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Il. Resultants and Algebraic Numbers

1. Sturm Theory
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Exercise on Implementation of Convex Hull

+ Send to Sung-il Pae (T.A.) your solutions, and he will

reply with the answers.
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EGC prescribes that we compute the exact
geometric relations to ensure consistency
« Just take the right branch!

It is the most successful approach

« Can duplicate results of any other approach!

EGC principles can be achieved by using a general
library like CORE
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EGC can be expensive, but an effective technique °

is the use of filters and generalization

For bounded-depth rational problems, this is a small

constant factor

E.g., convex hulls, line arrangements, etc, in low

dimensions
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dimensions

The center piece of any EGC libraries is an
approximate evaluation algorithm for expressions

The center of this algorithm is a Zero Detector
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« Field is a ring with —. E.g., Q

+ Domain: a ring where xy = 0 implies x =0 or y =0
(no zero divisor)
« Ring is commutative if xy = yx. Assume this unless

otherwise noted!

Some Constructions in Algebra
x Field F¥ € Domain D C Ring R
+ Ring R C R[X] C R[X,Y] C...
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* A(X) = X isgaiX", (am # 0)

« Leading coefficient, a,, # 0

+ A(X) is monic if a,, =1

« Zero or root of A(X): any a € R such that A(a) =0

Size measures for A(X) € C|X]

Al = /300 lail*
+ Height of A is ||A]|~
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olynomia ~ OoT aegree m.
© AX) = XiloaiX", (am # 0)
+ Leading coefficient, a,, # 0
+ A(X) is monic if a,, =1
+ Zero or root of A(X): any a € R such that A(a) =0

Size measures for A(X) € C|X]

ANk = /220 lail*
+ Height of A is ||A]|~
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UFD: Unique factorization domain

« u € D is a unit if if w has an inverse

« Two elements a,b € D are associates if a = ub for some
unit u

« a Is irreducible if the only element that divides a is a
unit or an associate of a

« D is UFD if all non-zero a € D is equal to a product of
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wie, AX) =an [[[2,(X — o)

UFD: Unique factorization domain

« uw € D is a unit if if u has an inverse

+ Two elements a,b € D are associates if a = ub for some
unit u

+ a Is irreducible if the only element that divides a is a
unit or an associate of a

« D is UFD if all non-zero a € D is equal to a product of
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GCD: Greatest Common Divisor
+ In a UFD, we can define GCD(a, b)
+* We compute GCD’s in Z and in Q|X] by Euclid’s

algorithm
+ GCD over Z|X] is slightly trickier

QUESTIONS

*x From the above examples, show a ring that is not a

domain.
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+ NOTE: If € Q is an algebraic integer, then o € Z

Let A(X) € Z|X]
+ A(X) is primitive if the coefficients of A(X) have no

common factor except £1
+ Can always write A(X) = ¢- B(X) where ¢ € Z and

B(X) € Z[X] is primitive

The minimal polynomial of « is the primitive polynomial in
7| X| of minimal degree.
« It 1s basically unique
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Let D be any UFD (e.g., D =Z or D = Q|X])

Let A(X) € >0 a: X", B(X) €Y 7_,b; X" be polynomials
in D|X], anb, # 0

The resultant res(A, B) of A, B is the determinant of the
Sylvester matrix of A, B:
« Thisis a (m +n) x (m + n) matrix Syl(A, B)
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LEMMA: GCD(A, B) ¢ D iff res(A,B) =0
+ Sketch: Set up “GCD(A,B) ¢ D" as a system of
equations involving Syl(A, B)

Now assume D = C
* So A(X) = aHZl(X — ;) and B(X) = bH?Zl(X —
B;)
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NOIRWNA &

+ (D) Bjxa;is azeroof D(X) =resy(A(Y), B(XFY))
« (E) a;8; is a zero of E(X) =resy(A(Y),Y"B(X/Y))
* (F) 1/ is a zero of F(X) = X"A(1/X)

COROLLARY:

« The algebraic integers form a ring
« The algebraic numbers form a field

THEOREM: If ayg,...,q,, are algebraic numbers, then any
root of Y " ;X" is also algebraic
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Pf: If |a] <1, the result is true. Assume otherwise.
m m—1, m
# Then an|-|a[™ < H) ;o |o*| = H(jo|™ =1) /(|| =
1) < Hle|™ /(] = 1)
+ The claim follows. QED

Corollary: || > 1/(1+ H)
+ Pf: Note that 1/|a] is the zero of B(X) = X™A(1/X).
+ But the height of B(X) is also H. QED

Constructive Zero Bounds
+ Based on the structure of the expression (see Exercise)
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is A's leading coefficient
+ Check: If A(X) € D|X] then Disc(A) € D|X]

THEOREM: Let aq,...,«,, are all the complex roots of
A € C[X], not necessarily distinct. Up to sign, the following
three quantities are equal:

+ (A) a~'res(A, A") where a is A’s leading coefficient

+ (B) H1§i<j§m(ai — O‘j)2
+ (C) the square of the determinant of the Vandermonde
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Define Sep(A) to be the minimum of |a — 3| where «, 3
range over all pairs of distinct zeros of A(X)

Check: If A(X) € D|X]| then Disc(A) € D|X]|

THEOREM: Let aq,...,q,, are all the complex roots of
A € C[X], not necessarily distinct. Up to sign, the following
three quantities are equal:

(A) a 'res(A, A') where a is A’s leading coefficient

(B) H1§i<j§m(a’i - O‘J’)Q
(C) the square of the determinant of the Vandermonde
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matrix,

1 1 1
a1 0% Oy
p— 2 2 2
Vm(a17 ().{27 o o o ,O./,m) « a]. &2 o o o am
L O(l az am .

Then Sep(4) > +/|disc(A)] - m~(m/2FLpf(A)t=m
where M (A) is Mahler measure.
PROOF: Result is trivial when A has multiple roots, for then
Disc(A) = 0. Else,
assume Sep(A) = |a1 — aiz| where |a1| > |as].
Starting with the Vandermonde matrix, we may subtract
the second column from the first column, preserving the
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determinant. =
The first column (transposed) is now (0,7 —

2 2 m—1 m—1 o
o, ] — Q5. .., 0 —ag ) = (a1 — a2)(0,1, 7 +
m—2 4 m—2—1
ag, ..., Zi:O Qg ) 5 .
The 2-norm of (0,1,a; + ag,...,> 0o adal™*7") is at

most \/Z?:OZ(Z + 1)2|aq |

Hence this 2-norm is at most iy := \/m?/3max{1, |a|}™ 1.

By Hadamard's bound, the Vandermonde determinant is at

most Sep(A) [[., hi; where h; is any upper bound on 2-norm

of the 7th column.

We have already computed h;. For ¢ > 2, we can choose

h; = v/mmax{1, |a;|}™ 1.

The product of these bounds vyields +/|Disc(A4)] <
Sep(A)m ™/ ™ |max{L, |a,] )"~ = Sep(A)m(™/D+1 N1 (A
The conclusion of the theorem is now clear.
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Let a = (ag,...,an) where a; € R

+ Let Var(a) be the number of sign variations in a

+E.g., Var(1,0,—1,0,3) = 2 and Var(0,8,1,0,4, —3,0) =
1

+ Write Var4 p(a) for Var(Ap(a), Ai(a),..., An(a))

THEOREM (Sturm): If B = A’, then for all a < b such that
A(a)A(b) #0
« Then Var 4 p(a) — Var 4 p(b) is equal to the number of
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real roots of A in |a, b|.

PROOF: First assume (A, B) has no common zero.

Let ¢ € |a,b] and v;(c) :=Var(A4;_1(c), A;(c), A;x1(c)) for
i=0,... h

() Vi—1(c) = Vi(c) = 0 implies V;_a(c) = Vit1(c) =0

(b) So Aj(c) # 0 (otherwise ¢ is common zero of A, B)

(c) From (a), Vi_1(c)* + Viy1(c)* £ 0 for 1 < i < h.

(d) This implies 2Var 4 p(c) = Z?:o v;(c)

(e) If i >0 and A;(c) =0 then v;(¢c™) = v;(c™).

(f) Hence v;(c), and so Var4 p(c) does not change when c
passes through a zero of A; (i > 0)

(g) If Ag(c) then vp(c) decreases by 1 (use the fact that
B=A)

(h) Thus, Vary p(c) decreases by 1 each time as c passes
over a zero of A, but does not change otherwise.

(i) This implies Var 4 g(a) — Vala g(c) equals the number
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of real zeros of A in |a,b].

Finally, suppose C' = GCD(A, B) has degree > 0. The
sequence (Ag/C,A1/C, ..., Ay/C) has the same properties
as what we proved in (i).

We can now isolate all the real zeros of a polynomial A(X)

using an obvious bisection
NOTe: All real zeros lies in the interval [-1 — H, 1+ H|

where H is the height of A(X) Can extend Sturm sequence
to find all complex roots (See Chapter 7 [Yap-Fundamental])
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compared exactly IT you Know root bounds
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Compare the efficiency of IIR’s to our expression approach
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REFERENCE -

Chapter 6 of [Yap-FundamentalProblems], on roots
of polynomials.

“A rapacious monster lurks within every
computer, and it dines exclusively on accurate
digits.”

— B.D. McCullough (2000)
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