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Special Issue on
Robust Geometric Algorithms and their Implementations

The robust implementation of geometric algorithms is highly nontrivial. There are several reasons for thi
retical algorithms (i.e., algorithms on paper) traditionally assume error-free real computations, at constant t
per operation, and data in general position. All three assumptions do not hold in the real world (i.e., algorit
silicon). So implementors face the tasks of (1) controlling the effects of numerical errors, (2) achieving pract
efficient implementations, and (3) enumerating all degenerate possibilities and devising ways to treat them.

All three tasks are illustrated by papers in this collection. (1) The paper of Devillers and Guigue addres
“rounding of polygons”—this problem arises because the choices we make in rounding numbers can have g
consequences which must be controlled. (2) The paper of Emiris and Karavelas shows how to implement the p
used in computing Apollonius diagrams efficiently and exactly—this is an issue because such predicates
critical operations for the algorithm. (3) The paper of Schömer and Wolpert introduces the Jacobi curve techn
detecting tangential intersections—such intersections do not arise under the “data in general position” assum

In the last decade, we have seen the emergence of the Exact Geometric Computation (EGC) paradigm for
robust geometric algorithms. Unlike other approaches to nonrobustness, only the EGC approach can be enco
general-purpose software library which programmers can invoke to achieve full robustness for their otherwise
programs. Today, implementors without special knowledge of robustness techniques can routinely implemen
and robust algorithms for many problems, just by invoking libraries such as LEDA, CGAL or Core Library. T
no mean achievement: 10 years ago, the construction of any single such program would have been rega
challenge. What made this possible is the emergence of new techniques such as filters and effective zero b
bridge the gap between theory and practice.

Many challenges lie ahead in the development of EGC computation. Three key areas are represented b
rent collection of papers: geometric rounding, efficient nonlinear computation, and the Zero Problem. (a)Geometric
rounding is addressed by Devillers and Guigue. Although we have techniques for robust and efficient comput
many problems, the computed object may require high precision and often requires different numerical rep
tion than the input numbers. For instance, the computed object may require representations of algebraic nu
applications, we would like such numbers to be approximated by floating point numbers. The rounding of n
becomes complicated when they determine geometric features which must be preserved. Despite the inc
recognized importance of geometric rounding, there are still few results. In fact, the only problem treated w
depth in the literature is the problem of rounding an arrangement of line segments on the integer grid. So t
of Devillers and Guigue is a welcome contribution to this sparse literature. (b)Nonlinear algebraic computation is a
crucial testing ground for robustness techniques because the nonrobustness phenomenon, while bad in lin
etry, becomes much more pronounced in the nonlinear world. The paper of Schömer and Wolpert address
the simplest nonlinear problems in 3-dimensions, viz., arrangement of quadric surfaces. Nonlinearity is als
issue in the paper of Emiris and Karavelas, albeit in 2-dimensions. (c) TheZero Problem originally arose in logic,
and concerns deciding whether a given numerical expression represents 0. Among the many deep open
here, perhaps the most important case is whether the zeros represented by numerical expressions over th
exp and log are decidable. The strongest positive result here is from Richardson (1997) who showed that s
0925-7721/$ – see front matter 2005 Published by Elsevier B.V.
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are decidable if Schanuel’s conjecture in transcendental number theory is true. The present paper of Richa
Elsonbaty addresses another conjecture which would imply the efficient decidability of such zeros.

Here is a brief summary of each paper:

1. “Inner and outer rounding of Boolean operations on lattice polygonal regions” by Olivier Devillers and P
Guigue. This paper addresses a basic rounding problem, namely, how to do inner and outer rounding of p
regions. Unlike the well-studied problem of rounding line arrangements, we can distinguish three “mo
rounding polygonal regions: rounding to an inner polygonal region, to an outer polygonal region, or to a po
region whose boundary is within some (Hausdorff) distance from the true boundary. The authors treat
two modes. This terminology of “rounding mode” is suggestive of the rounding modes in IEEE floating
arithmetic. Indeed, as the authors suggest in their conclusion, what we want are geometric analogs of
standard.

2. “The predicates of the Apollonius diagram: Algorithmic analysis and implementation” by Ioannis Z. Emir
Menelaos I. Karavelas.Apollonius diagrams are the Voronoi diagrams of circles. This paper focuses on the
plementation of exact predicates for this computation. Their approach is based on computing with poly
via multivariate resultants and Sturm sequences with multiprecision arithmetic. They also use arithmet
techniques to compute the easy cases as quickly as possible. Filters is another major technique in exact
computing. It should be clear that extensions and generalizations of this work is wide open.

3. “Counterexamples to the uniformity conjecture” by Daniel Richardson and Ahmed Elsonbaty. In robus
rithms, we need to guarantee some user-specified precision in the numerical output. Most practical al
for achieving suchguaranteed precision rely on some form of zero bounds, calledgap functions in this paper.
If Ω = {±,×, . . .} ∪ Z is a set of complex operators, andExpr(Ω) denote the set of expressions overΩ , let
V : Expr(Ω) → C be the evaluation (partial) function. A gap function has the formg : Expr(Ω) → R�0 such that
if e ∈ Expr(Ω), andV (e) is well-defined and non-zero, then|V (e)| � g(e). Unfortunately, provable gap func
tions are usually too pessimistic for algebraic expressions; when transcendental functions like exp and
introduced intoΩ , then no provable gap bounds are known. TheUniformity Conjecture of Richardson postu
lates a gap function where− logg(e) is proportional to the length of the expressione. To exclude some obviou
counter-examples, we restricte to be an “expanded” expression. There are closely related conjectures of Jo
der Hoeven called Witness Conjectures. This paper disproves the Uniformity Conjecture (and the strong
the Witness Conjecture). The technique for generating such counter examples is interesting and has ind
interest. The authors proposed a replacement for the Uniformity Conjecture.

4. “An exact and efficient approach for computing a cell in an arrangement of quadrics” by Elmar Schöm
Nicola Wolpert. Computing the intersection of two quadrics is a highly classical problem. In the last few
a number of papers has revisited this problem in attempts to remedy various shortcomings of the classic
of Levin (1976). In the present paper, the authors treat the slightly more general problem of computing an
ment of a collection of quadrics. Unlike the Levin approach, the authors first project the space intersectio
(QSIC’s) into the plane, and then use the standard plane sweep technique to compute the arrangemen
planar curves. What is new is that they are the first to completely treat all possibilities of this arrangem
particular, tangential intersections are properly treated. A new technique based on (generalized) Jacobi
introduced to handle such intersections. Iff = 0 andg = 0 are two plane curves, theJacobi curve is defined as
h1 = fxgy − fygx = 0. In case the intersection off = 0 andg = 0 at a pointp with multiplicity 2, the curve
h1 = 0 will intersectf (and alsog) transversally atp. Tangency can then be detected by numerical means.
multiplicity of intersection is larger than 2, then higher analogs ofh1 must be used.

In conclusion, we believe that each of these papers represents the tip of a trove of new body of results. The
goal of making EGC computation as widely accessible as current day floating-point computation will depend
discoveries.
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