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Special Issue on
Robust Geometric Algorithms and their Implementations

The robust implementation of geometric algorithms is highly nontrivial. There are several reasons for this: theo-
retical algorithms (i.e., algorithms on paper) traditionally assume error-free real computations, at constant time cost
per operation, and data in general position. All three assumptions do not hold in the real world (i.e., algorithms on
silicon). So implementors face the tasks of (1) controlling the effects of numerical errors, (2) achieving practical and
efficient implementations, and (3) enumerating all degenerate possibilities and devising ways to treat them.

All three tasks are illustrated by papers in this collection. (1) The paper of Devillers and Guigue addresses the
“rounding of polygons™—this problem arises because the choices we make in rounding numbers can have geometrit
consequences which must be controlled. (2) The paper of Emiris and Karavelas shows how to implement the predicate
used in computing Apollonius diagrams efficiently and exactly—this is an issue because such predicates are time
critical operations for the algorithm. (3) The paper of Schdmer and Wolpert introduces the Jacobi curve technique for
detecting tangential intersections—such intersections do not arise under the “data in general position” assumption.

In the last decade, we have seen the emergence of the Exact Geometric Computation (EGC) paradigm for achievin
robust geometric algorithms. Unlike other approaches to nonrobustness, only the EGC approach can be encoded into
general-purpose software library which programmers can invoke to achieve full robustness for their otherwise normal
programs. Today, implementors without special knowledge of robustness techniques can routinely implement efficien
and robust algorithms for many problems, just by invoking libraries such as LEDA, CGAL or Core Library. This is
no mean achievement: 10 years ago, the construction of any single such program would have been regarded as
challenge. What made this possible is the emergence of new techniques such as filters and effective zero bounds th
bridge the gap between theory and practice.

Many challenges lie ahead in the development of EGC computation. Three key areas are represented by the cu
rent collection of papers: geometric rounding, efficient nonlinear computation, and the Zero Probl&sonfelyic
rounding is addressed by Devillers and Guigue. Although we have techniques for robust and efficient computation of
many problems, the computed object may require high precision and often requires different numerical representa
tion than the input numbers. For instance, the computed object may require representations of algebraic numbers. |
applications, we would like such numbers to be approximated by floating point numbers. The rounding of numbers
becomes complicated when they determine geometric features which must be preserved. Despite the increasing
recognized importance of geometric rounding, there are still few results. In fact, the only problem treated with any
depth in the literature is the problem of rounding an arrangement of line segments on the integer grid. So the study
of Devillers and Guigue is a welcome contribution to this sparse literatur&lgii)near algebraic computation is a
crucial testing ground for robustness techniques because the nonrobustness phenomenon, while bad in linear geotr
etry, becomes much more pronounced in the nonlinear world. The paper of Schomer and Wolpert addresses one ¢
the simplest nonlinear problems in 3-dimensions, viz., arrangement of quadric surfaces. Nonlinearity is also a key
issue in the paper of Emiris and Karavelas, albeit in 2-dimensions. (c¢@&ioeProblem originally arose in logic,
and concerns deciding whether a given numerical expression represents 0. Among the many deep open questiol
here, perhaps the most important case is whether the zeros represented by numerical expressions over the functio
exp and log are decidable. The strongest positive result here is from Richardson (1997) who showed that such zerc
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are decidable if Schanuel’s conjecture in transcendental number theory is true. The present paper of Richardson a
Elsonbaty addresses another conjecture which would imply the efficient decidability of such zeros.
Here is a brief summary of each paper:

1. “Inner and outer rounding of Boolean operations on lattice polygonal regions” by Olivier Devillers and Philippe
Guigue. This paper addresses a basic rounding problem, namely, how to do inner and outer rounding of polygon:
regions. Unlike the well-studied problem of rounding line arrangements, we can distinguish three “modes” in
rounding polygonal regions: rounding to an inner polygonal region, to an outer polygonal region, or to a polygonal
region whose boundary is within some (Hausdorff) distance from the true boundary. The authors treat the firs
two modes. This terminology of “rounding mode” is suggestive of the rounding modes in IEEE floating point
arithmetic. Indeed, as the authors suggest in their conclusion, what we want are geometric analogs of the IEE
standard.

2. “The predicates of the Apollonius diagram: Algorithmic analysis and implementation” by loannis Z. Emiris and
Menelaos |. Karavelagipollonius diagrams are the Voronoi diagrams of circles. This paper focuses on the im-
plementation of exact predicates for this computation. Their approach is based on computing with polynomials
via multivariate resultants and Sturm sequences with multiprecision arithmetic. They also use arithmetic filters
techniques to compute the easy cases as quickly as possible. Filters is another major technique in exact geome
computing. It should be clear that extensions and generalizations of this work is wide open.

3. “Counterexamples to the uniformity conjecture” by Daniel Richardson and Ahmed Elsonbaty. In robust algo-
rithms, we need to guarantee some user-specified precision in the numerical output. Most practical algorithm
for achieving suctguaranteed precision rely on some form of zero bounds, callgdp functions in this paper.

If 2 ={+, x,...} UZis a set of complex operators, aBatpr(£2) denote the set of expressions over let

V :Expr(§2) — C be the evaluation (partial) function. A gap function has the fgrrxpr (£2) — R>o such that

if e € Expr(£2), andV (e) is well-defined and non-zero, thél (¢)| > g(e). Unfortunately, provable gap func-

tions are usually too pessimistic for algebraic expressions; when transcendental functions like exp and log ar
introduced intos2, then no provable gap bounds are known. Theformity Conjecture of Richardson postu-

lates a gap function wherelogg(e) is proportional to the length of the expressionlo exclude some obvious
counter-examples, we restricto be an “expanded” expression. There are closely related conjectures of Joris van
der Hoeven called Witness Conjectures. This paper disproves the Uniformity Conjecture (and the strong form o
the Witness Conjecture). The technique for generating such counter examples is interesting and has independs
interest. The authors proposed a replacement for the Uniformity Conjecture.

4. “An exact and efficient approach for computing a cell in an arrangement of quadrics” by Elmar Schémer and
Nicola Wolpert. Computing the intersection of two quadrics is a highly classical problem. In the last few years,
a number of papers has revisited this problem in attempts to remedy various shortcomings of the classic approa
of Levin (1976). In the present paper, the authors treat the slightly more general problem of computing an arrange
ment of a collection of quadrics. Unlike the Levin approach, the authors first project the space intersection curve!
(QSIC’s) into the plane, and then use the standard plane sweep technique to compute the arrangement of the
planar curves. What is new is that they are the first to completely treat all possibilities of this arrangement: in
particular, tangential intersections are properly treated. A new technique based on (generalized) Jacobi curves
introduced to handle such intersectionsf 1= 0 andg = 0 are two plane curves, thlacobi curve is defined as
h1 = frgy — fygx =0. In case the intersection ¢f = 0 andg = 0 at a pointp with multiplicity 2, the curve
h1 =0 will intersectf (and alsag) transversally ap. Tangency can then be detected by numerical means. If the
multiplicity of intersection is larger than 2, then higher analogsofust be used.

In conclusion, we believe that each of these papers represents the tip of a trove of new body of results. The ultima
goal of making EGC computation as widely accessible as current day floating-point computation will depend on sucl
discoveries.
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