
1Summer School on Algorithms:
Course on Exact Geometric

Computation

Chee Yap
Courant Institute of Mathematical Sciences

New York University

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

2Abstract

Most geometric software today will crash because of numerical errors. If you have used

CAD software, you will know this experience first-hand. Can we ever produce numerical

and geometric software that are free of numerical nonrobustness? Some have declared

that this is impossible.

Motivated by such widespread problems of nonrobustness, researchers in the last decade

have been developing a range of techniques to address the problem. An approach called

Exact Geometric Computation has proven highly successful; this approach has been

encoded into libraries such as LEDA, CGAL, and Core Library.

The basic capability of such libraries amounts to guaranteeing arbitrary (user-specified)

precision in a numerical computation. To be useful, this capability has to be efficient

enough to compete with current nonrobust software. Such techniques lie at the interface

between algebraic and numerical computation.

In these lectures, we introduce the theory and techniques underlying this kind of

computation. Students will use the Core Library for programming exercises.

For textbook, we use a book manuscript ”Robust Geometric Computation” by K.Mehlhorn

and C.Yap (download from http://cs.nyu.edu/yap/bks/egc/ for some chapters). For

information about Robust Geometric Computation see http://cs.nyu.edu/exact/. Core

Library is also distributed with Geometry Factory, the commercial version of CGAL (see

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

3http://www.geometryfactory.com/).

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

4COURSE MECHANICS

• There are four days of 31
2 hours sessions.

• Each session is divided into 2 or 3 lectures, followed by 20-30 minute problem sessions.

• Will assign exercises and programming assignments involving the Core Library. Reference

for programming is [Core Tutorial].

• You must work in groups of two each. Two groups may form a supergroup of size 4.

• At the end of this course, I hope to pick one group for a prize. I don’t have any fixed

criteria, but perhaps that will evolve as we proceed.

• A general reference for these lectures will be my book with Mehlhorn, downloadable at

my announced website. I will refer to this book as [Mehlhorn-Yap].

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

5COURSE OVERVIEW

•

DAY ONE

1 What is EGC?

2 Core Library and Precision-Driven Computation

DAY TWO

3 Algebraic Computation

4 Numeric Computation

5 Filter Technology

DAY THREE

6 Curves

7 Surfaces

8 Perturbation

DAY FOUR

9 Theory of Real Computation

10 Transcendental Computation

11 Shortest Path Amidst Discs

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

6

Lecture 1. What is EGC?
• I. Numerical Nonrobustness Phenomenon

• II. This is EGC

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

7Nonrobustness Examples

• Software Crashes

∗ intermittent, numerical causes

• Mesh Generation

∗ Point Classification Problem

• Surface-Surface Intersection (SSI) in CAD

∗ Considered unsolved

• Front Tracking in Physics Simulation

∗ Front surface may self-intersect

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

8Responses to Nonrobustness

• “It is a rare event”

• “Use more stable algorithms”

• “Avoid ill-conditioned inputs”

• “Epsilon-tweaking”

• “There is no solution”

• “Our competitors cannot solve it either” (CAD

companies)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

9What is Epsilon-Tweaking, really?

• “Never compare directly to 0”

∗ IF x = 0 THEN ...

∗ IF |x| ≤ ε THEN ...

• Replace lines by fat lines and fat points

• What is the intersection of two fat lines?

• How to consistently work out the geometry of fat

objects?

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

10Why we must solve this
• Scientific Productivity

∗ Programmers/researchers’ time in debugging

∗ All CAD software can fail

• Economic Impact of Nonrobustness

∗ Barrier to full automation in industry

∗ Mesh Generation: 1 failure per 5 million cells [Aftosmis]

• Mission Critical Computation

∗ Patriot missile in Gulf War (1990)

∗ French Ariane Rocket failure (1995)

∗ North Sea Oil Platform Collapse (1996)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

11CFD in Aircraft Industry

In Computational Fluid Dynamics (CFD)

applications with 50 million elements:
• 10-20 minutes for surface mesh generation

• 3-4 hours for volume meshing

• 1 hour for actual flow analysis

• 2-4 weeks for geometry repair

– T. Peters and D. Ferguson (Boeing Company)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

12Results from CAD Software

• Example from Mehlhorn and Hart (2001)

• Boolean Operation Test:

∗ (1) Construct regular n-gon P

∗ (2) Rotate P by α degrees to form Q

∗ (3) Form union R = P ∪Q. So R is now a 4n-gon

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

13(contd.) CAD Software

Results from several commercial systems:
SYSTEM n α TIME OUTPUT

ACIS 1000 1.0e-4 5 min correct

ACIS 1000 1.0e-5 4.5 min correct

ACIS 1000 1.0e-6 30 min too difficult!

Microstation95 100 1.0e-2 2 sec correct

Microstation95 100 0.5e-2 3 sec incorrect!

Rhino3D 200 1.0e-2 15 sec correct

Rhino3D 400 1.0e-2 – crash!

CGAL/LEDA 5000 6.175e-6 30 sec correct

CGAL/LEDA 5000 1.581e-9 34 sec correct

CGAL/LEDA 20000 9.88e-7 141 sec correct

The last three rows, from the CGAL/LEDA

software, are always correct.

This last column shows 3 forms of failure: crashing,
looping or silent error.

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

14Accuracy as a Contractual Issue

• Geometric Tolerancing in Manufacturing Science

∗ Manufacturing is inherently imprecise

• Moore’s Law in modern Precision Engineering

∗ “On a Log scale, precision increases linearly with time

in each industry.” (Voelcker)

• What is 3± 0.1cm× 5± 0.2cm?

∗ Naive interpretation vs. zone interpretation

• Industry Standards (ASME Y14.5M-1982), (ISO)

• How do we measure conformance?

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

15∗ Assessment methodology via state-of-art CMMs

• CMM (Coordinate Measuring Machines) are

hardwares coupled with software.

• Richard Walker (1988): Government Alert

∗ Software errors are widely divergent

∗ Crisis in procurement procedures

• Economic cost of over- or under-tolerancing

∗ The $10,000 mistake/paper weight

• Anecdoc: Aluminum soda can tops: 0.35±0.05mm

∗ If improved to 0.33± 0.03mm, save millions/year

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

16• Another standard problem: measuring roundness

∗ [Mehlhorn-Shermer-Yap, SCG’97] Complete Procedure

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

17

PART II:
THIS IS EGC

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

18Geometric Predicates

• Signed Area

∆(A, B, C) := det

 a a′ 1

b b′ 1

c c′ 1


= det

 a a′ 1

b − a b′ − a 0

c − a c′ − a 0

 = det

[
b − a b′ − a′

c − a c′ − a′

]

where A = (a, a′), B = (b, b′), etc.

• Basic Properties

∗ Continuity

∗ Predicate LeftTurn(A, B, C) ≡ “∆(A, B, C) > 0”

• Generalization to d-Dimensions

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

19

∗ Signed volume, ∆(A0, . . . , Ad) = det


A0 1

A1 1
...

Ad 1



KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

20Elementary Problems of CG

• Convex Hull

• Arrangement of Hyperplanes

• Voronoi Diagrams

• Shortest Paths amidst Polygonal Obstacles

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

21Approaches to Nonrobustness

• Illustration: what is an “approximate line”?

∗ Pixels on a grid [Bresenham line]

∗ Fat lines or zones [Sequin-Segal]

∗ Polygonal lines [Greene-Yao, Milenkovic]

∗ Finite precision parameter lines [Sugihara]

• General Approaches:

∗ Finite Precision Geometry

∗ Interval Geometry

∗ Consistency Approach

∗ Topological Approach

• Why they don’t work

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

22What is Geometry?

• Euclid, Descartes, Hilbert, Dieudonne,...

• Geometry is about discrete relations

∗ Is a point on a line?

∗ Does a plane cut a sphere?

• “Geometry = Combinatorics + Numerics”

• Consistency Requirement must hold !

∗ If not, we get a qualitative error

• E.g., Convex Hull, Voronoi diagrams

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

23On the Consistency Approach

• Example of Non-Geometric Computation:

∗ Shortest Path Problem for graphs with edge weights

• Fortune’s Concept of Parsimonious Algorithm

∗ Never make a redundant comparison!

• Why this approach is not practical:

∗ [Hoffmann, Hopcroft, Karasick]: consistent intersection

of 3 convex polygons

• Topological Approach of Sugihara

∗ A form of consistency approach

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

24∗ Focus of selected properties to be preserved – e.g.,

planarity

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

25How to Compute Exactly, in the
Geometric Sense

• Algorithm = Sequence of Steps

• Steps = Computation or Tests

• Tests determine the branching path

• Combinatorial relations are determined by path

• THEREFORE, if we take the correct path, the

combinatorics will be correct (i.e., consistent)

• – THIS SLIDE IS THE “TAKE-HOME

MESSAGE”!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

26Features of EGC

• Naive EGC – compute all numbers without error

∗ Infeasible for linear geometry [Yu, Purdue Thesis 1991]

• Exactness is in the geometry, NOT the arithmetic

• Approximate Numbers can be (MUST BE)

exploited

• Standard geometry

∗ No need for “finite precision geometry”

• All standard geometric algorithms can be robust!

∗ No need for new “robust algorithms” for each problem

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

27• Our solution is general (algebraic case)

• General EGC Number Library

∗ Compare other approaches

∗ Core Library [Yap et al (1999)]

∗ Leda Real [Mehlhorn et al (1999)]

∗ Any programmer can write robust programs!

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

28What if I really want Inexactness?

• First response: Assume Nominal Exactness

∗ E.g., convex hull for inexact points

• What if Nominal Exactness isn’t Possible?

∗ Reformulate the problem as another (harder) exact

problem

∗ E.g., triangulation for inexact points from a surface

• Exactness is the best way of achieving consistency

∗ “It is NOT about exactness, but about consistency”

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

29Robustness as a Resource

• Robustness need not be a All-Or-Nothing

Proposition

• The Robustness-Speed Trade-off Curve

• How to exploit Moore’s Law

• Outline of a Compiler-based approach

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

30Beyond EGC?

• Guaranteed Accuracy Computation

∗ A priori precision guarantees

• Interval Arithmetic or Validated Computation

∗ A posteriori precision guarantees

• p-bits of Absolute Error:

∗ |x̃− x| ≤ 2−p.

• p-bits of Relative Error:

∗ |x̃− x| ≤ 2−p|x|.

• OBSERVATION: guaranteeing one relative bit

implies sign guarantee

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

31Conclusions

• Nonrobustness problems is important to solve for economic

and scientific reasons

• Through EGC has shown that nonrobustness, for a large class

of problems, can be systematically solved

• EGC and Guaranteed Accuracy Computation as a new mode

of numerical computation, with many applications

• An area at the interface of numerical, algebraic and geometric

computation

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

32Exercises

IMPLEMENT THIS ALGORITHM IN THE MOST STRAIGHTFORWARD WAY YOU

CAN. USE ARRAYS INSTEAD OF LINKED LISTS, ETC.

GENERAL REMARK ABOUT IMPLEMENTATION: We are less interested in

Object-Oriented Programming (OOP) techniques than in algorithms. So, I would be

happy if you make all variables public, etc.

An Incremental Convex Hull Algorithm
The incremental algorithm maintains the current convex hull CH of the points seen so far.

Initially, CH is formed by choosing three non-collinear points in S. It then considers the

remaining points one by one. When considering a point r, it first determines whether r is

outside the current convex hull polygon. If not, r is discarded. Otherwise, the hull is

updated by forming the tangents from r to CH and updating CH appropriately.

The algorithm maintains the current hull as a circular list L = (v0, v1, . . . , vk−1) of its

extreme points in counter-clockwise order. The line segments (vi, vi+1), 0 ≤ i ≤ k − 1

(indices are modulo k) are the edges of the current hull. If orient(vi, vi+1, r) < 0, we

say r sees the edge (vi, vi+1), and say the edge (vi, vi+1) is visible from r. If

orient(vi, vi+1, r) ≤ 0, we say that the edge (vi, vi+1) is weakly visible from r. After

initialization, k ≥ 3. The following properties are key to the operation of the algorithm.

Property A: A point r is outside CH iff r can see an edge of CH.

Property B: If r is outside CH, the edges weakly visible from r form a non-empty

consecutive subchain; so do the edges that are not weakly visible from r.

If (vi, vi+1), . . . , (vj−1, vj) is the subsequence of weakly visible edges, the updated hull

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

33is obtained by replacing the subsequence (vi+1, . . . , vj−1) by r. The subsequence

(vi, . . . , vj) is taken in the circular sense. E.g., if i > j then the subsequence is

(vi, . . . , vk−1, v0, . . . , vj). From these properties, we derive the following algorithm:

1. Initialize L to the counter-clockwise triangle (a, b, c).

Remove a, b, c from S.

2. FOR ALL r ∈ S

IF (there is an edge e visible from r)

Compute the sequence (vi, . . . , vj) of edges that are weakly visible from r;

Replace the subsequence (vi+1, . . . , vj−1) by r;

To turn the sketch into an algorithm, we provide more information about the substeps.

1. How does one determine whether there is an edge visible from r? We iterate over the

edges in L, checking each edge using the orientation predicate. If no visible edge is

found, we discard r. Otherwise, we take any one of the visible edges as the starting

edge for the next item.

2. How does one identify the subsequence (vi, . . . , vj)? Starting from a visible edge

e, we move counter-clockwise along the boundary until a non-weakly-visible edge is

encountered. Similarly, move clockwise from e until a non-weakly-visible edge is

encountered.

3. How to update the list L? We can delete the vertices in (vi+1, . . . , vj−1) after all

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

34visible edges are found, as suggested in the above sketch (“the off-line strategy”) or

we can delete them concurrently with the search for weakly visible edges (“the on-line

strategy”).

There are four logical ways to negate Properties A and B:

• Failure (A1): A point outside the current hull sees no edge of the current hull.

• Failure (A2): A point inside the current hull sees an edge of the current hull.

• Failure (B1): A point outside the current hull sees all edges of the convex hull.

• Failure (B2): A point outside the current hull sees a non-contiguous set of edges.

Failures (A1) and (A2) are equivalent to the negation of Property A. Similarly, Failures

(B1) and (B2) are complete for Property B if we take (A1) into account. All these failures

can be realized in machine precision arithmetic.

EXPERIMENTS: Run your program on the following input, in Levels 1 and 3. Explain

what you see.

(1)
p1 = (7.3000000000000194, 7.3000000000000167)

p2 = (24.000000000000068, 24.000000000000071)

p3 = (24.00000000000005, 24.000000000000053)

p4 = (0.50000000000001621, 0.50000000000001243)

p5 = (8, 4) p6 = (4, 9) p7 = (15, 27)

p8 = (26, 25) p9 = (19, 11)
(2)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

35p1 = (27.643564356435643,−21.881188118811881)

p2 = (83.366336633663366, 15.544554455445542)

p3 = (4, 4)

p4 = (73.415841584158414, 8.8613861386138595)
(3)
p1 = (200, 49.200000000000003)

p2 = (100, 49.600000000000001)

p3 = (−233.33333333333334, 50.93333333333333)

p4 = (166.66666666666669, 49.333333333333336)
(4)
p1 = (0.50000000000001243, 0.50000000000000189)

p2 = (0.50000000000001243, 0.50000000000000333)

p3 = (24.00000000000005, 24.000000000000053)

p4 = (24.000000000000068, 24.000000000000071)

p5 = (17.300000000000001, 17.300000000000001)
(5)
q1 = (0.10000000000000001, 0.10000000000000001)

q2 = (0.20000000000000001, 0.20000000000000004)

q3 = (0.79999999999999993, 0.80000000000000004)

q4 = (1.267650600228229 · 1030, 1.2676506002282291 · 1030)
(6)

p1 = (24.00000000000005, 24.000000000000053) p2 = (24.0, 6.0)

p3 = (54.85, 6.0) p4 = (54.850000000000357, 61.000000000000121)

p5 = (24.000000000000068, 24.000000000000071) p6 = (6, 6).

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

36

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

37REFERENCES

• Paper “Robust Geometric Computation” in

Handbook of Computational Geometry (eds.Goodman

and O’Rourke), CRC Press, 2nd Edition, 2004.

http://cs.nyu.edu/yap/papers/

• Chapter 1 of [Mehlhorn-Yap]

“A rapacious monster lurks within every

computer, and it dines exclusively on accurate

digits.”

– B.D. McCullough (2000)

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

38

THE END

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005

