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2Overview

We introduce some basic concepts of algebraic computation.

• 0. Review

• I. Algebraic Preliminaries

• II. Resultants and Algebraic Numbers

• III. Sturm Theory
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0. REVIEW
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4ANSWERS and DISCUSSIONS

• Your experience with CORE so far?

• It did not print 11 digits of
√

2 because...

∗ To fix it, you do ...

• Exercise on Implementation of Convex Hull

∗ Send to Sung-il Pae (T.A.) your solutions, and he will

reply with the answers.
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5What is EGC? Now you know...

• Numerical Nonrobustness is widespread

• It has many negative impact on productivity and

automation

• EGC prescribes that we compute the exact

geometric relations to ensure consistency

∗ Just take the right branch!

• It is the most successful approach

∗ Can duplicate results of any other approach!

• EGC principles can be achieved by using a general

library like CORE
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6• EGC can be expensive, but an effective technique

is the use of filters and generalization

∗ For bounded-depth rational problems, this is a small

constant factor

∗ E.g., convex hulls, line arrangements, etc, in low

dimensions

• The center piece of any EGC libraries is an

approximate evaluation algorithm for expressions

• The center of this algorithm is a Zero Detector
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• EXERCISE
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7

EGC
EV AL

ZERODETECTOR

• Many challenges of EGC remain:

∗ efficiency issues (zero bounds, filters and beyond)

∗ geometric rounding

∗ theory of EGC

∗ transcendental computation, ...

• EXERCISE
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8∗ Let the point p be given as the intersection of two lines,

p = L ∩ L′ where L,L′ are given by their equations. If we

want to compute p̃ to s-bits of relative precision, what is the

precision necessary in the coefficients of L and L′?
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9Algebraic Preliminaries

• What is between Q and R?

• N ⊆ Z ⊆ Q ⊆ A ⊆ R ⊆ C
∗ Ring has +,−,× and 0, 1. E.g., Z
∗ Field is a ring with ÷. E.g., Q
∗ Domain: a ring where xy = 0 implies x = 0 or y = 0

(no zero divisor)

∗ Ring is commutative if xy = yx. Assume this unless

otherwise noted!

• Some Constructions in Algebra

∗ Field F ⊆ Domain D ⊆ Ring R

∗ Ring R ⊆ R[X] ⊆ R[X, Y ] ⊆ . . .
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10∗ Domain D ⊆ Quotient field QD ⊆ Algebraic closure D

∗ Special case: R[X] ⇒ R(X)

∗ Ring R to matrix ring Rn×n

• Polynomial A(X) ∈ R[X] of degree m:

∗ A(X) =
∑m

i=0 aiX
i, (am 6= 0)

∗ Leading coefficient, am 6= 0

∗ A(X) is monic if am = 1

∗ Zero or root of A(X): any α ∈ R such that A(α) = 0

• Size measures for A(X) ∈ C[X]
∗ ‖A‖k := k

√∑m
i=0 |ai|k

∗ Height of A is ‖A‖∞
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11∗ Length of A is ‖A‖2

• Fundamental Theorem of Algebra:

∗ A polynomial A(X) ∈ C[X] of degree m has exactly m

zeros

∗ i.e., A(X) = am

∏m
i=1(X − αi)

• UFD: Unique factorization domain

∗ u ∈ D is a unit if if u has an inverse

∗ Two elements a, b ∈ D are associates if a = ub for some

unit u

∗ a is irreducible if the only element that divides a is a

unit or an associate of a

∗ D is UFD if all non-zero a ∈ D is equal to a product of
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12irreducibles, up to associates

• Fundamental Theorem of Arithmetic: Z is a UFD

∗ GAUSS LEMMA: if D is a UFD then so is D[X]

NOTE: A field is always a UFD

• GCD: Greatest Common Divisor

∗ In a UFD, we can define GCD(a, b)

∗ We compute GCD’s in Z and in Q[X] by Euclid’s

algorithm

∗ GCD over Z[X] is slightly trickier

• QUESTIONS

∗ From the above examples, show a ring that is not a

domain.
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13∗ From the above examples, show a non-commutative

ring.

∗ Prove that
√

x +
√

y is an algebraic integer if x, y are

positive integers

∗ What are the units in a field?
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14Algebraic Numbers

• The zero α of an integer polynomial A(X) ∈ Z[X] is called

an algebraic number

∗ If A(X) is monic, α is an algebraic integer

∗ NOTE: If α ∈ Q is an algebraic integer, then α ∈ Z

• Let A(X) ∈ Z[X]
∗ A(X) is primitive if the coefficients of A(X) have no

common factor except ±1
∗ Can always write A(X) = c · B(X) where c ∈ Z and

B(X) ∈ Z[X] is primitive

• The minimal polynomial of α is the primitive polynomial in

Z[X] of minimal degree.

∗ It is basically unique
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15∗ Degree and height of α is the degree and height of this

minimal polynomial
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16Resultants

• Resultants is a very important constructive tool for

manipulation of algebraic numbers

• Let D be any UFD (e.g., D = Z or D = Q[X])

• Let A(X) ∈
∑m

i=0 aiX
i, B(X) ∈

∑n
j=0 biX

i be polynomials

in D[X], ambn 6= 0

• The resultant res(A,B) of A,B is the determinant of the

Sylvester matrix of A,B:

∗ This is a (m + n)× (m + n) matrix Syl(A,B)
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• Let A(X) ∈
∑m

i=0 aiX
i, B(X) ∈

∑n
j=0 biX

i be polynomials

in D[X], ambn 6= 0

• The resultant res(A,B) of A,B is the determinant of the

Sylvester matrix of A,B:

∗ This is a (m + n)× (m + n) matrix Syl(A,B)
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17

Syl(A,B) =



am am−1 · · · a0

am am−1 · · · a0
. . . . . .

am am−1 · · · a0

bn bn−1 · · · b1 b0

bn bn−1 · · · b1 b0
. . . . . .

bn bn−1 · · · b0


• LEMMA: GCD(A,B) 6∈ D iff res(A,B) = 0

∗ Sketch: Set up “GCD(A,B) 6∈ D” as a system of

equations involving Syl(A,B)

• Now assume D = C
∗ So A(X) = a

∏m
i=1(X − αi) and B(X) = b

∏n
j=1(X −

βj)
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18• THEOREM A: The resultant res(A,B) is equal to each of

the following

∗ (A) an
∏m

i=1 B(αi)
∗ (B) (−1)mnbm

∏n
j=1 A(βj)

∗ (C) anbm
∏m

i=1

∏n
j=1(αi − βj)

• COROLLARY:

∗ (D) βj±αi is a zero of D(X) = resY (A(Y ), B(X∓Y ))
∗ (E) αiβj is a zero of E(X) = resY (A(Y ), Y nB(X/Y ))
∗ (F) 1/αi is a zero of F (X) = XmA(1/X)

• COROLLARY:

∗ The algebraic integers form a ring

∗ The algebraic numbers form a field

• THEOREM: If α0, . . . , αm are algebraic numbers, then any

root of
∑m

i=0 αiX
i is also algebraic
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19∗ The proof uses theory of symmetric functions
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20Zero Bounds and Separation Bounds

• Cauchy Bound: Suppose α is the zero of A(X) =∑m
i=0 aiX

i ∈ Z[X]
∗ Then |α| ≤ (1 + H) where H = ‖A‖∞

• Pf: If |α| ≤ 1, the result is true. Assume otherwise.

∗ Then |am| · |α|m ≤ H
∑m−1

i=0 |αi| = H(|α|m− 1)/(|α| −
1) < H|α|m/(|α| − 1).
∗ The claim follows. QED

• Corollary: |α| ≥ 1/(1 + H)
∗ Pf: Note that 1/|α| is the zero of B(X) = XmA(1/X).
∗ But the height of B(X) is also H. QED

• Constructive Zero Bounds

∗ Based on the structure of the expression (see Exercise)
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21• Root Separation Bounds

∗ Define Sep(A) to be the minimum of |α−β| where α, β

range over all pairs of distinct zeros of A(X)

• Discriminant of A(X) is defined as a−1res(A,A′) where a

is A’s leading coefficient

∗ Check: If A(X) ∈ D[X] then Disc(A) ∈ D[X]

• THEOREM: Let α1, . . . , αm are all the complex roots of

A ∈ C[X], not necessarily distinct. Up to sign, the following

three quantities are equal:

∗ (A) a−1res(A,A′) where a is A’s leading coefficient

∗ (B)
∏

1≤i<j≤m(αi − αj)2

∗ (C) the square of the determinant of the Vandermonde
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22matrix,

Vm(α1, α2, . . . , αm) :=


1 1 · · · 1
α1 α2 · · · αm

α2
1 α2

2 · · · α2
m

... ... ...

αm−1
1 αm−1

2 · · · αm−1
m


• THEOREM (Mahler)

∗ Then Sep(A) >
√
|disc(A)| · m−(m/2)+1M(A)1−m

where M(A) is Mahler measure.

PROOF: Result is trivial when A has multiple roots, for then

Disc(A) = 0. Else,

assume Sep(A) = |α1 − α2| where |α1| ≥ |α2|.
Starting with the Vandermonde matrix, we may subtract

the second column from the first column, preserving the
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23determinant.

The first column (transposed) is now (0, α1 −
α2, α

2
1 − α2

2, . . . , α
m−1
1 − αm−1

2 ) = (α1 − α2)(0, 1, α1 +
α2, . . . ,

∑m−2
i=0 αi

1α
m−2−i
2 ).

The 2-norm of (0, 1, α1 + α2, . . . ,
∑m−2

i=0 αi
1α

m−2−i
2 ) is at

most
√∑m−2

i=0 (i + 1)2|α1|i.
Hence this 2-norm is at most h1 :=

√
m3/3 max{1, |α1|}m−1.

By Hadamard’s bound, the Vandermonde determinant is at

most Sep(A)
∏m

i=1 hi where hi is any upper bound on 2-norm

of the ith column.

We have already computed h1. For i ≥ 2, we can choose

hi =
√

m max{1, |αi|}m−1.

The product of these bounds yields
√
|Disc(A)| <

Sep(A)m(m/2)+1
∏m

i=1 |max{1, |αi|}m−1 = Sep(A)m(m/2)+1M(A)m−1.

The conclusion of the theorem is now clear.
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24• EXERCISE

∗ Using Theorem A above, give height bounds for αβ and

α±β, assuming we know heights and degree bounds for α, β
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25Sturm Theory

• Now assume A,B ∈ R[X] and deg A > deg B > 0
∗ The generalized Sturm sequence for (A,B) is

(A0, A1, . . . , Ah) where (A0, A1) = (A,B) and Ai+1 =
−(Ai−1 modAi), with Ah+1 = 0

• Let a = (a0, . . . , ah) where ai ∈ R
∗ Let Var(a) be the number of sign variations in a
∗ E.g., Var(1, 0,−1, 0, 3) = 2 and Var(0, 8, 1, 0, 4,−3, 0) =

1
∗ Write VarA,B(a) for Var(A0(a), A1(a), . . . , Ah(a))

• THEOREM (Sturm): If B = A′, then for all a < b such that

A(a)A(b) 6= 0
∗ Then VarA,B(a)− VarA,B(b) is equal to the number of
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26real roots of A in [a, b].
PROOF: First assume (A,B) has no common zero.

Let c ∈ [a, b] and vi(c) := Var(Ai−1(c), Ai(c), Ai+1(c)) for

i = 0, . . . , h.

(a) Vi−1(c) = Vi(c) = 0 implies Vi−2(c) = Vi+1(c) = 0
(b) So Ah(c) 6= 0 (otherwise c is common zero of A,B)

(c) From (a), Vi−1(c)2 + Vi+1(c)2 6= 0 for 1 < i < h.

(d) This implies 2VarA,B(c) =
∑h

i=0 vi(c)
(e) If i > 0 and Ai(c) = 0 then vi(c−) = vi(c+).
(f) Hence vi(c), and so VarA,B(c) does not change when c

passes through a zero of Ai (i > 0)

(g) If A0(c) then v0(c) decreases by 1 (use the fact that

B = A′)

(h) Thus, VarA,B(c) decreases by 1 each time as c passes

over a zero of A, but does not change otherwise.

(i) This implies VarA,B(a) − V alA,B(c) equals the number
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27of real zeros of A in [a, b].
Finally, suppose C = GCD(A,B) has degree > 0. The

sequence (A0/C,A1/C, . . . , Ah/C) has the same properties

as what we proved in (i).

• We can now isolate all the real zeros of a polynomial A(X)
using an obvious bisection

∗ NOTe: All real zeros lies in the interval [−1−H, 1+H]
where H is the height of A(X) Can extend Sturm sequence

to find all complex roots (See Chapter 7 [Yap-Fundamental])
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28Conclusions

• Arithmetic on algebraic numbers are possible via resultant

methods, but such methods are inefficient

• Algebraic numbers can be manipulated numerically and

compared exactly if you know root bounds
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29EXERCISES

• Isolating Interval Representation (IIR):

∗ A real algebraic number α can be represented by a pair
(A(X), [a, b]) such that α is the only zero of A(X) ∈ Z[X]
in [a, b]

• Show how to perform the four arithmetic operations on IIR’s

• Show how to do comparisons on IIR’s

• Compare the efficiency of IIR’s to our expression approach
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• Compare the efficiency of IIR’s to our expression approach
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• Chapter 6 of [Yap-FundamentalProblems], on roots

of polynomials.

“A rapacious monster lurks within every

computer, and it dines exclusively on accurate

digits.”

– B.D. McCullough (2000)
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THE END
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