
1Lecture 2
Core Library and Precision-Driven

Computation

Chee Yap
Courant Institute of Mathematical Sciences

New York University

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

2Overview

We introduce the Core Library and the underlying mechanism

for achieving its basic properties. Two key concepts are

Precision-Driven Computation and Conditional Zero Bounds.

• I. Core Library

• II. Precision-Driven Computation

• III. Conditional Zero Bounds

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

3

I. CORE LIBRARY

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

4Modes of Numerical Computing

• Landscape of Numerical Modes

∗ Why there is not ONE number type, C?

∗ Diversity of number types and applications

∗ N ⊆ Z ⊆ Q ⊆ A ⊆ R ⊆ C

• 1. Symbolic Mode (e.g., Maple)

∗
√

2 is represented exactly, symbolically

• 2. FP Mode (e.g., IEEE Arithmetic)

∗ Fixed Precision, Floating Point

• 3. Arbitrary Precision Mode

∗ Brent’s MP, Bailey’s MPFUN, Muller’s iRRAM

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

4Modes of Numerical Computing

• Landscape of Numerical Modes

∗ Why there is not ONE number type, C?

∗ Diversity of number types and applications

∗ N ⊆ Z ⊆ Q ⊆ A ⊆ R ⊆ C

• 1. Symbolic Mode (e.g., Maple)

∗
√

2 is represented exactly, symbolically

• 2. FP Mode (e.g., IEEE Arithmetic)

∗ Fixed Precision, Floating Point

• 3. Arbitrary Precision Mode

∗ Brent’s MP, Bailey’s MPFUN, Muller’s iRRAM

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

4Modes of Numerical Computing

• Landscape of Numerical Modes

∗ Why there is not ONE number type, C?

∗ Diversity of number types and applications

∗ N ⊆ Z ⊆ Q ⊆ A ⊆ R ⊆ C

• 1. Symbolic Mode (e.g., Maple)

∗
√

2 is represented exactly, symbolically

• 2. FP Mode (e.g., IEEE Arithmetic)

∗ Fixed Precision, Floating Point

• 3. Arbitrary Precision Mode

∗ Brent’s MP, Bailey’s MPFUN, Muller’s iRRAM

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

4Modes of Numerical Computing

• Landscape of Numerical Modes

∗ Why there is not ONE number type, C?

∗ Diversity of number types and applications

∗ N ⊆ Z ⊆ Q ⊆ A ⊆ R ⊆ C

• 1. Symbolic Mode (e.g., Maple)

∗
√

2 is represented exactly, symbolically

• 2. FP Mode (e.g., IEEE Arithmetic)

∗ Fixed Precision, Floating Point

• 3. Arbitrary Precision Mode

∗ Brent’s MP, Bailey’s MPFUN, Muller’s iRRAM

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

4Modes of Numerical Computing

• Landscape of Numerical Modes

∗ Why there is not ONE number type, C?

∗ Diversity of number types and applications

∗ N ⊆ Z ⊆ Q ⊆ A ⊆ R ⊆ C

• 1. Symbolic Mode (e.g., Maple)

∗
√

2 is represented exactly, symbolically

• 2. FP Mode (e.g., IEEE Arithmetic)

∗ Fixed Precision, Floating Point

• 3. Arbitrary Precision Mode

∗ Brent’s MP, Bailey’s MPFUN, Muller’s iRRAM

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

5• 4. Interval Arithmetic or Enclosure Mode

∗ Certified or validated computing

∗ Automatic error tracking

• 5. Guaranteed Accuracy Mode

∗ E.g., LEDA Real, Core Library

∗ A priori precision bounds is given as input

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

5• 4. Interval Arithmetic or Enclosure Mode

∗ Certified or validated computing

∗ Automatic error tracking

• 5. Guaranteed Accuracy Mode

∗ E.g., LEDA Real, Core Library

∗ A priori precision bounds is given as input

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

5• 4. Interval Arithmetic or Enclosure Mode

∗ Certified or validated computing

∗ Automatic error tracking

• 5. Guaranteed Accuracy Mode

∗ E.g., LEDA Real, Core Library

∗ A priori precision bounds is given as input

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

6Core Numerical Accuracy API

• Framework to unify some of the above modes

• CORE Levels:

∗ Level I: IEEE Arithmetic

∗ Level II: Arbitrary Accuracy

∗ Level III: Guaranteed Accuracy

∗ Level IV: Mixed Accuracy

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

6Core Numerical Accuracy API

• Framework to unify some of the above modes

• CORE Levels:

∗ Level I: IEEE Arithmetic

∗ Level II: Arbitrary Accuracy

∗ Level III: Guaranteed Accuracy

∗ Level IV: Mixed Accuracy

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

6Core Numerical Accuracy API

• Framework to unify some of the above modes

• CORE Levels:

∗ Level I: IEEE Arithmetic

∗ Level II: Arbitrary Accuracy

∗ Level III: Guaranteed Accuracy

∗ Level IV: Mixed Accuracy

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

6Core Numerical Accuracy API

• Framework to unify some of the above modes

• CORE Levels:

∗ Level I: IEEE Arithmetic

∗ Level II: Arbitrary Accuracy

∗ Level III: Guaranteed Accuracy

∗ Level IV: Mixed Accuracy

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

6Core Numerical Accuracy API

• Framework to unify some of the above modes

• CORE Levels:

∗ Level I: IEEE Arithmetic

∗ Level II: Arbitrary Accuracy

∗ Level III: Guaranteed Accuracy

∗ Level IV: Mixed Accuracy

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

6Core Numerical Accuracy API

• Framework to unify some of the above modes

• CORE Levels:

∗ Level I: IEEE Arithmetic

∗ Level II: Arbitrary Accuracy

∗ Level III: Guaranteed Accuracy

∗ Level IV: Mixed Accuracy

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

6Core Numerical Accuracy API

• Framework to unify some of the above modes

• CORE Levels:

∗ Level I: IEEE Arithmetic

∗ Level II: Arbitrary Accuracy

∗ Level III: Guaranteed Accuracy

∗ Level IV: Mixed Accuracy

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

7• Delivery Mechanism (C++):

#define Core Level 3
#include "CORE.h"

... standard C++ Program here ...

• Default Level is 3

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

7• Delivery Mechanism (C++):

#define Core Level 3
#include "CORE.h"

... standard C++ Program here ...

• Default Level is 3

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

8Core Library for the Impatient
• Structure of CORE files

∗ src, inc, lib, ext, progs

∗ Makefile in every directory

• Go to $(COREPATH)/progs/

∗ Create your own subdir myproj.

• Copy into myproj one of the Makefiles

∗ Take from a sibling directory. E.g., progs/demos

• Write your first program, helloCore.cpp.

• Modify the Makefile: e.g., simply set ”p = helloCore”.

• Now, type “make”.

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

8Core Library for the Impatient
• Structure of CORE files

∗ src, inc, lib, ext, progs

∗ Makefile in every directory

• Go to $(COREPATH)/progs/

∗ Create your own subdir myproj.

• Copy into myproj one of the Makefiles

∗ Take from a sibling directory. E.g., progs/demos

• Write your first program, helloCore.cpp.

• Modify the Makefile: e.g., simply set ”p = helloCore”.

• Now, type “make”.

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

8Core Library for the Impatient
• Structure of CORE files

∗ src, inc, lib, ext, progs

∗ Makefile in every directory

• Go to $(COREPATH)/progs/

∗ Create your own subdir myproj.

• Copy into myproj one of the Makefiles

∗ Take from a sibling directory. E.g., progs/demos

• Write your first program, helloCore.cpp.

• Modify the Makefile: e.g., simply set ”p = helloCore”.

• Now, type “make”.

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

8Core Library for the Impatient
• Structure of CORE files

∗ src, inc, lib, ext, progs

∗ Makefile in every directory

• Go to $(COREPATH)/progs/

∗ Create your own subdir myproj.

• Copy into myproj one of the Makefiles

∗ Take from a sibling directory. E.g., progs/demos

• Write your first program, helloCore.cpp.

• Modify the Makefile: e.g., simply set ”p = helloCore”.

• Now, type “make”.

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

8Core Library for the Impatient
• Structure of CORE files

∗ src, inc, lib, ext, progs

∗ Makefile in every directory

• Go to $(COREPATH)/progs/

∗ Create your own subdir myproj.

• Copy into myproj one of the Makefiles

∗ Take from a sibling directory. E.g., progs/demos

• Write your first program, helloCore.cpp.

• Modify the Makefile: e.g., simply set ”p = helloCore”.

• Now, type “make”.

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

8Core Library for the Impatient
• Structure of CORE files

∗ src, inc, lib, ext, progs

∗ Makefile in every directory

• Go to $(COREPATH)/progs/

∗ Create your own subdir myproj.

• Copy into myproj one of the Makefiles

∗ Take from a sibling directory. E.g., progs/demos

• Write your first program, helloCore.cpp.

• Modify the Makefile: e.g., simply set ”p = helloCore”.

• Now, type “make”.

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

8Core Library for the Impatient
• Structure of CORE files

∗ src, inc, lib, ext, progs

∗ Makefile in every directory

• Go to $(COREPATH)/progs/

∗ Create your own subdir myproj.

• Copy into myproj one of the Makefiles

∗ Take from a sibling directory. E.g., progs/demos

• Write your first program, helloCore.cpp.

• Modify the Makefile: e.g., simply set ”p = helloCore”.

• Now, type “make”.

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

9Numerical I/O

• Assume: standard C++ program compiled in Level 3

• Key Principle: the internal rep is exact

∗ Comparisons are exact

∗ Input may be inexact

∗ Printout can only be rational or bigfloat approximation

• Class of Extended Longs

∗ Machine long, with special values

∗ CORE posInfty, CORE negInfty, CORE NaN

∗ Main application: to specify precision

• Input will be exact if represented as strings

∗ E.g., double x = 0.123; double y = ”0.123”; double z

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

9Numerical I/O

• Assume: standard C++ program compiled in Level 3

• Key Principle: the internal rep is exact

∗ Comparisons are exact

∗ Input may be inexact

∗ Printout can only be rational or bigfloat approximation

• Class of Extended Longs

∗ Machine long, with special values

∗ CORE posInfty, CORE negInfty, CORE NaN

∗ Main application: to specify precision

• Input will be exact if represented as strings

∗ E.g., double x = 0.123; double y = ”0.123”; double z

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

9Numerical I/O

• Assume: standard C++ program compiled in Level 3

• Key Principle: the internal rep is exact

∗ Comparisons are exact

∗ Input may be inexact

∗ Printout can only be rational or bigfloat approximation

• Class of Extended Longs

∗ Machine long, with special values

∗ CORE posInfty, CORE negInfty, CORE NaN

∗ Main application: to specify precision

• Input will be exact if represented as strings

∗ E.g., double x = 0.123; double y = ”0.123”; double z

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

9Numerical I/O

• Assume: standard C++ program compiled in Level 3

• Key Principle: the internal rep is exact

∗ Comparisons are exact

∗ Input may be inexact

∗ Printout can only be rational or bigfloat approximation

• Class of Extended Longs

∗ Machine long, with special values

∗ CORE posInfty, CORE negInfty, CORE NaN

∗ Main application: to specify precision

• Input will be exact if represented as strings

∗ E.g., double x = 0.123; double y = ”0.123”; double z

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

10= ”123/100”; double w= ”123e-3”;

∗ Global Variable: defInputDigits

• Output: only see rational or bigfloat approximations

∗ E.g., cout << x ;

• We never print garbage digits

∗ The last digit is off by ±1
∗ So a printout of 1.99999 is OK for 2.0
∗ To set output precision, e.g., cout << setprecision(15);

• Approximation: E.g., x.approx(rprec, aprec);

∗ Global variable: defAbsPrec, defRelPrec

∗ Composite Precision: [relprec, absprec]

• Facility for I/O of hugh numbers (in hexadecimal) in files

∗ Can read any prefix of the file

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

10= ”123/100”; double w= ”123e-3”;

∗ Global Variable: defInputDigits

• Output: only see rational or bigfloat approximations

∗ E.g., cout << x ;

• We never print garbage digits

∗ The last digit is off by ±1
∗ So a printout of 1.99999 is OK for 2.0
∗ To set output precision, e.g., cout << setprecision(15);

• Approximation: E.g., x.approx(rprec, aprec);

∗ Global variable: defAbsPrec, defRelPrec

∗ Composite Precision: [relprec, absprec]

• Facility for I/O of hugh numbers (in hexadecimal) in files

∗ Can read any prefix of the file

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

10= ”123/100”; double w= ”123e-3”;

∗ Global Variable: defInputDigits

• Output: only see rational or bigfloat approximations

∗ E.g., cout << x ;

• We never print garbage digits

∗ The last digit is off by ±1
∗ So a printout of 1.99999 is OK for 2.0
∗ To set output precision, e.g., cout << setprecision(15);

• Approximation: E.g., x.approx(rprec, aprec);

∗ Global variable: defAbsPrec, defRelPrec

∗ Composite Precision: [relprec, absprec]

• Facility for I/O of hugh numbers (in hexadecimal) in files

∗ Can read any prefix of the file

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

10= ”123/100”; double w= ”123e-3”;

∗ Global Variable: defInputDigits

• Output: only see rational or bigfloat approximations

∗ E.g., cout << x ;

• We never print garbage digits

∗ The last digit is off by ±1
∗ So a printout of 1.99999 is OK for 2.0
∗ To set output precision, e.g., cout << setprecision(15);

• Approximation: E.g., x.approx(rprec, aprec);

∗ Global variable: defAbsPrec, defRelPrec

∗ Composite Precision: [relprec, absprec]

• Facility for I/O of hugh numbers (in hexadecimal) in files

∗ Can read any prefix of the file

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

10= ”123/100”; double w= ”123e-3”;

∗ Global Variable: defInputDigits

• Output: only see rational or bigfloat approximations

∗ E.g., cout << x ;

• We never print garbage digits

∗ The last digit is off by ±1
∗ So a printout of 1.99999 is OK for 2.0
∗ To set output precision, e.g., cout << setprecision(15);

• Approximation: E.g., x.approx(rprec, aprec);

∗ Global variable: defAbsPrec, defRelPrec

∗ Composite Precision: [relprec, absprec]

• Facility for I/O of hugh numbers (in hexadecimal) in files

∗ Can read any prefix of the file

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

10= ”123/100”; double w= ”123e-3”;

∗ Global Variable: defInputDigits

• Output: only see rational or bigfloat approximations

∗ E.g., cout << x ;

• We never print garbage digits

∗ The last digit is off by ±1
∗ So a printout of 1.99999 is OK for 2.0
∗ To set output precision, e.g., cout << setprecision(15);

• Approximation: E.g., x.approx(rprec, aprec);

∗ Global variable: defAbsPrec, defRelPrec

∗ Composite Precision: [relprec, absprec]

• Facility for I/O of hugh numbers (in hexadecimal) in files

∗ Can read any prefix of the file

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

10= ”123/100”; double w= ”123e-3”;

∗ Global Variable: defInputDigits

• Output: only see rational or bigfloat approximations

∗ E.g., cout << x ;

• We never print garbage digits

∗ The last digit is off by ±1
∗ So a printout of 1.99999 is OK for 2.0
∗ To set output precision, e.g., cout << setprecision(15);

• Approximation: E.g., x.approx(rprec, aprec);

∗ Global variable: defAbsPrec, defRelPrec

∗ Composite Precision: [relprec, absprec]

• Facility for I/O of hugh numbers (in hexadecimal) in files

∗ Can read any prefix of the file

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

11• Question: my internal value is
√

2, but after setprecision(11),

it still prints 1.414.

∗ Why not 1.4142135624?

∗ What is the solution?

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

11• Question: my internal value is
√

2, but after setprecision(11),

it still prints 1.414.

∗ Why not 1.4142135624?

∗ What is the solution?

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

12How It Works in Core Library

• Level 1 Number Types

∗ int, long, float, double

• Level 2 Number Types

∗ BigInt, BigRational, BigFloat, Real

• Level 3 Number Types

∗ Expr

• Promotion and Demotion

∗ 1⇔3 : long, double ⇔Expr

∗ 1⇔2 : long ⇔ BigInt; double ⇔ BigFloat, BigRat

∗ Principle: any program must compile in each level

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

12How It Works in Core Library

• Level 1 Number Types

∗ int, long, float, double

• Level 2 Number Types

∗ BigInt, BigRational, BigFloat, Real

• Level 3 Number Types

∗ Expr

• Promotion and Demotion

∗ 1⇔3 : long, double ⇔Expr

∗ 1⇔2 : long ⇔ BigInt; double ⇔ BigFloat, BigRat

∗ Principle: any program must compile in each level

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

12How It Works in Core Library

• Level 1 Number Types

∗ int, long, float, double

• Level 2 Number Types

∗ BigInt, BigRational, BigFloat, Real

• Level 3 Number Types

∗ Expr

• Promotion and Demotion

∗ 1⇔3 : long, double ⇔Expr

∗ 1⇔2 : long ⇔ BigInt; double ⇔ BigFloat, BigRat

∗ Principle: any program must compile in each level

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

12How It Works in Core Library

• Level 1 Number Types

∗ int, long, float, double

• Level 2 Number Types

∗ BigInt, BigRational, BigFloat, Real

• Level 3 Number Types

∗ Expr

• Promotion and Demotion

∗ 1⇔3 : long, double ⇔Expr

∗ 1⇔2 : long ⇔ BigInt; double ⇔ BigFloat, BigRat

∗ Principle: any program must compile in each level

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

12How It Works in Core Library

• Level 1 Number Types

∗ int, long, float, double

• Level 2 Number Types

∗ BigInt, BigRational, BigFloat, Real

• Level 3 Number Types

∗ Expr

• Promotion and Demotion

∗ 1⇔3 : long, double ⇔Expr

∗ 1⇔2 : long ⇔ BigInt; double ⇔ BigFloat, BigRat

∗ Principle: any program must compile in each level

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

13• What is Level 4?

∗ Research Problem: Not fully defined

• Fundamental gap between Level 2 and Level 3

∗ Role of zero bounds

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

13• What is Level 4?

∗ Research Problem: Not fully defined

• Fundamental gap between Level 2 and Level 3

∗ Role of zero bounds

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

13• What is Level 4?

∗ Research Problem: Not fully defined

• Fundamental gap between Level 2 and Level 3

∗ Role of zero bounds

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

14Expressions in Core Library

• An expression is a DAG (directed acyclic graph

∗ E.g. E =
√

x +
√

y −
√

x + y + 2
√

xy

• Each operation constructs an expression

∗ E.g., x← a + b

• At each node of expression, store:

∗ User Specified precision (if any)

∗ BigFloat approximation α

∗ Error bound for α

∗ Zero bound for α

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

14Expressions in Core Library

• An expression is a DAG (directed acyclic graph

∗ E.g. E =
√

x +
√

y −
√

x + y + 2
√

xy

• Each operation constructs an expression

∗ E.g., x← a + b

• At each node of expression, store:

∗ User Specified precision (if any)

∗ BigFloat approximation α

∗ Error bound for α

∗ Zero bound for α

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

14Expressions in Core Library

• An expression is a DAG (directed acyclic graph

∗ E.g. E =
√

x +
√

y −
√

x + y + 2
√

xy

• Each operation constructs an expression

∗ E.g., x← a + b

• At each node of expression, store:

∗ User Specified precision (if any)

∗ BigFloat approximation α

∗ Error bound for α

∗ Zero bound for α

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

14Expressions in Core Library

• An expression is a DAG (directed acyclic graph

∗ E.g. E =
√

x +
√

y −
√

x + y + 2
√

xy

• Each operation constructs an expression

∗ E.g., x← a + b

• At each node of expression, store:

∗ User Specified precision (if any)

∗ BigFloat approximation α

∗ Error bound for α

∗ Zero bound for α

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

14Expressions in Core Library

• An expression is a DAG (directed acyclic graph

∗ E.g. E =
√

x +
√

y −
√

x + y + 2
√

xy

• Each operation constructs an expression

∗ E.g., x← a + b

• At each node of expression, store:

∗ User Specified precision (if any)

∗ BigFloat approximation α

∗ Error bound for α

∗ Zero bound for α

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

14Expressions in Core Library

• An expression is a DAG (directed acyclic graph

∗ E.g. E =
√

x +
√

y −
√

x + y + 2
√

xy

• Each operation constructs an expression

∗ E.g., x← a + b

• At each node of expression, store:

∗ User Specified precision (if any)

∗ BigFloat approximation α

∗ Error bound for α

∗ Zero bound for α

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

14Expressions in Core Library

• An expression is a DAG (directed acyclic graph

∗ E.g. E =
√

x +
√

y −
√

x + y + 2
√

xy

• Each operation constructs an expression

∗ E.g., x← a + b

• At each node of expression, store:

∗ User Specified precision (if any)

∗ BigFloat approximation α

∗ Error bound for α

∗ Zero bound for α

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

14Expressions in Core Library

• An expression is a DAG (directed acyclic graph

∗ E.g. E =
√

x +
√

y −
√

x + y + 2
√

xy

• Each operation constructs an expression

∗ E.g., x← a + b

• At each node of expression, store:

∗ User Specified precision (if any)

∗ BigFloat approximation α

∗ Error bound for α

∗ Zero bound for α

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

15

II. PRECISION-DRIVEN
EVALUATION

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

16Expression Evaluation Problem

• Ω be set of real operators (partial functions)

∗ E.g., Ω = {+,−,×,÷} ∪ Z

• Expr(Ω) be the set of expressions over Ω
∗ Evaluation: V al : Expr(Ω)→ R (partial)

• Basic Problem: Given e and p ∈ R
∗ Compute a p-bit (rel/abs) approximation to V al(e)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

16Expression Evaluation Problem

• Ω be set of real operators (partial functions)

∗ E.g., Ω = {+,−,×,÷} ∪ Z

• Expr(Ω) be the set of expressions over Ω
∗ Evaluation: V al : Expr(Ω)→ R (partial)

• Basic Problem: Given e and p ∈ R
∗ Compute a p-bit (rel/abs) approximation to V al(e)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

16Expression Evaluation Problem

• Ω be set of real operators (partial functions)

∗ E.g., Ω = {+,−,×,÷} ∪ Z

• Expr(Ω) be the set of expressions over Ω
∗ Evaluation: V al : Expr(Ω)→ R (partial)

• Basic Problem: Given e and p ∈ R
∗ Compute a p-bit (rel/abs) approximation to V al(e)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

16Expression Evaluation Problem

• Ω be set of real operators (partial functions)

∗ E.g., Ω = {+,−,×,÷} ∪ Z

• Expr(Ω) be the set of expressions over Ω
∗ Evaluation: V al : Expr(Ω)→ R (partial)

• Basic Problem: Given e and p ∈ R
∗ Compute a p-bit (rel/abs) approximation to V al(e)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

17Precision-Driven Expression Evaluation

• Precision Bound versus Error Bound

• Up-Down Propagation:

∗ Downward propagation of precision

∗ Upward propagation of error

• Assume problem is solved at the leaves

• This is NOT lazy evaluation

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

17Precision-Driven Expression Evaluation

• Precision Bound versus Error Bound

• Up-Down Propagation:

∗ Downward propagation of precision

∗ Upward propagation of error

• Assume problem is solved at the leaves

• This is NOT lazy evaluation

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

17Precision-Driven Expression Evaluation

• Precision Bound versus Error Bound

• Up-Down Propagation:

∗ Downward propagation of precision

∗ Upward propagation of error

• Assume problem is solved at the leaves

• This is NOT lazy evaluation

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

17Precision-Driven Expression Evaluation

• Precision Bound versus Error Bound

• Up-Down Propagation:

∗ Downward propagation of precision

∗ Upward propagation of error

• Assume problem is solved at the leaves

• This is NOT lazy evaluation

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

17Precision-Driven Expression Evaluation

• Precision Bound versus Error Bound

• Up-Down Propagation:

∗ Downward propagation of precision

∗ Upward propagation of error

• Assume problem is solved at the leaves

• This is NOT lazy evaluation

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

18Basic Lemmas

• Let µ(x) := lg |x|. (µ(0) = −∞)

∗ We may need estimates µ−(x) ≤ µ(x) ≤ µ+(x)

• Let x = y ◦ z for some operation ◦
∗ Compute x̃ = ỹ ◦ z̃, to some absolute precision

• To guarantee k relative bits in x̃, it suffices:

Oper. Op.Prec. Prec. in ỹ Prec. in z̃ Remark

x = yz ∞ k + 1 k + 2

x = y ± z ∞ k + 1− µ−(x) k + 1− µ−(x)

x = y/z k + 2 k + 2 k + 2 (k ≥ 2)

x =
√

y k + 1 k + 1

exp(y) k + 2 k + 2 + µ+(y)

log(y) (not possible)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

18Basic Lemmas

• Let µ(x) := lg |x|. (µ(0) = −∞)

∗ We may need estimates µ−(x) ≤ µ(x) ≤ µ+(x)

• Let x = y ◦ z for some operation ◦
∗ Compute x̃ = ỹ ◦ z̃, to some absolute precision

• To guarantee k relative bits in x̃, it suffices:

Oper. Op.Prec. Prec. in ỹ Prec. in z̃ Remark

x = yz ∞ k + 1 k + 2

x = y ± z ∞ k + 1− µ−(x) k + 1− µ−(x)

x = y/z k + 2 k + 2 k + 2 (k ≥ 2)

x =
√

y k + 1 k + 1

exp(y) k + 2 k + 2 + µ+(y)

log(y) (not possible)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

18Basic Lemmas

• Let µ(x) := lg |x|. (µ(0) = −∞)

∗ We may need estimates µ−(x) ≤ µ(x) ≤ µ+(x)

• Let x = y ◦ z for some operation ◦
∗ Compute x̃ = ỹ ◦ z̃, to some absolute precision

• To guarantee k relative bits in x̃, it suffices:

Oper. Op.Prec. Prec. in ỹ Prec. in z̃ Remark

x = yz ∞ k + 1 k + 2

x = y ± z ∞ k + 1− µ−(x) k + 1− µ−(x)

x = y/z k + 2 k + 2 k + 2 (k ≥ 2)

x =
√

y k + 1 k + 1

exp(y) k + 2 k + 2 + µ+(y)

log(y) (not possible)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

18Basic Lemmas

• Let µ(x) := lg |x|. (µ(0) = −∞)

∗ We may need estimates µ−(x) ≤ µ(x) ≤ µ+(x)

• Let x = y ◦ z for some operation ◦
∗ Compute x̃ = ỹ ◦ z̃, to some absolute precision

• To guarantee k relative bits in x̃, it suffices:

Oper. Op.Prec. Prec. in ỹ Prec. in z̃ Remark

x = yz ∞ k + 1 k + 2

x = y ± z ∞ k + 1− µ−(x) k + 1− µ−(x)

x = y/z k + 2 k + 2 k + 2 (k ≥ 2)

x =
√

y k + 1 k + 1

exp(y) k + 2 k + 2 + µ+(y)

log(y) (not possible)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

19• To guarantee k absolute bits in x̃, it suffices:

Oper. Op.Prec. Prec. in ỹ Prec.in z̃

yz ∞ max{k+1
2 , k + 1 + µ+(z)} max{k+1

2 , k + 1 + µ+(z)}
y + z ∞ k + 1 k + 1

y/z k + 1 k + 2− µ−(z) max{1− µ−(z), k + 2− 2µ−(z) + µ+(y)}
√

y k + 1 max{k + 1, 1− µ−(y)/2}
exp(y) k + 1 max{1, k + 2 + 2µ+(y)+1}
log(y) k + 1 max{1− µ−(y), k + 2− µ+(y)}

• Three mutually recursive algorithms

∗ Eval, Sign, Estimating µ−(x), µ+(x)

∗ How to estimate µ−(x)?

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

19• To guarantee k absolute bits in x̃, it suffices:

Oper. Op.Prec. Prec. in ỹ Prec.in z̃

yz ∞ max{k+1
2 , k + 1 + µ+(z)} max{k+1

2 , k + 1 + µ+(z)}
y + z ∞ k + 1 k + 1

y/z k + 1 k + 2− µ−(z) max{1− µ−(z), k + 2− 2µ−(z) + µ+(y)}
√

y k + 1 max{k + 1, 1− µ−(y)/2}
exp(y) k + 1 max{1, k + 2 + 2µ+(y)+1}
log(y) k + 1 max{1− µ−(y), k + 2− µ+(y)}

• Three mutually recursive algorithms

∗ Eval, Sign, Estimating µ−(x), µ+(x)

∗ How to estimate µ−(x)?

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

19• To guarantee k absolute bits in x̃, it suffices:

Oper. Op.Prec. Prec. in ỹ Prec.in z̃

yz ∞ max{k+1
2 , k + 1 + µ+(z)} max{k+1

2 , k + 1 + µ+(z)}
y + z ∞ k + 1 k + 1

y/z k + 1 k + 2− µ−(z) max{1− µ−(z), k + 2− 2µ−(z) + µ+(y)}
√

y k + 1 max{k + 1, 1− µ−(y)/2}
exp(y) k + 1 max{1, k + 2 + 2µ+(y)+1}
log(y) k + 1 max{1− µ−(y), k + 2− µ+(y)}

• Three mutually recursive algorithms

∗ Eval, Sign, Estimating µ−(x), µ+(x)

∗ How to estimate µ−(x)?

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

20

II. ZERO BOUNDS

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

21Zero Bounds

• Let Ω be set of real operators (partial functions)

∗ E.g., Ω = {+,−,×,÷} ∪ Z

• Let e ∈ Expr(Ω) be an expression.

∗ Call B > 0 a zero bound for e if, whenever e is

well-defined and not zero, then |V al(e)| ≥ B.

• E.g., if e =
√

3 −
√

2, then Cauchy’s bound says

|e| ≥ 1/11 because e is the zero of X4− 10x2 + 1.

• Classical bounds: not constructive or effective.

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

22How to Use Zero Bounds

• Compute a numerical approximation ẽ for e so that

|ẽ− e| < B/2

∗ If |ẽ| ≥ B, then conclude that sign(e) is the sign(ẽ)

∗ Otherwise, declare e = 0

• In practice, compute ẽ incrementally

∗ The zero bound is irrelevant unless e = 0

• This iteration is ONLY needed for ±-nodes

∗ Here is the CORE of Core Library!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

22How to Use Zero Bounds

• Compute a numerical approximation ẽ for e so that

|ẽ− e| < B/2

∗ If |ẽ| ≥ B, then conclude that sign(e) is the sign(ẽ)

∗ Otherwise, declare e = 0

• In practice, compute ẽ incrementally

∗ The zero bound is irrelevant unless e = 0

• This iteration is ONLY needed for ±-nodes

∗ Here is the CORE of Core Library!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

22How to Use Zero Bounds

• Compute a numerical approximation ẽ for e so that

|ẽ− e| < B/2

∗ If |ẽ| ≥ B, then conclude that sign(e) is the sign(ẽ)

∗ Otherwise, declare e = 0

• In practice, compute ẽ incrementally

∗ The zero bound is irrelevant unless e = 0

• This iteration is ONLY needed for ±-nodes

∗ Here is the CORE of Core Library!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

22How to Use Zero Bounds

• Compute a numerical approximation ẽ for e so that

|ẽ− e| < B/2

∗ If |ẽ| ≥ B, then conclude that sign(e) is the sign(ẽ)

∗ Otherwise, declare e = 0

• In practice, compute ẽ incrementally

∗ The zero bound is irrelevant unless e = 0

• This iteration is ONLY needed for ±-nodes

∗ Here is the CORE of Core Library!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

22How to Use Zero Bounds

• Compute a numerical approximation ẽ for e so that

|ẽ− e| < B/2

∗ If |ẽ| ≥ B, then conclude that sign(e) is the sign(ẽ)

∗ Otherwise, declare e = 0

• In practice, compute ẽ incrementally

∗ The zero bound is irrelevant unless e = 0

• This iteration is ONLY needed for ±-nodes

∗ Here is the CORE of Core Library!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

22How to Use Zero Bounds

• Compute a numerical approximation ẽ for e so that

|ẽ− e| < B/2

∗ If |ẽ| ≥ B, then conclude that sign(e) is the sign(ẽ)

∗ Otherwise, declare e = 0

• In practice, compute ẽ incrementally

∗ The zero bound is irrelevant unless e = 0

• This iteration is ONLY needed for ±-nodes

∗ Here is the CORE of Core Library!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

22How to Use Zero Bounds

• Compute a numerical approximation ẽ for e so that

|ẽ− e| < B/2

∗ If |ẽ| ≥ B, then conclude that sign(e) is the sign(ẽ)

∗ Otherwise, declare e = 0

• In practice, compute ẽ incrementally

∗ The zero bound is irrelevant unless e = 0

• This iteration is ONLY needed for ±-nodes

∗ Here is the CORE of Core Library!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

23Some Constructive Bounds

• Degree-Measure Bounds [Mignotte (1982)]

• Degree-Height, Degree-Length [Yap-Dubé (1994)]

• BFMS Bound [Burnikel et al (1989)]

• Eigenvalue Bounds [Scheinerman (2000)]

• Conjugate Bounds [Li-Yap (2001)]

• BFMSS Bound [Burnikel et al (2001)]

• k-ary Method [Pion-Yap (2002)]

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

24An Example

• Consider the e =
√

x +
√

y −
√

x + y + 2
√

xy.

• Assume x = a/b and y = c/d where a, b, c, d are

L-bit integers. Then Li-Yap Bound is 28L + 60
bits, BFMSS is 96L + 30 and Degree-Measure is

80L + 56.
L 50 100 500 5000

BFMS 0.637 9.12 101.9 202.9

Measure 0.063 0.07 1.93 15.26

BFMSS 0.073 0.61 1.95 15.41

Li-Yap 0.013 0.07 1.88 1.89

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

25New k-Ary Rational Bounds

• Division expressions is a bottle neck

∗ Rational input numbers introduces division!

∗ E.g., binary floating point, decimal numbers.

• Overwhelming majoring of ”real inputs” are k-ary

rationals (k = 2, 10)

• THEOREM (Pion-Yap 2003)

∗ BFMSS[k] ≥ BFMSS

∗ Measure[k] ≥Measure

• Implemented in Core Library

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

26• Example of 2-ary Version of BFMSS:
Method BFMSS Li-Yap BFMSS[2] (new)

1 Bit-Bound function 96L + 30 28L + 60 8L + 30

2 Bit-Bound Range (L = 53) 4926-5118 2085-2165 426-462

3 Timing (L = 53, 1000 times) 46.7 s 8.35 s 3.58 s

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

27Applications of EGC

• Meshing Generation

∗ Killer App?

• Theorem Proving

∗ Proving geometric theorems by random tests [Yap et al]

∗ Kepler’s Conjecture [Hale]

• Producing Model Solutions

∗ Table Maker’s Dilemma [Mueller]

∗ Verifying Simplex Programs [Mehlhorn et al]

∗ Testing Statistical Packages [McCullough]

• Symbolic Perturbation

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

27Applications of EGC

• Meshing Generation

∗ Killer App?

• Theorem Proving

∗ Proving geometric theorems by random tests [Yap et al]

∗ Kepler’s Conjecture [Hale]

• Producing Model Solutions

∗ Table Maker’s Dilemma [Mueller]

∗ Verifying Simplex Programs [Mehlhorn et al]

∗ Testing Statistical Packages [McCullough]

• Symbolic Perturbation

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

27Applications of EGC

• Meshing Generation

∗ Killer App?

• Theorem Proving

∗ Proving geometric theorems by random tests [Yap et al]

∗ Kepler’s Conjecture [Hale]

• Producing Model Solutions

∗ Table Maker’s Dilemma [Mueller]

∗ Verifying Simplex Programs [Mehlhorn et al]

∗ Testing Statistical Packages [McCullough]

• Symbolic Perturbation

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

27Applications of EGC

• Meshing Generation

∗ Killer App?

• Theorem Proving

∗ Proving geometric theorems by random tests [Yap et al]

∗ Kepler’s Conjecture [Hale]

• Producing Model Solutions

∗ Table Maker’s Dilemma [Mueller]

∗ Verifying Simplex Programs [Mehlhorn et al]

∗ Testing Statistical Packages [McCullough]

• Symbolic Perturbation

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

27Applications of EGC

• Meshing Generation

∗ Killer App?

• Theorem Proving

∗ Proving geometric theorems by random tests [Yap et al]

∗ Kepler’s Conjecture [Hale]

• Producing Model Solutions

∗ Table Maker’s Dilemma [Mueller]

∗ Verifying Simplex Programs [Mehlhorn et al]

∗ Testing Statistical Packages [McCullough]

• Symbolic Perturbation

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

27Applications of EGC

• Meshing Generation

∗ Killer App?

• Theorem Proving

∗ Proving geometric theorems by random tests [Yap et al]

∗ Kepler’s Conjecture [Hale]

• Producing Model Solutions

∗ Table Maker’s Dilemma [Mueller]

∗ Verifying Simplex Programs [Mehlhorn et al]

∗ Testing Statistical Packages [McCullough]

• Symbolic Perturbation

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

27Applications of EGC

• Meshing Generation

∗ Killer App?

• Theorem Proving

∗ Proving geometric theorems by random tests [Yap et al]

∗ Kepler’s Conjecture [Hale]

• Producing Model Solutions

∗ Table Maker’s Dilemma [Mueller]

∗ Verifying Simplex Programs [Mehlhorn et al]

∗ Testing Statistical Packages [McCullough]

• Symbolic Perturbation

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

28∗ Handling degenerate data automatically

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

28∗ Handling degenerate data automatically

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

29Challenge of EGC

• Internally, all numbers are exact

∗ How to round to lower precision?

∗ This is necessary for cascading algorithms

• Geometric Rounding Problems

∗ Very little is known

• Challenge

∗ Given planar triangulation T and p > 0, Round T to

precision ≤ p

∗ RULES: Degeneration is allowed but no inversion,

preserve proximity

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

29Challenge of EGC

• Internally, all numbers are exact

∗ How to round to lower precision?

∗ This is necessary for cascading algorithms

• Geometric Rounding Problems

∗ Very little is known

• Challenge

∗ Given planar triangulation T and p > 0, Round T to

precision ≤ p

∗ RULES: Degeneration is allowed but no inversion,

preserve proximity

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

29Challenge of EGC

• Internally, all numbers are exact

∗ How to round to lower precision?

∗ This is necessary for cascading algorithms

• Geometric Rounding Problems

∗ Very little is known

• Challenge

∗ Given planar triangulation T and p > 0, Round T to

precision ≤ p

∗ RULES: Degeneration is allowed but no inversion,

preserve proximity

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

29Challenge of EGC

• Internally, all numbers are exact

∗ How to round to lower precision?

∗ This is necessary for cascading algorithms

• Geometric Rounding Problems

∗ Very little is known

• Challenge

∗ Given planar triangulation T and p > 0, Round T to

precision ≤ p

∗ RULES: Degeneration is allowed but no inversion,

preserve proximity

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

30• Why Robust FP-Type Algorithms are hard

∗ They must round and compute at same time!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

30• Why Robust FP-Type Algorithms are hard

∗ They must round and compute at same time!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

31Conclusions

• It is possible to provide a library to solve nonrobustness in

general.

• Open Problem: Give a rounding algorithm for planar

triangulations.

• Open Problem: Give a provably optimal precision-driven

algorithm for the case of four arithmetic operations

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

31Conclusions

• It is possible to provide a library to solve nonrobustness in

general.

• Open Problem: Give a rounding algorithm for planar

triangulations.

• Open Problem: Give a provably optimal precision-driven

algorithm for the case of four arithmetic operations

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

31Conclusions

• It is possible to provide a library to solve nonrobustness in

general.

• Open Problem: Give a rounding algorithm for planar

triangulations.

• Open Problem: Give a provably optimal precision-driven

algorithm for the case of four arithmetic operations

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

31Conclusions

• It is possible to provide a library to solve nonrobustness in

general.

• Open Problem: Give a rounding algorithm for planar

triangulations.

• Open Problem: Give a provably optimal precision-driven

algorithm for the case of four arithmetic operations

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

32EXERCISES

(1) Compute the BFMSS Bound for the expression
√

x +
√

y−
√

x + y + 2
√

xy when

x, y are L-bit integers.

(2) Do the same as (1) when x, y are rational numbers whose numerator and denominator

are L-bit integers.

(3) Do the same as (1) when x, y are L-bit binary floats. More precisely, I mean x and y

have the form B = m2n (for some m, n ∈ Z) where |m| < 2L and 2n < 2L.

The BFMS and BFMSS bounds
FOR YOUR CONVENIENCE, I PUT SOME NOTES on THE BFMSS BOUND FROM

[Mehlhorn-Yap] HERE.

We investigate the zero bound from Burnikel et al [?]. Call this the BFMSS Bound. But

we begin with the older version known as the BFMS Bound [?]. In the absence of division,

these two rules coincide.

Conceptually the BFMS approach first transforms a radical expression e ∈ Expr(Ω2) to

a quotient of two division-free expressions U(e) and L(e).

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

33

e U(e) L(e)

1. integer a a 1

2. e1 ± e2 U(e1)L(e2)± L(e1)U(e2) L(e1)L(e2)

3. e1 × e2 U(e1)U(e2) L(e1)L(e2)

4. e1 ÷ e2 U(e1)L(e2) L(e1)U(e2)

5. k
√

e1
k
√

U(e1)
k
√

L(e1)

BFMS Rules for U(e) and L(e)
If e is division-free, then L(e) = 1 and V al(e) is an algebraic integer (i.e., a root of

some monic integer polynomial). The following lemma is immediate from Table 1:

Lemma 1. V al(e) = V al(U(e))/V al(L(e)).

Table 1 should be viewed as transformation rules on expressions. We apply these rules

recursive in a bottom-up fashion: suppose all the children vi (say i = 1, 2) of a node v in

the expression e has been transformed, and we now have the nodes U(vi), L(vi) are

available. Then we create the node U(v), L(v) and construct the correspond

subexpressions given by the table. The result is still a dag, but not rooted any more.

The transformation e ⇒ (U(e), L(e)) is only conceptual – we do not really need to

compute it. What we do compute are two real parameters u(e) and l(e) are maintained

by the recursive rules in Table 2. The entries in this table are “shadows” of the

corresponding entries in Table 1. (Where are they different?)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

34

e u(e) l(e)

1. integer a |a| 1

2. e1 ± e2 u(e1)l(e2) + l(e1)u(e2) l(e1)l(e2)

3. e1 × e2 u(e1)u(e2) l(e1)l(e2)

4. e1 ÷ e2 u(e1)l(e2) l(e1)u(e2)

5. k
√

e1
k
√

u(e1)
k
√

l(e1)

5’. k
√

e1 min{ k
√

u(e1)l(e1)k−1, u(e1)} min{l(e1),
k
√

u(e1)k−1l(e1)}

BFMS (and BFMSS) Rules for u(e) and l(e)
To explain the significance of u(e) and l(e), we define two useful quantities. If α is an

algebraic number, define

MC(α) :=
m

max
i=1

|αi| (1)

where α1, . . . , αm are the conjugates of α. Thus MC(α) is the “maximum conjugate

size” of α. In general, if A(X) is any polynomial, we define MC(A(X)) to be the

maximum of |αi| where αi range over the zeros of A(X). For instance,

M(α) ≤ M0(α)MC(α)d where d = deg(α). Using MC(α) and M0(α), we obtain

an approach for obtaining zero bounds:

Lemma 2. If α 6= 0 and then

|α| ≥ M0(α)
−1

MC(α)
−d+1

where d = deg(α).

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

35Proof. Let d = deg(α). If the minimal polynomial of α is a
∏m

i=1(X − αi) then we

have a
∏

i |αi| ≥ 1. Thus, assuming α = α1,

|α| ≥
1

a
∏d

i=2 |αi|
≥

1

aMC(α)d−1
.

Q.E.D.

The following theorem shows the significance of u(e), l(e).

Theorem 3. Let e ∈ Expr(Ω2). Then u(e) and l(e) are upper bounds on MC(U(e))

and MC(L(e)), respectively.

Proof. The result is true in the base case where e is an integer. In general, U(e) and

L(e) are formed by the rules in Table 1. These rules uses only the operations of

±,×, k
√
·. Applying the previous lemma, we see that u(e) and l(e) are indeed upper

bounds on MC(V al(U(e))) and MC(V al(L(e))). Q.E.D.

Finally, we show how the BFMS Rules gives us a zero bound. It is rather similar to

Lemma 2, except that we do not need to invoke M0(e).

Theorem 4. Let e ∈ Expr(Ω2) and V al(e) 6= 0. Then

(u(e)
D(e)2−1

l(e))
−1 ≤ |V al(e)| ≤ u(e)l(e)

D(e)2−1
. (2)

If e is division-free,

(u(e)
D(e)−1

)
−1 ≤ |V al(e)| ≤ u(e). (3)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

36Proof. First consider the division-free case. In this case, V al(e) = V al(U(e)). Then

|V al(e)| ≤ u(e) follows from Theorem 3. The lower bound on |V al(e)| follows from

lemma 2, since M0(e) = 1 in the division-free case.

In the general case, we apply the division-free result to U(e) and L(e) separately.

However, we need to estimate the degree of U(e) and L(e). We see that in the

transformation from e to U(e), L(e), the number of radical nodes in the dag doubles:

each k
√
· is duplicated. This means that deg(U(e)) ≤ deg(e)2 and

deg(L(e)) ≤ deg(e)2. From the division-free case, we conclude that

(u(e)
D(e)2−1

)
−1 ≤ |V al(U(e))| ≤ u(e).

and

(l(e)
D(e)2−1

)
−1 ≤ |V al(L(e))| ≤ l(e).

Thus |V al(e)| = |V al(U(e))/V al(L(e))| ≥ (l(e)u(e)D(e)2−1)−1. The upper

bound on |V al(e)| is similarly shown. Q.E.D.

Example. Consider the expression ek ∈ Expr(Ω2) whose value is

αk = V al(ek) = (2
2k

+ 1)
1/2k

− 2. (4)

Note that ek is not literally the expression shown, since we do not have exponentiation in

Ω2. Instead, the expression begins with the constant 2, squaring k times, plus 1, then

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

37
taking square-roots k times, and finally minus 2. Thus u(ek) = (22k

+ 1)1/2k
+ 2 ≤ 5.

The degree bound D(ek) = 2k. Hence the BFMS Bound says

|αk| ≥ u(ek)
1−2k

≥ 5
1−2k

.

How tight is this bound? We have

(2
2k

+ 1)
1/2k

− 2 = 2

(
1 + 2

−2k
)1/2k

− 2

= 2 · e2−k ln(1+2−2k
) − 2

≤ 2 · e2−k2−2k

− 2

≤ 2

(
1 + 2 · 2−k

2
−2k

)
− 2

= 2
2−k−2k

using ln(1 + x) ≤ x if x > −1 and e2 ≤ 1 + 2x if 0 ≤ x ≤ 1/2. We also have

(2
2k

+ 1)
1/2k

− 2 = 2 · e2−k ln(1+2−2k
) − 2

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

38
≥ 2 · e2−k2−2k−1

− 2

≥ 2

(
1 + 2

−k
2
−2k−1

)
− 2

≥ 2
−k−2k

using ex ≥ 1 + x. Hence αk = Θ(2−k−2k
). This example shows that the BFMS bound

is, in a certain sense, asymptotically tight for the class of division-free expressions over Ω2.

Improvements on the BFMS bound
The root bit-bound in (2) is quadratic in D(e), while in (3) it is linear in D(e). This

quadratic factor can become a serious efficiency issue. Consider a simple example:

e = (
√

x +
√

y)−
√

x + y + 2
√

xy where x, y are L-bit integers. Of course, this

expression is identically 0 for any x, y. The BFMS bound yields a root bit-bound of

7.5L +O(1) bits. But in case, x and y are viewed as rational numbers (with

denominator 1), the bit-bound becomes 127.5L +O(1). This example shows that

introducing rational numbers at the leaves of expressions has a major impact on the

BFMS bound. In this section, we introduce two techniques to overcome division.

The BFMSS Bound. Returning to the case of radical expressions, we introduce another

way to improve on BFMS. To avoid the doubling of radical nodes in the

e 7→ (U(e), L(e)) transformation, we change the rule in the last row of Table 2 as

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

39follows. When e = k
√

e1, we use the alternative rule

u(e) = k
√

u(e1)l(e1)k−1, l(e) = l(e1). (5)

But one could equally use

u(e) = u(e1), l(e) = k
√

u(e1)k−1l(e1).

Yap noted that by using the symmetrized rule

u(e) = min{ k
√

u(e1)l(e1)k−1, u(e1)}, l(e) = min{l(e1),
k
√

u(e1)k−1l(e1)},

the new bound is provably never worse than the BFMS bound.

The BFMSS Bound also extends the rules to support general algebraic expressions (Ω4

expressions).

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

40REFERENCE

• Chapter 2 (number types) and Chapter 12 (zero

bounds) of [Mehlhorn-Yap]

• Paper “On Guaranteed Accuracy Computation”:

http://cs.nyu.edu/yap/papers/

“A rapacious monster lurks within every

computer, and it dines exclusively on accurate

digits.”

– B.D. McCullough (2000)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

41

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

42

THE END

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

