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2Overview

We introduce some basic concepts of algebraic curves and their

computation. There is a general algebraic technique called

cylindrical algebraic decomposition (cad). Such techniques are

too slow even in the plane. We seek more adaptive techniques.

We describe one such algorithm, for Bezier curves.

• 0. Review

• I. Cylindrical Algebraic Decomposition

• II. Bezier Curves

• III. Quadric Surfaces
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0. REVIEW
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4QUESTIONS and DISCUSSIONS

• PROBLEM: You want to find all real solutions

of the following “triangular system”, P (X) =
0, Q(X, Y ) = 0, numerically:

∗ For each zero α of P (X), find all β of Q(X, Y ).

∗ REMARK: First figure out how to do this non-

numerically

• PROBLEM: Suppose you want to plot a curve. Use

resultants to compute points on the curve?

∗ Can your approach resolve the topology of curves?

∗ REMARK: This is implemented in CORE
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5Fundamentals of Algebraic
Computation

• Algebraic numbers form a (computational) field

∗ Tradition algorithms (in computer algebra) use

representation by minimal polynomials, or by isolating

intervals

∗ In contrast, we use numerical approach via Expressions

• Resultant is a main tool to derive basic properties

of algebraic numbers, including zero bounds

• Sturm sequence theory gives us global technique

for detecting all real zeros
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6• Newton iteration gives an extremely fast local

technique for approximating such roots

∗ Use of bigfloats is essential

• In numerical computation, the local complexity of

bigfloats computation is essentially O(M(n) log n),
from Brent

∗ The global complexity is less clear

• Another essential extension of Brent is to consider

approximate operations

• EXERCISE

∗ What is the optimal global complexity of evaluating a

polynomial?
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7∗ How can we quantify the difference between our

numerical approach to algebraic numbers versus isolating

interval representation?
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I. CYLINDRICAL
ALGEBRAIC

DECOMPOSITION
Skipped for time
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II. Curves
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10Complete Subdivision Algorithm for
Intersecting Bezier Curves

• There are two distinct approaches: algebraic and

analytic

• In algebraic view, a curve is basically given by a

bivariate polynomial A(X, Y ) ∈ K[X, Y ].

• The analytic approach views curves as a

parametrized curve C(t). The emphasis is in

differential properties and local properties of curves.

• One confusing aspect is that when we view curves

in the complex setting, the curve is topologically a
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11surface! So the two terminology gets mixed.

• For this lecture, we will focus on a recent new

algorithm for intersecting a very special class of

curves: Bezier curves.

• Through this algorithm, we will expose many of

the issues from our perspective of doing algebraic

computation via numerical approximations.
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12ALGORITHM OVERVIEW

• Introduction

• Separation Bounds for Algebraic Curves

• Tangency Criterion for Elementary Curves

• Sub-Algorithms

• Intersection Algorithm
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I. INTRODUCTION
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14Two Approaches to Curve Intersection

• Basic Problem: intersecting algebraic curves

• Two distinct approaches in literature:

“Algebraic View” “Geometric View”

1. Representation polynomial equations parametric form

complete curves curves segments

2. Techniques symbolic/algebraic numerical

cell decomposition homotopy, subdivision

3. Algorithms exact, slow inexact, fast

theoretical practical

non-adaptive adaptive
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15Related Work
• Recent work:

∗ Exacus Project, CGAL, etc

∗ Arrangement of low-degree curves and surfaces

∗ Devillers et al [SCG’00], Geissmann et al [SCG’01],

Berberich et al [ESA’02], Wein [ESA’02], Eigenwillig et al

[SCG’04], etc

∗ Goal: exact and efficient implementations of the

“algebraic view”

• Our Goal:

∗ Make algorithms under the “Geometric View” robust

∗ Use adaptive algorithms based on subdivisions

∗ More generally: “numerical algebraic computation”
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17Bezier Curves
• Bezier curves: popular parametric form

• Curve F defined by its Control Polygon P (F )
∗ P (F ) = (p0, p1, . . . , pn)

∗ De Casteljau’s Algorithm to determine F (1/2)

•
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18Intersection of Bezier Curves

• Generic Algorithm to intersect Bezier curves F,G:

[1] If CH(P (F )) ∩ CH(P (G)) = ∅, return(NO)

[2] If diameter(P (F ) ∪ P (G)) < ε, return(YES)

[3] Split the larger curve (F ) into subcurves (F0, F1)

[5] Recursively, intersect (Fi, G) (i = 0, 1).

• Subdivision Algorithms:

∗ simple, adaptive, good to any ε

∗ but incomplete!
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19What is Wrong?

• What does YES output really mean?

∗ Could mean NO or MULTIPLE intersections!

∗ We really want UNIQUE intersection
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20Can it be Fixed?

• Transversal intersections could probably be handled

as follows:

∗ Replace the ε test by:

[4] If (F,G) is a “transversal rep”, return(YES)

∗ Problem: infinite loop if tangential intersection
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20Can it be Fixed?

• Transversal intersections could probably be handled

as follows:

∗ Replace the ε test by:

[4] If (F,G) is a “transversal rep”, return(YES)

∗ Problem: infinite loop if tangential intersection

• Intersection Criteria

∗ Complete criterion: output YES/NO

∗ Semi-criterion: output YES/NO/MAYBE

∗ Semi-criteria are useful

• No complete criterion is known for noncrossing

intersections
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21∗ How to ever affirm a noncrossing intersection?
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22Work of Nicola Wolpert

• If F,G are non-singular, how can we affirm a

tangential intersection within a box?

∗ Use Jacobi curves, H1 = FxGy − FyGx = 0

∗ Need generalized Jacobi curves, H1,H2, . . .

• Comparison of Techniques:

∗ Wolpert: Jacobi curves, Resultant computations

∗ Ours: only subdivision
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23

II. SEPARATION BOUNDS
FOR CURVES

Main Algebraic Tool
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24Assumption for curves F,G
• F,G are the curves A(x, y) = 0 and B(x, y) = 0,

∗ m = deg(A), n = deg(B)

∗ a = ‖A‖2, b = ‖B‖2.

• Definition of antipodal pair (p, q):
∗ p ∈ F and q ∈ G

∗ The line pq is normal to F at p, and normal to G at q.

•
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25• Assume (F,G) has finitely many anti-podal pairs.

∗ This implies A,B are relatively prime

• If F contains an offset of G then there are infinitely

many anti-podal pairs

∗ Conjecture: converse holds

∗ Proved by S.-W. Choi
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26Separation Bounds for Algebraic Roots

• Let Σ = {A1, A2, . . . , An}, where

∗ Ai ∈ Z[x1, . . . , xn] and deg(Ai) = di

∗ Σ has finitely many complex zeros

∗ ‖A‖k is the k-norm (for k = 1, 2,∞)

• THEOREM

If (x1, . . . , xn) is a zero of Σ and x1 6= 0 then

|x1| > (23/2NK)−D2−(n+1)d1···dn where

∗ K = max{
√

n + 1, ‖A1‖2, . . . , ‖An‖2},
∗ N =

(
1+

∑
i di

n

)
, D = (1 +

∑
i(1/di))

∏
i di

∗ See “Fundamental Problems in Algorithmic Algebra”,

C.Yap, Oxford Press (2000) or website
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27∗ Cf. Canny (1988)
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28Geometric Separation Bounds

• THEOREM 1: If (p, q) is an antipodal pair, then

p 6= q implies ‖p− q‖ ≥ ∆1(m,n, a, b) where

∗ ∆1 = (3NK)−D2−12m2n2
,

∗ K = max{
√

13, 4ma, 4nb},
∗ N =

(
3+2m+2n

5

)
, D = m2n2(3 + (4/m) + (4/n))
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• THEOREM 1: If (p, q) is an antipodal pair, then

p 6= q implies ‖p− q‖ ≥ ∆1(m,n, a, b) where

∗ ∆1 = (3NK)−D2−12m2n2
,

∗ K = max{
√

13, 4ma, 4nb},
∗ N =

(
3+2m+2n

5

)
, D = m2n2(3 + (4/m) + (4/n))

• THEOREM 2: If p ∈ F ∩G and q ∈ F ∩G, then

p 6= q implies ‖p− q‖ ≥ ∆2(m,n, a, b) where

∗ ∆2 = (3NK)−D2−12m2n2
,

∗ K = max{
√

13,m, n},
∗ with N,D as before.
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29How Close can a Point be to a Curve?

• Let q be a point not on the curve F : A(x, y) = 0.

∗ Coordinates of q are L-bit floats,

∗ i.e., numbers m2−` where |m| < 2L and 0 ≤ ` ≤ L.
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29How Close can a Point be to a Curve?

• Let q be a point not on the curve F : A(x, y) = 0.

∗ Coordinates of q are L-bit floats,

∗ i.e., numbers m2−` where |m| < 2L and 0 ≤ ` ≤ L.

• THEOREM 3: If p ∈ F , and the curve F does not

contain a circle centered at q, then

‖p− q‖ ≥ ∆3(m,a, L) where

∗ ∆3 = (3NK)−D2−8m2
,

∗ K = max{8L
√

3, 4L3ma},
∗ N =

(
3+2m

3

)
, D = m2(3 + (4/m))
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30Norm for Equation of Bezier Curve

• Apply the separation bounds to a Bezier curve F

∗ Control points (p0, . . . , pm)

∗ Each coordinate of the pi’s are L-bit floats

• THEOREM 4: F satisfies an equation A(x, y) = 0
where ‖A‖2 ≤ (16L9m)m.

∗ Use a generalized Hadamard bound (extended to

multivariate polynomials)
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31

III. NONCROSSING
INTERSECTION CRITERION

(NIC)
How to affirm non-crossing intersection?
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32Elementary Curves

• C1[a, b]: bounded, continuously differentiable real

functions on interval [a, b].

• f ∈ C1[a, b] defines a graph F : [a, b] → R2

∗ F (t) = (t, f(t)).

•



32Elementary Curves

• C1[a, b]: bounded, continuously differentiable real

functions on interval [a, b].

• f ∈ C1[a, b] defines a graph F : [a, b] → R2

∗ F (t) = (t, f(t)).

•
Graph F of f ∈ C1[a, b]

base segment

F (b)

F (a)
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33• F is elementary if f is convex or concave.

∗ F is A-elementary if it lies above the base segment

∗ F is B-elementary if it lies below the base segment

•
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33• F is elementary if f is convex or concave.

∗ F is A-elementary if it lies above the base segment

∗ F is B-elementary if it lies below the base segment

•
A-Elementary Curve B-Elementary Curve

base segment

base segment
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34Elementary Couple

• Define (F,G) to be an elementary couple if

∗ F = F [0, 1] and G = G[a, b]

∗ G(a) ∈ aF (0) and G(b) ∈ aF (1)

∗ The entire curve G lies inside the cone C(F ).

∗ (F,G) is an AA- or AB-elementary couple
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• Define (F,G) to be an elementary couple if

∗ F = F [0, 1] and G = G[a, b]

∗ G(a) ∈ aF (0) and G(b) ∈ aF (1)

∗ The entire curve G lies inside the cone C(F ).

∗ (F,G) is an AA- or AB-elementary couple

aF (0)

aF (1)

F

G

aF (0)

aF (1)
G

F

An AB-couple An AA-couple
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35Alpha Function

• Let (F,G) be an elementary couple as before

∗ F = F [0, 1] and G = G[a, b]



35Alpha Function

• Let (F,G) be an elementary couple as before

∗ F = F [0, 1] and G = G[a, b]

• LEMMA: If G never dips below F , then there is a

continuous function s : [0, 1] → [a, b] such that for

all t, the normal at F (t) intersects G at a unique

point G(s(t)).
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36• Define θF(t) to be the slope angle of the normal at

F (t)

• Define α(t) = θF(t)− θG(s(t))
∗ Look at the sign of αF,G(t)

•
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36• Define θF(t) to be the slope angle of the normal at

F (t)

• Define α(t) = θF(t)− θG(s(t))
∗ Look at the sign of αF,G(t)

•

θF (t)

F (t)
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37Non-Crossing Intersection Criterion
(NIC)

• F,G has ∆-separation property if for all p ∈ F and

q ∈ G,

∗ if either (p, q) is an antipodal pair or {p, q} ⊆ F ∩G,

∗ then p 6= q implies d(p, q) > ∆.

• THEOREM 5: Let (F,G) be an elementary couple

with the ∆-separation property, and the diameter

of F ∪G is ≤ ∆.

∗ (i) If α(0)α(1) ≤ 0 then F and G intersect tangentially,

in a unique point.

∗ (ii) If α(0)α(1) > 0 then F and G are disjoint.
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40Proof

• By ∆-separation, |F ∩ G| ≤ 1. So by LEMMA,

there is a continuous function s : [0, 1] → [a, b].

• (i) Case α(0)α(1) ≤ 0.

∗ By continuity, there exists t such that α(t) = 0.

∗ This (F (t), G(s(t)) is an antipodal pair

∗ If F (t) 6= G(s(t)), then d(F (t), G(s(t)) > ∆,

contradiction

∗ So F (t) = G(s(t)), a tangential intersection
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41• (ii) Case α(0)α(1) > 0 (say α(0) > 0, α(1) > 0)

∗ Assume F and G intersect at F (t0)

∗ Then F and G intersect tangentially at F (t0)

∗ Consider the antipodal pair (F (t0), G(s(t0)))

∗ Since F is below G, α(t−0 ) > 0 and α(t+0 ) < 0

∗ By continuity, there exists t1 ∈ (t0, 1) s.t. α(t1) = 0

∗ Then F (t1) must be another tangential intersection

∗ This contradicts the ∆-separation property
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42Extended NIC

• Call (F,G) a half-couple if

∗ F = F [0, 1] and G = G[c, d]

∗ G(c) ∈ aF (0) or G(d) ∈ aF (1)

∗ The entire curve G lies inside the cone C(F ).
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∗ F = F [0, 1] and G = G[c, d]

∗ G(c) ∈ aF (0) or G(d) ∈ aF (1)

∗ The entire curve G lies inside the cone C(F ).

aF (0)

aF (1)

F

G

aF (0)

aF (1)
G

F

An AB-half couple An AA-half couple

• The following theorem extends the NIC to half-
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43couples.

• THEOREM: Let (F [0, 1], G[c, d]) be a half-couple

where aF(0) passes through G(c). Suppose the

upper half-normal aG(d) makes the angle γ with the

x-axis. Then the lower half-normal bG(d) satisfies

exactly one of the following five cases:

(i) bG(d) intersects aF(0).
(ii) bG(d) intersects aF(1).
(iii) bG(d) intersects F at F (t), and θF(t)−γ > 0.

(iv) bG(d) intersects F at F (t), and θF(t)− γ < 0.

(v) bG(d) intersects F at F (t), and θF(t)− γ = 0.

Furthermore, let aF(t0) pass through G(d) where

t0 ∈ [0, 1]. Then the sign of α(t0) can be deduced
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44as follows:

(A) In cases (i) or (iii), α(t0) > 0.

(B) In cases (ii) or (iv), α(t0) < 0.

(C) In case (v), α(t0) = 0.
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aF (0)

aF (1)

bG(d) intersects F

aF (0)

aF (1)

bG(d) intersects aF (1)

aF (0)

aF (1)

F

bG(c) intersects F

aF (0)

aF (1)

F

F

F

G[c, d]

G[c, d]

G[c, d]

G[c, d]

bG(d)

bG(c)

bG(d)

bG(c) intersects aF (0).bG(c)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



46

IV. SUB-ALGORITHMS
How can we apply the noncrossing criterion?
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47Delayed versus Immediate Objects

• Geometric constructors for objects:

∗ E.g., p = ∩[`, `′] is a point expression

• Expressions: represents an object as a DAG

∗ Internal nodes are constructors

∗ Leaves are primitive objects

∗ Similar to Expressions in Core Library
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48• Motivation: bigFloats (immediate) vs. algebraic

numbers (delayed)

∗ Queries on immediate objects are O(1).

• Some “Immediate Objects”:

∗ number: A floating point number

∗ point: coordinates are all immediate numbers

∗ line: defining equations with only immediate numbers

∗ Bezier curve: points in control polygon are immediate

∗ Apply “transparent” constructors on immedite objects

• “Delayed Objects”: These are all other objects

∗ e.g., irrational numbers

∗ e.g., points whose coordinates are delayed numbers
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49• 2 Bezier curve constructors:

∗ “Transparent”: F ∼ [F ∗, s0, t0]

∗ “Opaque”: F ∼ [F ∗, `0, `1]
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50Curve-Line Intersection Reps
• When is a pair (F, `) a rep?

∗ Transversal rep: ` intersects base of F

∗ Tangential rep: ` misses base of F ,

and diameter(P (F )) ≤ ∆

•
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51Curve-Line Intersection Algorithm

• Input: Elementary curve F and line `

• Output: list of intersection points or reps

[1] If ` misses P (F ) return(NULL)

[2] If ` intersects endpoint(s) p, return(p)

[3] If ` intersects base segment, return(F, `)

[4] If diam(P (F )) < ∆, return(F, `)

[5] Subdivide F into (F1, F2) at F (1/2)

[5.1] If F (1/2) ∈ `, recursively call (Fi, `) for i = 0 or 1

[5.2] Recursively call (Fi, `) for both i = 0, 1
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52Determining Sign of Alpha Angle

• Bezier curve F (t) = (F1(t), F2(t)),
and Line `(t) = (ct + d, et + f)
∗ c,d,e,f are L-bit floats

∗ Let α∗ = θF (t∗)− slope(`)

where F (t∗) ∈ `
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• Bezier curve F (t) = (F1(t), F2(t)),
and Line `(t) = (ct + d, et + f)
∗ c,d,e,f are L-bit floats

∗ Let α∗ = θF (t∗)− slope(`)

where F (t∗) ∈ `
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F
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α∗

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



53• Define g(t) = cF ′
1(t) + eF ′

2(t)

• THEOREM 6: we have sign(α∗) = sign(g(t∗)).
If the control polygon of F uses L-bit floats,

and g(t∗) 6= 0 then |g(t∗)| ≥ (6m128L9m)−m =
B(m,L).

• Problem: t∗ is not immediate.
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54Sign of Alpha Angle Algorithm

• Input: curve F ∼ [F ∗, s0, t0] and line `

∗ (F, `) is a transversal rep

• Output: sign of α∗

[1] Evaluate g(i)(t) of g(t) at t = s0 (all i ≥ 0)

[2] Compute bound ε on |g(t∗)− g(t0)| via Taylor

[3] If |g(s0)| > ε, return(sign(g(s0)))

[4] If lg(ε) ≤ −1−m(lg 6+lg m+7L+m lg 9), return(0)

[5] Refine F to [F ∗, s1, t1] and go back to step 1.

• Correctness: |g(s∗)| ≤ |g(s0)|+ε ≤ 2ε < B(m,L).
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55Coupling Process

• Let (F,G) be an elementary pair.

∗ They are a micro pair, i.e., their union has diameter less

than ∆. So |F ∩G| ≤ 1.

• First we detect if they have crossing intersections.

∗ This is easy to do by checking the intersection of their

vertical spans S(F ) and S(G).

∗ This uses at most two line intersection probes.

• Assuming no crossing intersections, we now try to

apply NIC or its extension:

∗ Wlog, assume F is below G in the strip S(F )∩S(G).

∗ Let F = F [0, 1] and G = G[c, d]. Check if aF (0) and
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56aF (1) intersects G. If so, we are done

∗ Otherwise, we conduct a binary search for a t0 ∈ [0, 1]

such that aF (t0) intersects G.

∗ It is not hard to see that we can now reduce the problem

to check non-crossing intersections for two half-couples.
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V. INTERSECTION
ALGORITHM

Putting the pieces together
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58What about Non-Elementary Curves?

• F (t) is critical iff

∗ stationary: F ′
x(t) = F ′

y(t) = 0

∗ x-extreme: F ′
x(t) = 0, F ′

y(t) 6= 0

∗ inflection: F ′
x(t)F

′′
y (t) = F ′′

x (t)F ′
y(t)

• Approach 1: Cut curves at critical points

• Approach 2: New types of elementary curves

∗ S-, X- and I-elementary

• Approach 3: Isolate critical points

∗ New separation bounds
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59Separation Bound for Critical Points

• E.g., singular cubic Bezier.

• Prove separation bound ∆4 > 0 such that:

∗ Distinct critical points are ≥ ∆4 apart

∗ If q is critical and q 6∈ F then d(q, F ) ≥ ∆4
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60Separation Bound for Critical Points

• THEOREM

Let diam(F ) < ∆4. Then F contains critical point

iff:

∗ (Stationary) CH(∇P (F )) contains (0, 0)

∗ (x-Extreme) (∇p1).x(∇pm).x ≤ 0

and (∇p1).y(∇pm).y > 0
∗ (Inflexion) orient(p0, p1, p2)orient(pm−2, pm−1, pm) <

0

• COROLLARY: If diam(F ) < ∆4, and CH(F ) ∩
CH(G) 6= ∅, then we can detect any intersection

involving critical points.
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62Overall Algorithm Curves

• Generic subdivision algorithm: has queue Q0

containing pairs of curves (Fi, Gi), i ≥ 0.

• We now use 2 Queues, Q0 and Q1 for macro and

micro pairs

∗ (F,G) is a micro pair iff diam(F,G) ≤ ∆

• 2 Stages: macro stage and micro stage.

∗ Initially, Q0 = ((F,G)) and Q1 = ∅
∗ First do macro stage, then micro stage
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63• Macro Stage: acts like the generic subdivision

algorithm.

∗ But put pairs into macro or micro queue

• Micro Stage: extract (F ′, G′) from Q1 and apply

“micro process”.
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64Micro Process

• Input: micro pair (F,G)

• Output: intersection reps

∗ 2 cases: base segments intersect or not

∗ Basic principle: do easy tests first

∗ Critical Point intersections can be directly detected

∗ Either output intersection rep, or call “tangential

process”
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65Open Problems

• Remove requirement on antipodal pairs for (F,G).

• Prove conjecture about antipodal pairs

• Better Separation Bounds: exploit Bezier form

• Implementation and comparison

• Complexity Analysis

• Extensions to other curves and surfaces
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III. QUADRIC SURFACES
Skipped for time
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67Conclusions

• First complete adaptive intersection algorithm

• Complicated, but most of cases are unlikely

• Adaptive complexity

• Micro stage may be fast

∗ Q1 is most likely small

• Arithmetic on algebraic numbers are possible via resultant

methods, but such methods are inefficient

• Algebraic numbers can be manipulated numerically and

compared exactly if you know root bounds
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69EXERCISES

• Give a direct algorithm for computing intersection of Bezier curves, assuming there are

NO tangential intersection

∗ HINT: Easiest to just adapt my algorithm above!
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70REFERENCE

• Chapter on curves in [Mehlhorn-Yap]

• Paper on Bezier Curves by Chee

“A rapacious monster lurks within every

computer, and it dines exclusively on accurate

digits.”

– B.D. McCullough (2000)
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THE END
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