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‘Talk Overview & Goals.

Geometric modeling & spline surface intersectors:

e Analytic error bounds & topological fidelity,

e Robust & efficient solutions of nonlinear polynomial systems of
equations, especially in the presence of multiple roots,

e Neighborhoods and rigorous interval spline enclosures of

intersection sets.
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Common Geometry Flaws - Examples

Gaps in Fairing

-

Twisted Patch

Missing Junction

' -' i '- -
Unmatched Patch Boundary

« Complex geometries come from CAD models Auracy,
o Critical flawsin geometry are detected visually and repaired in ad Robustnhess

manner
 |mproved/automated geometry diagnostics and repair tools will S PrOb.I SIS
reduce cycle time Persist
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‘T’ for Intersections'

intersectors for CAGD
spline surfaces as input
need for approximation

two parametric pre-images




Davis Workshop
R. Farouki & D. R. Ferguson

SIAM News, 6/99

“Although modern CAD systems have attained a certain degree of
maturity, their efficiency, reliability, and compatibility with
subsequent analysis tools fall far short of what was envisaged at
their inception, some 25 years ago. At the heart of this problem lie
some deep mathematical issues, concerned with the computation,

77

representation and manipulation of complex geometries, ....

Tight integration remains elusive.

\Intersecting surfaces are central. /
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Exact Conceptual View'
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Approximations in Implementations'
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Geometry Flaws in Aerospace Design'




Need to Satisfy Many Users but Requirements Vary

Complexity
of Objects

Multidisciplinary

Higher Kinematics Design Optimization
dimensional | <:>
objects
Lofting Electromagnetics
Aeroelasticity > -
Surfaces __| < >
Surface Intersection C
Curves > /‘
Optics
NC Programming
Segments__| Diaital <:>
& Facets Mgckup — <:> .— Visualization
Points | <:>
Fluid Dynamics
1 2 3 4 5 6
Digits of Accuracy Required
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‘ Demonstration I




“T’ for Topology'

Need for model-space bounds on errors
The demo illustrates such errors

Need for topological well-formedness

Well-formed objects: definitions and sufficient conditions

Perturbations don’t destroy well-formedness
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/ ‘ Model-space Bounds I \

| F(ur,v1) — F(uo, vo)|| < eMy + €M,

lug, vo] = [u(7),v(7)], (approximate p-curve),
luy,v1] = [u(7),v(7)] (exact p-curve),

e is an error bound (parametric domain) provided by a numerical
method [GK]

M; are (realistic, computable) bounds on the ¢-th order derivatives.

K(Taylor’s theorem & bounds on derivatives of basis functions.) /
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We have

and

‘ Auxiliary Slide I

OF OF
|5~ (o, vo)l + || 5~ (uo, vo) || = My
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/ Model-space Bounds (continued) I

Let v(F') be such that

eM; + €My < y(F),

and similarly for v(G).

Then,
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/ ‘Gaps & Overlapsl \

Occur at the boundary between two trimmed patches, with

NnOoNn-zZero error:

Further complications:

e An explicit representation of the boundary between these two
patches;

e An explicit representation of the corner points between patches:;

/

e Possibly mutually inconsistent & inconsistent with (given)
k topological information.
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The Problem of Well-formed Representations'

It would be useful, therefore, to give reasonable conditions for

well-formedness of a representation:

e Under what conditions does the inconsistent data represent a
homogeneously three-dimensional subset of R® with boundary

close to the given data?

e And what exactly is this subset?

\_ /
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/‘ Perturbations should not destroy well-formedness\ I

e Sufficient conditions that perturbations of polyhedral objects
will produce a new object that is linked to the original by an
ambient isotopy [Andersson, Dorney, Peters, Stewart, CAGD,
95];

e Sufficient conditions precluding self-intersection of faces of a
curvilinear Bézier complex, and conditions precluding
unwanted intersections of neighboring faces of curvilinear
Bézier patches [Andersson, Peters, Stewart, CAGD, 98];

e A theorem for general curvilinear complexes showing that if
there are no self-intersections, or other unwanted intersections,

then the complex has the same topological form (ambient

\ isotopy) [Andersson, Peters, Stewart, IJCGA, 00]. /
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‘A’ for accuracy issues'
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Solving a System of Nonlinear

Polynomial Equations f(x)=0

Solve the system
fix)=fo(x)=...= fa(x)=0.
in the domain

la1,b1] X lag,ba] X ... X [a, b]
e n > [: Overdetermined system
e n = [: Balanced system

e n < [: Underdetermined system
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‘Projected Polyhedron (PP) Algorithm'

e Use affine parameter transformation such that

fifu) = fo(u) = ... = fu(u) =0,

where u € [0, 1]*.

e Change the basis to Bernstein basis, and restate the problem as the

intersection of the graphs of the fx and the hyperplane u;+1 = 0.

fo(u) = (u1,u2,...,us, fr(u))

M (R)

k
= (0, Y VB, () .
I

e Use the convex hull property of multivariate Bernstein basis.

\_ /
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‘Rounded Interval Arithmetic (RIA) I

Definition of interval number [a,b] = {z]a < z < b}

a,b] + [c,d] = [V(a+ ¢), A(b+ d)]
a,b] — [c,d] = [V(a —d), A(b— ¢)]
a,b] - [c,d] = [V(ac), A(bd)] or...
a,b]/[c,d] = [V(a/c), A(b/d)] or...
where 0 ¢ [c,d]

The lower (upper) bound is extended to include its previous (next)

consecutive FP number.

\_ /
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4 N

‘Interval Projected Polyhedron (IPP) Algorithm'

e There exist software rounding and hardware rounding methods.

e Software rounding is computationally more expensive than

hardware rounding.

e Hardware rounding produces tighter interval bounds.

\_ /
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‘Experience with the IPP Algorithm'

e Loss of achievable accuracy from e.g. 1072 for simple roots to
10~7 for double roots, etc.

e Slow for underdetermined systems with transversal or

non-transversal intersections.

e Slow for balanced systems with a continuum of roots.

\_ /

23




‘CAD Model Defects'

Consequences of defects
e Failure of modeling operations
e Useless analysis results
e Defective products

e Tremendous rework in data exchange

-
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‘Ob jective for Model Validity'

Given a B-rep model in a certain data structure or file format, we

want to answer the following questions:
e Is this model valid?

e If it is not valid, can it be rectified, and how?

\_ /
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4 )
Discussion '

Prior approaches:
Local “identify-and-rectify” methods

Question:
What do we trust if there are inconsistencies between the
topological structure and the geometric representation?

Hypothesis:

A given subset of surfaces is trustworthy.

Goal:

Given a B-rep model, if it contains defects, find the boundary
representation intended by the designer.

\_ /
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Approach I

Rectify-by-reconstruction approach:

Given a B-rep model, if its topological structure is valid,
reconstruct a valid boundary using the surfaces, such that the new
boundary is topologically equivalent to the original model and has

the minimum geometric change.

\_ /
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4 N

Definition I

Let M be an ideal model, and B be a finite collection of boxes such
that the following conditions are satisfied:

1. Let b;,b; € B. Whenever b; Nb; # 0, then b;; = b; N b, is a box.
2. OM C B, where B = U{b|b € B}, that is, B covers O0M, and
3. bNOM +# 0, for every b € B.

We call MB = M UB the interval solid generated by M and B.

\_ /
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&

(b) boxes B

(c) interval solid VP

~

A 2d Example of an Interval Solid'
M~ :

(a) ideal solid M
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‘ Approximate equality I

Motivation

Definition

Let M be a solid, and B be a finite collection of boxes. We say that
the interval solid MPZ is approzimately equal to M if MB, as well as

M — B, are homeomorphic to M.

-

/
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4 N
Theorem I

If B satisfies the following conditions, then, M? is approximately

equal to M:
C1. {Int(b;), b; € B} is a cover of OM.

C2. Each member b of B intersects O0M generically; in particular,
bNOM is a (closed) disk that separates b into two (closed)
balls, Bb+ and B, , and

C3. Whenever b; Nb; # 0, then b;; = b; N b, is a box that satisfies
C2, for b;, bj c B.

\_ /
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Conditions C2 and CS'

oM
B

|l«—Db
/ Bo
|
bNav

Condition C2

oM

Violation of
condito nC2

Condition C3

B

bij

Violation of
condition C3

oM
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‘ Example I

File format: STEP
Size: ~0.04m X ~0.06m X ~ 0.14m

Types of surfaces:
16 B-spline surfa ces
3 cylindrical su rfaces
5 planes

Global uncertainty: le-6

Number of topologic al entities
V = 40 vertices
E = 62 edges
F = 24 faces
i =0 inner loops
S =1 shell

V-E+F-L = 2(S-G)
Genus G =0
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Model Validity Veriﬁcation'

Given a B-rep model, verify its topological correctness, and its

Purpose

geometric consistency at certain resolutions.

Procedure

1. Verity the topological structure.

2. Grow the widths of the underlying curves of the edges.
3. Compute curve-surface intersections.
4

. Construct the interval faces using the given topological
structure.

\_ /
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/ Boundary Reconstruction I \

Purpose
Given a B-rep model, construct interval models at certain
resolutions, using only the underlying surfaces.
Procedure
1. Grow the widths of the underlying surfaces of the faces.
2. Compute surface-surface intersections.

3. Construct the interval model.

Results
1. Can the model be reconstructed at the given resolution? No.

2. At what resolution, can the model be reconstructed?

\ 5 X 10_5m. /
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.

Results '

1. Is the model valid at the given resolution?
No.

2. At what resolution the model is valid?
5 x 10~ 4m.
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‘ ‘N’ for Numerics'

Increase accuracy and make geometric operations robust.
e good efficiency
e good data compactness

e relevance to practice

\_ /
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Robustness in Geometric Computations'

Computation has inter-related predicates and constructors.

Interdependence usually fully evident.

e Predicate failure:
— Computation fails catastrophically
— Locally inconsistent structures created

— Globally inconsistent, locally consistent

e Constructor failure:
— Cracks, overlaps, interpenetrations

— Geometry/topology mismatch

\_ /
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‘Approaches in the Literature.

Exact arithmetic;
e c.g., Manocha and Keyser.
e Efficiency problems increase with larger algebraic degree.
e Input must be understood to be exact as written.

Issues:

e Output can be used as input to follow-on operations, hence

input exactness assumption is justified.

e Problems with surface contacts of higher order.

-
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‘Approaches in the Literature-+ I

Exact, lazy predicates;

e c.g., Fortune, others.

e Distinguish predicates from constructors, permit inaccuracies
in constructors, but do exact predicates where necessary.

e Input must be understood to be exact as written.

Issues: Output cannot be used as input to subsequent operations
unless the problem domain is simple or general model rectification
is available. Good results for polyhedra (some concept of

rectification) but progress hard for higher degrees.

\_ /
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‘ Industry Practice I

e Pragmatically engineer the numerics such that, for the
applications envisioned, acceptable output is generated that

can be used downstream.

e Approach is inherently incomplete and does not address the

underlying fundamentals of the problem.

-
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‘Possible Role for Interval Arithmetic'

Numerical analysis usually works with a prior: bounds, but
run-time instance bounds can be sharper and can be provided by

validated techniques, suitably augmented.

Perceived issues for interval arithmetic:
e pessimistic enclosures versus MIT work
e not an algebra

e but also little awareness of fix-point iterations and of the CG

predicates used in exact, lazy work

-

~
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Polynomial Graphs I

x? — 8x3 + 2422 — 32z + 16
/» K I J»
/ 1 2

—x3 4+ 322 -3z +1
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4 N
‘ Example I

Polynomial evaluation near multiple roots.

Horner vs. interval, exact inner product:

Method || negative | zero | positive | sign rev.

xt — 813 + 2412 — 32z + 16

Horner 15 41 25 29

Interval 0 1 80 0
—x3 + 32?2 — 3z +1

Horner 25 41 15 9

Interval 40 1 40 1

\_ /
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Problems that must be addressed:'

e Real intervals vs machine-representable intervals, implications
for theory.
Directed rounding, careful in implementations including I/O.

e Achievable precision. Exact inner product; directed intervals;
extended intervals; ...

e Model interpretation and rectification.

\_ /
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‘ Industrial Perspective I

e MIT research in GK intersector
e Initial roots along boundaries

e Used daily at Boeing
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‘Impact on Many Engineering Disciplines'

e Manufacturing: NC programming

(Beyond visual inspection.)
e Aerodynamics: Computational Fluid Dynamics (CFD)
e Observables: Computational Electro-Magnetics (CEM)

e Structures: Computational Structural Mechanics (FEA)
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Root Causes '

Surface intersections, except in trivial cases, always lead
to gaps and self-intersections

e For CAGD, exact representation not possible!
— Need to approximate.

— Need for comprehensive theory.

e Intersections may be ill-conditioned

e The ideal of an algebra of regular closed sets remains

unattained within software development with B-rep models.

NOT fixed in next software release!

-
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Industrial Consortium Lessons Learned'

;From PDES, Inc. Geometry Accuracy Team

History

e 2+ years, mostly on model transfer
e broader integration beyond scope

Lessons Learned

e Current COTS tools are inadequate

e Long term effort from CARGO

\_ /
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Boeing Contributions I

Geometric Software Libraries

-

e DT _NURBS

e GEML
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Already Tangible Boeing Interaction'

Intern program

Chris Mow, Summer 01
Example shown in demo
Model space error bounds

His research integrated well

Beta - testing for GEML, with Bob Ames (NSWC)

~

/
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Economic Scope of Problems'

NIST, March 99

U.S. Automotive Industry:

o At least $1B/year
e from lack of model interoperability.

Intersection a hidden, critical problem.

(Cross-reference the Geometry Accuracy Team)

-
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Industry — Academic Cooperation'

In addition to employees and projects, consider

SIAM Meeting, June 23 - 25, 2003,
Mathematics in Industry, Challenges and Frontiers (Toronto)

-
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Summary I

e Analytic error bounds & topological fidelity,

e Robust & efficient solutions of nonlinear polynomial systems of
equations, especially in the presence of multiple roots,

e Neighborhoods and rigorous interval spline enclosures of

intersection sets.

\_ /
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Project Approach I

Rigorous bounded enclosures of intersection sets, subject to user
input, with attention to computing approximations due both to
algorithmic truncation and floating-point arithmetic.

-
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