}_{\Delta}(\mathbb{R}) \longrightarrow \mathcal{G}_{\Delta}(\mathbb{R})$

∗ if the value at each node of $\widetilde{f}(G, p)$ are p-bit absolute/relative approximations of the corresponding values of $f(G)$

 $*$ DEFINITION: we say f is Ω -approximable if If \widetilde{f} is numeric Ω-computable NOTE: This corresponds to EGC

Proof of Transfer Theorem 27

• One direction is easy: suppose Val_{Ω} is not relatively Ω -approximable

 $*$ Then not every Ω -computable functions are relatively Ω -approximable. This is because Val_{Ω} is Ω -computable.

• Conversely, suppose Val_{Ω} is relatively Ω approximable

 $*$ Suppose f is a Ω -computable by some Ω -machine M. We just simulate M by a numeric Ω -machine in a step by step fashion. Whenever a branch step is taken, we call the relative approximation function for Val_{Ω}

²⁸ Conclusions

• Our theory of real approximation ∗ Conforms to practice, and to the usual assumptions of theoretical algorithms

• Complexity theory of real approximation $*$ Let PF be the class PF of polynomial-time approximable functions

- ∗ It is not closed under composition!
- ∗ Need continuity conditions (e.g., Lipschitz functions)

REFERENCE 29

• "On Guaranteed Accuracy Computation",

∗ C. Yap, in Geometric Computation, (eds. F. Chen & D. Wang), World Scientific Pub. Co. (2004)

"A rapacious monster lurks within every computer, and it dines exclusively on accurate digits."

– B.D. McCullough (2000)

THE END