Lecture 3 and 1 Algebraic Computation

Chee Yap Courant Institute of Mathematical Sciences New York University

Overview and 2^{2}

We introduce some basic concepts of algebraic computation. \bullet 0. Review

- **I. Algebraic Preliminaries**
- II. Resultants and Algebraic Numbers
- III. Sturm Theory

0. REVIEW

ANSWERS and DISCUSSIONS **THE**

• Your experience with CORE so far?

- It did not print 11 digits of $\sqrt{2}$ because... ∗ To fix it, you do ...
- Exercise on Implementation of Convex Hull ∗ Send to Sung-il Pae (T.A.) your solutions, and he will reply with the answers.

What is EGC? Now you know... 5

- Numerical Nonrobustness is widespread
- It has many negative impact on productivity and automation
- EGC prescribes that we compute the exact geometric relations to ensure consistency
	- ∗ Just take the right branch!
- It is the most successful approach
	- ∗ Can duplicate results of any other approach!

• EGC principles can be achieved by using a general library like CORE

• EGC can be expensive, but an effective technique ⁶ is the use of filters and generalization

∗ For bounded-depth rational problems, this is a small constant factor

∗ E.g., convex hulls, line arrangements, etc, in low dimensions

• The center piece of any EGC libraries is an approximate evaluation algorithm for expressions

• The center of this algorithm is a Zero Detector

- ∗ efficiency issues (zero bounds, filters and beyond)
- ∗ geometric rounding
- ∗ theory of EGC
- ∗ transcendental computation, ...

• EXERCISE

- ∗ efficiency issues (zero bounds, filters and beyond)
- ∗ geometric rounding
- ∗ theory of EGC
- ∗ transcendental computation, ...

• EXERCISE

- ∗ efficiency issues (zero bounds, filters and beyond)
- ∗ geometric rounding
- ∗ theory of EGC
- ∗ transcendental computation, ...

• EXERCISE

- ∗ efficiency issues (zero bounds, filters and beyond)
- ∗ geometric rounding
- ∗ theory of EGC
- ∗ transcendental computation, ...

• EXERCISE

- ∗ efficiency issues (zero bounds, filters and beyond)
- ∗ geometric rounding
- ∗ theory of EGC
- ∗ transcendental computation, ...

• EXERCISE

- ∗ efficiency issues (zero bounds, filters and beyond)
- ∗ geometric rounding
- ∗ theory of EGC
- ∗ transcendental computation, ...

• EXERCISE

- ∗ efficiency issues (zero bounds, filters and beyond)
- ∗ geometric rounding
- ∗ theory of EGC
- ∗ transcendental computation, ...

• EXERCISE

 $*$ Let the point p be given as the intersection of two lines, 8 $p = L \cap L'$ where L, L' are given by their equations. If we want to compute \widetilde{p} to s-bits of relative precision, what is the precision necessary in the coefficients of L and L' ?

Algebraic Preliminaries and the settlement of the settlement

• What is between $\mathbb Q$ and $\mathbb R$?

$\bullet \, N \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq A \subseteq \mathbb{R} \subseteq \mathbb{C}$

 $∗$ Ring has $+, -, \times$ and 0, 1. E.g., \mathbb{Z}

∗ Field is a ring with ÷. E.g., Q

 $*$ Domain: a ring where $xy = 0$ implies $x = 0$ or $y = 0$ (no zero divisor)

∗ Ring is commutative if $xy = yx$. Assume this unless otherwise noted!

• Some Constructions in Algebra ∗ Field F ⊆ Domain D ⊆ Ring R \ast Ring $R \subseteq R[X] \subseteq R[X, Y] \subseteq \dots$

- 10 ∗ Domain $D \subseteq$ Quotient field $Q_D \subseteq$ Algebraic closure D
- ∗ Special case: R[X] ⇒ R(X)
- ∗ Ring R to matrix ring $R^{n \times n}$

• Polynomial $A(X) \in R[X]$ of degree m :

- * $A(X) = \sum_{i=0}^{m} a_i X^i$, $(a_m \neq 0)$
- ∗ Leading coefficient, $a_m \neq 0$
- $* A(X)$ is monic if $a_m = 1$
- $∗$ Zero or root of $A(X)$: any $α ∈ R$ such that $A(α) = 0$

• Size measures for $A(X) \in \mathbb{C}[X]$

- $* \, \|A\|_k := \sqrt[k]{\sum_{i=0}^m |a_i|^k}$
- ∗ Height of A is $||A||_{\infty}$

 $*$ Length of A is $||A||_2$ 11

• Fundamental Theorem of Algebra: ∗ A polynomial $A(X) \in \mathbb{C}[X]$ of degree m has exactly m zeros

 $*$ i.e., $A(X) = a_m \prod_{i=1}^m (X - \alpha_i)$

• UFD: Unique factorization domain $* u \in D$ is a unit if if u has an inverse $*$ Two elements $a, b \in D$ are associates if $a = ub$ for some unit u

 $*$ a is irreducible if the only element that divides a is a unit or an associate of a

∗ D is UFD if all non-zero $a \in D$ is equal to a product of

• Fundamental Theorem of Arithmetic: Z is a UFD $*$ GAUSS LEMMA: if D is a UFD then so is $D[X]$ NOTE: A field is always a UFD

• GCD: Greatest Common Divisor

 $*$ In a UFD, we can define GCD (a, b)

 $*$ We compute GCD's in $\mathbb Z$ and in $\mathbb Q[X]$ by Euclid's algorithm

 $*$ GCD over $\mathbb{Z}[X]$ is slightly trickier

• QUESTIONS

∗ From the above examples, show a ring that is not a domain.

* From the above examples, show a non-commutative ¹³

 $*$ Prove that $\sqrt{x}+\sqrt{y}$ is an algebraic integer if x,y are positive integers

Algebraic Numbers 14

• The zero α of an integer polynomial $A(X) \in \mathbb{Z}[X]$ is called an algebraic number

 $*$ If $A(X)$ is monic, α is an algebraic integer

- $∗$ NOTE: If $\alpha \in \mathbb{Q}$ is an algebraic integer, then $\alpha \in \mathbb{Z}$
- Let $A(X) \in \mathbb{Z}[X]$

* $A(X)$ is primitive if the coefficients of $\overline{A(X)}$ have no common factor except ± 1

∗ Can always write $A(X) = c \cdot B(X)$ where $c \in \mathbb{Z}$ and $B(X) \in \mathbb{Z}[X]$ is primitive

• The minimal polynomial of α is the primitive polynomial in $\mathbb{Z}[X]$ of minimal degree. ∗ It is basically unique

* Degree and height of α is the degree and height of this ¹⁵ minimal polynomial

Resultants and 16

• Resultants is a very important constructive tool for manipulation of algebraic numbers

• Let D be any UFD (e.g., $D = \mathbb{Z}$ or $D = \mathbb{Q}[X]$)

• Let $A(X) \in \sum_{i=0}^m a_i X^i, B(X) \in \sum_{j=0}^n b_i X^i$ be polynomials in $D[X]$, $a_m b_n \neq 0$

• The resultant $res(A, B)$ of A, B is the determinant of the Sylvester matrix of A, B : $*$ This is a $(m+n) \times (m+n)$ matrix $Syl(A, B)$

17 Syl(A, B) = a^m am−¹ · · · a⁰ a^m am−¹ · · · a⁰ a^m am−¹ · · · a⁰ bⁿ bn−¹ · · · b¹ b⁰ bⁿ bn−¹ · · · b¹ b⁰ bⁿ bn−¹ · · · b⁰

• LEMMA: $GCD(A, B) \notin D$ iff $res(A, B) = 0$ * Sketch: Set up "GCD $(A, B) \notin D$ " as a system of equations involving $Syl(A, B)$

• Now assume $D = \mathbb{C}$ $*$ So $A(X) = a \prod_{i=1}^{m} (X - \alpha_i)$ and $B(X) = b \prod_{j=1}^{n} (X \beta_i)$

- THEOREM A: The resultant $res(A, B)$ is equal to each of 18 the following
	- * (A) $a^n \prod_{i=1}^m B(\alpha_i)$
	- * (B) $(-1)^{mn}b^m \prod_{j=1}^n A(\beta_j)$
	- * (C) $a^nb^m \prod_{i=1}^m \prod_{j=1}^n (\alpha_i \beta_j)$

• COROLLARY:

- \ast $({\sf D})$ $\beta_j \pm \alpha_i$ is a zero of $D(X) = \texttt{res}_Y(A(Y), B(X\mp Y))$
- κ (E) $\alpha_i\beta_j$ is a zero of $E(X) = \text{res}_Y(A(Y), Y^nB(X/Y))$
- $*$ (F) $1/\alpha_i$ is a zero of $F(X) = X^m A(1/X)$

• COROLLARY:

- ∗ The algebraic integers form a ring
- ∗ The algebraic numbers form a field

• THEOREM: If $\alpha_0, \ldots, \alpha_m$ are algebraic numbers, then any root of $\sum_{i=0}^m \alpha_i X^i$ is also algebraic

* The proof uses theory of symmetric functions 19

Zero Bounds and Separation Bounds 20

- Cauchy Bound: Suppose α is the zero of $A(X)$ = $\sum_{i=0}^{m} a_i X^i \in \mathbb{Z}[X]$ $*$ Then $|\alpha| \leq (1 + H)$ where $H = ||A||_{\infty}$
- Pf: If $|\alpha| \leq 1$, the result is true. Assume otherwise. $*$ Then $|a_m|\cdot|\alpha|^m\leq H\sum_{i=0}^{m-1}|\alpha^i|=H(|\alpha|^m-1)/(|\alpha|-1)$ $1) < H|\alpha|^m/(|\alpha|-1).$ ∗ The claim follows. QED
- Corollary: $|\alpha| \geq 1/(1+H)$
	- $*$ Pf: Note that $1/|\alpha|$ is the zero of $B(X) = X^m A(1/X)$.
	- $*$ But the height of $B(X)$ is also H. QED
- Constructive Zero Bounds
	- ∗ Based on the structure of the expression (see Exercise)

• Root Separation Bounds **• Root Separation Bounds • 21**

∗ Define Sep(A) to be the minimum of |α−β| where α, β range over all pairs of distinct zeros of $A(X)$

- \bullet Discriminant of $A(X)$ is defined as $a^{-1}{\bf res}(A,A')$ where a is \overline{A} 's leading coefficient
	- ∗ Check: If A(X) ∈ D[X] then Disc(A) ∈ D[X]

- THEOREM: Let $\alpha_1, \ldots, \alpha_m$ are all the complex roots of $A \in \mathbb{C}[X]$, not necessarily distinct. Up to sign, the following three quantities are equal:
	- $*$ (A) a^{-1} res (A, A') where a is A 's leading coefficient * (B) $\prod_{1 \leq i < j \leq m} (\alpha_i - \alpha_j)^2$ ∗ (C) the square of the determinant of the Vandermonde

matrix, 22

$$
V_m(\alpha_1, \alpha_2, \dots, \alpha_m) := \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_m \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_m^2 \\ \vdots & \vdots & & \vdots \\ \alpha_1^{m-1} & \alpha_2^{m-1} & \cdots & \alpha_m^{m-1} \end{bmatrix}
$$

• THEOREM (Mahler)

 $*$ Then Sep (A) > $\sqrt{|disc(A)|} \cdot m^{-(m/2)+1} M(A)^{1-m}$ where $M(A)$ is Mahler measure. PROOF: Result is trivial when A has multiple roots, for then $Disc(A) = 0$. Else, assume Sep $(A) = |\alpha_1 - \alpha_2|$ where $|\alpha_1| \ge |\alpha_2|$. Starting with the Vandermonde matrix, we may subtract the second column from the first column, preserving the ²³ determinant.

The first column (transposed) is now $(0, \alpha_1 \alpha_2, \alpha_1^2\,-\,\alpha_2^2$ $\alpha_2^2,\ldots,\alpha_1^{m-1}=\alpha_2^{m-1}$ $\binom{m-1}{2}$ = $(\alpha_1 - \alpha_2)(0, 1, \alpha_1 +$ $\alpha_2, \ldots, \sum_{i=0}^{\bar{m}-2} \alpha_1^i \alpha_2^{\bar{m}-2-i}$ $\binom{m-2-i}{2}$. The 2-norm of $(0, 1, \alpha_1 + \alpha_2, \ldots, \sum_{i=0}^{m-2} \alpha_1^i \alpha_2^{m-2-i}$ $\binom{m-2-i}{2}$ is at most $\sqrt{\sum_{i=0}^{m-2}(i+1)^2|\alpha_1|^i}.$ Hence this 2-norm is at most $h_1:=\sqrt{m^3/3}\max\{1,|\alpha_1|\}^{m-1}.$ By Hadamard's bound, the Vandermonde determinant is at most Sep $(A)\prod_{i=1}^m h_i$ where h_i is any upper bound on 2-norm of the ith column. We have already computed $h_1.$ For $i\geq 2,$ we can choose $h_i = \sqrt{m} \max\{1, |\alpha_i|\}^{m-1}.$ ∣a\
√ The product of these bounds yields $\sqrt{|\mathtt{Disc}(A)|}$ $<$ $\mathtt{Sep}(A)m^{(m/2)+1}\prod_{i=1}^{m}|\max\{1,|\alpha_i|\}^{m-1}=\check{\mathtt{Sep}}(A)m^{(m/2)+1}M(A)$ The conclusion of the theorem is now clear.

²⁴ • EXERCISE

 $*$ Using Theorem A above, give height bounds for $\alpha\beta$ and $\alpha \pm \beta$, assuming we know heights and degree bounds for α, β

Sturm Theory 25

• Now assume $A, B \in \mathbb{R}[X]$ and $\deg A > \deg B > 0$ $*$ The generalized Sturm sequence for (A, B) is (A_0, A_1, \ldots, A_h) where $(A_0, A_1) = (A, B)$ and $A_{i+1} =$ $-(A_{i-1} \bmod A_i)$, with $A_{h+1} = 0$

\n- Let
$$
\mathbf{a} = (a_0, \ldots, a_h)
$$
 where $a_i \in \mathbb{R}$ * Let $\text{Var}(\mathbf{a})$ be the number of sign variations in $\mathbf{a} \ast \mathsf{E}.\mathbf{g}$, $\text{Var}(1, 0, -1, 0, 3) = 2$ and $\text{Var}(0, 8, 1, 0, 4, -3, 0) = 1$
\n

 $*$ Write $Var_{A,B}(a)$ for $Var(A_0(a), A_1(a), \ldots, A_h(a))$

• THEOREM (Sturm): If $B = A'$, then for all $a < b$ such that $A(a)A(b) \neq 0$ ∗ Then Va $\mathbf{r}_{A,B}(a) - \mathbf{Var}_{A,B}(b)$ is equal to the number of

real roots of A in $[a, b]$.

PROOF: First assume (A, B) has no common zero. Let $c \in [a, b]$ and $v_i(c) := \text{Var}(A_{i-1}(c), A_i(c), A_{i+1}(c))$ for $i=0,\ldots,h.$

(a) $\overline{V_{i-1}(c)} = \overline{V_i(c)} = 0$ implies $\overline{V_{i-2}(c)} = \overline{V_{i+1}(c)} = 0$ (b) So $A_h(c) \neq 0$ (otherwise c is common zero of A, B) (c) From (a), $V_{i-1}(c)^2 + V_{i+1}(c)^2 \neq 0$ for $1 < i < h$. (d) This implies $2\text{Var}_{A,B}(c) = \sum_{i=0}^{h} v_i(c)$ (e) If $i > 0$ and $A_i(c) = 0$ then $v_i(c^-) = v_i(c^+).$ (f) Hence $v_i(c)$, and so $Var_{A,B}(c)$ does not change when c passes through a zero of A_i $(i > 0)$

(g) If $A_0(c)$ then $v_0(c)$ decreases by 1 (use the fact that $B = A'$

(h) Thus, $Var_{A,B}(c)$ decreases by 1 each time as c passes over a zero of A , but does not change otherwise.

(i) This implies $Var_{A,B}(a) - Val_{A,B}(c)$ equals the number

of real zeros of A in $[a, b]$.

Finally, suppose $C = GCD(A, B)$ has degree > 0 . The sequence $(A_0/C, A_1/C, \ldots, A_h/C)$ has the same properties as what we proved in (i).

• We can now isolate all the real zeros of a polynomial $A(X)$ using an obvious bisection

∗ NOTe: All real zeros lies in the interval $[-1 - H, 1 + H]$ where H is the height of $A(X)$ Can extend Sturm sequence to find all complex roots (See Chapter 7 [Yap-Fundamental])

Conclusions and 28

• Arithmetic on algebraic numbers are possible via resultant methods, but such methods are inefficient

• Algebraic numbers can be manipulated numerically and compared exactly if you know root bounds

²⁹ EXERCISES

• Isolating Interval Representation (IIR):

 $*$ A real algebraic number α can be represented by a pair $(A(X), [a, b])$ such that α is the only zero of $A(X) \in \mathbb{Z}[X]$ in $[a, b]$

- Show how to perform the four arithmetic operations on IIR's
- Show how to do comparisons on IIR's
- Compare the efficiency of IIR's to our expression approach

REFERENCE 30

• Chapter 6 of [Yap-FundamentalProblems], on roots of polynomials.

"A rapacious monster lurks within every computer, and it dines exclusively on accurate digits."

– B.D. McCullough (2000)

THE END