Lecture 6 Theory of Real Approximation

Chee Yap
Courant Institute of Mathematical Sciences
New York University

Overview

What is the computational foundation of EGC? It is really a theory of real computation. We will introduce the basic elements of such a theory. We prove a transfer theorem that locates the central problem that must be solved in exact real computation.

- 0. Review
- I. Basics of Real Approximation
- II. Numerical Computational Model
- III. Transfer theorem

0. REVIEW

I. TOWARDS A THEORY OF REAL COMPUTATION

Dilemma of Real Computation

Standard Complexity Theory

- Turing machines, countable domain
- * Does not work for uncountable domain!
- * Whiteboard Aside: Describe simple Turing machines

Smale:

- * "There is not even a formal definition of algorithm in Numerical Analysis." [BCSS, p.23]
- * "Towards resolving the problem [conflict between continuous and discrete] we are led to .. allow real numbers as inputs" [BCSS, p.23]

Two Approaches to Real Computation

- Algebraic Approach (Smale, et al)
 - * Real numbers are directly represented as atomic objects, and can be compared without error
 - * Algebraic operators can be carried out without error
 - * Whiteboard Aside: Straightline model augmented with loops and access to infinite array
- Analytic Approach (Weihrauch, etc)
 - * Real numbers are represented by Cauchy sequences
 - * Whiteboard Aside: Extend Turing machines to input and output infinite sequences

- Criticisms (see [Weihrauch] or [Traub])
 - * Real numbers are arbitrarily complex What about the analytic approach?
- Problems from our viewpoint:
 - * Zero Problem is trivial in Algebraic Approach
 - * Zero Problem is undecidable in Analytic Approach

How We Solve Numerical Problems??

 E.g., Solving PDE model, Numerical Optimization Problem, etc

STEP A:

- * Design an ideal Algorithm A
- * Assume certain operations such as $\pm, \times, \exp()$

• STEP B:

- * Implements Algorithm A as a Numerical Program B
- * Accounts for numerical representation, errors, etc.

What is the Abstract View?

Step A:

* Algorithm A belongs to an Algebraic Model (e.g., BSS)

```
* Basis \Omega = \{\pm, \times, \exp(), ...\}
```

Step B:

- * Program B belongs to ...?
- * See below numerical pointer machines

Critical Questions:

- * Can Algorithm A be implemented by some Program B?
- * Wanted: a Transfer Theorem!

Representable Reals

- Representation of reals is critical starting point
 - * cf. Analytic or Algebraic Approaches
- Axioms for the set F of representable reals
 - * $\mathbb F$ is a countable set dense subset of $\mathbb R$
 - * \mathbb{F} is a ring extension of \mathbb{Z}
 - * \mathbb{F} can be represented efficiently
 - * Comparisons and Ring operations are polynomial-time in this representation
- E.g., \mathbb{F} can be taken to be \mathbb{Q} or bigfloats
- PRINCIPLE: all output and input of our

computation must be representable numbers

- * HENCE: We can use Turing machines for our real computations
- \ast HENCE: We can only talk about approximating a real function f
- \ast HENCE: we do not worry about behavior of f at non-representable inputs
- * Unlike the analytic or algebraic approach, we deliberately avoid representing all real numbers!

Theory of Real Approximation

- NOTATION: given $f: \mathbb{R} \to \mathbb{R}$
 - * let $\overline{\mathcal{A}f}$ denote any function $\overline{\mathcal{A}f}:\mathbb{F}\times\mathbb{F}\to\mathbb{F}$ such that $|\mathcal{A}f(x,p)-f(x)|\leq 2^{-p}$
 - * let $\mathcal{R}f$ denote any function $\mathcal{R}f:\mathbb{F}\times\mathbb{F}\to\mathbb{F}$ such that $|\mathcal{R}f(x,p)-f(x)|\leq 2^{-p}|f(x)|$
- DEFINE: a real function f is absolutely approximable if $\mathcal{A}f$ is computable by a Turing Machine
 - st Similarly, define relatively approximable if $\mathcal{R}f$ is computable by a Turing machine
- DEFINE: $Zero(f) = \{x \in \mathbb{F} : f(x) = 0\}$

- * The Zero Problem for f is to decide the set Zero(f)
- Computation of partial functions
 - * We assume that the Turing machine detect undefined inputs

Basic Properties

• THEOREM A:

 $\ast f$ is relatively approximable iff f is absolutely approximable and Zero(f) is decidable.

• THEOREM B:

* There is a function f_0 that is absolutely approximable in polynomial time, but f_0 is not relatively approximable.

THEOREM C [with C.O'Dunlaing]:

* There exist functions g_0,h_0 that are relatively approximable in polynomial time, but $g_0\circ h_0$ is not absolutely approximable.

Whiteboard Aside: Do Proofs.

Proofs

• THEOREM A:

* Let f be relatively approximable. Then $x \in Zero(f)$ iff $\mathcal{R}f(x,1) = 0$. Also, $\mathcal{A}f(x,p)$ can be computed by computing $y = \mathcal{R}f(x,1), \ z = \lceil \lg y \rceil$ and finally set $\mathcal{A}f(x,p) \leftarrow \mathcal{R}f(x,z+p+1)$.

* Let $\mathcal{A}f$ be computable and Zero(f) decidable. To compute $\mathcal{R}f(x,p)$, we output 0 iff $x\in Zero(f)$. Otherwise we compute $\mathcal{A}f(x,i)$ in the ith step, stopping when $\mathcal{A}f(x,i)\geq 2^{-i+1}$. This implies $|f(x)|\geq 2^i$. We then set $\mathcal{R}f(x,p)\leftarrow \mathcal{A}f(x,i+p)$. The correctness follows from $|f(x)|\geq 2^{-i}$ and hence $|\mathcal{A}f(x,i+p)-f(x)|\leq 2^{-i-p}\leq |f(x)|2^{-p}$.

THEOREM B:

- * Let t(n) be the number of steps that the nth Turing machine M_n takes, on input n. So $t(n)=\infty$ if when $M_n(n)$ does not halt
- * DEFINE $f_0(n) = 1/t(n)$ where $1/\infty = 0$. NOTE that $Zero(f_0)$ is the diagonal set in recursive function theory,

usually denoted K.

* CLAIM: f_0 is absolutely approximable

* Proof: on input n,p, check that $n\in\mathbb{N}$ and then simulate $M_n(n)$ for $\lceil p
ceil$ steps. If $M_n(n)$ halt in $k \leq \lceil p
ceil$ steps, we output 1/k (with absolute error at most 2^{-p}). Else we output 0.

* CLAIM: f_0 is not relatively approximable

* Proof: if it is, then $Zero(f_0)=K$ would be decidable. Contradiction

• LEMMA:

st If a function $f:\mathbb{R} o\mathbb{R}$ is never 0, then then $\mathcal{A}f$ is

computable iff $\mathcal{R}f$ is computable

*Proof: One direction is immediate from Theorem A. In the other direction, suppose $\mathcal{A}f$ is computable. Then we can compute $\mathcal{R}f(x,p)$ using $\mathcal{A}f$ as in theorem A, because we know $f(x) \neq 0$.

• THEOREM C:

* Define g_0 and h_0 via $g_0(x) = \text{sign}(x-1)$ and $h_0(x) = 1 + f_0(x)$ where f_0 is from proof of Theorem A.

* The function $g_0(x)$ is relatively approximable

* The function $\hat{h_0}$ is relatively approximable, by above

LEMMA

* But $g_0 \circ h_0(x) = \operatorname{sign}(f_0(x))$ is not absolutely

*If it were absolutely approximable by some function F then we can decide K: if $x \in K$ iff $\mathcal{A}F(x,2) \leq 1/2$

Transfer Theorem

- THEOREM D: The following are equivalent:
 - * (I) Val_{Ω} is relatively approximable over Ω
 - * (II) For all problems F, if F is Ω -computable (ideal model!) then F is relative Ω -approximable (implementation model!).
- Thus $Va\overline{l}_{\Omega}$ is "universal" (or "complete").
 - \ast Our computational scientist ought to choose his set Ω carefully
- Rest of talk is to formalize this theorem!

Pointer Machine

- Schönhage's storage modification machine (1978)
- Fix a finite set Δ of "colors"
- A Δ -graph G=(V,E) is a finite digraph of out-degree $|\Delta|$, where each the edges out of each node has a unique color. One node is the origin.
- So any word $w \in \Delta^*$ identifies a unique node $[w]_G$ of G. Call edges of G a "pointer"
- Pointer Assignment: $w \leftarrow w'$
 - * This transforms G to G' by making at most one pointer modification so that $[w]_{G'}=[w']_G$

- ullet A pointer machine M is specified by a sequence of $^{^{21}}$ instructions of the form
 - * Assignment: $w \leftarrow w'$
 - * Test: IF $(w \equiv w')$ GOTO(L) where L is a label
 - * Termination: HALT
- Clearly, a pointer machine can simulate each step of a multitape Turing machine in ${\cal O}(1)$ steps
 - * Need to encode the contents of Turing machine tape cell
- Input/Output: all are conventions
 - * What does a pointer machine compute? Let \mathcal{G}_{Δ} be set of Δ -graphs

- * It computes $f:\overline{\mathcal{G}_{\Delta}
 ightarrow\mathcal{G}_{\Delta}}$ (partial)
- Discussion: pointer machines are more robust than Turing machines
 - * Cf: evaluation problem, bigfloat number truncation

Algebraic Pointer Machine

- ullet Let Ω be a set of real operators
- Let a real Δ -graph be a Δ -graph where each node u stores a real number Val(u)
- Algebraic assignment instruction:
 - * $w := \omega(w_1, \ldots, w_n)$ where $\omega \in \Omega$ is an n-ary operator
- Numerical comparison instruction:
 - * IF (w = w') GOTO(L) where L is a label
- Let $\mathcal{G}_{\Delta}(\mathbb{R})$ be the set of real Δ graphs
 - st Then an Ω -pointer machine computes a function f :

$$\mathcal{G}_{\Delta}(\mathbb{R}) o \mathcal{G}_{\Delta}(\mathbb{R})$$

- * DEFINITION: we say f is Ω -computable if there is an Ω -pointer machine that computes it.
- These are what Knuth calls "semi-numerical problems" Why a numeric model of computation? Turing machines are twoo unstructured

Numerical Pointer Machine

- Let a numeric Δ -graph be a Δ -graph where each node u stores a $Val(u) \in \mathbb{F}$
- Replace each $\omega \in \Omega$ be a relative approximation $\widetilde{\omega}$ taking an extra precision parameter
- Numeric assignment instruction:
 - $* \qquad w := \widetilde{\omega}(w_1, \dots, w_n, p) \quad \text{where} \quad \widetilde{\omega} \quad \text{is an relative}$ approximation of ω
- Let $\mathcal{G}_{\Delta}(\mathbb{F})$ be the set of numeric Δ graphs
 - st Then an Ω -pointer machine computes a function \widetilde{f} :

$$\mathcal{G}_{\Delta}(\mathbb{F}) imes\mathbb{F} o\mathcal{G}_{\Delta}(\mathbb{F})$$

- * We say \widetilde{f} is numeric Ω -computable
- We say \widetilde{f} is an absolute/relative approximation of $f:\mathcal{G}_{\Delta}(\mathbb{R}) o \mathcal{G}_{\Delta}(\mathbb{R})$
 - * if the value at each node of $\widetilde{f}(G,p)$ are p-bit absolute/relative approximations of the corresponding values of f(G)
 - * DEFINITION: we say f is Ω -approximable if If \widetilde{f} is numeric Ω -computable NOTE: This corresponds to EGC

Proof of Transfer Theorem

- One direction is easy: suppose Val_{Ω} is not relatively Ω -approximable
 - * Then not every Ω -computable functions are relatively Ω -approximable. This is because Val_{Ω} is Ω -computable.
- ullet Conversely, suppose Val_{Ω} is relatively Ω -approximable
 - * Suppose f is a Ω -computable by some Ω -machine M. We just simulate M by a numeric Ω -machine in a step by step fashion. Whenever a branch step is taken, we call the relative approximation function for Val_{Ω}

Conclusions

- Our theory of real approximation
 - * Conforms to practice, and to the usual assumptions of theoretical algorithms
- Complexity theory of real approximation
 - st Let PF be the class PF of polynomial-time approximable functions
 - * It is not closed under composition!
 - * Need continuity conditions (e.g., Lipschitz functions)

REFERENCE

- "On Guaranteed Accuracy Computation",
 - * C. Yap, in Geometric Computation, (eds. F. Chen & D. Wang), World Scientific Pub. Co. (2004)

"A rapacious monster lurks within every computer, and it dines exclusively on accurate digits."

- B.D. McCullough (2000)

THE END