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Abstract

Here we present the results of the NSF-funded Workshop on Computational Topol-
ogy, which met on June 11 and 12 in Miami Beach, Florida. This report identifiesim-
portant problems involving both computation and topol ogy.



1 Introduction and Background

Over the past 15 years, computational geometry has become a very productive area, with appli-
cations in fields such as graphics, robotics, and computer-aided design. Computational geometry,
however, primarily focuses on discrete problemsinvolving point sets, polygons, and polyhedra, and
uses combinatorial techniquesto solvethese problems. It isnow timefor computational geometry to
broaden its scope in order to meet the challenges set forth in the President’s I nformation Technol ogy
Advisory Committee (PITAC) Report and the Information Technology for the Twenty-First Century
(1IT?) initiative, specifically the need for accelerated progressin information visualization, advanced
scientific and engineering computation, and computational algorithms and methods.

Thereis aneed to extend computational geometry—with its emphasis on provable correctness,
efficiency, and robustness—to continuous domains, curved surfaces, and higher dimensions. Such
an extension brings computational geometry into contact with classical topology, just as earlier re-
search led to inextricable connections with combinatorial geometry—to the great benefit of both
fields.

We intend the name computational topology to encompass both algorithmic questions in topol-
ogy (for example, recognizing knots) and topological questionsin algorithms (for example, whether
adiscrete construction preserves the topology of the underlying continuous domain).

Research into computational topology has started already [Veg97], and isat present being under-
taken separately by topology, computational geometry, and computer graphics communities, anong
others. Each of these fields has devel oped its own favored approaches to shape representation, ma-
nipulation, and analysis. Algorithms are often specific to certain data representations, and the un-
derlying questions common to all approaches have not been given adequate attention.

The Workshop on Computational Topology, June 11-12, 1999, in Miami Beach, Florida, brought
together researchers involved in aspects of computational topology. The purposes of this interdis-
ciplinary workshop were to set goals for computational topology, identify important problems and
areas, and describe key techniques common to many areas.



2 Goals

Geometric computing isafundamental element in several of the areas highlighted inthe I T? ini-
tiative: information visualization (section 2 of “Fundamental Information Technology Research”)
advanced science and engineering computation (section 2 of “Advanced Computing for Science,
Engineering, and the Nation”), and computational and algorithmic methods (section 3 of “ Advanced
Computing for Science, Engineering, and the Nation™). Scientific and engineering computing often
simulates physical objectsand their interactions, on scalesthat vary from the atomic to the astronom-
ical. Modeling the shapes of these objects, and the space surrounding them, isadifficult part of these
computations. Information visualization also involves shapes and motions, as well as sophisticated
graphics rendering techniques. Each of these two areas, aswell as many others, would benefit from
advances in generic computational and algorithmic methods.

Some of the most difficult and least understood issuesin geometric computing involve topol ogy.
Up until now, work on topological issues has been scattered among a number of fields, and its level
of mathematical sophistication has been rather uneven. This report argues that a conscious focus on
computational topology will accelerate progress in geometric computing.

Topology separates global shape properties from local geometric attributes, and provides a pre-
cise language for discussing these properties. Such alanguage is essential for composing software
programs, such as connecting amesh generator to acomputational fluid dynamicssimulation. Math-
ematical abstraction can also unify similar concepts from different fields. For example, basic ques-
tions of robot reachability or molecular docking become similar topological questions in the appro-
priate configuration or conformation spaces. Finaly, by separating shape manipulation from app-
lication-specific operations, we expect to improve reliability of geometric computing in many do-
mains, just as other large software systems (for example, operating systems and internet routing)
have gained reliability through layered design.



3 Areasand Problems

We have identified five main areasin which computational topology can lead to advancesin sim-
ulation and visualization.

e Shapeacquisition. Theentry of the shapes of physical objectsinto the computer is becoming
increasingly automated. Part of this process is developing algorithms that turn a set of mea-
surements or readings into a topologically valid shape representation.

e Shaperepresentation. Many different computer representations of shapearein use. Describ-
ing the relationshi ps between them, converting from one to the other, and devel oping new rep-
resentations, all require topological ideas and methods.

e Physical simulation. For scientific and engineering computations, shape representations are
typically meshed into small pieces. Many of theissuesthat have arisen in mesh generation are
topological.

e Configuration spaces. Configuration or conformation spaces represent the possible motions
of objects moving among obstacles, mechanical devices, or molecules. These spaces are usu-
ally high-dimensional and non-Euclidean, and hence raise some rather deep topological ques-
tions.

e Topological computation. Some recent advances in topology itself involve algorithms and
computation. Better software for geometric computing will help advance this approach to
topology, while new technigues and representations developed for topological problems will
contribute to the advancement of geometric computing.

In each area we have selected a few problems for more detailed discussion.

3.1 ShapeAcquisition

Computer representations of shapes can either be designed by a person using CAD tools or acquired
from an existing physical object. The latter approach offers advantages of speed and faithfulnessto
an original, which is of course crucial in applications such as medical imaging. Automatic acquisi-
tion of shapes poses awealth of geometric and topological challenges.

Shape Reconstruction from Scattered Points. Modern laser scanners can measure alarge num-
ber of pointson the surface of aphysical object in amatter of seconds. The most basic computational
problem isthe reconstruction of the“ most reasonable’ geometric shapethat generated the point sam-
ple. Wefind algorithmic solutionsto this problem in both the computational geometry and the com-
puter graphics literature. Consistent with the dominant cultures in these two areas, solutions sug-
gested in computational geometry are discrete in nature, while solutions in computer graphics are
based on numerical ideas.

The early work of Hoppe et a. [HDM S92] in computer graphics drew wide attention to the re-
construction problem. The authors give an algorithm that works for point data sampled everywhere
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densely on the surface of the object. A basic step in the reconstruction estimates the surface normal
at a point using a best-fit plane determined by near neighbors. This ideais inherently differential
and limits the algorithm to shapes and data for which locally linear approximations provide useful
information. Raindrop Geomagic, Inc. takes a more global approach in its software Wrap, which
reconstructs a shape using the 3-dimensional Delaunay triangulation of the sampled points [Rai96].
Amenta and Bern describe another algorithm using the Delaunay triangul ation together with differ-
ential ideas [AB98], and go on to prove that their algorithm gives a geometrically close and topo-
logically correct output, under certain assumptions about the point sample. This result rationalizes
the reconstruction process and focuses attention on the more difficult casesin which the assumptions
areviolated, for example, surfaces with creases or boundaries, and sample points with noise.

Manifold and Space Learning. Mathematically, it makes perfect sense to generalize the recon-
struction problem from R2 to higher-dimensional Euclidean space. Perhaps somewnhat surprisingly,
this generalization makes sense also from the viewpoint of applications, including speech recogni-
tion, weather forecasting, and economic prediction. Many natural phenomena can be sampled by
individual measurements, where each measurement can be interpreted as a point in RY, for some
fixed dimension d.

The reconstruction problem in RY is more difficult than in R3 because d usually exceeds 3, but
also because we have no a priori knowledge about the intrinsic dimension of the shape that we wish
to reconstruct. 1t might have mixed or fractal, or even altogether ambiguous, dimension. Since the
input data is a discrete set of points, which by definition has dimension zero, the question itself is
highly ambiguous and the answer depends on the scale at which we view the data. Theidea of scale
dependent variation as applied in the definition of fractal or Hausdorff dimension [Mat95] thus sug-
gestsitself. It appearsin the work of Jones[Jon90], where local dimension is estimated through the
variation of linear best-fits in a hierarchy of nested neighborhoods. It is aso manifest in the work
of Edelsbrunner and Miicke [EM94], who define alpha shapes as a family of reconstructed shapes
parametrized by scale. One of the challenging problemsin this context isthe study of theinteraction
between noise and scale.

Reconstruction from Slices.  In many applicationsthe input dataincludes additional information
that can help in reconstructing the shape. Examples are estimates of surface normals provided by
the scanner or information encoded in the sampling sequence. A classic version of the reconstruc-
tion problem in the latter category presents the datain slices, each slice consisting of one or more
polygons given by a cyclic sequence of vertices. Usualy, the slicing planes are paralel, in which
case the reconstruction reduces to connecting each pair of contiguous slices.

A problematic aspect of this approach to shape reconstruction is the nonsymmetric treatment of
coordinate directions. In other applications, however, nonsymmetric treatment seems warranted or
even necessary. For example, the animation of a moving planar shape can be viewed as sweeping a
surface in R? times time. Branching occurs at critical points, which correspond to momentsin time
where the shape changesitstopology. The relevant mathematics hereis Morse theory, which studies
the combinatorial and differentia structure of critical points [Mil63].

A related problem ismorphing: given two surfacesin R3, construct a continuous deformation of
one surface into the other. The deformation may be ahomotopy or acobordism. Again we can view



this as a problem in Morse theory, only one dimension higher than before. This view is adopted
in [CEF98], where canonical deformations are used in the construction of “shape spaces’. Such
spaces could be useful in building databases of shapes, such as drug compounds, anatomical struc-
tures, and mechanical tools.

Crystal Structuresfrom X-ray Data. The standard tool for determining conformations of atoms
and molecules in crystals is X-ray crystallography. Missing phase information must be inferred to
convert observed Bragg diffraction intensity data into a phased Fourier amplitude set. This process
continues to become more routine even for macromolecul es such as proteins and viruses. A Fourier
transform of the amplitude set then produces an electron density function over R3. If the observed
intensity set extends far enough, the peaks of the the density function provide starting atomic coor-
dinates suitable for least squares refinement, however macromolecular density maps usually do not
have atomic resol ution.

It is again convenient to describe the situation using the language of Morse theory. The density
is viewed as the height function of a 3-manifold in R*, with four types of critical points: “peaks’,
“passes’, “pales’, and “pits’. The reconstruction of the atomic or molecular configuration may be
complicated by the presence of excessive noise, thermal motion, positional and occupancy disor-
der, or lack of atomic resolution. Morse theory interpretations of crystallographic density functions
are being carried out for avariety of crystal structures ranging from macromol ecules with less than
atomic resolution [FCGL97], to ultra precise small molecul e structures for which quantum mechan-
ical perturbations such as lone pair density peaks in the middle of covalent bonds are detectable
[Bad94]. When thermal motion is the primary focus, neutron Bragg diffraction data often are used,
from which nuclear density rather than electon density maps are produced and thus do not include
guantum perturbations.

Advances in computational topology can contribute to the above and to other problems such
as classification schemes for crystal structures using Heegaard level surfaces between passes and
pales [Joh99], and certain related minimal surfaces [LN99]. Delaunay-based reconstruction might
provide useful toolsto addressthe problem of “topological noise” such as spurious peaksand passes.
Morse theory can aso play arole in efficient algorithms for finding structures in electron density
data[CSA99].

3.2 Shape Representation

Data structures for representing shapes have emerged independently in many different fields. These
representations include unstructured collections of polygons (“ polygon soup”), polyhedral models,
subdivision surfaces, spline surfaces, implicit surfaces, skin surfaces, and alpha shapes. Generally
speaking, these methods are at best adequate within their own fields, and not well-suited for connect-
ing acrossfields. At least in the CAD area, there is growing awareness that future systems must be
more mathematically sophisticated than today’s systems. Rida Farouki writes, “ At the heart of this
problem lie some deep mathematical issues, concerned with the computation, representation, and
manipulation of complex geometries’ [Far99]. Shape representation appears to be an ideal areafor
collaboration between mathematicians and computer scientists.



Conversion Between Different Representations. A number of ad hoc methods exist for convert-
ing between different types of representations, usually to and from polyhedral models. These meth-
ods typically use geometric criteria to evaluate the conversion, for example, guaranteeing that the
original surface is pointwise nhot more than a small tolerance distant from the polygona mesh. Ge-
ometry alone is insufficient, however, as it does not guarantee topological properties such as “wa-
tertightness’. Including topological criteria in the evaluation will lead to more correct conversion
programs.

Topology Preserving Simplification. The process of replacing a polygonal surface with asimpler
one, while essential to many hierarchical representations, is notorious for introducing topological
errors which can be fatal for later operations. A popular method, edge contraction [HDD 193], can
be applied to general simplicial complexes, but is not in general guaranteed to produce a complex
homeomorphic to the original. Dey et a. [DEGN98], however, have proved that the complex after
contraction is homeomorphic to the orginal if the neighborhood of the contracted edge satisfiesalink
condition. For 2- and 3-manifolds, the link condition defines the contractabl e edges.

Evenif the output of asimplification processis homeomorphic to the input, however, thereisno
guarantee that the output iscorrectly embedded. Self-intersectionsare often introduced, for instance,
aproblem sometimesknow as* bubbling”. One step towardsguaranteeing acorrect embeddingwasa
paper by Varshney et al. [CVM*96], in which asimplified 2-manifold isfitted into ashell around the
original. Much morework, both in providing mathematically verifiable guaranteesand in developing
efficient algorithms, is required.

Smoothnessand Nonsmoothness.  Smooth surface representationsare commonly divided intoim-
plicit and explicit representations. Implicit surfaces can be defined by blending parametrized sur-
faces such as splines, or as level sets of scalar functions. The advantages of implicit surfaces in-
clude high degree of smoothness for arbitrary topology, ease of raytracing, and ease of combining
several objectsby blending. Disadvantagesinclude difficultieswith parameterization and conversion
to polygona meshes. Moreover, implicit surfaces may have singularities, which can be difficult to
detect and control.

The most common explicit representation—ubiquitous in CAD—is that of nonuniform rational
B-spline (NURBS) patches. A more systematic approach, which offers the advantage of multireso-
lution control, involves subdivision surfaces [ZSD*99]. Both of these methods, however, produce
surfaceswith defects, for example, flat spotsor areas of relatively low smoothness near extraordinary
points. Whether or not a point is extraordinary depends on the local topology within the represent-
ing mesh, and has nothing to do with its geometric location. The changed amount of smoothnessis
thus an artifact of the representation, and should ideally not exist. Animportant challengein smooth
surfaces is to ensure integral measures of visual smoothness (fairness). Variational surfaces aim to
handle such measures directly.

In the other direction, there is also need for representations that can handle singularities such as
boundaries, creases, and corners. With standard polyhedral models, there is no distinction between
the creases resulting from discretization and those that represent true surface features. Spline patches
giveriseto creases of high algebraic degreethat cannot be manipulated directly, and implicit surfaces
rarely allow any control of singularities.



Multiscale Representations. Multiscal e representations, whether implicit or explicit, hold out the
promise of efficiency evenfor very complex geometries. We identify the main challenge as devel op-
ing representationsthat allow controlled topol ogy changes between level s, while supporting avariety
of efficient multiscale operations, such as animation, editing, and “signal processing”.

Implicit multiscal e representations (level sets) have been used in volumerendering. Volumedata
are themselves represented on regular or adaptively refined (octree) grids; thus it is natural to use
classic functional multiscale representations such as wavelets [WE97, Wes94], yet it is also possi-
ble to construct unstructured mesh hierarchies on volume data [WJ95]. While allowing topologi-
cal changes at different levels of the hierarchy, implicit representations offer little control of such
changes. On the other hand, at least in the case of volume data represented on regular grids, signal
processing techniques can be used to handle some of the topological problems [Wes94].

Some of the current explicit methods [SZL 92, RB93, GH97] do allow topological changes, but
the control over such changesis relatively limited and the hierarchies created by these methods are
unsuitable for many purposes, for example, it may be difficult or impossible to parameterize finer
levelsof hierarchiesover the coarselevels. Therecent work of El-Sanaand Varshney [ESV 98] based
on alpha shapes [EM94] aimsto perform topological simplification in a more controlled manner.

Qualitative Geometry and Multiscale Topology. For the final highlighted problem, we move
from shape representation to shape analysis. Topological invariants (see Section 3.5) such as Betti
numbersareinsensitiveto scale, and do not distinguish between tiny holesand large ones. Moreover,
features such as pockets, valleys, and ridges—which are sometimes crucial in applications—are not
usually treated as topological features at all. Nevertheless, topological spaces naturally associated
with a given surface can be used to capture scale-dependent and qualitative geometric features.

For example, the lengths of shortest linking curves [DG98], closed curves through or around a
hole, can be used to distinguish small from large holes, and the areas of compressing disks, which
“sedl off” ahole, can be used to distinguish long narrow pipes from direct openings. The topology
of offset or “neighborhood” surfacesis an appropriate tool for classifying depressions in a surface:
asinkhole with a small opening will seal off as the neighborhood grows, whereas a shallow puddle
will not. Edelsbrunner has already used this ideato design an algorithm to detect pockets in molec-
ular surfaces [EFL 98], but further investigations are necessary to answer gquestions on the border of
geometry and topology.

3.3 Physical Simulation

Scientific computing hastraditionally been concerned with numerical issues such asthe convergence
of discrete approximationsto partial differential equations (PDES), the stability of integration meth-
ods for time-dependent systems, and the computational efficiency of software implementations of
these numerical methods. Of central importance has been ultimate use of these techniques in the
solution of complex problems in science and engineering such as the modeling of combustion sys-
tems, aerodynamics, structural mechanics, molecular dynamics, and problems from alarge number
of other application areas. However, asthese applications have become more complex, thelocal con-
vergence properties of numerical methods have not proven to be sufficient to ensure either correct-
ness or robustness. There are a number of research areas where topological and differential methods



could be integrated with existing numerical techniques in scientific computing to help resolve these
difficulties.

Hexahedral Mesh Generation. For many scientific applications, the preferred discretizationis a
hexahedral mesh partitioning the domain into cuboids. A common approach to hexahedral mesh
generation involves extending a quadrilateral mesh on the domain surface to a three-dimensional
volume mesh of the entire domain [BP97]. Even though several software implementations of this
approach exist [TM95], it is not yet known whether this extension can always be done. An obvious
necessary condition for the existence of ahexahedral mesh isthat there be an even number of bound-
ary quadrilaterals; thisis also sufficient to guarantee the existence of a topological mesh, meaning
one in which hexahedral faces may be slightly nonplanar, for domains forming a simple topol ogical
structure [Mit96, Thu93] or having a bipartite boundary [Epp99]. However, it is not clear whether
similarly simple conditions can guarantee the existence of a polyhedral mesh or whether additional
algebraic conditions on the surface must be imposed.

Another important issue in automatic mesh generation is element quality; poorly shaped ele-
ments (flat or skinny, especially skinny in the “wrong direction”) are directly responsible for poorly
conditioned matrices [Fri72] and hence slow and inaccurate numerical computations [BR78]. For
triangular, tetrahedral, and quadrilateral meshes, the solution to poor quality elements has been the
introduction of “provably good” meshing methods that guarantee to produce a mesh with al ele-
ments having good quality according to various metrics [BE97, BEG94]. However for hexahedral
meshes, little is known about quality metrics and even less is known about provably good meshing.
Recent work using the Jacobian matrix norm as a quality metric for hexahedral elements has shown
promise for finite-element calculations [Knu99].

Anisotropic Mesh Generation.  In many applications the underlying physicsis not isotropic and,
as aresult, standard mesh generation methods and element quality metrics are not appropriate. This
isthe case, for example, in modeling the fluid flow in aboundary layer, or in groundwater flow cal-
culations where the porosity is highly nonisotropic because of geological features such as faults and
layering of strata. For these problems element aspect ratios of 1000:1 are sometimes necesssary;
however, the generation of these meshesis often ad hoc. For isotropic problems the shape optimiza-
tion of elements based on measures generated from local metrics computed from the Hessian of el-
ement error functions has proved useful [Rip92] and optimal for the finite-element approximation
of given functions [Sim94]. A promising area of future research is the extension of these results to
anisotropic problems. For example, onewould liketo characterize the existence of canonical triangu-
lations (perhaps something akin to Delaunay triangulation) given the Riemannian metrics generated
by the error function estimates.

MovingMeshes. In problemssuch as casting and molding, the domain changeswithtime, anditis
convenient to adapt the existing mesh rather than recomputing an entirely new mesh. Moving mesh
problems also arisein Lagrangian discretization strategies for time-dependent PDEs. The challenge
problem here is the identification and correction of topological changes as the mesh changes over
time.



Visualization. Large-scale simulations can generate terabytes of numerical data. Theanalysisand
interpretation of this voluminous data has become an increasingly important research problem. One
promising approach extracts features such as vortex lines or sheets [SZF+93]. The topology and
qualitative geometry of these features can be of great interest. Examples include identification of
voids and pocketsin molecular surfaces [Bad94, EFL 98], and simulation of high-temperature super-
conductors, in which magnetic field lines “tangle” with impuritiesin the material [GKL 96, JP93].

3.4 Configuration Spaces

The notion of configuration space (also called parametric space or realization space) is used in nu-
merous areas, including robotics, graphics, molecular biology, computer vision, and databases for
representing the space of al possible states of a system characterized by many degrees of freedom.
Instead of defining configuration spaces in general, we will illustrate the concept by giving an ex-
amplein robotics.

In robot motion planning, the problem is to compute a collision-free motion between two given
placements—or configurations—of a given robot among a set of obstacles. A configuration is typ-
icaly described as a list of real parameters, and the set of all possible configurationsis called the
configuration space. Free configuration space F is the subset of the configuration space at which
the robot does not intersect any obstacle. The robot can move from an initia configuration to a fi-
nal configuration without intersecting any obstacle if and only if these two configurationslie in the
same connected component of free configuration space. Planning a collision-free motion thus maps
to planning the motion of a point in . In other words, the motion-planning problems map to con-
nectivity questions, or related topological questions, in . Many other problems can be couched in
terms of configuration spaces. Important examplesinclude assembly planning and molecular dock-
ing [HKL97, HLW97, Lat91]. The topology of configuration spaces is little understood, except in
very rudimentary cases, such as that of an object under rigid motion.

Representation and Computation. Most interesting configuration spaces are semialgebraic sets,
finite Boolean combinations of solution sets of polynomial inequalities and equalities. The ques-
tion of representing and computing a semi-algebraic set has received much attention in the last two
decades. Sincethetopology of asemi-algebraic set can bequiteintricate, developing asuitablerepre-
sentationisachallenging (and not fully solved) problem. A common techniqueto represent asemial-
gebraic set isto partition it into semialgebraic sets of constant description complexity, each of which
is homeomorphic to R! for some j [Bri93, Lie91, SS83]. Some commonly used general decompo-
sition schemes are Collin’s decomposition [ACM84, Col 75] and vertical decomposition [CEGS89].
Because of efficiency considerations, we want to minimize the number of cellsin the decomposition.
A major open question in this areais to compute a decomposition of minimum size.

In motion planning, we are interested in computing a single connected component of 7. (Itis
not even obvious that a connected component of a semialgebraic set is also semi-algebraic; thiswas
proved only recently [BPR98].) What isthe combinatorial or topological complexity of such acom-
ponent? Recently, Basu proved tight bounds on the sum of Betti numbers and used it to prove a
sharp bound on the combinatorial complexity of asingle component [Bas98]. However, no efficient
algorithm is known for computing a single cell. A related open problem is to develop an efficient
stratification scheme for a single component of a semialgebraic set.
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In some applications even more challenging problems arise. If the obstacles are moving as well
asthe robot, then we need to update a road-map or stratification dynamically. Also, flexible objects
such as elastic bands, rope, or cloth cannot be properly represented with afinite number of degrees
of freedom. How can we represent configuration spaces of such objects? The key here may be to
capture the notion that different configurations have an energy associated with them, and that only
low-energy configurationsare of interest. Arethere good waysto parametrize these low-energy con-
figurations and to plan motions among them?

Approximation. Computing exact high-dimensional configuration spacesisimpractical. Thusit
isreasonableto ask for approximate representations. Much of the difficulty in approximating a high-
dimensional configuration spaceisin understanding and simplifying the topology of the space. Al-
though several algorithms are known for simplifying the geometry of asurface, littleisknown about
simplifying topology.

Recently, Monte Carlo algorithms have been developed for representing a higher dimensional
semialgebraic set by a 1-dimensional network [KLMR95, KSL96]. Intuitively, this network is an
approximate representation of the road map (a network of 1-dimensional curves that captures the
connectivity information of F). These methods sample pointsin F and connect them by an edge if
they can be connected by adirect pathinside . Sofar very simple strategies have been devel oped for
choosing random points. These methodswork well when F issimple, but better sampling techniques
are needed to handle planning problems involving narrow corridors or other difficult areas, in such
away that the connectivity of the sampled configuration space is preserved.

Decomposition. Dimension reduction is one approach to developing faster algorithms for prob-
lems in high dimensions. One possibility for motion planning is to search for solutions in one or
more projections of the configuration space and then lift the solution back to the original space. For
example, suppose we want to plan a motion for two disks in the plane amid obstacles. The four-
dimensional free space of this system can be computed by decomposing the two-dimensional free
space of each disk into simple cells, and then lifting these cells into R*. Proving that such a strat-
egy succeeds requires severa sophisticated techniques from algebraic topology, including Mayer-
Vietoris sequences [AdBvdS*™ 98, FWY 86, HW86a, HW86b]. A characterization of the sitationsin
which the configuration space can be decomposed and finding the “optimal” decomposition of the
configuration space are two interesting open problemsin this area.

3.5 Topological Computation

The study of algorithms for topological problems has grown quite popular in recent years; it is one
of the few growing branches of topology. In the last few years, there have been several workshops
and the founding of an on-line community—www.computop.org. Much of the recent effort has fo-
cused on classifying the inherent complexity of topological problems. Typically, planar problems
are easy (polynomially solvable), problemsin R3 are hard (exponentially solvable and thought to be
NP-complete), and problemsin R* and higher dimensions are known to be undecidable.

Unknot Recognition. A knot is said to be unknotted if it can be deformed to a (geometric) circle
without passing through itself. In the early 1960s, Haken used a combinatorial representation of sur-
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faces, called normal surfaces, in an algorithm for deciding if aknot is unknotted [Hak61]. A recent
collaboration between mathematicians and computer scientists showed that this algorithm will take
at most exponential time in the number of crossings of the knot [HLP99]. It is till open, however,
whether this problem is NP-complete or can be solved in subexponential time.

Knot and Link Equivalence. Two knotsare equivalent if one can be deformed into the other with-
out passing through itself. Knot equivalence is known to be decidable [Hem92], but the algorithm is
extremely complicated and the computational complexity is as yet unknown. An important related
guestion asks whether two links (collections of intertwined knots) are equivalent. No agorithm is
yet known for this problem.

Three-Sphere Recognition. The development of almost normal surfaces, a generalization of nor-
mal surfaces, has led to the Rubinstein-Thompson algorithm for deciding if a manifold is the 3-
sphere[Tho94]. Recent work of Casson showsthat this a gorithm will take at most exponential time.

Shellings. A shelling of acell complex is an ordering of the cells such that if cells are added one
by one in that order the topological type remains invariant. While interesting for their own sake,
shellings also provide a very useful calculational tool. Hence it is an important algorithmic prob-
lem to determine if a cell complex is shellable and, if not, modify it so that it is. Current algo-
rithms [Let99] are not yet practical, and improvements are needed.

Hyperbolic Geometry. Three-dimensiona manifolds with a hyperbolic structure have many use-
ful properties, allowing extremely efficient and powerful topological calculations. The computer
software package SnapPea [Weg], written by Weeks, implements many of these cal culations and has
proven an exteremely useful tool for low-dimensional topology. There are still many open questions
in algorithmic hyperbolic geometry, for example, whether it is possible to decide if a manifold has
a hyperbolic structure.

Topological Invariants. Another area of interest, with a number of practical applications outside
mathematics, isthe calculation of topological invariants. Many physical objects can change geome-
try more easily than they can change topology. Examples range from molecules to a phabetic char-
acters to geological formations. For these objects, topological invariants offer a more meaningful
description than geometric measures.

The most useful topological invariants involve homology, which defines a sequence of groups
describing the “connectedness’ of atopological space. For example, the Betti numbers of an object
embedded inR3 arerespectively the number of connected components separated by gaps, the number
of circles surrounding tunnels, and the number of shells surrounding voids. Technically, the Betti
numbers are theranks of the free parts of the homology groups. For more abstract topological spaces,
not embedded in R3, the relevant invariants include torsion coefficients as well.

For 2-manifolds without boundary, the homology can be computed quite easily by computing
Euler characteristics and orientability. The case of 3-complexes requires more sophistication, but
computationa geometers have devised quite efficient algorithmsfor the case of 3-complexes embed-
ded in R3 [DE95, DG98]. However, these algorithms use the three-dimensional embedding heavily
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anditisnot yet clear whether they can be extended to general complexes. Theseproblemsarenot just
of mathematical interest: nonmanifold 2-complexes are used quite often in modeling shock fronts,
crack propagation, or domains made of two different materials. In dimension beyond 3, there is yet
no algorithm that would be practical for large complexes.

From apractical point of view it may often be impossible to determine the topology of an object
completely, and estimation of topological invariants may be appropriate. In materials science, struc-
tural properties of composite materials such as concrete or high-impact plastic appear to be related
to the Betti numbers of randomly selected cross sections.

Finally, in addition to studying the shape of objectsin space, topol ogical computationsmay prove
useful in studying the shape of spaceitself! Research is currently underway using astronomical data
to investigate the geometry and topology of the universe. One approach uses maps of cosmic back-
ground radiation to piece together the global structure of the universe [CW98, Wee98].
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4 Techniques

We can already identify anumber of techniques that computational topology could bring to bear
on the applications described above. We list them in order from general scientific principles down
to specific algorithmic methods.

e Mathematical Viewpoint. Topology separates global shape properties from local geometric
attributes, and provides a precise language for discussing these properties. Such alanguage
is essential for composing software applications, such as connecting a mesh generator to a
computationa fluid dynamics simulation. Mathematical abstraction can also unify similar
concepts from different fields. For example, basic questions of robot reachability or molec-
ular docking become topological questions in the appropriate configuration or conformation
spaces.

e Asymptotic Analysis. Thesignaturetechnique of theoretical computer scienceisasymptotic
worst-case and average-case analysis of algorithms. This type of analysis, while sometimes
overemphasized as an end in itsdlf, is helpful in providing a common yardstick to measure
progress and encourage future work. Although proving upper bounds on algorithm perfor-
manceisusually amatter of concrete analysis, topological ideas such as Betti numbers can be
useful in proving lower bounds [Yao94].

e Exact Geometric Computation. This technique draws on algebraic number theory to en-
sure thetopol ogical correctness of geometric computations. In principle, thistechnique solves
most of the numerical robustness problems in such applications as CAD modeling and com-
putational simulation.

e Differential Methods. Many techniquesfromdifferential geometry, such asMorsetheory for
studying singularities, are essential in analyzing surfaces and models in diverse applications
such as medical imaging, crystallography, and molecular modeling,

e Topological Methods in Discrete Geometry. Topological results such as the Borsuk-Ulam
theorem [Bor33], that any continuous antipodal function on a sphere must have a zero, have
commonly been used in discrete geometry to prove the existence of geometric configurations
such as ham sandwich cuts and centerpoints [Bj095, Ziv97]. However, such methods do not
generally lead to efficient algorithms for finding such configurations [K095], so further re-
search on effective existence proofs may be warranted.

e Multiscale Synthesis and Analysis. Multiresolution techniques have already assumed great
importance in the synthesis of computer graphics models and in numerical methods for physi-
cal simulation. Multiscal e techniques arefast becoming equally important in visualization and
analysisof unstructured “natural” data. One example[Ler,Jon90] usestechniquesdrawn from
geometric measure theory and harmonic analysis for approximating a set with best fit planes
at different resolutions. This approach segments a point set or image into subsets of different
geometric structure; by combining continuous and discrete analysis, it produces results even
for noisy data.
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e Normal Surfaces. Invented by Kneser [Kne29], normal surfaces were the basis for Haken's
knot algorithm [Hak61], and have been used in numerous algorithmic and finiteness results
in topology [Has97, JS98]. Instead of representing a curve or surface with an explicit mesh
or parameterization, normal surface theory describes how that curve or surface intersects a
given mesh of the ambient space. Thisyieldsavery efficient representation for densely folded
curves and surfaces, which has potentia in applications where such curves and surfaces occur.
Moreover, normal surface theory provides a natural “addition” operation for surfaces that is
useful for their manipulation.
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5 Recommendations

e Research Community. Thereisneed to build acomputational topology research community
including computer scientists, engineers, and mathematicians, and to organize workshops and
conference special sessions, and to maintain Web sites, bibliographies, and collections of open
problems. Techniguesfrom topology have already been used in geometric computing and vice
versa. We want to strengthen and formalize this link.

e Online Clearinghouse. To encourage a sense of community, we should establish a clearing-
house of research projects, papers, software, and informa communications between workers
inthis area. The web site already present at www.computop.org could possibly provide alo-
cation for this collection.

e Research Funding. Grant opportunities are needed to encourage further work in these areas,
either as a separate initiative or continued funding from the relevant areas within NSF.

e Continuation of Workshop. It seems premature to establish ajournal or annual conference
seriesinthisarea, but at theleast there should be another workshop on computational topology.
Thisyear’sworkshop was an invitation-only, direction-finding session; what is needed now is
aforum for collecting new work in the area and fostering continued interdisciplinary collabo-
ration. Perhaps such an event could be held in conjunction with the annual ACM Symposium
on Computational Geometry, to be held next year in Hong Kong.
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