Lecture 3 Algebraic Computation

Chee Yap
Courant Institute of Mathematical Sciences
New York University

Overview

We introduce some basic concepts of algebraic computation.

- 0. Review
- I. Algebraic Preliminaries
- II. Resultants and Algebraic Numbers
- III. Sturm Theory

0. REVIEW

- Your experience with CORE so far?
- It did not print 11 digits of $\sqrt{2}$ because...
 - * To fix it, you do ...
- Exercise on Implementation of Convex Hull
 - * Send to Sung-il Pae (T.A.) your solutions, and he will reply with the answers.

- Your experience with CORE so far?
- It did not print 11 digits of $\sqrt{2}$ because...
 - * To fix it, you do ...
- Exercise on Implementation of Convex Hull
 - * Send to Sung-il Pae (T.A.) your solutions, and he will reply with the answers.

- Your experience with CORE so far?
- It did not print 11 digits of $\sqrt{2}$ because...
 - * To fix it, you do ...
- Exercise on Implementation of Convex Hull
 - * Send to Sung-il Pae (T.A.) your solutions, and he will reply with the answers.

- Your experience with CORE so far?
- It did not print 11 digits of $\sqrt{2}$ because... * To fix it, you do ...
- Exercise on Implementation of Convex Hull
 - * Send to Sung-il Pae (T.A.) your solutions, and he will reply with the answers.

- Your experience with CORE so far?
- It did not print 11 digits of $\sqrt{2}$ because...
 - * To fix it, you do ...
- Exercise on Implementation of Convex Hull
 - * Send to Sung-il Pae (T.A.) your solutions, and he will reply with the answers.

- Numerical Nonrobustness is widespread
- It has many negative impact on productivity and automation
- EGC prescribes that we compute the exact geometric relations to ensure consistency
 - * Just take the right branch!
- It is the most successful approach
 - * Can duplicate results of any other approach!
- EGC principles can be achieved by using a general library like CORE

- Numerical Nonrobustness is widespread
- It has many negative impact on productivity and automation
- EGC prescribes that we compute the exact geometric relations to ensure consistency
 - * Just take the right branch!
- It is the most successful approach
 - * Can duplicate results of any other approach!
- EGC principles can be achieved by using a general library like CORE

- Numerical Nonrobustness is widespread
- It has many negative impact on productivity and automation
- EGC prescribes that we compute the exact geometric relations to ensure consistency
 - * Just take the right branch!
- It is the most successful approach
 - * Can duplicate results of any other approach!
- EGC principles can be achieved by using a general library like CORE

- Numerical Nonrobustness is widespread
- It has many negative impact on productivity and automation
- EGC prescribes that we compute the exact geometric relations to ensure consistency
 - * Just take the right branch!
- It is the most successful approach
 - * Can duplicate results of any other approach!
- EGC principles can be achieved by using a general library like CORE

- Numerical Nonrobustness is widespread
- It has many negative impact on productivity and automation
- EGC prescribes that we compute the exact geometric relations to ensure consistency
 - * Just take the right branch!
- It is the most successful approach
 - * Can duplicate results of any other approach!
- EGC principles can be achieved by using a general library like CORE

- Numerical Nonrobustness is widespread
- It has many negative impact on productivity and automation
- EGC prescribes that we compute the exact geometric relations to ensure consistency
 - * Just take the right branch!
- It is the most successful approach
 - * Can duplicate results of any other approach!
- EGC principles can be achieved by using a general library like CORE

- EGC can be expensive, but an effective technique ⁶ is the use of filters and generalization
 - * For bounded-depth rational problems, this is a small constant factor
 - * E.g., convex hulls, line arrangements, etc, in low dimensions

• The center of this algorithm is a Zero Detector

- EGC can be expensive, but an effective technique ⁶ is the use of filters and generalization
 - * For bounded-depth rational problems, this is a small constant factor
 - * E.g., convex hulls, line arrangements, etc, in low dimensions

The center of this algorithm is a Zero Detector

- EGC can be expensive, but an effective technique ⁶ is the use of filters and generalization
 - * For bounded-depth rational problems, this is a small constant factor
 - * E.g., convex hulls, line arrangements, etc, in low dimensions

The center of this algorithm is a Zero Detector

- EGC can be expensive, but an effective technique ⁶ is the use of filters and generalization
 - * For bounded-depth rational problems, this is a small constant factor
 - * E.g., convex hulls, line arrangements, etc, in low dimensions

The center of this algorithm is a Zero Detector

- Many challenges of EGC remain:
 - * efficiency issues (zero bounds, filters and beyond)
 - * geometric rounding
 - * theory of EGC
 - * transcendental computation, ...

• Many challenges of EGC remain:

- * efficiency issues (zero bounds, filters and beyond)
- * geometric rounding
- * theory of EGC
- * transcendental computation, ...

* Let the point p be given as the intersection of two lines, 8 $p = L \cap L'$ where L, L' are given by their equations. If we want to compute \widetilde{p} to s-bits of relative precision, what is the precision necessary in the coefficients of L and L'?

- What is between \mathbb{Q} and \mathbb{R} ?
- $\bullet \ \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{A} \subset \mathbb{R} \subset \mathbb{C}$
 - * Ring has $+, -, \times$ and 0, 1. E.g., \mathbb{Z}
 - * Field is a ring with \div . E.g., \mathbb{Q}
 - * Domain: a ring where xy=0 implies x=0 or y=0 (no zero divisor)
 - * Ring is commutative if xy = yx. Assume this unless otherwise noted!
- Some Constructions in Algebra
 - * Field $F \subseteq \mathsf{Domain}\ D \subseteq \mathsf{Ring}\ R$
 - * Ring $R \subseteq R[X] \subseteq R[X,Y] \subseteq \dots$

- What is between \mathbb{Q} and \mathbb{R} ?
- ullet $\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{A}\subseteq\mathbb{R}\subseteq\mathbb{C}$
 - * Ring has $+, -, \times$ and 0, 1. E.g., \mathbb{Z}
 - ∗ Field is a ring with ÷. E.g., Q
 - * Domain: a ring where xy=0 implies x=0 or y=0 (no zero divisor)
 - * Ring is commutative if xy = yx. Assume this unless otherwise noted!
- Some Constructions in Algebra
 - * Field $F \subseteq \mathsf{Domain}\ D \subseteq \mathsf{Ring}\ R$
 - * Ring $R \subseteq R[X] \subseteq R[X,Y] \subseteq \dots$

- What is between \mathbb{Q} and \mathbb{R} ?
- $\bullet \ \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{A} \subset \mathbb{R} \subset \mathbb{C}$
 - * Ring has $+, -, \times$ and 0, 1. E.g., \mathbb{Z}
 - * Field is a ring with \div . E.g., \mathbb{Q}
 - * Domain: a ring where xy=0 implies x=0 or y=0 (no zero divisor)
 - * Ring is commutative if xy = yx. Assume this unless otherwise noted!
- Some Constructions in Algebra
 - * Field $F \subseteq \mathsf{Domain}\ D \subseteq \mathsf{Ring}\ R$
 - * Ring $R \subseteq R[X] \subseteq R[X,Y] \subseteq \dots$

- What is between \mathbb{Q} and \mathbb{R} ?
- $\bullet \ \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{A} \subset \mathbb{R} \subset \mathbb{C}$
 - * Ring has $+, -, \times$ and 0, 1. E.g., \mathbb{Z}
 - * Field is a ring with \div . E.g., \mathbb{Q}
 - * Domain: a ring where xy=0 implies x=0 or y=0 (no zero divisor)
 - * Ring is commutative if xy = yx. Assume this unless otherwise noted!
- Some Constructions in Algebra
 - * Field $F \subseteq \mathsf{Domain}\ D \subseteq \mathsf{Ring}\ R$
 - * Ring $R \subseteq R[X] \subseteq R[X,Y] \subseteq \dots$

- What is between \mathbb{Q} and \mathbb{R} ?
- $\bullet \ \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{A} \subset \mathbb{R} \subset \mathbb{C}$
 - * Ring has $+, -, \times$ and 0, 1. E.g., \mathbb{Z}
 - * Field is a ring with \div . E.g., \mathbb{Q}
 - * Domain: a ring where xy=0 implies x=0 or y=0 (no zero divisor)
 - * Ring is commutative if xy = yx. Assume this unless otherwise noted!
- Some Constructions in Algebra
 - * Field $F \subseteq \mathsf{Domain}\ D \subseteq \mathsf{Ring}\ R$
 - * Ring $R \subseteq R[X] \subseteq R[X,Y] \subseteq \dots$

- What is between \mathbb{Q} and \mathbb{R} ?
- $\bullet \ \mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{A} \subseteq \mathbb{R} \subseteq \mathbb{C}$
 - * Ring has $+, -, \times$ and 0, 1. E.g., \mathbb{Z}
 - * Field is a ring with \div . E.g., \mathbb{Q}
 - * Domain: a ring where xy=0 implies x=0 or y=0 (no zero divisor)
 - * Ring is commutative if xy = yx. Assume this unless otherwise noted!
- Some Constructions in Algebra
 - * Field $F \subseteq \mathsf{Domain}\ D \subseteq \mathsf{Ring}\ R$
 - * Ring $R \subseteq R[X] \subseteq R[X,Y] \subseteq \dots$

* Domain $D\subseteq \mathsf{Quotient}$ field $Q_D\subseteq \mathsf{Algebraic}$ closure \overline{D}

- * Special case: $R[X] \Rightarrow R(X)$
- * Ring R to matrix ring $R^{n \times n}$
- Polynomial $A(X) \in R[X]$ of degree m:

$$* A(X) = \sum_{i=0}^{m} a_i X^i, (a_m \neq 0)$$

- * Leading coefficient, $a_m \neq 0$
- * A(X) is monic if $a_m = 1$
- * Zero or root of A(X): any $\alpha \in R$ such that $A(\alpha) = 0$
- ullet Size measures for $A(X) \in \mathbb{C}[X]$
 - $* ||A||_k := \sqrt[k]{\sum_{i=0}^m |a_i|^k}$
 - st Height of A is $\|A\|_{\infty}$

- * Special case: $R[X] \Rightarrow R(X)$
- * Ring R to matrix ring $R^{n \times n}$
- Polynomial $A(X) \in R[X]$ of degree m:

$$* A(X) = \sum_{i=0}^{m} a_i X^i, (a_m \neq 0)$$

- * Leading coefficient, $a_m \neq 0$
- * A(X) is monic if $\overline{a_m} = 1$
- * Zero or root of A(X): any $\alpha \in R$ such that $A(\alpha) = 0$
- Size measures for $A(X) \in \mathbb{C}[X]$

$$* \|A\|_k := \sqrt[k]{\sum_{i=0}^m |a_i|^k}$$

st Height of A is $\|A\|_{\infty}$

- * Special case: $R[X] \Rightarrow R(X)$
- * Ring R to matrix ring $R^{n \times n}$
- Polynomial $A(X) \in R[X]$ of degree m:

$$* A(X) = \sum_{i=0}^{m} a_i X^i$$
, $(a_m \neq 0)$

- * Leading coefficient, $a_m \neq 0$
- * A(X) is monic if $a_m = 1$
- * Zero or root of A(X): any $\alpha \in R$ such that $A(\alpha) = 0$
- Size measures for $A(X) \in \mathbb{C}[X]$
 - $* ||A||_k := \sqrt[k]{\sum_{i=0}^m |a_i|^k}$
 - * Height of A is $||A||_{\infty}$

- * Domain $D\subseteq \mathsf{Quotient}$ field $Q_D\subseteq \mathsf{Algebraic}$ closure \overline{D}
- * Special case: $R[X] \Rightarrow R(X)$
- * Ring R to matrix ring $R^{n \times n}$
- Polynomial $A(X) \in R[X]$ of degree m:
 - * $A(X) = \sum_{i=0}^{m} a_i X^i$, $(a_m \neq 0)$
 - * Leading coefficient, $a_m \neq 0$
 - * A(X) is monic if $a_m = 1$
 - * Zero or root of A(X): any $\alpha \in R$ such that $A(\alpha) = 0$
- ullet Size measures for $A(X) \in \mathbb{C}[X]$
 - $* ||A||_k := \sqrt[k]{\sum_{i=0}^m |a_i|^k}$
 - * Height of A is $||A||_{\infty}$

- * Domain $D\subseteq \mathsf{Quotient}$ field $Q_D\subseteq \mathsf{Algebraic}$ closure \overline{D}
- * Special case: $R[X] \Rightarrow R(X)$
- * Ring R to matrix ring $R^{n \times n}$
- Polynomial $A(X) \in R[X]$ of degree m:

*
$$A(X) = \sum_{i=0}^{m} a_i X^i$$
, $(a_m \neq 0)$

- * Leading coefficient, $a_m \neq 0$
- * A(X) is monic if $a_m = 1$
- * Zero or root of A(X): any $\alpha \in R$ such that $A(\alpha) = 0$
- Size measures for $A(X) \in \mathbb{C}[X]$
 - $|*||A||_k := \sqrt[k]{\sum_{i=0}^m |a_i|^k}$
 - * Height of A is $||A||_{\infty}$

• Fundamental Theorem of Algebra:

* A polynomial $A(X) \in \mathbb{C}[X]$ of degree m has exactly m zeros

$$st$$
 i.e., $A(X) = a_m \prod_{i=1}^m (X - lpha_i)$

UFD: Unique factorization domain

- $* u \in D$ is a unit if if u has an inverse
- * Two elements $a,b\in D$ are associates if a=ub for some unit u
- $\ast \ a$ is irreducible if the only element that divides a is a unit or an associate of a
 - * D is UFD if all non-zero $a \in D$ is equal to a product of

• Fundamental Theorem of Algebra:

* A polynomial $A(X) \in \mathbb{C}[X]$ of degree m has exactly m zeros

* i.e.,
$$A(X) = a_m \prod_{i=1}^m (X - \alpha_i)$$

UFD: Unique factorization domain

- $* u \in D$ is a unit if if u has an inverse
- * Two elements $a,b\in D$ are associates if a=ub for some unit u
- $\ast \ a$ is irreducible if the only element that divides a is a unit or an associate of a
 - * D is UFD if all non-zero $a \in D$ is equal to a product of

• Fundamental Theorem of Algebra:

* A polynomial $A(X) \in \mathbb{C}[X]$ of degree m has exactly m zeros

$$st$$
 i.e., $A(X) = a_m \prod_{i=1}^m (X - lpha_i)$

- UFD: Unique factorization domain
 - $* u \in D$ is a unit if if u has an inverse
 - \ast Two elements $a,b\in D$ are associates if a=ub for some unit u
 - \ast a is irreducible if the only element that divides a is a unit or an associate of a
 - * D is UFD if all non-zero $a \in D$ is equal to a product of

- Fundamental Theorem of Arithmetic: Z is a UFD
 - * GAUSS LEMMA: if D is a UFD then so is D[X] NOTE: A field is always a UFD
- GCD: Greatest Common Divisor
 - * In a UFD, we can define $\mathtt{GCD}(a,b)$
 - * We compute GCD's in $\mathbb Z$ and in $\mathbb Q[X]$ by Euclid's algorithm
 - * GCD over $\mathbb{Z}[X]$ is slightly trickier
- QUESTIONS
 - * From the above examples, show a ring that is not a domain.

- Fundamental Theorem of Arithmetic: Z is a UFD
 - * GAUSS LEMMA: if D is a UFD then so is D[X] NOTE: A field is always a UFD
- GCD: Greatest Common Divisor
 - * In a UFD, we can define GCD(a, b)
 - * We compute GCD's in $\mathbb Z$ and in $\mathbb Q[X]$ by Euclid's algorithm
 - * GCD over $\mathbb{Z}[X]$ is slightly trickier

QUESTIONS

* From the above examples, show a ring that is not a domain.

- ullet Fundamental Theorem of Arithmetic: $\mathbb Z$ is a UFD
 - * GAUSS LEMMA: if D is a UFD then so is D[X] NOTE: A field is always a UFD
- GCD: Greatest Common Divisor
 - * In a UFD, we can define GCD(a, b)
 - * We compute GCD's in $\mathbb Z$ and in $\mathbb Q[X]$ by Euclid's algorithm
 - * GCD over $\mathbb{Z}[X]$ is slightly trickier
- QUESTIONS
 - * From the above examples, show a ring that is not a domain.

- Fundamental Theorem of Arithmetic: Z is a UFD
 - * GAUSS LEMMA: if D is a UFD then so is D[X] NOTE: A field is always a UFD
- GCD: Greatest Common Divisor
 - * In a UFD, we can define GCD(a,b)
 - * We compute GCD's in $\mathbb Z$ and in $\mathbb Q[X]$ by Euclid's algorithm
 - * GCD over $\mathbb{Z}[X]$ is slightly trickier

QUESTIONS

* From the above examples, show a ring that is not a domain.

- Fundamental Theorem of Arithmetic: Z is a UFD
 - * GAUSS LEMMA: if D is a UFD then so is D[X] NOTE: A field is always a UFD
- GCD: Greatest Common Divisor
 - * In a UFD, we can define $\mathtt{GCD}(a,b)$
 - * We compute GCD's in $\mathbb Z$ and in $\mathbb Q[X]$ by Euclid's algorithm
 - * GCD over $\mathbb{Z}[X]$ is slightly trickier

QUESTIONS

* From the above examples, show a ring that is not a domain.

- * From the above examples, show a non-commutative ring.
- * Prove that $\sqrt{x} + \sqrt{y}$ is an algebraic integer if x,y are positive integers
 - * What are the units in a field?

Algebraic Numbers

- The zero α of an integer polynomial $A(X) \in \mathbb{Z}[X]$ is called an algebraic number
 - * If A(X) is monic, α is an algebraic integer
 - * NOTE: If $\alpha \in \mathbb{Q}$ is an algebraic integer, then $\alpha \in \mathbb{Z}$
- Let $A(X) \in \mathbb{Z}[X]$
 - * A(X) is primitive if the coefficients of A(X) have no common factor except ± 1
 - * Can always write $A(X) = c \cdot B(X)$ where $c \in \mathbb{Z}$ and $B(X) \in \mathbb{Z}[X]$ is primitive
- The minimal polynomial of α is the primitive polynomial in $\mathbb{Z}[X]$ of minimal degree.
 - * It is basically unique

Algebraic Numbers

- The zero α of an integer polynomial $A(X) \in \mathbb{Z}[X]$ is called an algebraic number
 - * If A(X) is monic, α is an algebraic integer
 - * NOTE: If $\alpha \in \mathbb{Q}$ is an algebraic integer, then $\alpha \in \mathbb{Z}$
- Let $A(X) \in \mathbb{Z}[X]$
 - * A(X) is primitive if the coefficients of $\overline{A}(X)$ have no common factor except ± 1
 - * Can always write $A(X) = c \cdot B(X)$ where $c \in \mathbb{Z}$ and $B(X) \in \mathbb{Z}[X]$ is primitive
- The minimal polynomial of α is the primitive polynomial in $\mathbb{Z}[X]$ of minimal degree.
 - * It is basically unique

Algebraic Numbers

- The zero α of an integer polynomial $A(X) \in \mathbb{Z}[X]$ is called an algebraic number
 - * If A(X) is monic, lpha is an algebraic integer
 - * NOTE: If $\alpha \in \mathbb{Q}$ is an algebraic integer, then $\alpha \in \mathbb{Z}$
- Let $A(X) \in \mathbb{Z}[X]$
 - * A(X) is primitive if the coefficients of $\overline{A(X)}$ have no common factor except ± 1
 - * Can always write $A(X) = c \cdot B(X)$ where $c \in \mathbb{Z}$ and $B(X) \in \mathbb{Z}[X]$ is primitive
- The minimal polynomial of α is the primitive polynomial in $\mathbb{Z}[X]$ of minimal degree.
 - * It is basically unique

* Degree and height of α is the degree and height of this 15 minimal polynomial

* Degree and height of α is the degree and height of this 15 minimal polynomial

 Resultants is a very important constructive tool for manipulation of algebraic numbers

ullet Let D be any UFD (e.g., $D=\mathbb{Z}$ or $D=\mathbb{Q}[X]$)

• Let $A(X) \in \sum_{i=0}^m a_i X^i, B(X) \in \sum_{j=0}^n b_i X^j$ be polynomials in D[X], $a_m b_n \neq 0$

- The resultant res(A, B) of A, B is the determinant of the Sylvester matrix of A, B:
 - * This is a $(m+n) \times (m+n)$ matrix Syl(A,B)

 Resultants is a very important constructive tool for manipulation of algebraic numbers

ullet Let D be any UFD (e.g., $D=\mathbb{Z}$ or $D=\mathbb{Q}[X]$)

• Let $A(X) \in \sum_{i=0}^m a_i X^i, B(X) \in \sum_{j=0}^n b_i X^j$ be polynomials in $D[X], a_m b_n \neq 0$

- The resultant res(A, B) of A, B is the determinant of the Sylvester matrix of A, B:
 - * This is a $(m+n) \times (m+n)$ matrix Syl(A,B)

 Resultants is a very important constructive tool for manipulation of algebraic numbers

ullet Let D be any UFD (e.g., $D=\mathbb{Z}$ or $D=\mathbb{Q}[X])$

• Let $A(X) \in \sum_{i=0}^m a_i X^i, B(X) \in \sum_{j=0}^n b_i X^i$ be polynomials in D[X], $a_m b_n \neq 0$

- The resultant res(A, B) of A, B is the determinant of the Sylvester matrix of A, B:
 - * This is a $(m+n) \times (m+n)$ matrix Syl(A,B)

 Resultants is a very important constructive tool for manipulation of algebraic numbers

ullet Let D be any UFD (e.g., $D=\mathbb{Z}$ or $D=\mathbb{Q}[X]$)

• Let $A(X) \in \sum_{i=0}^m a_i X^i, B(X) \in \sum_{j=0}^n b_i X^j$ be polynomials in $D[X], a_m b_n \neq 0$

- The resultant res(A, B) of A, B is the determinant of the Sylvester matrix of A, B:
 - * This is a $(m+n) \times (m+n)$ matrix Syl(A,B)

 Resultants is a very important constructive tool for manipulation of algebraic numbers

ullet Let D be any UFD (e.g., $D=\mathbb{Z}$ or $D=\mathbb{Q}[X])$

• Let $A(X) \in \sum_{i=0}^m a_i X^i, B(X) \in \sum_{j=0}^n b_i X^j$ be polynomials in $D[X], a_m b_n \neq 0$

- The resultant res(A, B) of A, B is the determinant of the Sylvester matrix of A, B:
 - * This is a $(m+n) \times (m+n)$ matrix Syl(A,B)

$$Syl(A,B) = \begin{bmatrix} a_m & a_{m-1} & \cdots & a_0 \\ & a_m & a_{m-1} & \cdots & a_0 \\ & & \ddots & & & \ddots \\ & & & a_m & a_{m-1} & \cdots & a_0 \\ b_n & b_{n-1} & \cdots & b_1 & b_0 & & & \\ & & b_n & b_{n-1} & \cdots & b_1 & b_0 & & & \\ & & & \ddots & & & \ddots & & \\ & & & b_n & b_{n-1} & \cdots & b_0 \end{bmatrix}^{17}$$

- LEMMA: $\mathrm{GCD}(A,B) \not\in D$ iff $\mathrm{res}(A,B)=0$ * Sketch: Set up " $\mathrm{GCD}(A,B) \not\in D$ " as a system of equations involving Syl(A,B)
- Now assume $D=\mathbb{C}$ * So $A(X)=a\prod_{i=1}^m(X-\alpha_i)$ and $B(X)=b\prod_{j=1}^n(X-\beta_j)$

$$Syl(A,B) = \begin{bmatrix} a_m & a_{m-1} & \cdots & a_0 \\ & a_m & a_{m-1} & \cdots & a_0 \\ & & \ddots & & & \ddots \\ & & & a_m & a_{m-1} & \cdots & a_0 \\ b_n & b_{n-1} & \cdots & b_1 & b_0 & & & \\ & & b_n & b_{n-1} & \cdots & b_1 & b_0 & & & \\ & & & \ddots & & & \ddots & & \\ & & & b_n & b_{n-1} & \cdots & b_0 \end{bmatrix}^{17}$$

- LEMMA: $\text{GCD}(A,B) \not\in D$ iff res(A,B) = 0 * Sketch: Set up " $\text{GCD}(A,B) \not\in D$ " as a system of equations involving Syl(A,B)
- Now assume $D=\mathbb{C}$ * So $A(X)=a\prod_{i=1}^m(X-\alpha_i)$ and $B(X)=b\prod_{j=1}^n(X-\beta_j)$

 $Syl(A,B) = \begin{bmatrix} a_m & a_{m-1} & \cdots & a_0 \\ & a_m & a_{m-1} & \cdots & a_0 \\ & & \ddots & & & \ddots \\ & & & a_m & a_{m-1} & \cdots & a_0 \\ b_n & b_{n-1} & \cdots & b_1 & b_0 & & & \\ & & b_n & b_{n-1} & \cdots & b_1 & b_0 & & & \\ & & & \ddots & & & \ddots & & \\ & & & & b_n & b_{n-1} & \cdots & b_0 \end{bmatrix}^{17}$

- LEMMA: $\mathrm{GCD}(A,B) \not\in D$ iff $\mathrm{res}(A,B)=0$ * Sketch: Set up " $\mathrm{GCD}(A,B) \not\in D$ " as a system of equations involving Syl(A,B)
- Now assume $D=\mathbb{C}$ * So $A(X)=a\prod_{i=1}^m(X-\alpha_i)$ and $B(X)=b\prod_{j=1}^n(X-\beta_j)$

• THEOREM A: The resultant ${\tt res}(A,B)$ is equal to each of 18 the following

* (A)
$$a^n \prod_{i=1}^m B(\alpha_i)$$

* (B) $(-1)^{mn}b^m \prod_{j=1}^n A(\beta_j)$
* (C) $a^nb^m \prod_{i=1}^m \prod_{j=1}^n (\alpha_i - \beta_j)$

• COROLLARY:

- * (D) $\beta_j \pm \alpha_i$ is a zero of $D(X) = \operatorname{res}_Y(A(Y), B(X \mp Y))$ * (E) $\alpha_i \beta_j$ is a zero of $E(X) = \operatorname{res}_Y(A(Y), Y^n B(X/Y))$ * (F) $1/\alpha_i$ is a zero of $F(X) = X^m A(1/X)$
- COROLLARY:
 - * The algebraic integers form a ring
 - * The algebraic numbers form a field
- THEOREM: If $\alpha_0, \ldots, \alpha_m$ are algebraic numbers, then any root of $\sum_{i=0}^m \alpha_i X^i$ is also algebraic

• THEOREM A: The resultant res(A,B) is equal to each of ¹⁸ the following

* (A)
$$a^n \prod_{i=1}^m B(\alpha_i)$$

* (B) $(-1)^{mn}b^m \prod_{j=1}^n A(\beta_j)$
* (C) $a^nb^m \prod_{i=1}^m \prod_{j=1}^n (\alpha_i - \beta_j)$

COROLLARY:

- * (D) $\beta_j \pm \alpha_i$ is a zero of $D(X) = \operatorname{res}_Y(A(Y), B(X \mp Y))$
- * (E) $\alpha_i\beta_j$ is a zero of $E(X) = \operatorname{res}_Y(A(Y), Y^nB(X/Y))$
- * (F) $1/\alpha_i$ is a zero of $F(X) = X^m A(1/X)$

COROLLARY:

- * The algebraic integers form a ring
- * The algebraic numbers form a field
- THEOREM: If $\alpha_0, \ldots, \alpha_m$ are algebraic numbers, then any root of $\sum_{i=0}^m \alpha_i X^i$ is also algebraic

• THEOREM A: The resultant res(A,B) is equal to each of ¹⁸ the following

* (A)
$$a^n \prod_{i=1}^m B(\alpha_i)$$

* (B) $(-1)^{mn}b^m \prod_{j=1}^n A(\beta_j)$
* (C) $a^nb^m \prod_{i=1}^m \prod_{j=1}^n (\alpha_i - \beta_j)$

COROLLARY:

- * (D) $\beta_j \pm \alpha_i$ is a zero of $D(X) = \operatorname{res}_Y(A(Y), B(X \mp Y))$ * (E) $\alpha_i \beta_j$ is a zero of $E(X) = \operatorname{res}_Y(A(Y), Y^n B(X/Y))$
- * (F) $1/\alpha_i$ is a zero of $F(X) = X^m A(1/X)$

COROLLARY:

- * The algebraic integers form a ring
- * The algebraic numbers form a field
- THEOREM: If $\alpha_0, \ldots, \alpha_m$ are algebraic numbers, then any root of $\sum_{i=0}^m \alpha_i X^i$ is also algebraic

• THEOREM A: The resultant res(A,B) is equal to each of ¹⁸ the following

* (A)
$$a^n \prod_{i=1}^m B(\alpha_i)$$

* (B) $(-1)^{mn}b^m \prod_{j=1}^n A(\beta_j)$
* (C) $a^nb^m \prod_{i=1}^m \prod_{j=1}^n (\alpha_i - \beta_j)$

• COROLLARY:

- * (D) $\beta_j \pm \alpha_i$ is a zero of $D(X) = \operatorname{res}_Y(A(Y), B(X \mp Y))$
- * (E) $\alpha_i\beta_j$ is a zero of $E(X) = \operatorname{res}_Y(A(Y), Y^nB(X/Y))$
- * (F) $1/\alpha_i$ is a zero of $F(X) = X^m A(1/X)$

COROLLARY:

- * The algebraic integers form a ring
- * The algebraic numbers form a field
- THEOREM: If $\alpha_0, \ldots, \alpha_m$ are algebraic numbers, then any root of $\sum_{i=0}^m \alpha_i X^i$ is also algebraic

* The proof uses theory of symmetric functions

* The proof uses theory of symmetric functions

- Cauchy Bound: Suppose α is the zero of $A(X) = \sum_{i=0}^m a_i X^i \in \mathbb{Z}[X]$
 - * Then $|\alpha| \leq (1+H)$ where $H = ||A||_{\infty}$
- Pf: If $|\alpha| \leq 1$, the result is true. Assume otherwise.
 - * Then $|a_m| \cdot |\alpha|^m \le H \sum_{i=0}^{m-1} |\alpha^i| = H(|\alpha|^m 1)/(|\alpha| 1)$
 - $1) < H|\alpha|^m/(|\alpha| 1).$
 - * The claim follows. QED
- Corollary: $|\alpha| \ge 1/(1+H)$
 - * Pf: Note that $1/|\alpha|$ is the zero of $B(X) = X^m A(1/X)$.
 - * But the height of B(X) is also H. QED
- Constructive Zero Bounds
 - * Based on the structure of the expression (see Exercise)

- Cauchy Bound: Suppose α is the zero of $A(X) = \sum_{i=0}^m a_i X^i \in \mathbb{Z}[X]$
 - * Then $|\alpha| \leq (1+H)$ where $H = ||A||_{\infty}$
- Pf: If $|\alpha| \leq 1$, the result is true. Assume otherwise.
 - * Then $|a_m| \cdot |\alpha|^m \le H \sum_{i=0}^{m-1} |\alpha^i| = H(|\alpha|^m 1)/(|\alpha| 1)$
 - $1) < H|\alpha|^m/(|\alpha|-1).$
 - * The claim follows. QED
- Corollary: $|\alpha| \ge 1/(1+H)$
 - * Pf: Note that $1/|\alpha|$ is the zero of $B(X) = X^m A(1/X)$.
 - * But the height of B(X) is also H. QED
- Constructive Zero Bounds
 - * Based on the structure of the expression (see Exercise)

- Cauchy Bound: Suppose α is the zero of $A(X) = \sum_{i=0}^m a_i X^i \in \mathbb{Z}[X]$
 - * Then $|\alpha| \leq (1+H)$ where $H = ||A||_{\infty}$
- Pf: If $|\alpha| \leq 1$, the result is true. Assume otherwise.

* Then
$$|a_m| \cdot |\alpha|^m \le H \sum_{i=0}^{m-1} |\alpha^i| = H(|\alpha|^m - 1)/(|\alpha| - 1)$$

- $1) < H|\alpha|^m/(|\alpha|-1).$
 - * The claim follows. QED
- Corollary: $|\alpha| \ge 1/(1+H)$
 - * Pf: Note that $1/|\alpha|$ is the zero of $B(X) = X^m A(1/X)$.
 - * But the height of B(X) is also H. QED
- Constructive Zero Bounds
 - * Based on the structure of the expression (see Exercise)

- Cauchy Bound: Suppose α is the zero of $A(X) = \sum_{i=0}^m a_i X^i \in \mathbb{Z}[X]$
 - * Then $|\alpha| \leq (1+H)$ where $H = ||A||_{\infty}$
- Pf: If $|\alpha| \leq 1$, the result is true. Assume otherwise.

* Then
$$|a_m| \cdot |\alpha|^m \le H \sum_{i=0}^{m-1} |\alpha^i| = H(|\alpha|^m - 1)/(|\alpha| - 1)$$

- $1) < H|\alpha|^m/(|\alpha| 1).$
 - * The claim follows. QED
- Corollary: $|\alpha| \ge 1/(1+H)$
 - * Pf: Note that $1/|\alpha|$ is the zero of $B(X) = X^m A(1/X)$.
 - * But the height of B(X) is also H. QED
- Constructive Zero Bounds
 - * Based on the structure of the expression (see Exercise)

- Cauchy Bound: Suppose α is the zero of $A(X) = \sum_{i=0}^m a_i X^i \in \mathbb{Z}[X]$
 - * Then $|\alpha| \leq (1+H)$ where $H = ||A||_{\infty}$
- Pf: If $|\alpha| \leq 1$, the result is true. Assume otherwise.

* Then
$$|a_m| \cdot |\alpha|^m \le H \sum_{i=0}^{m-1} |\alpha^i| = H(|\alpha|^m - 1)/(|\alpha| - 1)$$

- $1) < H|\alpha|^m/(|\alpha| 1).$
 - * The claim follows. QED
- Corollary: $|\alpha| \ge 1/(1+H)$
 - * Pf: Note that $1/|\alpha|$ is the zero of $B(X) = X^m A(1/X)$.
 - * But the height of B(X) is also H. QED
- Constructive Zero Bounds
 - * Based on the structure of the expression (see Exercise)

- Root Separation Bounds
 - * Define Sep(A) to be the minimum of $|\alpha-\beta|$ where α,β range over all pairs of distinct zeros of A(X)

- Discriminant of A(X) is defined as $a^{-1}{\rm res}(A,A')$ where a is A's leading coefficient
 - * Check: If $A(X) \in D[X]$ then $\mathrm{Disc}(A) \in D[X]$

- THEOREM: Let $\alpha_1, \ldots, \alpha_m$ are all the complex roots of $A \in \mathbb{C}[X]$, not necessarily distinct. Up to sign, the following three quantities are equal:
 - + (A) a^{-1} res(A, A') where a is A's leading coefficient
 - * (B) $\prod_{1 \le i \le j \le m} (\alpha_i \alpha_j)^2$
 - * (C) the square of the determinant of the Vandermonde

- Root Separation Bounds
 - * Define ${\rm Sep}(A)$ to be the minimum of $|\alpha-\beta|$ where α,β range over all pairs of distinct zeros of A(X)

- Discriminant of A(X) is defined as $a^{-1}{\rm res}(A,A')$ where a is A's leading coefficient
 - * Check: If $A(X) \in D[X]$ then $\mathrm{Disc}(A) \in D[X]$

- THEOREM: Let $\alpha_1, \ldots, \alpha_m$ are all the complex roots of $A \in \mathbb{C}[X]$, not necessarily distinct. Up to sign, the following three quantities are equal:
 - * (A) a^{-1} res(A, A') where a is A's leading coefficient
 - * (B) $\prod_{1 \le i \le j \le m} (\alpha_i \alpha_j)^2$
 - * (C) the square of the determinant of the Vandermonde

- Root Separation Bounds
 - * Define ${\rm Sep}(A)$ to be the minimum of $|\alpha-\beta|$ where α,β range over all pairs of distinct zeros of A(X)

- Discriminant of A(X) is defined as $a^{-1}{\rm res}(A,A')$ where a is A's leading coefficient
 - * Check: If $A(X) \in D[X]$ then $\mathrm{Disc}(A) \in D[X]$

- THEOREM: Let $\alpha_1, \ldots, \alpha_m$ are all the complex roots of $A \in \mathbb{C}[X]$, not necessarily distinct. Up to sign, the following three quantities are equal:
 - * (A) a^{-1} res(A, A') where a is A's leading coefficient
 - * (B) $\prod_{1 < i < j < m} (\alpha_i \alpha_j)^2$
 - * (C) the square of the determinant of the Vandermonde

matrix,

$$V_m(\alpha_1, \alpha_2, \dots, \alpha_m) := \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_m \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_m^2 \\ \vdots & \vdots & & \vdots \\ \alpha_1^{m-1} & \alpha_2^{m-1} & \cdots & \alpha_m^{m-1} \end{bmatrix}$$

THEOREM (Mahler)

* Then ${\rm Sep}(A)>\sqrt{|disc(A)|}\cdot m^{-(m/2)+1}M(A)^{1-m}$ where M(A) is Mahler measure.

PROOF: Result is trivial when A has multiple roots, for then $\mathrm{Disc}(A)=0$. Else,

assume $\operatorname{Sep}(A) = |\alpha_1 - \alpha_2|$ where $|\alpha_1| \geq |\alpha_2|$.

Starting with the Vandermonde matrix, we may subtract the second column from the first column, preserving the matrix,

$$V_{m}(\alpha_{1}, \alpha_{2}, \dots, \alpha_{m}) := \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_{1} & \alpha_{2} & \cdots & \alpha_{m} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{m}^{2} \\ \vdots & \vdots & & \vdots \\ \alpha_{1}^{m-1} & \alpha_{2}^{m-1} & \cdots & \alpha_{m}^{m-1} \end{bmatrix}$$

THEOREM (Mahler)

* Then ${\rm Sep}(A)>\sqrt{|disc(A)|}\cdot m^{-(m/2)+1}M(A)^{1-m}$ where M(A) is Mahler measure.

PROOF: Result is trivial when A has multiple roots, for then $\mathrm{Disc}(A)=0$. Else,

assume $Sep(A) = |\alpha_1 - \alpha_2|$ where $|\alpha_1| \ge |\alpha_2|$.

Starting with the Vandermonde matrix, we may subtract the second column from the first column, preserving the matrix,

$$V_m(\alpha_1, \alpha_2, \dots, \alpha_m) := \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_m \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_m^2 \\ \vdots & \vdots & & \vdots \\ \alpha_1^{m-1} & \alpha_2^{m-1} & \cdots & \alpha_m^{m-1} \end{bmatrix}$$

THEOREM (Mahler)

* Then ${\rm Sep}(A)>\sqrt{|disc(A)|}\cdot m^{-(m/2)+1}M(A)^{1-m}$ where M(A) is Mahler measure.

PROOF: Result is trivial when A has multiple roots, for then $\mathrm{Disc}(A)=0$. Else,

assume $\operatorname{Sep}(A) = |\alpha_1 - \alpha_2|$ where $|\alpha_1| \geq |\alpha_2|$.

Starting with the Vandermonde matrix, we may subtract the second column from the first column, preserving the determinant.

The first column (transposed) is now $(0, \alpha_1 - \alpha_2, \alpha_1^2 - \alpha_2^2, \dots, \alpha_1^{m-1} - \alpha_2^{m-1}) = (\alpha_1 - \alpha_2)(0, 1, \alpha_1 + \alpha_2, \dots, \sum_{i=0}^{m-2} \alpha_1^i \alpha_2^{m-2-i}).$

The 2-norm of $(0,1,\alpha_1+\alpha_2,\dots,\sum_{i=0}^{m-2}\alpha_1^i\alpha_2^{m-2-i})$ is at most $\sqrt{\sum_{i=0}^{m-2}(i+1)^2|\alpha_1|^i}$.

Hence this 2-norm is at most $h_1 := \sqrt{m^3/3} \max\{1, |\alpha_1|\}^{m-1}$.

By Hadamard's bound, the Vandermonde determinant is at most $\operatorname{Sep}(A)\prod_{i=1}^m h_i$ where h_i is any upper bound on 2-norm of the ith column.

We have already computed h_1 . For $i \geq 2$, we can choose $h_i = \sqrt{m} \max\{1, |\alpha_i|\}^{m-1}$.

The product of these bounds yields $\sqrt{|\mathrm{Disc}(A)|} < \mathrm{Sep}(A)m^{(m/2)+1}\prod_{i=1}^m |\max\{1,|\alpha_i|\}^{m-1} = \mathrm{Sep}(A)m^{(m/2)+1}M(A)$

The conclusion of the theorem is now clear.

* Using Theorem A above, give height bounds for $\alpha\beta$ and $\alpha\pm\beta$, assuming we know heights and degree bounds for α,β

* Using Theorem A above, give height bounds for $\alpha\beta$ and $\alpha\pm\beta$, assuming we know heights and degree bounds for α,β

Sturm Theory

- Now assume $A,B\in\mathbb{R}[X]$ and $\deg A>\deg B>0$
 - * The generalized Sturm sequence for (A,B) is (A_0,A_1,\ldots,A_h) where $(A_0,A_1)=(A,B)$ and $A_{i+1}=-(A_{i-1} \operatorname{mod} A_i)$, with $A_{h+1}=0$
- Let $\mathbf{a} = (a_0, \dots, a_h)$ where $a_i \in \mathbb{R}$
 - * Let Var(a) be the number of sign variations in a
 - * E.g., ${
 m Var}(1,0,-1,0,3)=2$ and ${
 m Var}(0,8,1,0,4,-3,0)=0$

1

- * Write $\operatorname{Var}_{A,B}(a)$ for $\operatorname{Var}(A_0(a),A_1(a),\ldots,A_h(a))$
- THEOREM (Sturm): If B=A', then for all a < b such that $A(a)A(b) \neq 0$
 - * Then $Var_{A,B}(a) Var_{A,B}(b)$ is equal to the number of

Sturm Theory

- Now assume $A, B \in \mathbb{R}[X]$ and $\deg A > \deg B > 0$
 - * The generalized Sturm sequence for (A,B) is (A_0,A_1,\ldots,A_h) where $(A_0,A_1)=(A,B)$ and $A_{i+1}=-(A_{i-1} \operatorname{mod} A_i)$, with $A_{h+1}=0$
- Let $\mathbf{a} = (a_0, \dots, a_h)$ where $a_i \in \mathbb{R}$
 - * Let Var(a) be the number of sign variations in a
 - * E.g., ${
 m Var}(1,0,-1,0,3)=2$ and ${
 m Var}(0,8,1,0,4,-3,0)=1$

1

- * Write $\operatorname{Var}_{A,B}(a)$ for $\operatorname{Var}(A_0(a),A_1(a),\ldots,A_h(a))$
- THEOREM (Sturm): If B=A', then for all a < b such that $A(a)A(b) \neq 0$
 - * Then $Var_{A,B}(a) Var_{A,B}(b)$ is equal to the number of

Sturm Theory

- Now assume $A, B \in \mathbb{R}[X]$ and $\deg A > \deg B > 0$
 - * The generalized Sturm sequence for (A,B) is (A_0,A_1,\ldots,A_h) where $(A_0,A_1)=(A,B)$ and $A_{i+1}=-(A_{i-1} \operatorname{mod} A_i)$, with $A_{h+1}=0$
- Let $\mathbf{a} = (a_0, \dots, a_h)$ where $a_i \in \mathbb{R}$
 - * Let Var(a) be the number of sign variations in a
 - * E.g., ${
 m Var}(1,0,-1,0,3)=2$ and ${
 m Var}(0,8,1,0,4,-3,0)=3$

1

- * Write $\operatorname{Var}_{A,B}(a)$ for $\operatorname{Var}(A_0(a),A_1(a),\ldots,A_h(a))$
- THEOREM (Sturm): If B=A', then for all a < b such that $A(a)A(b) \neq 0$
 - * Then $Var_{A,B}(a) Var_{A,B}(b)$ is equal to the number of

real roots of A in [a, b].

PROOF: First assume (A, B) has no common zero.

Let $c \in [a, b]$ and $v_i(c) := Var(A_{i-1}(c), A_i(c), A_{i+1}(c))$ for $i = 0, \dots, h$.

- (a) $V_{i-1}(c) = V_i(c) = 0$ implies $V_{i-2}(c) = V_{i+1}(c) = 0$
- (b) So $A_h(c) \neq 0$ (otherwise c is common zero of A, B)
- (c) From (a), $V_{i-1}(c)^2 + V_{i+1}(c)^2 \neq 0$ for 1 < i < h.
- (d) This implies $2 extsf{Var}_{A,B}(c) = \sum_{i=0}^h v_i(c)$
- (e) If i > 0 and $A_i(c) = 0$ then $v_i(c^-) = v_i(c^+)$.
- (f) Hence $v_i(c)$, and so $Var_{A,B}(c)$ does not change when c passes through a zero of A_i (i>0)
- (g) If $A_0(c)$ then $v_0(c)$ decreases by 1 (use the fact that $B=A^\prime$)
- (h) Thus, $Var_{A,B}(c)$ decreases by 1 each time as c passes over a zero of A, but does not change otherwise.
- (i) This implies $Var_{A,B}(a) Val_{A,B}(c)$ equals the number

real roots of A in [a, b].

PROOF: First assume (A, B) has no common zero.

Let $c \in [a, b]$ and $v_i(c) := Var(A_{i-1}(c), A_i(c), A_{i+1}(c))$ for $i = 0, \dots, h$.

- (a) $V_{i-1}(c) = V_i(c) = 0$ implies $V_{i-2}(c) = V_{i+1}(c) = 0$
- (b) So $A_h(c) \neq 0$ (otherwise c is common zero of A, B)
- (c) From (a), $V_{i-1}(c)^2 + V_{i+1}(c)^2 \neq 0$ for 1 < i < h.
- (d) This implies $2 extsf{Var}_{A,B}(c) = \sum_{i=0}^h v_i(c)$
- (e) If i > 0 and $A_i(c) = 0$ then $v_i(c^-) = v_i(c^+)$.
- (f) Hence $v_i(c)$, and so $Var_{A,B}(c)$ does not change when c passes through a zero of A_i (i>0)
- (g) If $A_0(c)$ then $v_0(c)$ decreases by 1 (use the fact that $B=A^\prime$)
- (h) Thus, $Var_{A,B}(c)$ decreases by 1 each time as c passes over a zero of A, but does not change otherwise.
- (i) This implies $Var_{A,B}(a) Val_{A,B}(c)$ equals the number

of real zeros of A in [a, b].

Finally, suppose C = GCD(A, B) has degree > 0. sequence $(A_0/C, A_1/C, \ldots, A_h/C)$ has the same properties as what we proved in (i).

- ullet We can now isolate all the real zeros of a polynomial A(X)using an obvious bisection
 - * NOTe: All real zeros lies in the interval [-1-H, 1+H]where H is the height of A(X) Can extend Sturm sequence to find all complex roots (See Chapter 7 [Yap-Fundamental])

of real zeros of A in [a,b]. Finally, suppose C = GCD(A,B) has degree > 0. The sequence $(A_0/C,A_1/C,\ldots,A_h/C)$ has the same properties

- We can now isolate all the real zeros of a polynomial ${\cal A}(X)$ using an obvious bisection
 - * NOTe: All real zeros lies in the interval [-1-H, 1+H] where H is the height of A(X) Can extend Sturm sequence to find all complex roots (See Chapter 7 [Yap-Fundamental])

as what we proved in (i).

Conclusions

- Arithmetic on algebraic numbers are possible via resultant methods, but such methods are inefficient
- Algebraic numbers can be manipulated numerically and compared exactly if you know root bounds

Conclusions

- Arithmetic on algebraic numbers are possible via resultant methods, but such methods are inefficient
- Algebraic numbers can be manipulated numerically and compared exactly if you know root bounds

Conclusions

- Arithmetic on algebraic numbers are possible via resultant methods, but such methods are inefficient
- Algebraic numbers can be manipulated numerically and compared exactly if you know root bounds

- Isolating Interval Representation (IIR):
 - * Å real algebraic number α can be represented by a pair (A(X),[a,b]) such that α is the only zero of $A(X)\in\mathbb{Z}[X]$ in [a,b]
- Show how to perform the four arithmetic operations on IIR's
- Show how to do comparisons on IIR's
- Compare the efficiency of IIR's to our expression approach

- Isolating Interval Representation (IIR):
 - * A real algebraic number α can be represented by a pair (A(X),[a,b]) such that α is the only zero of $A(X)\in\mathbb{Z}[X]$ in [a,b]
- Show how to perform the four arithmetic operations on IIR's
- Show how to do comparisons on IIR's
- Compare the efficiency of IIR's to our expression approach

- Isolating Interval Representation (IIR):
 - * A real algebraic number α can be represented by a pair (A(X),[a,b]) such that α is the only zero of $A(X)\in\mathbb{Z}[X]$ in [a,b]
- Show how to perform the four arithmetic operations on IIR's
- Show how to do comparisons on IIR's
- Compare the efficiency of IIR's to our expression approach

- Isolating Interval Representation (IIR):
 - * A real algebraic number α can be represented by a pair (A(X),[a,b]) such that α is the only zero of $A(X)\in\mathbb{Z}[X]$ in [a,b]
- Show how to perform the four arithmetic operations on IIR's
- Show how to do comparisons on IIR's
- Compare the efficiency of IIR's to our expression approach

- Isolating Interval Representation (IIR)
 - * A real algebraic number α can be represented by a pair (A(X),[a,b]) such that α is the only zero of $A(X)\in\mathbb{Z}[X]$ in [a,b]
- Show how to perform the four arithmetic operations on IIR's
- Show how to do comparisons on IIR's
- Compare the efficiency of IIR's to our expression approach

REFERENCE

 Chapter 6 of [Yap-FundamentalProblems], on roots of polynomials.

"A rapacious monster lurks within every computer, and it dines exclusively on accurate digits."

- B.D. McCullough (2000)

THE END