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2Overview

We introduce some basic concepts of numerical computation.

Ultimately, our goal is to do algebraic computation using

numerical methods. The reason is that purely algebraic

methods is not as efficient or adaptive as numerical

approaches. Here, the work of Brent is our starting point.

• I. Floating Point Arithmetic

• II. Brent’s Work

• III. Newton Iteration with Error

• IV. Approximate Zeros (Smale’s work)
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3Introduction

• We assume bigfloats in all numerical computation

∗ Unlike numerical analysis

∗ It is our work-horse – cf. Expr in CORE

• Why floats?

∗ Large number range, compared to fixed precision

∗ Fast, compared to rational numbers

∗ Basically, its speed is integer computation + small

overhead

• The price for the above advantages?

∗ Uneven gaps between representable numbers

∗ Harder error analysis (cf. von Neumann)

• Two modes of using bigfloats
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4∗ Weak mode: generalized IEEE standard

∗ Strong mode: we actively control precision

• Work of Brent in the 1970’s

∗ Basic conclusion: all the common elementary functions

has local complexity O(M(n) log n)
∗ Shanks: elementary function is complex function that is

a finite composition of constants, field operations, algebraic

functions, exponential and logarithmic functions

∗ Brent shows that multiplication is reducible to exp(x)
and sin(x), and so M(s) is lower bound
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5Floating Point Representation

• Crisis in the 1980’s: proliferation of hardware fp

∗ FP computation used to require a co-processor!

∗ Problem of irreproducible results

∗ Kahan’s Turing award: contributions to IEEE Standard

• If f ∈ Z, write 〈f〉 for f2−blg |f |c

∗ Call 〈f〉 the normalized value of f

∗ E.g., 〈1〉 = 〈2〉 = 〈4〉 = 1, 〈3〉 = 〈6〉 = 1.5, 〈5〉 = 1.25,

〈7〉 = 1.75, etc

• Alternatively, 〈f〉 = ±(b0.b1b2 · · · bt)2
∗ where (b0b1 · · · bt)2 is the binary notation for f

∗ THUS: |〈f〉| ∈ [1, 2) for f 6= 0
∗ Also, 〈2kf〉 = 〈f〉 for all k ∈ N
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6• A (binary) bigfloat has form n2m where n,m ∈ Z
∗ Can also written as 〈n〉2m for some m,n

• WRITE: 〈e, f〉 for 〈f〉2e

∗ Call e the exponent and 〈f〉 the fraction

∗ The representation 〈e, f〉 is normalized if e = f = 0 or

if f is odd

• Local BigFloat Computation: all numbers comes from a

bounded range [a, b]
∗ Alternatively, all 〈e, f〉 has bounded e
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7IEEE Floating Point Standard

• This is the resolution of the crisis in the 1980’s

∗ Does it solve the non-robustness problem?

∗ Slightly, because of rational design

∗ It ensures portable code and predictable results: if it

fails on one machine, it should fail on others!

∗ Official Name: IEEE Standard 754 for Binary Floating-

Point Arithmetic (1987)

• Floating Point System FP (2, t):
∗ All numbers of the form 〈e, f〉 where |f | < 2t

∗ DENOTE by FP (2, t, emin, emax) if, in addition, emin ≤
e ≤ emax

• The IEEE Standard for double precision is FP (2, 53,−1023, 1023)
∗ Bit allocation: 64 = 1 + 11 + 53
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8∗ For quadruple precision: FP (2, 113,−16382, 16383)
∗ For single precision: FP (2, 24,−127, 127)

• Rounding Modes

∗ round(x) ∈ {bxc , dxe}
∗ Rounding Modes: ceiling, floor, to-zero, away-zero, to-

even

∗ Round to nearest: with tie-breaker from above modes

∗ Default mode: nearest/to-even

• Unit Round Off, u
∗ For double precision, u = 2−53

∗ For single precision, u = 2−24

∗ If x ∈ R (in range), then round(x) = x(1± 2u)
∗ When rounding to nearest, then round(x) = x(1± u)

• Approximate Arithmetic Model
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9∗ Let ◦ ∈ {+,−,×,÷} and ◦′ be the approximate version

∗ Strict model: x ◦′ y = round(x ◦ y)
∗ Standard model: x ◦′ y = (x ◦ y)(1± u)
∗ Difference: if x ◦ y ∈ F , then strict model requires

x ◦′ y = x ◦ y

• What else from IEEE Standard?

∗ Subnormal numbers

∗ Special values NaN,±∞,±0
∗ Unambiguous comparisons: +0 = −0, NaN

incomparable, etc

∗ 5 Exceptions: invalid, overflow, divide by 0, underflow,

inexact

• EXERCISE:

∗ In Core Library, under progs/ieee, you see some programs

manipulating IEEE formats
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11Complexity Model for Bigfloats

• Let M(n) be the complexity of multiplying two n-bit binary

integers

∗ Which model? Usually, Turing machines. Then M(n) =
O(n lg n lg lg n) by Schonhage-Strassen

∗ Extend M(n) to real arguments: if x ≤ 0, M(x) = 0,

else, M(x) = M(dxe)
∗ We prefer Schonhage’s Pointer machines

• We write M(n) as a parameter in complexity statements

∗ This way, the results remain valid even for other

multiplication algorithms such as Karatsuba’s

• Anecdote: what is M(n) in Java’s bigInteger?

∗ Karatsuba’s algorithm: T (n) = 3T (n/2) + n
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12• Axioms for M(n)
∗ 1. Superlinear: M(n) ≥ n
∗ 2. Monotone: M(n) is monotone nondecreasing

∗ 3. Regularity: M(n) satisfies the “regularity condition”

below

• Regularity: for all α ∈ (0, 1)
∗ α2M(n) ≤M(αn) ≤ αM(n) (ev. n) It is satisfied by

M(n) = O(n2) or Karatsuba M(n) = O(nlg 3)

• EXERCISE:

∗ Implement Karatsuba’s algorithm in Core Library using

its bigInteger (actually from gmp). ONLY RULE: Only call

the addition routine of bigInteger, but not multiplication,

division or reciprocal
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the addition routine of bigInteger, but not multiplication,

division or reciprocal
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13Error Notations

• “The art of error analysis consists of a good notation”

• Meta-notation

∗ The symbol “±” mus always be rewritten as “+θ” where

θ is a variable satisfying |θ| ≤ 1
∗ E.g., x± u is rewritten as x+ θu

∗ E.g., (x± u)(y ± u) is the same as (x+ θu)(y + θ′u)

• Let “[x]n” be a short hand for “x(1± 2−n)”
∗ E.g., Write [x + y]n, [x − y]n, [xy]n, . . . for the

truncated relative precision arithmetic

∗ E.g., [x ◦ y]n = (x ◦ y)(1± 2−n).

• Similar notation for absolute error:

∗ {x}n = x± 2−n = x+ θ2−n
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14∗ E.g., {x+ y}n , {x− y}n , {xy}n , . . . .

• CLAIM: To compute xy to precision n, suffices to compute

[x]n+4 and [y]n+4, and then multiply them together with

precision n+ 2. Proof:

[[x]n+4[y]n+4]n+1 = [x(1± 2−n−4)y(1± 2−n−4)]n+2

= [xy(1± 2−n−2)]n+2

= xy(1± 2−n−2)(1± 2−n−2)

= xy(1± 2−n).

• THEOREM: Let x, y be bounded bigfloats

∗ (I) We can compute [x]n in O(n) time

∗ (II) We can compute [xy]n in O(M(n)) time

∗ (III) We can compute [x±y]n in time O(nx +ny) where

nx, ny are the precision of x, y
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15• Proof (I): Let x = 〈ex, fx〉
∗ To compute [x]n, we truncate fx to at most (n+1)-bits

Do repeated decrements of a binary counter with initial value

n. With each decrement, we copy the next bit of fx. The

bits are copied starting from the most significant bit. We

stop when we reach the least significant bit of fx or when

the counter reaches 0. The complexity of decrementing the

counter is O(n). We return at most n + 1 bits of fx that

have been copied.

∗ NOTE: this bound is sublinear, and works only in pointer

model!

• EXERCISE:

∗ (1) Verify the regularity condition when M(n) =
Cn lg n lg lg n
∗ (2) Verify for M(n) = Cnc (you must determine the
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16range of the constant c in this case)

∗ (3) Redo the above theorem for unbounded bigfloats
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17Reciprocal

• Warm up, consider how to efficiently compute the reciprocal

of a bigfloat number c 6= 0

• LEMMA: For α ∈ (0, 1), we have
∑∞

j=0M(αjn) =
O(M(n)).
∗ Note: Regularity removes a factor of log n

• THEOREM: For a bounded bigfloat c, we can compute [1/c]n
in time O(M(n))
∗ Let f(x) = 1

x − c. Then Newton’s iterator is N(x) =
x− f(x)/f ′(x) = x(2− cx).
STANDARD PROOF: Our iteration is

xi+1 = xi(2− cxi). (1)
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18If xi = (1 − εi)/c or cxi = 1 − εi then substituting into

(1) gives xi+1 = (1 − ε2i )/c. Hence εi+1 = ε2i . Assuming

|ε0| < 1/2, we conclude that |εi| < 2−2i
for all i ≥ 0. Let

y = 1/c and ỹ = xk where k = dlg ne. Then |y − c̃| =
εk/c < 2−n/c = O(2−n) (since c is bounded).

• The analysis assumes error-free operations!

∗ To include error in each iteration, the last step needs (at

least) precision n

∗ Exploit self-correction property of Newton iteration: the

previous step only requires about precision n/2, etc

∗ Suppose that the i-th iteration is carried out with

precision 2i+1.

∗ Complexity is
∑lg n

i=0M(n2−i) = O(M(n))

• Here is the algorithm for approximate operations
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19

Iteration x̃i→ x̃i+1:

0. c̃← [c]1+2i+1

1. yi← [c̃x̃i]1+2i+1

2. zi← 2− yi

3. x̃i+1← [x̃izi]2i+1

∗ Each step is O(M(2i+1)). So the overall complexity, by

above lemma, is O(M(n)) to compute [1/c]n

• Analysis: initially only pay attention to the first order terms

(underline the second order terms)

∗ Let cx̃i = 1± δi where δi = 22i−13−2i
= 1

2(2/3)2
i

• EXERCISE:

∗ (1) Extend the above result to an unbounded bigfloat c
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20∗ (2) Give an analogous analysis Newton’s iteration for

square root of a bounded bigfloat c

∗ (3) Extend question (2) to unbounded c

∗ (4) We said that to implement the approximate Newton

iteration for computing [1/c]n, we must begin with x0 such

that |x0−(1/c)| < 2/9. How can you achieve this in practice?

In theory?
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21Approximate Zeros

• Let Nf(x) = x− f(x)/f ′(x) be Newton iterator

∗ When does Newton converge?

∗ All numerical analysis books say: when close enough to

a zero

• THEOREM [Yap-Fundamental-bk, Chapter 6]:

∗ Let f(X) ∈ Z[X] be square-free of degree m and height

H.

∗ If |x0 − x∗| ≤ (m3m+9(2 +H)6m)−1 then Newton will

converge quadratically from x0 to a root x∗

• Application to approximate real roots

∗ 1. Use Sturm until root is isolated

∗ 2. Use bisection until read the bound above
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22∗ 3. Use Newton

∗ NOTE: In Core Library, we try to skip step 2!

• Point Estimates of Smale: introduce notation

∗ γ(f, x) := supk≥2

∣∣∣f (k)(x)
k!f ′(x)

∣∣∣1/(k−1)

∗ β(f, x) :=
∣∣∣ f(x)
f ′(x)

∣∣∣
∗ α(f, x) :=β(f, x)γ(f, x)

• Also:

∗ ψ(x) := 1− 4x+ 2x2. The roots are (2±
√

2)/2.

∗ u(z, w) := γ(f, w)|z − w|.
∗ When z = z∗, a root of f , we write uw :=u(z∗, w) =

γ(f, z∗)|z∗ − w|.

• Initial intuition:

∗ |N ′
f(x)| =

∣∣∣f(x)f ′′(x)
f ′(x)2

∣∣∣ = 2
∣∣∣ f(x)
f ′(x) ·

f ′′(x)
2!f ′(x)

∣∣∣ ≤ 2α(f, x).
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22∗ 3. Use Newton

∗ NOTE: In Core Library, we try to skip step 2!

• Point Estimates of Smale: introduce notation

∗ γ(f, x) := supk≥2

∣∣∣f (k)(x)
k!f ′(x)

∣∣∣1/(k−1)

∗ β(f, x) :=
∣∣∣ f(x)
f ′(x)

∣∣∣
∗ α(f, x) :=β(f, x)γ(f, x)

• Also:

∗ ψ(x) := 1− 4x+ 2x2. The roots are (2±
√

2)/2.
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∗ When z = z∗, a root of f , we write uw :=u(z∗, w) =

γ(f, z∗)|z∗ − w|.

• Initial intuition:

∗ |N ′
f(x)| =
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23∗ This suggest that if α(f, x) is sufficiently small, then Nf

is a contraction map (Lipschitz constant < 1)

∗ It seems that α(f, x) < 1/2 is a necessary condition

• Notion of Approximate Zero:

∗ Let x = x0 and xi+1 = Nf(xi)
∗ Call x0 an approximate zero of f if |xn − x∗| ≤(

1
2

)2n−1 |x0 − x∗|, n ≥ 0.

• THEOREM (Smale)

∗ If α(f, x) < 0.04 then x is an approximate zero of f

• This is called a point estimate

∗ Compare: Kantorovich’s approach

• EXERCISE (open)

∗ (1) Give a simple proof of Smale’s theorem. (2)
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24Improve the point estimate of Smale.
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25Robust Approximate Zeros

• Let Nf,i,C(z) := {Nf(z)}2i+C

• A robust sequence relative to C is (z̃i)i≥0 such that

for i ≥ 1,

z̃i = Nf,i,C(z̃i−1).

• REMARK: if z̃i−1 = ∞ or f ′(z̃i−1) = 0, then

z̃i =∞. Say the sequence is finite if z̃i 6=∞ for all

i.

• DEFINITION: z0 is a robust approximate zero if
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26there exists z∗ such that for all C satisfying

2−C ≤ |z̃0 − z∗|,

every robust sequence (z̃i)i≥0 of z0 relative to C is

finite and satisfies

|z̃i − z∗| ≤ 21−2i|z0 − z∗|.
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27Comparison to Malajovich’s Work

• Malajovich has the only work on error analysis in

Smale’s setting

• He treats the multi-variate Newton setting, but

when specialized to univariate, the complexity

results are not as strong as ours.

•
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28Robust Point Estimate

• Smale: if z∗ is simple zero of f and z0 satisfy

|z0 − z∗| ≤
3−
√

7
2γ(f, z∗)

then z0 is an approximate zero.

• THEOREM: if z∗ is simple zero of f and z0 satisfy

|z0 − z∗| ≤
4−
√

14
2γ(f, z∗)

then z0 is a robust approximate zero.
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29• THEOREM: If α(f, z0) < 0.02 then z0 is a robust

approximate zero of f .

∗ We can estimate the associated zero z∗ as within

distance 0.07/γ(f, z0) from z0.
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30How to Approximate the Newton
Iterator

• How to compute {Nf(z̃i)}2i+C for given z̃i, i and

C?

• THEOREM: To compute {Nf(z̃i)}2i+C, it suffices

to

(1) evaluate f(z̃i) to κ+2i+1+4+C absolute bits,

(2) evaluate f ′(z̃i) to κ′+2i+3+C absolute bits,

(3) perform the division to κ′′+ 2i+ 1 +C relative

bits,

where

(1)’ κ ≥ − lg |f ′(z0)|,
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31(2)’ κ′ ≥ − lg |f ′(z0)|γ(f, z0),
(3)’ κ′′ ≥ − lg |f ′(z0)|+ 3.
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32Estimating Distance to Associated Root

• We still need to compute C satisfying C ≥
− lg |z0 − z∗| or

0 ≤ C + lg |z0 − z∗|.

• Kalantari: |z0 − z∗| ≥ 1
2γ2(f,z0) where

γ2(f, z) := sup
k≥1

∣∣∣∣∣f (k)(z)
k!f ′(z)

∣∣∣∣∣
1/k

.

• Wanted: C such that

0 ≤ C + lg |z0 − z∗| = O(1).
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33• We could use Turan’s proximity test [Pan] to

estimate |z0 − z∗| (but it does not exploit z0

as an approximate zero, and applies to only to

polynomials).

• LEMMA: If z0 satisfies

u := γ(f, z∗)|z0 − z∗| ≤ 1− 1√
2

and z∗ is a simple zero of f then

|z0− z∗|(1−2u)(1−u) ≤
∣∣∣∣f(z0)
f ′(z0)

∣∣∣∣ |z0− z∗|
(1− u)
ψ(u)

.

REMARK: ψ(u) is bounded away from 0 and u is
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close to 0 so
∣∣∣ f(z0)
f ′(z0)

∣∣∣ is equal to |z0 − z∗| up to a

constant factor.

• ALGORITHM D: approximate
∣∣∣ f(z0)
f ′(z0)

∣∣∣ up to a

constant multiplicative factor.

This is our estimate of C!

• REMARK: Asano-Kirkpatrick-Yap gives a general

scheme for converting absolute approximation to

relative approximation. This can be used here.
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35Complexity of Approximate Zeros of a
Polynomial

• Starting from an approximate zero z̃0 with

associated zero z∗, how expensive is it to compute

n-bit approximation of z∗?

• Let f(z) be square-free, degree d, with L-bit

integer coefficients.

∗ ASSUME z∗ is real, and z0 a bigfloat.

• THEOREM: If α(f, z0) < 0.02 and exponent

has size s, then we can compute n-bit absolute
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36precision approximations of z∗ in time

O( dM
[
n+ d2(L+ lg d) lg(n+ L)

]
).

• Corollary (Brent): If d, L is fixed, then it takes

O(M(n)).
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37Conclusions

• Why is IEEE Arithmetic important for EGC?

∗ Because it is FAST, and we implement our filtered

arithmetic here!

• BigInteger Arithmetic is our base line for speed

∗ BigFloats is essentially BigInteger speed + small

overhead

∗ BigRat is no good, really

• Brent’s fundamental work is our starting point

• Several extensions are necessary:

∗ (1) Extended to global complexity

∗ (2) Incorporate inexact operations (3) Avoid asymptotic

notation for error analysis
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38• For Newton iteration, Smale’s work must also be extended

to incorporate inexact operations
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“A rapacious monster lurks within every

computer, and it dines exclusively on accurate

digits.”

– B.D. McCullough (2000)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005



40

THE END
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