
Guaranteed Precision for

Transcendental and Algebraic

Computation made Easy

by

Zilin Du

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

May 2006

Chee Keng Yap

c© Zilin Du

All Rights Reserved, 2006

Dedicated to the friends and families who blessed and supported

me

iv

Acknowledgments

Many thanks to my advisor Professor Chee Keng Yap for all of his kind help

with my work. He has always been available and enthusiastic to encourage and

help me during the last five years. I’m also very thankful to Professor Michael

Overton, Richard Pollack and Hervé Brönnimann for their careful reading and

generous advice. Special thanks to my collaborator and thesis committee mem-

ber, Sylvain Pion. He kindly hosted me one fruitful week in February 2006 in

INRIA. Also great thanks to Vikram Sharma who worked with me together for

our Exact Geometric Computation project.

My graduate school years in New York city cannot be a truly memorable

one without all my friends here. Among them are Zhihua Wang, Ziyang Wang,

Jinyuan Li, Xiaojian Zhao, Ning Feng, Wei Cheng, Tao Ling, Jiawu Feng, Xiujie

Wang, Bing Sun and Shubin Zhao. I also want to thank brothers and sisters

from Newtown Church, Chingching Won, Daniel Hu, Davie Chao, Lanjo Wu,

Li Jing, Lydia Yang, and Ming for their love and prayers.

v

Abstract

Numerical non-robustness is a well-known phenomenon when implementing geo-

metric algorithms. A general approach to achieve geometric robustness is Exact

Geometric Computation (EGC). This dissertation explores the redesign and ex-

tension of the Core Library, a C++ library which embraces the EGC approach.

The philosophy of the Core Library is to make guaranteed precision compu-

tation transparent and easily accessible to most users; our redesign strives to

keep the original user interface intact while improving the underlying algorithms

significantly. The contributions of this thesis are organized into three parts.

In the first part, we discuss the redesign of the Core Library, especially the

expression (Expr) and bigfloat (BigFloat) classes. Our new design emphasizes

extensibility in a clean and modular way. The three facilities in Expr, filter,

root bound and bigfloat, are separated into independent modules. This allows

new filters, root bounds and some bigfloat substitute to be plugged in. The key

approximate evaluation and precision propagation algorithms have been greatly

improved. A new bigfloat system based on MPFR and interval arithmetic has

been incorporated. Our benchmark shows that the redesigned Core Library

typically has 5-10 times speedup. We also provide tools to facilitate extensions

of Expr to incorporate new types of nodes, especially transcendental nodes.

Although the Core Library was originally designed for algebraic applica-

vi

tions, transcendental functions are needed in many applications. In the second

part, we present a complete algorithm for absolute approximation of the general

hypergeometric function. Its complexity is also given. The extension of this al-

gorithm to “blackbox numbers” is provided. A general hypergeometric function

package based on our algorithm is implemented and integrated into the Core

Library based on our new design.

Brent has shown that many elementary functions, such as exp, log, sin, etc.,

can be efficiently computed using the Arithmetic-Geometric Mean (AGM) based

algorithm. However, he only gave an asymptotic error analysis. The constants

in the Big O(·) notation required for implementation are unknown. We provide

a non-asymptotic error analysis of the AGM algorithm and the related algo-

rithms for logarithm and exponential functions. These algorithms have been

implemented and incorporated into the Core Library.

vii

Contents

Dedication iv

Acknowledgments v

Abstract vi

List of Figures xi

List of Tables xii

List of Experiments xiv

List of Appendices xv

1 Introduction 1

1.1 Exact Geometric Computation (EGC) 2

1.2 Previous work in EGC . 4

1.3 Need for Transcendental Functions 10

1.4 Our Contributions . 11

2 Redesign of the Core Library 15

2.1 Review of the current Core Library design 16

viii

2.2 Redesign of Expr Package . 18

2.2.1 Incorporation of Transcendental Nodes 19

2.2.2 New template-based design of ExprRep 19

2.2.3 Improved Approximate Evaluation Algorithms 33

2.2.4 Improved Propagation of Precision 43

2.3 Redesign of BigFloat system 51

2.3.1 MPFR Overview . 53

2.3.2 Design of class BigFloat 54

2.3.3 Design of class BigFloat2 60

2.4 Extending Expr class . 62

2.4.1 How to Add Your Own Operation for Expr 62

2.4.2 Adding Your Own Operation using Pre-defined Macros . 67

2.4.3 Summation operation for Expr 70

2.4.4 Transcendental Node π 73

2.5 Benchmarks . 74

2.6 InCore: an Interactive Core Library 76

3 Absolute Approximation of General Hypergeometric Function 79

3.1 Hypergeometric series and functions 80

3.1.1 Hypergeometric series 80

3.1.2 Hypergeometric function and convergence 82

3.1.3 Elementary Functions in Hypergeometric Form 84

3.2 General Approximate Evaluation Algorithm 85

3.3 Evaluation at a Blackbox Number 102

3.4 Complexity . 106

3.5 Argument Reduction, Parameter Pre-processing and Constants . 114

ix

3.5.1 Argument Reduction . 114

3.5.2 Parameter Pre-processing 119

3.5.3 Mathematical Constants: Evaluation, File Formats . . . 122

3.6 Integration of Hypergeometric Functions into the Core Library 124

3.7 Final Remarks and Open Problems 125

4 Non-asymptotic Error Analysis of AGM Algorithm 128

4.1 Arithmetic-geometric Mean Iteration 129

4.2 Error Analysis of AGM . 130

4.3 Fast Multiple-precision Evaluation of π 134

4.4 Fast Evaluation of Exponential and Logarithm Functions 139

4.4.1 Elliptic Integrals . 139

4.4.2 Brent’s method . 142

4.4.3 Convergence of Uk(m) and Tk(m) 145

4.4.4 Approximation of Uk(m) and Tk(m) 146

4.4.5 Approximation of U(m) and T (m) 154

4.4.6 Discrete Newton Iteration 156

4.4.7 Evaluation exp(x) and log(x) 157

4.5 Summary . 163

5 Conclusion and Future Work 164

5.1 Conclusion . 164

5.2 Future Work . 165

Appendices 168

Bibliography 177

x

List of Figures

2.1 Comparison of ExprRep and ExprRepT 20

2.2 ExprRepT memory layout. Sizes in bytes for a 32-bit architecture. 21

2.3 ExprRepT Class Hierarchy . 24

2.4 Timing for computing
√

2 ·
√

3 w/ and w/o exact multiplication 46

2.5 Timing for computing
∑n

i=1 i w/ and w/o removing trailing zeros. 59

2.6 Timing Comparisons for sqrt(). 60

2.7 Timing for computing harmonic series. 73

2.8 Timing Comparisons for compare.cpp 74

2.9 Timing testFilter.cpp w/ filter (in microseconds) 75

2.10 Timing testFilter.cpp w/o filter (in microseconds) 75

4.1 The Functions U(m) and T (m) for m ∈ (0, 1) 145

4.2 Upper Bound Functions of U ′(m) and T ′(m) for m ∈ (0, 1) . . . 161

xi

List of Tables

2.1 Rules for computing number type 33

2.2 Rules for computing sign recursively 34

2.3 Rules for computing upper bound of MSB recursively 35

2.4 Rules for computing lower bound of MSB recursively 36

2.5 Rules for computing degree bound. 42

2.6 Propagating Rules in Absolute Precision. 51

2.7 Propagating Rules in Relative Precision. 51

2.8 Rules for interval arithmetic. 62

2.9 Rules for multiplication using interval arithmetic. 63

2.10 Rules for division using interval arithmetic. 64

3.1 Some elementary functions in terms of hypergeometric series. . . 84

3.2 Transformations of hypergeometric functions. 101

4.1 The Functions U(m) and T (m) 144

4.2 Approximations and Upper Bounds of U ′(m) and T ′(m) 162

A.1 Rules for BFS filter, p=52. 170

B.1 Rules for BFMSS bound. 172

B.2 Rules for BFMSS bound in logarithm form. 174

xii

B.3 Rules for Degree-Measure bound. 175

B.4 Rules for Li-Yap bound. 176

xiii

List of Experiments

1 Precision Propagation for Multiplication 46

2 Optimization of Precision Estimation 58

3 Comparison of the Performance of sqrt() 60

4 Computing harmonic series using loop 70

5 Computing harmonic series using sum() 72

xiv

List of Appendices

Appendix A BFS Filter 168

Appendix B BFMSS Root Bound 172

xv

Chapter 1

Introduction

Numbers are normally represented in fixed-point or floating-point format us-

ing a fixed number of bits in modern computers. The arithmetic operations

and comparisons associated with them are inexact. Numerical errors due to

round-off may lead to inconsistent states from which computer programs can-

not recover. These non-robustness problems are especially serious in geometric

computation since numerical errors can propagate into the combinatorial com-

putations and result in complete failure of the algorithms. A general framework

to solve such problems is Exact Geometric Computation (EGC). While current

EGC approach can handle algebraic problems successfully, it is an open ques-

tion whether it is possible for problems involving transcendental functions. This

thesis is aimed to redesign our EGC software library, Core Library, to make

it more efficient, modular and extensible, easy to use for both algebraic and

transcendental computation. A complete algorithm for absolute approximat-

ing the general hypergeometric function is given. An implementation has been

developed and integrated into the redesigned Core Library.

1

1.1 Exact Geometric Computation (EGC)

Computational Geometry is the study of algorithms to solve geometric problems

([77, 25, 71, 6, 66]). In general, geometric computations have two components, a

numerical part and combinatorial part. Numerical computations are involved in

both the construction of new geometric objects and the evaluation of geometric

predicates. To determine the combinatorial relations among geometric objects,

geometric predicates are especially critical. For example, for the convex hull

problem the predicate asserting that 3 points are oriented counterclockwise is

very important. Incorrect evaluation of this predicate can lead to inconsistencies

and crash the whole program.

Usually geometric algorithms are designed within a Real RAM model of

computation, in which real numbers are exact and arithmetic operations and

comparisons are performed exactly. However, approximate floating-point arith-

metic, which is a form of fixed-precision arithmetic, is widely used in modern

computer systems. Almost all of them follow the IEEE 754 standard [44]. Such

an arithmetic has serious shortcomings [36, 43] in certain applications. A ge-

ometric algorithm implemented using straightforward floating-point arithmetic

could easily introduce some undesirable numerical errors. Although numeri-

cal errors can sometimes be tolerated and interpreted as small perturbations

in inputs, serious problems arise when these errors accumulate and propagate,

triggering inconsistencies between numerical and combinatorial data. Numeri-

cal non-robustness has long been an important concern in the implementation

of geometric algorithms ([26, 43, 83, 5, 27]). In the last decade it has become a

central research topic in computational geometry ([4, 52, 42]).

There are many approaches to dealing with this problem - see [73, 84, 95]

2

for general surveys on robust geometric computation. For example, the “naive”

arithmetic solution tries to compute every numerical quantity exactly, without

any errors. But researchers soon realized that it is impractical, even for com-

putation over linear geometry [97, 47]. One approach called Exact Geometric

Computation (EGC, for short) [92] perhaps has been the most successful one.

The basic idea of EGC is to compute “exactly” in the geometric sense, i.e.,

all predicates in a geometric algorithm are evaluated exactly. The EGC prin-

ciple does not require “exact arithmetic” but arithmetic that has “sufficient

accuracy” to guarantee the exactness of geometric predicates. Moreover, the

EGC solution is often more general and has better properties. Unlike many

other approaches [13, 24] that require new algorithms to be designed for each

application, it can take any implementation of any algorithm and achieve full

robustness just by replacing its machine number type by a suitable number type

(“EGC number”).

Two general libraries which provide such EGC numbers are currently avail-

able: LEDA Real[14, 59] and Core Library[46, 21]. The Core Library, as the

successor of Real/Expr[96], is aimed at achieving a user-friendly interface, es-

pecially for user’s access of numerical accuracy [93]. The EGC number in the

Core Library is called Expr; it is the first EGC number type to incorporate

arbitrary real algebraic numbers. In contrast to the Core Library, LEDA offers,

in addition to their EGC number types, also a large collection of algorithms,

data structures and related services. The EGC number type in LEDA is called

LEDA real. Using such libraries, programmers can routinely implement robust

programs by using standard algorithms. A large collection of such robust al-

gorithms have been implemented in the major software libraries CGAL[19] and

LEDA[49].

3

§1. General Terminology and Notation for this Thesis We list some

terminology that are used in this thesis:

• lg = log2, ln = loge.

• ⊕, ⊖, ⊙ and ⊘ are used to denote the corresponding floating-point arith-

metic operations of addition, subtraction, multiplication and division.

• x is a “blackbox number” if we can get arbitrarily many bits of precision

of x.

• a = {a1, a2, . . . , ap} is a multiset if the order of a is ignored, but the

multiplicity is explicitly significant. For example, multisets {1, 2, 3} and

{2, 1, 3} are equivalent, but {1, 2, 3} and {1, 1, 2, 3} differ.

1.2 Previous work in EGC

Since the early 1990s, many research efforts have been made toward EGC.

Among them three key areas are constructive root bounds [16, 54, 75, 85],

approximate expression evaluation [86, 52, 53] and filter techniques [28, 31, 12].

§2. Constructive Root Bound Let Ω be a set of real or complex functions

(including constants). The set of constant expressions over Ω is denoted by

Expr(Ω). For instance, Ω0 = {+,−,×} ∪ Z. The value of an expression e ∈
Expr(Ω), denoted by ValΩ(e), is a real (complex) number, but it may also

be undefined. The zero problem for Ω, denoted ZERO(Ω), is to decide for a

given e ∈ Expr(Ω), whether ValΩ(e) is defined and equal to 0. It is called the

fundamental problem of EGC.

4

Definition 1. Assume e is an expression and b is a positive number in R. We

say b is a root bound (or zero bound) if the following holds:

e is well-defined and e 6= 0 ⇒ |e| ≥ b.

Note that b is a conditional bound: it is not a bound when e is undefined or

zero. To determine the sign of e from a root bound b, we compute a numerical

approximation ẽ such that if e is undefined then ẽ is undefined; otherwise,

|e− ẽ| < b
2
. Then

sign(e) =





sign(ẽ) if |ẽ| ≥ b
2

or ẽ is undefined

0 otherwise

It is important to find root bounds that are as large as possible since the am-

plitude of the root bound directly affects the worse-case complexity in sign

determination. On the other hand, we also want to be able to compute them

efficiently.

Root bounds have been extensively studied in the classical literature (e.g.,

[58] or [61]). Many classical results, however, are non-constructive. We are more

interested in root bounds which can be inductively computed from the structure

of an algebraic expression. Such bounds are called “Constructive Root Bounds”.

A number of constructive root bounds have been proposed and implemented,

such as Degree-Measure bounds, BFMSS bounds [16] and Li-Yap bounds [54].

Some techniques (e.g. [75]) have been developed to improve them as well.

Root bounds greatly depends on the operators in Ω. A hierarchy of some Ω

that are important in practice is described in [94]:

• Polynomial basis: Ω0 = {+,−,×} ∪ Z

• Rational basis: Ω1 = Ω0 ∪ {÷}

5

• Radical basis: Ω2 = Ω1 ∪ {
√·}

• Algebraic basis: Ω3 = Ω2 ∪ {RootOf(P, i)} where P is an integer polyno-

mial and i is the i-th real root of P .

• Elementary basis: Ω4 = Ω3 ∪ {exp(·), log(·)}

• Hypergeometric basis: Ω5 = Ω4 ∪H, where H is the set of real hypergeo-

metric functions (see Chapter 3).

In many areas of computational sciences, non-algebraic operators are needed:

Ω4 is the simplest basis beyond the algebraic case. Basic functions such as the

trigonometric functions are captured in Ω5. It is an open problem whether

there exist constructive root bounds for Ω4 or Ω5, but Richardson has given an

important conditional result in [80, 81, 82]; partial results are also known from

transcendental number theory [76, 57, 69].

§3. Diamond Operation In Ω3, the RootOf(P,i) operation allows one

to take the root of the integer polynomials. A more general operation which

is called Diamnod Operation is to allow one to take the root of arbitrary

real algebraic polynomials. If ed, ed−1, . . . , e1, e0 are real algebraic expressions

and i is a positive integer with 0 ≤ i ≤ d, then ⋄(i, ed, ed−1, . . . , e1, e0) is an

expression. If ValΩ(ei) are defined, then the value of ⋄(i, ed, ed−1, . . . , e1, e0) is

the i-th smallest real root of the polynomial

ValΩ(ed)X
d + ValΩ(ed−1)X

d−1 + · · ·+ ValΩ(e0)

if the polynomial has at least i real roots. Otherwise, the value is undefined.

We also say ⋄(·) is a Diamond Operator.

6

§4. Approximate expression evaluation Essentially, all expression eval-

uations are done with approximations in any EGC library. This requires algo-

rithms that can compute an approximation ẽ to within precision p for any given

expression e and precision p. Mostly we use relative or absolute precision [94]:

Definition 2. Given e, ẽ ∈ R, we say that ẽ is a relative p-bit approximation

of e if

|ẽ− e| ≤ |e| · 2−p.

We also say ẽ has relative precision p.

Definition 3. Given e, ẽ ∈ R, we say that ẽ is an absolute p-bit approximation

of e if

|ẽ− e| ≤ 2−p.

We also say ẽ has absolute precision p.

The Core Library use a precision-driven approach to approximate ex-

pressions. It was first given in detail and analyzed in [96], then was implemented

in the Real/Expr package [72] and incorporated into the Core Library subse-

quently. Intuitively, it can be viewed as an iterative “downward-upward process”

operating on the input expression DAG (directed acyclic graph). In the down-

ward direction, precision values (starting with p at the root) are propagated

down to the leaves. In the upward direction, approximations are propagated up

to the root. This upward propagation amounts to a bottom-up evaluation of

the expression e.

The optimal method of propagating precision is an open problem. Currently

the Core Library propagates a “composite precision”, which leads to compute

7

an approximation ẽ of e such that

|ẽ− e| ≤ 2−a or |ẽ− e| ≤ |e|2−r

for a given pair [a, r]. In [94], Yap proposed a simpler and more intuitive

algorithm, which propagates either absolute or relative precision, but not both.

We should notice that computing absolute approximations is a more basic

problem. Yap [94] showed that computing a relative approximation of e can be

converted to compute an absolute approximation of e only if we can compute a

root bound for e. In terms of our hierarchy {Ωi : i = 0, . . . , 5}, we only know

how to compute root bounds for e ∈ Expr(Ωi) for i = 0, . . . , 3.

§5. Filter techniques Multi-precision arithmetic is used in EGC libraries,

which is much slower than machine floating-point arithmetic. To gain efficiency,

a technique called “filtering” is used, which has been proved to be very effective

in practice [30, 18]. The basic idea is simple: we first perform all the arithmetic

computation using machine floating-point arithmetic, and then we “certify”

the results, and go for the slower high precision computation only when this

fails. For example, to determine the sign of an expression e, we compute an

approximation value ẽ using machine floating-point arithmetic and an error

bound err on the accumulated numerical errors such that |e− ẽ| ≤ err. e and

ẽ must have the same sign if |ẽ| > err.

There are two main categories of numerical filters: static and dynamic.

Static filters can be computed at compile time for the most part, and have

a low overhead at runtime. However, error bounds may be over-estimated and

thus less effective. On the other hand, dynamic filters have higher runtime

cost but are much more effective (i.e., fewer false rejections). We can also have

8

semi-static filters which combine both features.

Error tracking in filters (e.g., the BFS filter [18] used in the Core Library)

is usually based on the specification of the floating-point arithmetic standard

(IEEE 754). Interval arithmetic [1, 62] is a simpler and more traditional way

to control the error. It is used in the CGAL library, covering all predicates in the

geometry kernel [12, 74].

The Core Library is a set of C++ classes which aims at making robust

programs easily constructed by any programmer. It defines a natural and simple

numerical accuracy API with four accuracy levels:

• Level I: Machine Accuracy (i.e., IEEE 754 Standard)

• Level II: Arbitrary Accuracy (e.g., compute to 1000 bits)

• Level III: Guaranteed Accuracy (e.g., guarantee 100 bits)

• Level IV: Mixed Accuracy (i.e., a combination of the three previous levels)

The goal of the Core Library is to allow a single program to be run in any

of these levels. The flexible choice of accuracy simplifies debugging and exper-

imentation in many applications. The Core Library is designed so that most

“ordinary C++ programs” (written without knowledge of the Core Library

in mind) can be adapted to use the Core Library with minimal modifications

(i.e., just inserting a single directive, #include <CORE/CORE.h>). EGC can be

easily implemented using Level III accuracy.

9

1.3 Need for Transcendental Functions

The algebraic problems are the majority of problems treated in contemporary

computational geometry. However, some non-algebraic examples, e.g., some

kinds of Voronoi diagrams, shortest paths with disc obstacles [48], and non-

holonomic motion planning, do arise in computational geometry. Transcenden-

tal functions such as exp x, log x, sin x, etc. are needed as primitives. While a

program involving only algebraic expressions can be “robustified” if it is recom-

piled under Level III in the Core Library, the exactness of geometric predi-

cates involving transcendental functions cannot be guaranteed since there are

no known root bounds for expressions involving transcendental functions. Con-

sequently, we might want to scale back to Level II for such expressions.

Most transcendental functions used in geometric computation are elemen-

tary functions [64]. A function is elementary if it can be built up from a finite

combination of constant functions, field operations and algebraic, exponential,

logarithmic functions [87]. Among them the simplest elementary functions are

the logarithm, exponential, and trigonometric functions. Many well-known el-

ementary functions are special cases of hypergeometric functions. Hence, a

general implementation of hypergeometric functions can be used as a base for

implementing others.

The problem of evaluating hypergeometric functions is a highly classical

problem (e.g., [22, 55]). The usual modus operandi here is one that is widely

used in numerical analysis: the algorithms are based on fixed-precision arith-

metic (e.g., IEEE Standard), and the goal is to design algorithms that try to

minimize the round-off errors in the final result. With this procedure, one then

gives a posteriori guarantees on the final precision, either by using error analysis,

10

or computationally via interval arithmetic. Such a posteriori bounds may not

be sufficient for an application. In general, it is nontrivial to transform a pos-

teriori methods into a priori ones (the obvious method of increasing precision

iteratively may fail [94]). This has given rise to the “Table Maker’s Dilemma”

[51], described as the problem of computing correctly rounded values of tran-

scendental functions. For machine-double tables, this problem was solved in

[51] for some elementary functions using double-precision format. Nardin et al

[68, 67] describe an evaluation method for confluent hypergeometric series (on

large complex arguments) which they “verify” to be accurate to at least 9 digits.

Their verification consists of a battery of 12 tests, but these do not constitute

a proof of correctness. But using results of our chapter 2, we can automatically

verify the accuracy of their evaluation.

Jeandel [45] describes a recent effort to provide hypergeometric functions in

GNU’s multi-precision number package GMP. In [23], an implementation of Hy-

pergeometric Function Package in the Core Library introduces transcendental

functions into EGC for the first time.

1.4 Our Contributions

The basic goal of my thesis research is to improve the efficiency of our EGC

approach and to extend it to transcendental computations. This requires a

redesign of our current Core Library and providing effective algorithms for

approximating transcendental functions.

As a part of our research effort, we redesigned the Core Library. While

we keep the user-level interface intact, the on-top Expr class is redesigned as

a template class with three parameters, Filter, Rootbd and Kernel. This

11

makes the implementation of Expr class independent from the implementa-

tion of these three submodules. Moreover, users can easily plug in different

template parameters for experiments or various efficiency trade-offs. The key

routines computeExactSign() and computeApprox() in Expr package are sep-

arated into five subroutines, which greatly avoid the unnecessary computations.

The correctness and performance of these new subroutines have been carefully

considered. Our benchmark shows that the redesigned system has 5-10 times

speedup. For correctness of our implementation, we have ensured that the fairly

extensive suite of sample programs in our Core Library produce the same re-

sults as the current system.

The underlying approximation “engine”, the BigFloat subsystem, has also

been redesigned. Instead of one class, we now split off from BigFloat a new class

BigFloat2. They are both based on MPFR [63], a portable C library providing

multi-precision floating point computation. BigFloat does not keep track of

errors while BigFloat2 does using interval arithmetic. This change makes our

system more flexible since users can now choose one of them depending on their

specific applications to get the most efficiency. And by using MPFR, we can now

focus more exclusively on our EGC research.

Some efforts to extend the Core Library have also been made. We now

provide a standard interface to help developers or users to write extensions for

the Core Library, say, adding new operators or functions. Some C++ macros

have been developed to simplify the task of writing such extensions. We also

developed an interpreted version of our library, InCore, to help users prototype

and rapidly develop their applications.

In the second part of this thesis, we investigate the absolute approximation of

the general hypergeometric function H(a;b; x) = pFq(a;b; x). We show that it

12

is solvable by presenting our complete approximation algorithm. Furthermore,

we show that we can also approximate H when x is a “blackbox number”, i.e.,

the number x is represented by a procedure that can return an approximation

x̃ to any desired absolute precision. This generalization is necessary for various

applications: (a) argument reduction [64, 23], (b) evaluation of hypergeometric

functions at irrational values such as x = π or x =
√

2, (c) absolute approxima-

tion of functions that are derived from hypergeometric functions by irrational

transformations of their x argument. An explicit bound on the complexity of

our algorithm is given as well. A full implementation of our algorithm has been

integrated into the Core Library.

Another important aspect of transcendental computation is the AGM algo-

rithm. It has been used by Brent [10, 11] for fast evaluation of most elementary

functions. However, he only gave the asymptotic error analysis which is use-

ful for complexity analysis, but his algorithms cannot be implemented directly

since the constants in the Big O(·) notation is unknown. We present a full

non-asymptotic error analysis on these algorithms and implemented them using

our redesigned Core Library.

We now summarize the contributions of this thesis:

• We redesigned the Expr package in the Core Library to increase modu-

larity and significantly improved the efficiency of the key evaluation algo-

rithms.

• We provided two BigFloat classes, which are now both based on MPFR,

to make them more efficient and flexible for different applications.

• We developed a new mechanism for Expr to help users extend the func-

tionalities of the Core Library.

13

• We implemented an interpreted version of our library.

• We presented a complete algorithm for absolute approximation of the gen-

eral hypergeometric function with complexity analysis. Some problems,

such as argument reduction, parameter pre-processing and mathematical

constants are also addressed.

• We integrated hypergeometric function package with the Core Library.

• We gave an error analysis of the AGM algorithms and implementation in

the Core Library.

The results of this thesis form the basis of the next release of the Core

Library (version 2.0). All the experiments reported in this thesis are given

with source codes and input data as part of the Core Library 2.0 distribution.

They can be downloaded from

http://www.cs.nyu.edu/exact

Note that the Core Library is open source software.

Acknowledgments. The work on redesign is joint with Chee Yap, Sylvain

Pion and Hervé Brönnimann. The work on hypergeometric functions is joint

with Chee Yap. Some initial work on hypergeometric functions is a result of

our collaboration with Jose Moreira and Maria Eleftheriou in IBM research.

14

Chapter 2

Redesign of the Core Library

The Core Library, as one of two general EGC software libraries, has been ex-

tensively developed for about ten years. It provides a collection of C++ classes

to support numerical computation of algebraic expressions to arbitrary relative

or absolute precision. Its simple, natural, numerical API and unique guaran-

teed accuracy computation feature make it quite useful in many applications,

especially for developing robust geometric software. For example, it has been

bundled with CGAL since 2003. However, the current design and development

faces many issues. In this chapter, we discuss the redesign of the Core Library.

Overview of this chapter. In Section 2.1, we review the current Core

Library design. In Section 2.2, we present the new design for the Expr package

and discuss the key algorithms in it. The redesign of the BigFloat subsystem is

shown in Section 2.3. In Section 2.4, we describe our new mechanism of writing

extensions for the Core Library. Some experimental results and benchmarks

are reported in Section 2.5. In Section 2.6, we present our newly designed

interpreted version. We summarize in Section 2.7.

15

2.1 Review of the current Core Library design

The Core Library features an object-oriented design and is implemented in

C++. A basic goal in the design of the Core Library is to make EGC tech-

niques transparent and easily accessible to non-specialist programmers [52].

Built upon the Real/Expr package from Yap, Dubé and Ouchi [96, 72], it facil-

itates the rapid development of robust geometric applications.

There are four main subsystems in the current Core Library (version 1.7):

expressions(Expr), real numbers(Real), big floating-point numbers(BigFloat)

and big integer/rational numbers(BigInt, BigRat). They are built up in a

layered structure. The Expr package at the top level provides the basic func-

tionalities of exact geometric computation. In theory, this is the only interface

that users need to program with. But experienced users can also access the

underlying number classes directly, mainly for efficiency.

In the following, we raise design and efficiency issues in the current design

of the Expr subsystem and the BigFloat subsystem.

Expr is the most important class of the library. It represents expressions that

are constructed from rational constants by repeated application of the four basic

arithmetic operations {+,−, ∗, /} and square root. The leaves of expression

trees can introduce arbitrary real algebraic numbers via the rootOf() operator.

Internally, expressions are represented as directed acyclic graphs (DAGs). Each

node in the DAG is a pointer to an instance of ExprRep. The expression DAG

and most functionalities of Expr are actually implemented in ExprRep first and

then simply wrapped under the interface of Expr.

There are several issues with the current design of the Expr package:

• There are critical facilities in Expr that should be modularized and made

16

extensible. In particular, the filter facility and the root bound facility have

grown considerably over the course of library development and are now

hard to maintain, to debug and to extend.

• The main evaluation algorithm of Expr has essentially three co-recursive

subroutines. The current design does not separate their roles clearly, and

can lead to costly unnecessary computations. For example, the subroutine

for computing the sign of a node is always called even though this may

not be necessary.

• The Core Library currently support only algebraic expressions. An over-

haul of the entire design is needed to add support for non-algebraic ex-

pressions.

• Currently, users cannot easily add new operators to Expr. For instance, it

is desirable to add determinants, summation and product, and diamond

operators.

• It can be very inefficient to build certain huge expressions. For example,

a naive implementation of the summation
∑n

i=1(1/i) would build an un-

balanced tree of depth n. For large n, this recursive evaluation can easily

cause stack overflow. Often such expressions can be automatically gener-

ated and evaluated on the fly. We would like to be able to introduce such

kinds of nodes into Expr.

We now address the BigFloat class. This class is used by Expr to approx-

imate real numbers. It is an arbitrary precision floating-point number system

that is built on top of big integer package (we use GNU’s GMP[35] since version

1.3). A BigFloat is represented by the triple 〈m, err, e〉 of integers where m

17

is the mantissa, err ≥ 0 is the error bound and e is the exponent. The triple

represents the interval [(m− err)Be, (m+ err)Be] where B = 214. We say the

error err is normalized when err < B. The following issues arise:

• The interval representation of BigFloat has performance penalty because

the current design requires frequent error normalization. For example, our

sqrt() function is about 25 times slower than MPFR as shown in Figure 2.6.

• The current BigFloat class only implements {+,−, ∗, /, 2
√ }. A lack of

implementations for the elementary functions such as exp, log, sin, cos etc,

limits the applications of the current Core Library.

• There are applications that do not need to maintain error. For example, in

Newton iteration, in AGM computation and when bigfloats are used with

exact ring operations only. The current BigFloat can be very inefficient

for such computations. Although users can manually eliminate the error

bounds in current BigFloat numbers, this process is error-prone.

The above issues call for a major redesign of the Core Library.

2.2 Redesign of Expr Package

The goal of our redesign is to increase modularity, introduce extensibility of

expression nodes, and significantly improve efficiency. Another design goal is

to ensure that these changes do not change the user-level interface. Thus, the

original Core Library API, which is simple to understand and use, is intact.

For instance, any current CGAL code using the Core Library as its number

kernel should be able to run after recompilation.

18

2.2.1 Incorporation of Transcendental Nodes

We now consider expressions (DAG’s) with transcendental operators. We clas-

sify a node (and the corresponding subexpression) as transcendental if any of

its descendant nodes has a transcendental operator. For example, a transcen-

dental node may be a leaf node such as π, or a unary node such as sin(·).
In the current Core Library, we classify nodes into rational or irrational

(this is used for certain operations). We now refine this classification into

integer, dyadic, rational, algebraic, transcendental.

Since transcendental numbers do not have constructive root bounds, we need

to introduce a user-definable global value called escape bound. This bound is

used as the root bound at transcendental nodes. Note that there is also another

bound called cutoff bound which is used for a different purpose, as explained

below.

Note that both the escape and cutoff bounds are absolute bounds on − lg |E|

where E is some error that we wish to bound.

2.2.2 New template-based design of ExprRep

Our new design retains the basic structure of Expr, which is a thin wrapper

around ExprRep. So we mainly focus on the redesign of ExprRep class.

§6. ExprRep and ExprRepT As noted in Section 2.1, the filter facility and

root bound facility are embedded in the old ExprRep class. Now we factor them

out from ExprRep into two functional modules: Filter and Rootbd. The Real

class, which is already an independent module, is now viewed as an instance of

an abstract number module called Kernel. The role of Kernel is to provide

19

approximations to the exact value. Typically we use bigfloats. Thus, we want

to parametrize an expression class with these three modules. So our ExprRep

class is redesigned as a template class with new name ExprRepT.

ExprRep

d_e,...

Filter

Real

ExprRepT

_filter

_rootbd

_kernel

Filter

Rootbd

Kernel

Figure 2.1: Comparison of ExprRep and ExprRepT

This applies the “delegation pattern” from [89]: delegate certain behaviors

of the main class to other objects. The benefit of this new design is that, now

we can replace Filter, Rootbd or Kernel without any changes in ExprRepT.

The C++ prototype of ExprRepT is shown as follows:

template <typename Filter, typename Rootbd, typename Kernel>

class ExprRepT;

§7. Memory layout of ExprRep Three type parameters are used to define

3 data fields filter, rootbd and kernel inside ExprRepT. However, the

nature of their definitions are different: filter is defined as a variable while

rootbd and kernel are defined as pointers. We design it in this way because

the filter computation will always be done first, but root bound information and

20

high precision computation (based on kernel) may not be needed. No memory

will be allocated for them when they are not needed. The memory layout of

ExprRepT is shown in Figure 2.2. For a binary node, it uses a total of 48 bytes

on a 32-bit architecture system (we assume that the Filter class use two IEEE

doubles, i.e., 16 bytes).

Field name Size

Dynamic type information (RTTI) 4

Reference counter 4

Operands : Node * [arity] 4×arity

Filter filter 16

Kernel * kernel 4

Rootbd * rootbd 4

Cache * cache 4

int numType 4

Figure 2.2: ExprRepT memory layout. Sizes in bytes for a 32-bit architecture.

Note that for efficiency, a data field named cache is added to cache some

important and costly information such as sign, uMSB, lMSB once they become

available. Currently, it is designed to cache sign, uMSB, lMSB using 3 integers

(12 bytes on 32-bit system). The field numType is used for node type classifi-

cation.

§8. API specification for ExprRepT The C++ API specification for

ExprRepT is given below.

1 template <typename T>

2 class ExprRepT {

21

3 T : : F i l t e r f i l t e r ; ///<− f i l t e r

4 mutable T : : Kernel ∗ k e r n e l ; ///<− k e rne l

5 mutable T : : Rootbd∗ rootbd ; ///<− root bound

6 mutable Cache∗ cache ; ///<− cache

7 int numType ; ///<− number type

8

9 public :

10 /// \name pu b l i c accessors

11 //@{

12 /// The f o l l ow i n g f unc t i on s are pu b l i c and const , they are

13 /// used to r e t r i e v e the va lues o f i n t e r n a l f i e l d s .

14 s i g n t sgn () const ; ///<− return s i gn

15 msb t uMSB() const ; ///<− return upper bound of l g | e |

16 msb t lMSB() const ; ///<− return lower bound of l g | e |

17 T : : Kernel r approx (p r e c t) const ; ///<− r e l a t i v e approx .

18 T : : Kernel a approx (p r e c t) const ; ///<− ab so l u t e approx .

19 const T : : F i l t e r& f i l t e r () const ; ///<− return the f i l t e r

20 const T : : Rootbd& rootbd () const ; ///<− return root bound

21 const Cache& cache () const ; ///<− return cache

22 //@}

23

24 protected :

25 /// \name pro t e c t e d accessors

26 /// the f o l l ow i n g f unc t i on s are pro t e c t e d and non−const ,

27 /// they are used to update corresponding i n t e r n a l f i e l d .

28 //@{

29 s i g n t& sgn () ; ///<− return r e f e r enc e o f s i gn f i e l d

30 msb t& uMSB() ; ///<− return r e f e r enc e o f uMSB f i e l d

31 msb t& lMSB () ; ///<− return r e f e r enc e o f lMSB f i e l d

32 T : : Kernel& ke rne l () ; ///<− return r e f e r enc e o f k e rne l f i e l d

33 T : : F i l t e r& f i l t e r () ; ///<− return r e f e r enc e o f f i l t e r f i e l d

34 T : : Rootbd& rootbd () ; ///<− return r e f e r enc e o f root bd f i e l d

35 Cache& cache () ; ///<− return r e f e r enc e o f cache f i e l d

36 //@}

37

38 protected :

39 /// \name eva l ua t i on f unc t i on s

40 //@{

41 /// r e f i n e current approximation un t i l t he s i gn i s known

22

42 void r e f i n e () ;

43 /// compute the s i gn

44 virtual bool compute sgn () const ;

45 /// compute the upper bound of l g | e |

46 virtual bool compute uMSB () const ;

47 /// compute the lower bound of l g | e |

48 virtual bool compute lMSB () const ;

49 /// compute r e l a t i v e approximation

50 virtual void compute r approx (p r e c t) const ;

51 /// compute ab so l u t e approximation

52 virtual void compute a approx (p r e c t) const ;

53 /// compute root bound

54 virtual void compute rootbd () const ;

55 //@}

56

57 /// \name he l pe r f unc t i on s

58 //@{

59 /// return t rue i f node i s a l g e b r a i c

60 bool i s a l g e b r a i c () const ;

61 /// return t rue i f cache has been i n i t i a l i z e d

62 bool c a c h e i n i t i a l i z e d () const ;

63 /// i n i t i a l i z e the cache

64 void i n i t i a l i z e c a c h e () ;

65 /// return t rue i f k e rne l has been i n i t i a l i z e d

66 bool k e r n e l i n i t i a l i z e d () const ;

67 /// i n i t i a l i z e the k e rne l

68 void i n i t i a l i z e k e r n e l () ;

69 /// convert r e l a t i v e p r e c i s i on to ab so l u t e p r e c i s i on

70 p r e c t r e l 2ab s (p r e c t) const ;

71 /// convert ab so l u t e p r e c i s i on to r e l a t i v e p r e c i s i on

72 p r e c t ab s 2 r e l (p r e c t) const ;

73 //@}

74 . . .

75 } ;

Note that in the definition of ExprRepT, we only have one type parameter

T. This type is really a combination of the three types Filter, Rootbd, Kernel.

This packaging is useful because we can just pass a single type parameter T to

23

other template classes which are derived from ExprRepT.

There are two versions for each function such as sgn(), uMSB(), lMSB(),

etc.; they are protected and public respectively. The ones with C++ keyword

const are called const versions which can only be put on the right hand side of

a C++ expression, while the others are non-const versions which can be put on

the either side. Lazy evaluation is used in the Core Library, and this requires

the modification of some internal data fields in those const version functions.

In order to solve this conflict, data fields rootbd, kernel and cache are

marked as mutable to avoid checking done by compilers.

§9. ExprRepT class hierarchy ExprRepT only defines the abstract structures

and operations; the actual implementations are delegated to the derived classes.

The new design still keep the same class hierarchy of ExprRepT and its derived

classes as in the Core Library 1.x except that a “T” is appended at each class

names. A full hierarchy diagram is shown in Figure 2.3.

ExprRepT

BinaryOpRepT ConstRepT UnaryOpRepT

AddRepT

DivRepT

MulRepT

SubRepT

ConstDoubleRepT

ConstFloatRepT

ConstIntegerRepT

ConstLongRepT

ConstPolyRepT

ConstRationalRepT

ConstULongRepT

CbrtRepT

NegRepT

RadicalRepT

SqrtRepT

Figure 2.3: ExprRepT Class Hierarchy

24

§10. Design of the Filter class The Filter class is used to provide

some information such as sign, uMSB, lMSB using “filter technique” before

ExprRepT goes high precision computation. In order to make it work for

ExprRepT, the Filter class is required to implement the following interface:

1 class F i l t e r {

2 typedef F i l t e r t h i s c l s ;

3 // put i n t e r n a l maintained data f i e l d s here !

4 //

5 public :

6 // return t rue i f f i l t e r succeed

7 bool i s o k () const ;

8 // return cor r e c t s i gn (only v a l i d i f f i l t e r succeed)

9 int sgn () const ;

10 // return upper bound of MSB (only v a l i d i f f i l t e r succeed)

11 long uMSB() const ;

12 // return lower bound of MSB (only v a l i d i f f i l t e r succeed)

13 long lMSB() const ;

14 // return t rue i f f i l t e r va lue has g i ven r e l a t i v e p r e c i s i on

15 bool ha s r e l p r e c (p r e c t) const ;

16 // return r e l a t i v e approximated va lue from f i l t e r va lue

17 double r approx (p r e c t) const ;

18 // return ab so l u t e approximated va lue from f i l t e r va lue

19 double a approx (p r e c t) const ;

20

21 // assignment func t ion

22 template <typename T> void s e t (const T&, bool=true) ;

23 // s p e c i a l func t ion to make f i l t e r f a i l e d

24 void i n v a l i d a t e () ;

25

26 // ar i t hme t i c f unc t i on s

27 void neg (const t h i s c l s &);

28 void add (const t h i s c l s &, const t h i s c l s &);

29 void sub (const t h i s c l s &, const t h i s c l s &);

30 void mul (const t h i s c l s &, const t h i s c l s &);

31 void div (const t h i s c l s &, const t h i s c l s &);

32 void s q r t (const t h i s c l s &);

33 void cbr t (const t h i s c l s &);

25

34 void r oot (const t h i s c l s &, unsigned long) ;

35 } ;

Some design considerations and issues for this interface include:

• The function is ok() is the most important call in the Filter class. It

is called by ExprRepT to test whether filter succeed or failed by checking

its return values true or false. Only when is ok() returns true, the

other 6 functions: sgn(), uMSB(), lMSB(), has rel prec(), r approx()

and a approx() will be called to get information from the Filter. Thus,

a dummy filter can be implement as follows: let is ok() function return

false and other 6 functions return some dummy values (this is necessary

in order to avoid compilation errors).

• The function has rel prec() is used to test whether the filter can provide

enough precision. If not, ExprRepT will do higher precision computation.

• The assignment function set() is designed for leaf ExprRepT node. It

will be called whenever a leaf ExprRepT node is constructed. Since in the

Core Library the leaf node can be constructed from the following types:

long, unsigned long, double, BigInt, BigRat, BigFloat,

it has to accept all types above. Different versions of set() have to be

defined if the user’s Filter class handles those types differently. The

second boolean parameter is used to indicate whether the value of the

first argument is exact or not. Its default value is true. A dummy filter

can just define one set() which takes a template parameter and does

nothing inside it.

26

• The arithmetic functions neg(), add(), sub(), mul(), div(), sqrt(),

cbrt() and root() are designed to be called when a corresponding

ExprRepT node is constructed. For example, when a MulRepT node is

created, the function mul() will be called. At the same time, the filter

instances of the children nodes are passed to those functions so that the

current node can update its filter information from them. Again, a dummy

filter can have a empty implementation. (The Filter class in the Core

Library 1.7 implements those functions as C++ operators, which is more

intuitive, but the new designed interface can avoid temporary memory

storages to be more efficient.)

• A global function set filter flag() is defined to allow users to en-

able or disable filter facility at run time. So in the implementation of

Filter, developers may check this flag by calling the global function

get filter flag() (if it returns false, then it means users have dis-

abled the filter facility in their applications). However, for a non-dummy

filter, the underlying filter computation will still be performed even if the

filter facility is disabled. To completely avoid the filter computation, a

dummy filter should be used.

• The invalidate() function is used to invalidate the filter value of the

current node (for example, by setting it to be IEEE value infinite). Note

that this applies only to the current node. To invalidate the filter values

for all nodes, the users should call set filter flag(false).

With the newly designed filter interface, given the recursive rules of a fil-

ter algorithm, writing a Filter class just requires translating those rules into

above corresponding functions. An effective floating-point filter, BfsFilter, is

27

provided in the Core Library. It is based on [17] with some extended rules for

cubic root and k-th root extraction. The detail rules of the BfsFilter and how

to translate the rules into code are given in Appendix A.

§11. Design of the Rootbd Class The Rootbd class is used to provide root

bound information when ExprRepT cannot determine the sign of the current

node. While it was embedded inside ExprRep in the Core Library 1.x, now it

becomes a separate class. The following interface of the Rootbd class is required

by ExprRepT:

1 class Rootbd {

2 typedef Rootbd t h i s c l s ;

3 // put i n t e r n a l maintained data f i e l d s here !

4 //

5 public :

6 // return t rue i f t he root bound computation i s c on s t ruc t i v e

7 stat ic bool i s c o n s t r u c t i v e () ;

8 // return root bound

9 unsigned long get bound () const ;

10 // return t rue i f i t i s degree based

11 stat ic bool i s d eg r e e ba s ed () const ;

12 // s e t the degree bound of the current node

13 void s e t degr ee bound (unsigned long) ;

14 // ge t the degree bound of the current node

15 unsigned long get degree bound () ;

16

17 // assignment func t ion

18 template <typename T> void s e t (const T&);

19

20 // ar i t hme t i c f unc t i on s

21 void neg (const t h i s c l s &);

22 void add (const t h i s c l s &, const t h i s c l s &);

23 void sub (const t h i s c l s &, const t h i s c l s &);

24 void mul (const t h i s c l s &, const t h i s c l s &);

25 void div (const t h i s c l s &, const t h i s c l s &);

26 void s q r t (const t h i s c l s &);

28

27 void cbr t (const t h i s c l s &);

28 void r oot (const t h i s c l s &, unsigned long) ;

29 } ;

We use the term “constructive” for root bound computation. We say a root

bound is “constructive” to mean the root bound information is computed by

some recursive rules. Functions is constructive() is used by ExprRepT to

test whether the root bound computation is constructive or not. If it returns

false, ExprRepT will skip the recursive calls of compute rootbd() for each

of its children. Since there are no known constructive root bounds for non-

algebraic expressions, ExprRepT will also skip the root bound computation if

the current node is non-algebraic.

Moreover, if is constructive() returns true and the current node is

algebraic, then get bound() will be called by ExprRepT to obtain the root

bound. Otherwise the global function get escape bound() will be called

and its returned value is used as a substitute root bound. Users can use

set escape bound() to set this bound at the run time.

As we mentioned before, ExprRepT contains a pointer instance rootbd of

Rootbd. We will not allocate memory for rootbd unless we need root bound

information. Hence the function is constructive() is designed to be a static

function which can be called without any Rootbd object being constructed, i.e.,

no memory is allocated.

Most constructive root bounds are based on the degree of the expression

node. The function is degree based() is used to test this property. A Rootbd

class needs to maintain an upper bound on the degree which is called degree

bound if is degree based() returns true. Degree bounds can be computed

29

using some recursive rules [52, Table 2.1]. Yap proposed an algorithm1 which de-

tects the shared expression nodes in DAG to get a better bound. However, such

an algorithm can only be invoked by ExprRepT since Rootbd class can not access

DAG. Hence, two functions set degree bound() and get degree bound() are

required to allow ExprRepT to update degree bound inside Rootbd.

As the Filter class above, the assignment function set() and arithmetic

functions neg(), add(), etc. are designed for corresponding types of nodes.

However, those functions in the Rootbd class are only called when root bound

information is needed while in the Filter class they are called always even if

the filter is disabled by users.

To design a Rootbd class for a constructive root bound algorithm, we just

need to translate its constructive rules and root bound computation formula

into corresponding function calls. We implemented 3 different Rootbd classes

for 3 constructive root bounds: Degree-Measure bound, BFMSS bound [15, 16]

and Li-Yap bound [54] in the Core Library. See Appendix B for an example

of how we implement BFMSS bound.

Two other Rootbd classes, DummyRootbd and MaxRootbd are provided, too.

The DummyRootbd class just returns false in its is constructive() function.

The MaxRootbd takes two other Rootbd classes as parameters and does the root

bound computation at the same time, and then returns the maximal bound.

§12. Design of the Kernel Class The Kernel is used by ExprRepT to com-

pute an approximation of the current node. Typically we use bigfloat number

for this class. The minimal interface is given below:

1This algorithm did not appear in any publication, but it has been implemented in the

Core Library since version 1.4

30

1 class Kernel {

2 typedef Kernel t h i s c l s ;

3 // put i n t e r n a l maintained data f i e l d s here !

4 //

5 public :

6 // return t rue i f t he s i gn i s known

7 bool has sgn () const ;

8 // return t rue i f wi th in requ i red r e l a t i v e p r e c i s i on

9 bool ha s r e l p r e c (p r e c t) const ;

10 // return s i gn (only v a l i d i f has sgn () return t rue)

11 s i g n t sgn () const ;

12 // return upper bound of MSB

13 msb t uMSB() const ;

14 // return lower bound of MSB

15 msb t lMSB() const ;

16

17 // assignment f unc t i on s

18 template <typename T> void s e t (const T&);

19 template <typename T> void s e t (const T&, p r e c t) ;

20

21 // ar i t hme t i c f unc t i on s

22 void neg (const t h i s c l s &, p r e c t) ;

23 void add (const t h i s c l s &, const t h i s c l s &, p r e c t) ;

24 void sub (const t h i s c l s &, const t h i s c l s &, p r e c t) ;

25 void mul (const t h i s c l s &, const t h i s c l s &, p r e c t) ;

26 void div (const t h i s c l s &, const t h i s c l s &, p r e c t) ;

27 void s q r t (const t h i s c l s &, p r e c t) ;

28 void cbr t (const t h i s c l s &, p r e c t) ;

29 void r oot (const t h i s c l s &, unsigned long , p r e c t) ;

30 } ;

31 std : : i s t r eam& operator>>(std : : i s t r eam&, t h i s c l s &);

32 std : : ostream& operator<<(std : : ostream&, const t h i s c l s &);

The function has sgn() checks whether the sign of the current approxi-

mation is known or not (whether the current approximation is separated from

zero). If it returns true, the return value of sgn() will be used when needed.

31

The function has rel prec() is used to test whether current approximation

has enough (relative) precision.

The other functions are similar to those in the Filter class except that now

the assignment function set() and arithmetic functions require an extra prec t

type parameter. This parameter is used to specify the precision that needed in

the corresponding arithmetic operations. Note that it is a relative precision.

Two global operators >> and << have to be overloaded by the Kernel to

provide reading/writing facilities for ExprRepT. By default, only 6 digits are

printed out.

We will present our new BigFloat2 class later as an example implementation

of the Kernel class. Users are free to use their own number type class as long as

they implement the above interface. For example, we can use our old BigFloat

or REAL in iRRAM [65].

§13. Number Type inside Expr In order to bring transcendental functions

or constants into Expr, we need to identify the number type of each expression

node. The field numType is used for this purpose. For each expression node,

its numType can be one of the following enum values:

1 enum NODENUMTYPE {

2 NODE NT INTEGER = 0 , // in t e g e r node

3 NODE NT DYADIC = 1 , // f l o a t i n g−poin t node

4 NODE NT RATIONAL = 2 , // r a t i on a l node

5 NODE NT ALGEBRAIC = 3 , // a l g e b r a i c node

6 NODE NT TRANSCENDENTAL = 4 // t ranscendenta l node

7 }

For a leaf node, the numType is determined by its internal data type. For other

operations, we can deduct them from the Table 2.1 shown below:

32

Operator op A op B

+/− /× max{A. numType, B. numType}

÷ max{NODE NT RATIONAL, A. numType, B. numType}
k
√· max{NODE NT ALGEBRAIC, A. numType}

Transcendental max{NODE NT TRANSCENDENTAL, A. numType}

Table 2.1: Rules for computing number type

§14. Expr with plug-gable Filter, Root Bound and Kernel A new

template class ExprT is defined as:

template <typename Filter, typename Rootbd, typename Kernel>

class ExprT;

Expr is now a typedef:

typedef ExprT<BfsFilter, BfmssRootbd, BigFloat2> Expr;

Thus, the default Expr class uses BFS filter, BFMSS root bound and our

BigFloat2 kernel. However, now the users are free to plug in their own fil-

ter, root bound or kernel classes. For example, we can use a better filter and

root bound class for division-free expressions.

2.2.3 Improved Approximate Evaluation Algorithms

computeExactSign() and computeApprox() are two key evaluation subrou-

tines in the Core Library 1.x. The subroutine computeExactSign() is used

for computing the sign, upper and lower bound on the most significant bits of

the current node (actually it even computes the root bound information). The

subroutine computeApprox() is used to propagate the composite precision and

33

compute the approximation. These two subroutines recursively call each other,

involving unnecessary computations. Now we divided them into five subrou-

tines to be more efficient. A multi-level computation paradigm is designed for

optimization.

§15. Algorithms for sgn(), uMSB() and lMSB() The sign of an expression

node is important and used in many places in the Core Library. For example,

division operator needs to check the sign of the child nodes to avoid “divided

by zero” error. The upper and lower bound on the most significant bits of an

expression node E, denoted by E+ and E− respectively, are also important.

They are used to convert the precision from an absolute bound to a relative

one or vice-versa. These three parameters are maintained in ExprRepT. The

subroutine computeExactSign() computes them simultaneously using the rules

shown in Table 2.2, Table 2.3 and Table 2.4.

E = E.sgn()

Constant x sign(x)

E1 ± E2

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

±E2.sgn() if E1.sgn() = 0

E1.sgn() if E2.sgn() = 0

E1.sgn() if E1.sgn() = ±E2.sgn()

E1.sgn() if E1.sgn() 6= ±E2.sgn() and E−
1 > E+

2

±E2.sgn() if E1.sgn() 6= ±E2.sgn() and E+
1 < E−

2

unknown otherwise

E1 × E2 E1.sgn() ∗ E2.sgn()

E1 ÷ E2 E1.sgn() ∗ E2.sgn()

k
√
E1 E1.sgn()

Table 2.2: Rules for computing sign recursively

We can see these rules are recursive. In order to compute this informa-

tion for the current node, computeExactSign() has to compute its children’s

34

E = E+

Constant x ⌈log2 x⌉

E1 ±E2

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

E+
2 if E1.sgn() = 0

E+
1 if E2.sgn() = 0

max{E+
1 , E

+
2 } + 1 if E1.sgn() = ±E2.sgn()

max{E+
1 , E

+
2 } if E1.sgn() 6= ±E2.sgn()

unknown otherwise

E1 ×E2 E+
1 + E+

2

E1 ÷E2 E+
1 − E−

2

k
√
E1

l

E+
1 /k

m

Table 2.3: Rules for computing upper bound of MSB recursively

computeExactSign() first, which consequently computes this information for

all nodes below it in the DAG even we do not need them all.

In contrast to this, in the new design three separated subroutines: sgn(),

uMSB() and lMSB() are introduced and they are only called when necessary.

The algorithms for them are very similar. Basically, each algorithm consists of

the following steps (using sgn() as an example):

Sign Evaluation Algorithm

1. Ask the filter if it knows the sign;

2. Else if the cache exists, ask if it cached the sign;

3. Else if the approximation (kernel) exists, ask if it can give the sign;

4. Else if the virtual function compute sgn() return true, return

sgn() (it returns the sign in the cache);

5. Else call refine() (to be presented next) to get the sign.

For efficiency, we use five levels of computation here: filter, cache, kernel,

recursive rules, refine(). Note that we do not put the cache at the first level.

We do not even cache the sign, uMSB and lMSB information when the filter

35

E = E−

Constant x ⌊log2 x⌋

E1 ±E2

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

E−
2 if E1.sgn() = 0

E−
1 if E2.sgn() = 0

max{E−
1 , E

−
2 } + 1 if E1.sgn() = ±E2.sgn()

E−
1 − 1 if E1.sgn() 6= ±E2.sgn() and E−

1 > E+
2

E−
2 − 1 if E1.sgn() 6= ±E2.sgn() and E−

2 > E+
1

unknown otherwise

E1 ×E2 E−
1 + E−

2

E1 ÷E2 E−
1 −E+

2

k
√
E1

j

E−
1 /k

k

Table 2.4: Rules for computing lower bound of MSB recursively

succeed because a Cache structure is large and we try to avoid costly memory

allocation. The pseudo-codes in C++ are given below:

1 s i g n t sgn () const {

2 // Step 1:

3 i f (f i l t e r () . i s o k ())

4 return f i l t e r () . sgn ()) ;

5 // Step 2:

6 i f (c a c h e i n i t i a l i z e d () && cache () . has sgn ())

7 return cache () . sgn () ;

8 // Step 3:

9 i f (k e r n e l i n i t i a l i z e d () && kerne l () . has sgn ())

10 return ke rne l () . sgn () ;

11 // Step 4:

12 i f (compute sgn ())

13 return sgn () ;

14 // Step 5:

15 r e f i n e () ;

16 return ke rne l () . sgn () ;

In the algorithm above, we adapt another design pattern which is called

“template method pattern” [32]: define the skeleton of an algorithm in terms of

abstract operations which subclasses will override to provide concrete behavior.

36

In the derived classes of ExprRepT, it is sufficient to just override the virtual

function compute sgn() when appropriate. For example, ConstIntegerRepT

may implement compute sgn() as follows:

1 virtual bool compute sgn () {

2 sgn () = value . sgn () ;

3 return true ;

4 }

and MulRepT may override its compute sgn() function as:

1 virtual bool compute sgn () {

2 sgn () = f i r s t . sgn () ∗ second . sgn () ;

3 return true ;

4 }

§16. Algorithms for r approx() and a approx() For approximation algo-

rithms, we made two improvements:

1. The new approximation algorithm does not compute the sign before ap-

proximating when it is unnecessary; the old algorithm always does.

2. While the the Core Library 1.x uses one subroutine computeApprox() to

do approximation which requires a composite precision, the new design use

two subroutines, r approx() for relative approximation and a approx()

for absolute approximation. This can avoid unnecessary conversion be-

tween them.

The algorithm for computing approximation in relative (or absolute) preci-

sion is given below.

37

Approximation Algorithm

1. Use the filter value if it works and has the required precision.

2. Else if the approximation has not been initialized, then initialize it.

3. Else if the approximation does not have enough precision, then call

virtual function compute r approx() or compute a approx() to

obtain a better approximation with required precision.

4. Return the approximation.

It uses two levels of computation: filter and kernel. The detailed algorithm

in C++ for r approx() is as follows:

1 Kernel r approx (p r e c t prec) const {

2 // Step 1:

3 i f (f i l t e r () . i s o k () && f i l t e r () . h a s r e l p r e c (prec))

4 return f i l t e r () . r approx (prec) ;

5 // Step 2:

6 i f (! k e r n e l i n i t i a l i z e d ())

7 i n i t i a l i z e k e r n e l () ;

8 // Step 3:

9 i f (! k e r ne l () . h a s r e l p r e c (prec))

10 compute r approx (prec) ;

11 // Step 4:

12 return ke rne l () ;

13 }

We also applied “template method pattern”. The derived classes of ExprRepT

will override compute r approx() or compute a approx() function to imple-

ment actual approximating computation. Moreover, only one of them is re-

quired to be implemented if uMSB() or lMSB() is available because two default

implementations are already provided in ExprRepT:

1 virtual bool compute r approx (p r e c t prec)

2 { return compute a approx (r e l 2ab s (prec)) ; }

38

3 virtual bool compute a approx (p r e c t prec)

4 { return compute r approx (ab s 2 r e l (prec)) ; }

With the default implementations, if one of them is missing, ExprRepT will

automatically call another one with converted precision. This simplifies the

work of designing derived classes of ExprRepT. For instance, AddRepT may

want to override compute a approx() while MulRepT may prefer to override

compute r approx().

In order to keep the current interface, we still provide the function approx()

in Expr level that will be redirected to call r approx() or a approx().

§17. Algorithm for refine() The override-able compute sgn(), compute uMSB()

and compute lMSB() return false when they cannot determine the sign, upper

and lower bound on the most significant bit of the current node. Then a refine-

ment of the current approximation is required. The abstract algorithm for such

refinement is as follows:

39

Refinement Algorithm

1. If an approximation exists, use its precision as the start precision,

otherwise use 52 bits instead since this is the relative precision

that the floating-point filter can provide.

2. Check if the Rootbd is non-constructive or the current node is

non-algebraic. If so, use the global escape bound. Otherwise,

compute the degree bound if the Rootbd is degree based. Then

compute the root bound.

3. Compare the bound that we get in step 2 with the global cutoff

bound. Take the minimum of them.

4. Run a loop which doubles the precision each time until it hits the

precision that we obtained in step 3. In the loop, compute a better

approximation (absolute) on the current node. Once the refined

approximation can give the correct sign, return immediately.

5. Upon the loop termination, if either escape bound or cutoff bound

was used, print out a warning message in a diagnostic file, otherwise

set the current node to be zero.

§18. Cutoff Bound Cutoff bound is used in above algorithm. It is a global

variable and set to be CORE INFTY by default. It is different from the escape

bound we mentioned before. The escape bound is used when we do not have

the root bound for the current node, say a transcendental node, while the cutoff

bound is used to restrict the root bound to a certain precision. For instance, if

users want to speed up their programs for testing, they can set a small cutoff

bound using set cut off bound(). However, users should realize that sign

40

computations are not guaranteed any more. The pseudo code for refine() is

given:

1 void r e f i n e () {

2 // Step 1:

3 p r e c t prec = 52 , bound ;

4 int bound type ;

5 i f (! k e r n e l i n i t i a l i z e d ())

6 i n i t i a l i z e k e r n e l () ;

7 else

8 prec = ke rne l () . r e l p r e c () ;

9 // Step 2:

10 i f (!T : : Rootbd : : i s c o n s t r u c t i v e () | | ! i s a l g e b r a i c ()) {

11 bound = get escape bound () ;

12 bound type = 0 ;

13 } else {

14 i f (T : : i s d eg r e e ba s ed ()) compute degree bound () ;

15 bound = rootbd () . get bound () ;

16 bound type = 2 ;

17 }

18 // Step 3:

19 i f (bound > ge t cu t o f f bound ()) {

20 bound = ge t cu t o f f bound () ; bound type = 1 ;

21 }

22 // Step 4:

23 do {

24 prec <<= 1 ;

25 compute a approx (prec) ;

26 i f (k e r ne l () . has sgn ()) {

27 i f (c a c h e i n i t i a l i z e d ()) {

28 sgn () = ke rne l () . sgn () ;

29 uMSB() = ke rne l () .uMSB() ; lMSB() = ke rne l () . lMSB () ;

30 }

31 return ;

32 }

33 } while (prec < bound) ;

34 // Step 5:

35 i f (bound type < 2) { // h i t escape bound or cut−o f f bound

36 core warning (”Hit Escape bound or Cut−o f f Bound”) ;

41

37 }

38 ke r ne l () . s e t (0 . 0)

39 i f (c a c h e i n i t i a l i z e d ()) {

40 sgn () = 0 ; uMSB() = 0 ; lMSB() = MSB MIN;

41 }

42 }

Note that rootbd() will call compute rootbd(), which consequently computes

the root bound information recursively .

§19. Algorithm for compute degree bound() Most known constructive

root bounds are based on the degree of an algebraic expression. In many applica-

tions, computing minimal polynomials explicitly is very expensive, so obtaining

the exact degree is hard. In practice, we are more interested in computing an

upper bound on the degree, say “degree bound”. Such a bound can be computed

recursively using the rules in Table 2.5:

Expr E d(E)

Rational a
b

1

RootOf(P, i) deg(P)

E = F ±G d(F)d(G)

E = F ×G d(F)d(G)

E = F ÷G d(F)d(G)

E = k
√
F k · d(F)

Table 2.5: Rules for computing degree bound.

A better bound can be obtained by detecting the shared nodes: if a node E

is shared, then d(E) will return 1 for the subsequent calls. The Core Library

1.x implemented this algorithm. However, to detect whether a node is shared,

an extra flag visited is stored in each ExprRep and a clean operation is needed

for all nodes after d(E) is computed.

42

For efficiency, we now use a map data structure (std::map in STL) to re-

implement this algorithm2: we first create a map M , then for each node E, if

its address does not appear in M , use its degree bound value d(E) and save its

address in M , otherwise use 1 instead. At the end we just discard the map M .

2.2.4 Improved Propagation of Precision

The centerpiece of an EGC library is the algorithm for approximate expression

evaluation. The Core Library uses a precision-driven algorithm with com-

posite precision. The error analysis of the various bigfloat operations of this

algorithm were studied in detail by Ouchi [72]. Using this analysis to propagate

composite precision, various small constants appear in the code which caused

the current code to be hard to understand and maintain. Here we introduce

a simpler and more intuitive solution, where we propagate either absolute or

relative precision, but not both. It basically follows the idea from [94] but with

some simplification.

§20. Precision Conversion We can transform absolute precision to relative

precision or vice-versa if we know the location of the first significant bit in E.

It is shown below:

Lemma 1. Let Ẽ be an approximation of E, while E+ and E− are upper and

lower bounds on lg |E|, i.e., 2E− ≤ |E| ≤ 2E+.

(i) If we want to guarantee a absolute bits in E, it is enough to guarantee a+E+

relative bits in E.

(i) If we want to guarantee r relative bits in E, it is enough to guarantee r−E−

2Sylvain Pion mentioned this idea when I visited INRIA in February 2006.

43

absolute bits in E.

Proof. It is clear from

|Ẽ − E| ≤ |E|2−(a+E+) ≤ 2−a,

and

|Ẽ − E| ≤ 2−(r−E−) ≤ |E|2−r.

Q.E.D.

We normally restrict the relative precision r to positive values. To see why,

note that when r ≤ 0, then Ẽ = 0 satisfies |Ẽ −E| ≤ |E|2−r always. Similarly,

we may also assume absolute precision a > −E+. This latter assumption allows

us to simplify some of the bounds in [94].

§21. Absolute Approximation for Addition/Subtraction For addi-

tion/subtraction, it is easy to guarantee absolute precision:

Lemma 2. (cf. [94, Lemma 9, (i)]) Let z = x+ y. To guarantee p absolute bits

in z, it suffices to approximate x and y to p + 2 absolute bits and perform the

addition in p+1 absolute bits of precision (or p+ z+ +1 bits relative precision).

Proof.

|x̃⊕ ỹ − (x+ y)| ≤ |x̃⊕ ỹ − (x̃+ ỹ)|+ |x̃− x|+ |ỹ − y|

≤ 2−(p+1) + 2−(p+2) + 2−(p+2)

= 2−p.

Q.E.D.

44

§22. Absolute Approximation for Summation We can extend this to

summation:

Corollary 3. To guarantee p absolute bits in z =
∑n

i=1 xi, it suffices to

approximate xi to (p + ⌈lgn⌉ + 1) absolute bits and perform the addition in

(p+ ⌈lg n⌉+ 1) absolute bits of precision.

Proof. A naive implementation of
∑n

i=1 xi can be done by first setting z = 0,

then approximating xi for i = 1, . . . , n, and finally do n additions of z = z + xi

for i = 1, . . . , n. Hence the total absolute error is 2n · 2−(p+⌈lgn⌉+1) ≤ 2−p.

Q.E.D.

§23. Relative Approximation for Multiplication For multiplication,

guaranteed relative precision is more natural:

Lemma 4. (cf. [94, Lemma 8, (i)]) To approximate z = x ·y to within p relative

bits of precision, it is enough to approximate x and y to within p+2 relative bits

of precision and perform the multiplication in p+ 2 relative bits of precision.

Proof. Let δ = 2−(p+2). From |x̃ − x| ≤ |x|δ, we have |x̃| ≤ |x|(1 + δ).

Similarly we have |ỹ| ≤ |y|(1 + δ) and |x̃ · ỹ| ≤ |x · y|(1 + δ)2. Hence

|x̃⊙ ỹ − x · y| ≤ |x̃⊙ ỹ − x̃ · ỹ|+ |x̃| · |ỹ − y|+ |y| · |x̃− x|

≤ |x̃ · ỹ| · δ + |x̃ · y| · δ + |x · y| · δ

≤ |x · y|(1 + δ)2δ + |x · y|(1 + δ)δ + |x · y| · δ

= |x · y|(3δ + 3δ2 + δ3)

≤ |x · y|(4δ)

= |x · y|2−p.

45

Since p > 0, δ = 2−(p+2) < 1/4. Q.E.D.

§24. Precision Propagation without Exact Ring Operation It should

be noticed, from the above error analysis, exact ring operations are not necessary

although this is assumed in [94]. To see the the difference, we did the following

experiment:

Experiment 1 Precision Propagation for Multiplication

We use two methods to compute z =
√

2 ·
√

3 to relative precision p.

Method 1: approximate
√

2 and
√

3 to (p+ 2) relative bits, then use

exact multiplication to multiply the approximate values.

Method 2: do the same as the Method 1 except performing the multiplication

in (p+ 2) bits relative precision.

The timing (in microseconds) is shown in the Figure 2.4 (we use loops to

repeat the experiment since the time for a single run is short). Method 2 seems

to be more efficient.

Precision Loops Method 1 Method 2 Speedup

10 1000000 345 191 45%

100 100000 60 46 23%

1000 10000 72 71 1%

10000 1000 267 219 18%

100000 100 859 760 12%

Figure 2.4: Timing for computing
√

2 ·
√

3 w/ and w/o exact multiplication

46

§25. Relative Approximation for Addition/Subtraction Using Lemma 1,

we can do relative approximation for addition/subtraction if we know the lower

bound on lg |z|: to guarantee p relative bits in z = x + y, we can first convert

to guarantee p − z− absolute bits in z, then applying Lemma 2, we need to

guarantee p− z− + 2 absolute bits in x and y. After we convert them again, we

need to guarantee p − z− + x+ + 2 relative bits in x and p − z− + y+ + 2 bits

in y. With the similar precision transformation, the relative precision we need

for performing addition is p + 2 bits. Note a small error in [94, Lemma 9, (ii)]

where the corresponding terms “+x+” and “+y+” are missing.

Lemma 5. (cf. [94, Lemma 9, (ii)]) Let z = x + y. To guarantee p relative

bits in z, it suffices to approximate x to p − z− + x+ + 2 relative bit and y to

p− z− + y+ + 2 relative bits, and perform the addition in p+ 2 relative bits.

§26. Absolute Approximation for Multiplication Similarly we can do

absolute approximation for multiplication using transformation of precision.

However, such transforming might over-estimate the precision we actually need.

For example, to guarantee p absolute bits in z = x · y, we can transform the

operation to guarantee (p + z+) relative bits in z first, and then we can apply

Lemma 4, i.e., we need approximate x and y to (p+ z+ + 2) relative bits. After

we transform them to absolute precision, we find that we need to guarantee

(p + z+ − x− + 2) absolute bits in x and (p + z+ − y− + 2) absolute bits in y.

Similarly, the relative precision for performing multiplication is (p + z+ + 2).

However, the lemma below gives a better estimation:

Lemma 6. (cf. [94, Lemma 8, (ii)]) To approximate z = x · y to within p

absolute bits of precision, it is enough to approximate x to within (p + y+ + 2)

47

absolute bits of precision, y to within (p+ x+ + 2) absolute bits of precision and

perform the multiplication with p + 2 bits absolute of precision (or p + z+ + 2

relative bits).

Proof. Let δ = 2−(p+2), δx = 2−(p+y++2) and δy = 2−(p+x++2). From |x̃− x| ≤
δx, we have |x̃| ≤ |x|+ δx. Hence

|x̃⊙ ỹ − x · y| ≤ |x̃⊙ ỹ − x̃ · ỹ|+ |x̃| · |ỹ − y|+ |y| · |x̃− x|

≤ δ + |x̃| · δy + |y| · δx

≤ δ + (|x|+ δx) · δy + |y| · δx

= δ + |x| · δy + |y| · δx + δx · δy

≤ δ + δ + δ + δx · δy

≤ 4δ

= 2−p.

where δx · δy = 2−(2p+4+x++y+) ≤ 2−(2p+4+z+) ≤ 2−(p+4) ≤ δ since we assume

p > −z+. Q.E.D.

It is not hard to see that p + y+ + 2 ≤ p + z+ − x− + 2. Moreover, this

propagation avoids the computation of x− and y− which could be costly for

some nodes.

§27. Relative Approximation for Division For division, guaranteed rel-

ative precision is easier:

Lemma 7. (cf. [94, Lemma 10]) To approximate z = x/y to within p relative

bits precision, it is enough to approximate x and y to within p + 2 bits relative

precision and perform the division in p+ 2 relative bits precision.

48

Proof. Let δ = 2−(p+2). From |x̃ − x| ≤ |x|δ, we have |x|(1 − δ) ≤ |x̃| ≤
|x|(1+ δ). Similarly we have |y|(1− δ) ≤ |ỹ| ≤ |y|(1+ δ) and |x̃/ỹ| ≤ |x/y| · 1+δ

1−δ .

Hence

|x̃⊘ ỹ − x/y| ≤ |x̃⊘ ỹ − x̃/ỹ|+ |x̃/ỹ − x/y|

≤ |x̃/ỹ| · δ +
|x̃− x| · |y|+ |ỹ − y| · |x|

|y · ỹ|

≤ |x/y| · 1 + δ

1− δ · δ +
|x| · δ · |y|+ |y| · δ · |x|

|y · y|(1− δ)

≤
∣∣∣∣
x

y

∣∣∣∣ ·
(

1 + δ

1− δ · δ +
2δ

1− δ

)

≤
∣∣∣∣
x

y

∣∣∣∣ ·
3 + δ

1− δ · δ

≤
∣∣∣∣
x

y

∣∣∣∣ · (4δ)

≤
∣∣∣∣
x

y

∣∣∣∣ · 2−p

Since p ≥ 1, δ = 2−(p+2) ≤ 1/8 < 1/5. Q.E.D.

§28. Absolute Approximation for Division We give the following lemma

for absolute approximation for division:

Lemma 8. (cf. [94, Lemma 11]) To approximate z = x/y to within p bits

absolute precision, it is enough to approximate x to p+z+−x− +2 bits absolute

and y to p + z+ − y− + 2 bits absolute precision and perform the division in

p+ z+ + 2 relative bits precision.

§29. Relative Approximation for k-th Root Extraction For k-th root

extraction, we prefer to guarantee relative precision:

49

Lemma 9. (cf. [94, Lemma 12, (i)]) To approximate z = k
√
k to within p relative

bits precision, it is enough to approximate x within p − ⌊lg k⌋ + 1 relative bits

precision and perform the root extraction in p+ 2 relative bits precision.

Proof. Let δx be the relative error for approximating x and δ be the relative

error in root extraction. If δx ≤ 2−(p−⌊lg k⌋+1) and δ ≤ 2−(p+2), then we have

|z̃ − z| = | k
√
x(1 + δx)(1 + δ)− k

√
x|

= | k
√
x| · | k

√
(1 + δx)(1 + δ)− 1|

≤ | k
√
x| · |(1 + δx/k)(1 + δ)− 1|

= | k
√
x| · |δx/k + δ + δxδ/k|

≤ | k
√
x| · |2−(p+1) + 2−(p+2) + 2−(p+1)2−(p+2)|

≤ | k
√
x| · 2−p.

Here we use the fact: k
√

(1 + δx) ≤ 1 + δx/k for δx < 1 and k ≥ 1. Q.E.D.

§30. Absolute Approximation for k-th Root Extraction We give the

following lemma for absolute approximation for k-th root extraction using pre-

cision transformation:

Lemma 10. (cf. [94, Lemma 12, (ii)]) To approximate z = k
√
x to within p bits

absolute precision, it is enough to approximate x to p+ z+−x−−⌊lg k⌋+1 bits

absolute and perform the root extraction in p+ z+ + 2 relative bits precision.

§31. Propagation Rules Now we show all these propagation rules in the

following Table 2.6 and Table 2.7:

50

Precision in x Precision in y Precision for Operation

z = x± y p+ 2 p+ 2 p+ 1

z = x · y p+ y+ + 2 p+ x+ + 2 p+ 2

z = x/y p+ z+ − x− + 2 p+ z+ − y− + 2 p+ 2

z = k
√
x p+ z+ − x− − ⌈lg k⌉+ 1 p+ 2

Table 2.6: Propagating Rules in Absolute Precision.

Precision in x Precision in y Precision for Operation

z = x± y p− z− + x+ + 2 p− z− + y+ + 2 p + 2

z = x · y p+ 2 p+ 2 p + 2

z = x/y p+ 2 p+ 2 p + 2

z = k
√
x p− ⌈lg k⌉+ 1 p + 2

Table 2.7: Propagating Rules in Relative Precision.

2.3 Redesign of BigFloat system

In the Core Library, underlying the Expr package is the BigFloat system,

the “engine” that performs actual numerical approximation. Hence, the perfor-

mance of the BigFloat system is crucial to the whole system. As we mentioned

in Section 2, BigFloat uses GMP as its big integer kernel (but with its own inter-

nal representation) and implements arithmetic operations from scratch. While

many research efforts have been made on improving performance of Expr level,

less attention is paid to improving BigFloat. Moreover, as we want to bring

transcendental functions into the Core Library, this would require us provide

those functions in the BigFloat class as well.

51

We do not want to reinvent the wheel but would prefer to use existing im-

plementations. Two multiple-precision floating-point computation libraries, mpf

in GMP and MPFR, were both considered for adoption. We finally decided to use

MPFR because it provides exact rounding and implements more transcendental

functions. MPFR is also efficient and under active development.

The interface of BigFloat in the Core Library has certain requirements

that are not directly available in MPFR. Hence a wrapper is necessary. Further-

more, BigFloat in the Core Library has two roles: as an exact number ring

and as an approximate interval of real numbers. For example, when we study

the intersections of curves and surfaces, we are interested in evaluating poly-

nomials at exact BigFloat points using only exact ring operations. Another

example is Newton iteration. Although it involves division, we do not want to

keep track of errors since the Newton method is self-correcting.

To gain greater efficiency, we now split off from BigFloat a new class called

BigFloat2. BigFloat is designed to be a C++ wrapper around MPFR with some

new features, for instance, exact ring operations are implemented for C++ arith-

metic operators +,−,×. Since it does not keep track of errors, it can be used

efficiently in the applications that we mentioned above. BigFloat2 is now going

to take the role of the old BigFloat in providing interval bounds for expression

nodes. We use interval arithmetic to maintain errors inside BigFloat2. Inter-

nally, each BigFloat2 actually uses two BigFloat numbers, which also explains

the “2” in the new name.

52

2.3.1 MPFR Overview

MPFR is a portable C library which provides efficient arbitrary precision arith-

metic on floating-point numbers [63, 29, 50]. It uses ideas from the IEEE-754

standard [44] for double-precision floating-point arithmetic. In particular, with a

precision of 53 bits, it is able to exactly reproduce all computations with double-

precision machine floating-point numbers. It also provides the four rounding

mode in the IEEE 754 standard. It has been used in many applications, such

as CGAL and iRRAM.

§32. Internal representation of MPFR Internally, a floating-point number f

in MPFR is represented by a triple 〈s,m, e〉 where s is the sign, m is the mantissa

with 0.5 ≤ m < 1 and e is the exponent such that

f = (−1)s ·m · 2e.

Functions mpfr sgn() and mpfr get exp() return the sign and the exponent

respectively.

§33. Signed zero Zero in MPFR is signed, i.e., there are both +0 and −0.

However mpfr sgn() will return 0 for either one.

§34. Precision According to [38], “the precision is the number of bits used to

represent the mantissa of a floating-pointer number”. Extra zeros may appear

at the tail of the mantissa. mpfr get prec() and mpfr set prec() are used to

get and set this precision.

§35. Mantissa in integer form Sometimes we want to manipulate the

mantissa directly. But the mantissa in MPFR is a fraction. We are more interested

53

in the mantissa in integer form. A call of mpfr get z exp() for a variable f

will return z and e′ such that f = z ·2e′. However, the returned mantissa z may

have powers of 2 as factors. Actually z is scaled by the precision in f , i.e., if

f = (−1)s ·m · 2e has a precision p, then z = (−1)s ·m · 2p and e′ = e−p. Thus,

if there are n extra zeros at the tail of mantissa m, then z contains a factor of

2n. It is clear that 2p−1 ≤ |z| < 2p since 0.5 ≤ m < 1. Thus, the precision p is

⌈log2 z⌉.

§36. Rounding mode Four rounding modes, round to nearest, round towards

0, round towards +∞ and round towards −∞, are supported in MPFR. Under

these rounding modes, if f is a MPFR variable with the precision p, then the

difference between its rounded mantissa and its exact one is less than 2−p.

2.3.2 Design of class BigFloat

The class BigFloat is designed to a C++ wrapper class on mpfr t provided by

MPFR. But we enhanced it with some new features.

§37. Relative precision and precision in MPFR MPFR follows the IEEE

standard in its arithmetic: it requires the result of arithmetic operations be ex-

actly rounded. That is, the result must be computed exactly and then rounded

to the nearest floating-point number. In particular, if the result can be exactly

represented, then this result will be output. So the error in the result depends on

the number of bits of its mantissa, i.e., the precision of the result variable. The

Core Library use relative precision or absolute precision to measure the ap-

proximation errors. The precision in MPFR is very close to our notion of relative

precision. For each arithmetic operations, users are required to set the output

54

precision manually. For example, a call of mpfr mul(c, a, b, GMP RNDN) in

MPFR will compute the product of a and b with rounding to nearest and put

the result into c. The number of correct bits of this product depends on the

number of bits in the mantissa of c, so users have to set it explicitly before the

mpfr mul() call. However, how many bits do we need if we want to guarantee

the result has relative precision p? The following lemma shows that p + 1 bits

is enough:

Lemma 11. To guarantee relative p-bit precision in an arithmetic operation in

MPFR, it is sufficient that mantissa of the result variable has at least p + 1 bits

(using any of above four rounding modes).

Proof. Assume f = (−1)s ·m · 2e is the real result and f̃ is the result with

p+ 1 bits in mantissa returned by MPFR, then

f̃ = (−1)s · m̃ · 2e

and

|m̃−m| = 2−(p+1).

Hence,

|f̃ − f | = |m̃−m|2e = 2−(p+1)2e ≤ 2−p ·m · 2e = |f | · 2−p

since 1/2 ≤ m < 1. Q.E.D.

This Lemma shows that the precision used in MPFR is basically relative pre-

cision (but off by 1 bit) if all bits in the mantissa are valid. It also shows that

the type IEEE double which has 53 bits in mantissa (52 bits + one implicit bit)

can only guarantee up to relative 52 bits of precision.

55

§38. Estimation of precision for exact ring operations MPFR requires

users to specify the precision for each variable. This design is efficient, but

sometime inconvenient for users. In our redesigned BigFloat, we want to guar-

antee exactness of ring operations for our overloaded C++ arithmetic operators

(+,−,×).

To achieve this, we estimate the precision for the final results. The following

two lemmas are given for such precision estimation:

Lemma 12 (Addition/Subtraction). Let f1 = (−1)s1 ·m1 · 2e1 and f2 = (−1)s2 ·

m2 · 2e2 be two variables in MPFR. If f1 has precision p1, f2 has precision p2 and

δ = (e1 − p1) − (e2 − p2), then for computing f = f1 ± f2, it is enough to set

the precision of f to be





1 + max{p1 + δ, p2} if δ ≥ 0

1 + max{p1, p2 − δ} if δ < 0

in order to guarantee that all bits in the mantissa of f correct.

Proof. We can write f1 and f2 with the mantissa in integer forms as follows:

f1 = z1 · 2e1−p1 and f2 = z2 · 2e2−p2.

where ⌈log2 |z1|⌉ = p1 and ⌈log2 |z2|⌉ = p2. Then,

|f | = |f1 ± f2| ≤ |z1| · 2e1−p1 + |z2| · 2e2−p2

If δ ≥ 0, then

|f | ≤
(
|z1|2δ + |z2|

)
2e2−p2.

The mantissa z in integer form of f satisfies

|z| ≤ |z1|2δ + |z2|

56

Thus, the precision p that we need in f satisfies

p = ⌈log2 |z|⌉

≤ 1 + max{⌈log2 |z1|⌉+ δ, ⌈log2 |z2|⌉}

= 1 + max{p1 + δ, p2}.

If δ < 0, then we obtain

p ≤ 1 + max{p1, p2 − δ}.

Q.E.D.

Lemma 13 (Multiplication). Let f1 = (−1)s1 ·m1 · 2e1 and f2 = (−1)s2 ·m2 · 2e2

be two variables in MPFR. If f1 has precision p1, f2 has precision p2, then for

computing f = f1 · f2, it is enough to set the precision of f to be

p1 + p2

in order to guarantee that f can be computed without error.

Proof. As above, we have

|f | = |f1 · f2| ≤ |z1 · z2| · 2e1−p1+e2−p2

so the mantissa of f satisfies:

|z| ≤ |z1 · z2|.

Hence, p = ⌈log2 |z|⌉ ≤ ⌈log2 |z1|⌉+ ⌊log2 |z2|⌋ = p1 + p2. Q.E.D.

It should be noticed that over-estimation can occur. Even more, the over-

estimated precision could grow very fast (see column 2 of Figure 2.5) which will

57

cause MPFR have to allocate large unnecessary memory space. To avoid this,

we provide a function named mpfr remove trailing zeros() to remove the

unnecessary tailing zeros (for efficiency, it only removes zeros in chunks). It is

called after each corresponding arithmetic operation. The following experiment

shows the difference of performing a summation with and without this call:

Experiment 2 Optimization of Precision Estimation

We compute
∑n

n=1 i using two methods:

Method1: initialize s = 1, then for i = 1, 2, · · · , n, increase the precision of s

by the precision of i, and then call MPFR to multiply s and i and

put the result in s.

Method2: same as Method 1, but call mpfr remove trailing zeros() for s

after multiplication in the loop.

A time comparison between them is given in Figure 2.5 (timings are mea-

sured in microseconds and the precision is in bits). From this experiment, we

can see that without removing trailing zeros, the estimated precision could grow

fast and the time for performing corresponding arithmetic operations could be

longer.

§39. Variants of Operations in BigFloat We provide four versions for

each arithmetic operations:

1. Raw version: functions starting with ”r ”; the user has to set the precision

explicitly.

2. Fixed version: the last parameter before rounding mode is the precision

that the user specified for result variables. It calls set prec() first, and

58

n = Estimated Precision Timing Optimized Precision New Timing

100 469 1 32 0

1000 7599 4 32 4

10000 108458 90 32 32

100000 1414677 16305 32 308

1000000 64 3118

Figure 2.5: Timing for computing
∑n

i=1 i w/ and w/o removing trailing zeros.

then calls the raw version.

3. Auto version: BigFloat will estimate a precision for the result, then after

computation, adjusts the final precision (i.e., eliminating the tailing zeros

using mpfr remove trailing zeros()).

4. C++ operators: The overloaded C++ operators will use the auto version,

so that users don’t have to worry about the precision estimation. However

for division, it will use default global precision.

As an example, C++ declarations of four versions for addition operations

are shown below:

1 int BigFloat : : r add (const BigFloat& x , const BigFloat& y) ;

2 int BigFloat : : add (const BigFloat& x , const BigFloat& y , p r e c t) ;

3 int BigFloat : : add (const BigFloat& x , const BigFloat& y) ;

4 BigFloat operator+(const BigFloat& x , const BigFloat& y) ;

Note that the first 3 functions are member functions of BigFloat. So the

results of these function calls will be stored in the calling BigFloat objects.

The returned integer values in these functions show the exactness of the result:

a positive value means the result is larger than the exact value, negative means

59

less than and zero means exactly. The last overloaded + operator is a global

function which returns the result as a new object. Hence, it is less efficient than

the first 3 functions.

§40. Benchmark of new BigFloat By adapting MPFR, not only can

BigFloat provide more arithmetic operations, such as cbrt(), elementary func-

tions sin(), cos() etc., but also the performance of the BigFloat has also been

greatly improved. We tested the performance of sqrt() in the current Core

Library 1.x and the new implementation based on MPFR using the following

experiment:

Experiment 3 Comparison of the Performance of sqrt()

Computing sqrt(i) for i = 2, . . . , 100 with precision p using BigFloat class in

the Core Library 1.x and Core Library 2.0:

The timing comparison is shown in Figure 2.6. We have about 25 times

speedup with the new implementations.

Precision Core Library 1.7 Core Library 2.0 Speedup

1000 25 1 25

10000 716 32 22

100000 33270 1299 25

Figure 2.6: Timing Comparisons for sqrt().

2.3.3 Design of class BigFloat2

BigFloat2 is the new number type that we split off from BigFloat. It is mostly

used by Expr to perform the underlying approximation. However, experienced

60

users can use it directly for efficiency (to avoid building expression DAG). In-

ternally, we use interval arithmetic.

§41. Interval representations To approximate the real numbers, an inter-

val is usually used to represent the approximation of the exact value when it

cannot be presented (we use floating-point representation) exactly in computers.

There are 3 different approaches:

• (m ± err) · 2e: mantissa, error bits and exponents parts are maintained

and error bits are limited to a certain range. A computation involves

one operation on mantissa, a few operations on error bits, then a final

normalization is needed in order to maintain error bits within certain

ranges. BigFloat in the Core Library 1.x uses this approach.

• (d±err): less restriction on error bits, which can have different exponents.

so normalization is not necessary for each operation. REAL in iRRAM[65]

uses this approach.

• (dl, dr): two multiple precision numbers are used to represent an interval,

and interval arithmetic is used for all kinds of arithmetic operations.

We use (dl, dr) as our new approach for BigFloat2 because this implementa-

tion is simpler and the approximation interval is more precise. Another motiva-

tion is that MPFR has provided the necessary rounding modes for each arithmetic

operations and has already implemented many elementary functions.

§42. Interval Arithmetic BigFloat2 maintains an interval [x, x] for a real

number x where x and x are BigFloat numbers. It uses interval arithmetic

61

to implement its arithmetic operations. The standard rules for some basic

operations are shown in Table 2.8 [1, 62]:

z z z

z = x+ y x+ y x+ y

z = x− y x− y x− y

z = x× y min{xy, xy, xy, xy} max{xy, xy, xy, xy}

z = x÷ y min{x/y, x/y, x/y, x/y} max{x/y, x/y, x/y, x/y}

z = k
√
x k

√
x k

√
x

Table 2.8: Rules for interval arithmetic.

Multiplication and division involve 4 arithmetic operations and 3 compar-

isons if we use the rules in the fourth and fifth row for multiplication and

division. In practice, we can reduce them to fewer operations as shown below

in Table 2.9 and Table 2.10:

2.4 Extending Expr class

While our Expr class provides four arithmetic operations and radical opera-

tions which can satisfy most applications, there is a need for supporting new

operations, for example, transcendental functions.

2.4.1 How to Add Your Own Operation for Expr

As we mentioned in the Section 2.1, Expr is a wrapper around ExprRep. Adding

a new operation for Expr requires one to design a new type of ExprRep node, i.e.,

design a subclass of ExprRep. In the Core Library 1.x, it is possible for users

62

x y min max

0 ≤ x ≤ x 0 ≤ y ≤ y xy xy

0 ≤ x ≤ x y ≤ y ≤ 0 xy xy

0 ≤ x ≤ x y ≤ 0 ≤ y xy xy

x ≤ x ≤ 0 0 ≤ y ≤ y xy xy

x ≤ x ≤ 0 y ≤ y ≤ 0 xy xy

x ≤ x ≤ 0 y ≤ 0 ≤ y xy xy

x ≤ 0 ≤ x 0 ≤ y ≤ y xy xy

x ≤ 0 ≤ x y ≤ y ≤ 0 xy xy

x ≤ 0 ≤ x y ≤ 0 ≤ y min{xy, xy} max{xy, xy}

Table 2.9: Rules for multiplication using interval arithmetic.

to design their own Expr nodes. However, the procedure is complicated and

error-prone. Now, adding a new type of Expr node becomes easier. Basically,

it involves the following steps:

1. Derive a class from ExprRepT or a subclass of ExprRepT (see Figure 2.3

for pre-defined subclasses).

2. Implement a constructor for this new class and call the following two

functions:

compute filter(), compute numtype()

to compute the filter value and set the number type.

3. Implement the following functions:

compute filter(), compute numtype(),

compute sign(), compute uMSB(), compute lMSB(),

63

x y min max

x ≤ x y = y = 0 NaN NaN

x ≤ x y ≤ 0 ≤ y −∞ +∞

0 ≤ x ≤ x 0 ≤ y ≤ y x/y x/y

0 ≤ x ≤ x y ≤ y ≤ 0 x/y x/y

x ≤ x ≤ 0 0 ≤ y ≤ y x/y x/y

x ≤ x ≤ 0 y ≤ y ≤ 0 x/y x/y

x ≤ 0 ≤ x 0 < y ≤ y x/y x/y

x ≤ 0 ≤ x y ≤ y < 0 x/y x/y

Table 2.10: Rules for division using interval arithmetic.

compute r approx(), compute a approx(), compute rootbd()

4. Define a function (can be global function/operator or constructor/member

functions/operator in Expr) which can construct this new type node.

Now we follow these steps to show how to add a new operation for Expr.

Say, we want to add the following “neg” function for Expr:

1 Expr neg (const Expr& e) ;

It will take one Expr parameter e and construct a new Expr node with the

negated value −e.

We first derive a new class, NegRepT, from ExprRepT. For efficiency, ExprRepT

uses a reference counting technique, so each ExprRepT has a reference counter

inside. If we directly derive our class from ExprRep, it will require us to

maintain the reference counter. The three directly derived class ConstRepT,

UnaryOpRepT, and BinaryOpRepT handle the reference counting automatically.

64

So we derive our new class from UnaryOpRepT since negation operation is a

“unary” operation:

1 template <typename T>

2 class NegRepT : public UnaryOpRepT<T> {

3 } ;

Then we add a constructor that takes one parameter of an ExprRepT pointer

(pointing to its child node). In the constructor initializer, we pass the pointer

parameter to the parent class UnaryOpRepT. We compute the filter value and

set the number type inside the constructor.

1 NegRepT (ExprRepT<T>∗ c) : UnarayOpRepT<T>(c) {

2 c ompu t e f i l t e r () ;

3 compute numtype () ;

4 }

The next step is to implement the required functions3:

1 // f unc t i on s f o r computing f i l t e r and number type

2 void c ompu t e f i l t e r () const {

3 f i l t e r () . neg (ch i l d−> f i l t e r ()) ;

4 }

5 void compute numtype () const {

6 numType = ch i ld−> numType ;

7 }

8

9 // v i r t u a l f unc t i on s f o r computing sign , uMSB, lMSB

10 virtual bool compute s ign () const {

11 s i gn () = −ch i ld−>s i gn () ; return true ;

12 }

13 virtual bool compute uMSB () const {

14 uMSB() = ch i ld−>uMSB() ; return true ;

15 }

16 virtual bool compute lMSB () const {

17 lMSB() = ch i ld−>lMSB () ; return true ;

3Note that compute filter() and compute numtype() are not virtual functions since we

cannot call virtual functions in the constructor of the base class.

65

18 }

19

20 // v i r t u a l f unc t i on s f o r r approx , a approx

21 virtual void compute r approx (p r e c t prec) const {

22 ke r ne l () . neg (ch i l d−>r approx (prec) , prec) ;

23 }

24 virtual bool compute a approx (p r e c t prec) const {

25 ke r ne l () . neg (ch i l d−>a approx (prec) , ab s 2 r e l (prec)) ;

26 }

27

28 // v i r t u a l func t ion f o r computing root bound

29 virtual void compute rootbd () const {

30 rootbd () . neg (ch i l d−>rootbd ()) ;

31 }

Now we have NegRepT class. The last step is to define the negation function.

It just constructs our new designed NegRepT node:

1 template <typename T>

2 ExprT<T> neg (const ExprT<T>& e) {

3 return new NegRepT<T>(e . rep ()) ;

4 }

Remarks:

1. We do not have to implement all functions in step 3. For compute filter(),

users can just call filter().invalidate() if the users do not know how to ob-

tain an filter value. For compute sgn(), compute uMSB(), and compute lMSB(),

users can just return false when it is not applicable. In that case, ExprRepT will

get those information from the approximation. As we mentioned before, users

do not have to implement both compute r approx() and compute a approx().

However, if the users only implement compute r approx(), then users need pro-

vide a valid compute uMSB(); if the users only implement compute a approx(),

compute lMSB() is needed as well.

66

2. We must implement compute numtype() since ExprRepT need it to classify

each node. Moreover, in case the expression node is algebraic, we must imple-

ment compute rootbd().

3. We can put the implementations of compute filter() and compute numtype()

into the constructor directly without defining separated functions.

2.4.2 Adding Your Own Operation using Pre-defined

Macros

Although now adding a new operation for Expr is easier and straightforward,

users need to know all the details of implementing in C++. For instance, they

need to know the exact signatures for each functions that they are required to

implement. In order to help the Core Library developers and other advanced

users, a new mechanism is designed to simplify such task. We provide a set of

pre-defined C++ macros to hide some implementation details from the users.

To see how these macros works, we still use the NegRepT in previous section

as an example. With pre-defined macros, we can simply define NegRepT as

follows:

1 BEGIN DEFINE UNARY NODE(NegRepT)

2

3 END DEFINE UNARY NODE

BEGIN DEFINE UNARY NODE and END DEFINE UNARY NODE are two C++ macros

which are defined as follows:

1 #define BEGIN DEFINE UNARY NODE(cl s name) \

2 template <typename T> \

3 class cl s name : public UnaryOpRepT<T> { \

4 public : \

5 cl s name (ExprRepT<T>∗ c) : UnarayOpRepT<T>(c) { \

67

6 c ompu t e f i l t e r () ; \

7 compute numtype () ; \

8 }

9

10 #define END DEFINE UNARY NODE } ;

Hence, once our new implementation of NegRepT are compiled by C++ compil-

ers, those macros are first expanded by cpp (C/C++ preprocessor provided by

every C/C++ compilers) into:

1 template <typename T>

2 class NegRepT : public UnaryOpRepT<T> {

3 public :

4 NegRepT (ExprRepT<T>∗ c) : UnarayOpRepT<T>(c) {

5 c ompu t e f i l t e r () ;

6 compute numtype () ;

7 }

8 } ;

Similarly, we define the macro DEFINE UNARY FUNCTION() in the Core Library

as:

1 #define DEFINE UNARY FUNCTION(fun name , c l s name) \

2 template <typename T> \

3 Expr<T> fun name (const Expr<T>& e) \

4 { return new cls name<T>(e . rep ()) ; }

With this macro, we can define our negation function in just one line:

1 DEFINE UNARY FUNCTION(neg , NegRepT)

A few other macros are pre-defined. See the source code of the Core Library

2.0 for details. With these new macros, we can now implement NegRepT as:

1 BEGIN DEFINE UNARY NODE(NegRepT)

2 // de f i n e ru l e f o r f i l t e r computation

3 BEGIN DEFINE RULE(f i l t e r)

4 f i l t e r () . neg (ch i l d−> f i l t e r ()) ;

5 END DEFINE RULE

68

6 // de f i n e ru l e f o r s e t t i n g number type

7 BEGIN DEFINE RULE(numtype)

8 numType = ch i ld−> numType ;

9 END DEFINE RULE

10

11 // de f i n e r u l e s f o r computing sign , uMSB, lMSB

12 BEGIN DEFINE RULE(s i gn)

13 s i gn () = −ch i ld−>s i gn () ; return true ;

14 END DEFINE RULE

15 BEGIN DEFINE RULE(uMSB)

16 uMSB() = ch i ld−>uMSB() ; return true ;

17 END DEFINE RULE

18 BEGIN DEFINE RULE(lMSB)

19 lMSB() = ch i ld−>lMSB () ; return true ;

20 END DEFINE RULE

21

22 // de f i n e r u l e s f o r r approx , a approx

23 BEGIN DEFINE RULE(r approx)

24 ke r ne l () . neg (ch i l d−>r approx (prec) , prec) ;

25 END DEFINE RULE

26 BEGIN DEFINE RULE(a approx)

27 ke r ne l () . neg (ch i l d−>a approx (prec) , ab s 2 r e l (prec)) ;

28 END DEFINE RULE

29

30 // de f i n e r u l e s f o r computing root bound

31 BEGIN DEFINE RULE(rootbd)

32 rootbd () . neg (ch i l d−>rootbd ()) ;

33 END DEFINE RULE

34 END DEFINE UNARY NODE

35

36 DEFINE UNARY FUNCTION(neg , NegRepT)

They will be expanded to the exactly same code that we designed in the

previous section. We can see that these pre-defined macros simplify the work

of extending Expr.

69

2.4.3 Summation operation for Expr

The DAG constructed in Expr could be very large in some computation. How-

ever, when these expressions are defined using simple recursive rules, we can

avoid the explicit construction. This can lead to considerable speedup. For

example, computing harmonic series
∑n

i=1
1
i

can be done using the following

function:

1 Expr harmonic (int n) {

2 Expr r (0) ;

3 for (int i =1; i<=n ; ++i)

4 r = r + Expr (1)/ Expr (i) ;

5 return r ;

6 }

This function will build an unbalanced DAG of depth n. We did the following

experiment to test the performance of this function:

Experiment 4 Computing harmonic series using loop

Computing harmonic series
∑n

i=1
1
i

using above harmonic() function for differ-

ent n.

The timing (in microseconds) for this experiment is given in the second

column in Figure 2.7. The segmentation fault is caused by stack overflow in

most systems. However, we find an optimization can be done: instead of using

n − 1 binary operation (+) nodes, we can introduce a single “anary” node to

do the entire summation in one level.

With the new mechanism we described in previous section, a new type of

node called Sum can be easily implemented as follows:

1 BEGIN DEFINE ANARY NODE(Sum)

2 // de f i n e ru l e f o r f i l t e r computation

3 BEGIN DEFINE RULE(f i l t e r)

70

4 f i l t e r () . s e t (ch i l d r en [0]−> f i l t e r ()) ;

5 for (s i z e t i =1; i<ch i l d r en . s i z e () ; ++i)

6 f i l t e r () . add (f i l t e r () , ch i l d r en [i]−> f i l t e r ()) ;

7 END DEFINE RULE

8 // de f i n e ru l e f o r s e t t i n g number type

9 BEGIN DEFINE RULE(numtype)

10 numType = ch i l d r en [0]−> numType

11 for (s i z e t i =1; i<ch i l d r en . s i z e () ; ++i)

12 numType = std : : max(numType , ch i l d r en [i]−> numType) ;

13 END DEFINE RULE

14

15 // de f i n e r u l e s f o r computing sign , uMSB, lMSB

16 BEGIN DEFINE RULE(s i gn)

17 return fa l se ;

18 END DEFINE RULE

19 BEGIN DEFINE RULE(uMSB)

20 uMSB() = ch i l d r en [0]−>uMSB() ;

21 for (s i z e t i =1; i<ch i l d r en . s i z e () ; ++i)

22 uMSB() = std : : max(uMSB() , ch i l d r en [i]−>uMSB()) + 1 ;

23 return true ;

24 END DEFINE RULE

25 BEGIN DEFINE RULE(lMSB)

26 lMSB() = ch i l d r en [0]−>lMSB () ;

27 for (s i z e t i =1; i<ch i l d r en . s i z e () ; ++i)

28 lMSB() = std : : max(lMSB() , ch i l d r en [i]−>lMSB ()) ;

29 return true ;

30 END DEFINE RULE

31

32 // de f i n e r u l e s f o r r approx , a approx

33 BEGIN DEFINE RULE(r approx)

34 int n = c e i l l g (ch i l d r en . s i z e ()) + 1 ;

35 ke r ne l () . s e t (0) ;

36 for (s i z e t i =0; i<ch i l d r en . s i z e () ; ++i)

37 ke r ne l () . add (ke r ne l () ,

38 ch i l d r en [i]−>r approx (prec+n) , prec+n) ;

39 END DEFINE RULE

40 BEGIN DEFINE RULE(a approx)

41 int n = c e i l l g (ch i l d r en . s i z e ()) + 1 ;

42 ke r ne l () . s e t (0) ;

71

43 for (s i z e t i =0; i<ch i l d r en . s i z e () ; ++i)

44 ke r ne l () . add (ke r ne l () ,

45 ch i l d r en [i]−>a approx (prec+n) , ab s 2 r e l (prec+n)) ;

46 END DEFINE RULE

47

48 // de f i n e r u l e s f o r computing root bound

49 BEGIN DEFINE RULE(rootbd)

50 rootbd () . s e t (0L) ;

51 for (s i z e t i =1; i<ch i l d r en . s i z e () ; ++i)

52 rootbd () . add (rootbd () , ch i l d−>rootbd ()) ;

53 END DEFINE RULE

54 END DEFINE ANARY NODE

55

56 DEFINE ANARY FUNCTION(sum , Sum)

With this new operation, we can rewrite the routine harmonic():

1 Expr harmonic term (int i) {

2 return Expr (1)/ Expr (i) ;

3 }

4 Expr harmonic (int n) {

5 return sum(harmonic term , 1 , n) ;

6 }

A new experiment with the redesigned harmonic() function is shown below:

Experiment 5 Computing harmonic series using sum()

Computing harmonic series
∑n

i=1
1
i
using above redesigned harmonic() function

for different n.

The timing (in microseconds) for this new implementation is shown in the

third column in Figure 2.7 (see t sum.cpp under benchmark/sum). We can see

with the new implemented sum() operations, we can compute the summation

for larger n and the new operation speeds up 3-58 times.

72

n= Using Loops Using sum() Speedup

1000 24 7 3.4

10000 3931 67 58.6

100000 (segmentation fault) 752 N/A

1000000 (segmentation fault) 12260 N/A

Figure 2.7: Timing for computing harmonic series.

2.4.4 Transcendental Node π

Now we present our first transcendental node π. π is a constant, so we design

it to be a leaf node and derive it from ConstRepT:

1 template <typename T>

2 class PiRepT : public ConstRepT<T> {

3 public :

4 PiRepT () : ConstRepT<T>() {

5 c ompu t e f i l t e r () ;

6 compute numtype () ;

7 }

8 // f unc t i on s f o r computing f i l t e r and number type

9 void c ompu t e f i l t e r () const {

10 f i l t e r () . s e t (3 . 14 , true) ; // t rue means the va lue i s inexac t

11 }

12 void compute numtype () const

13 { numType = NODE NT TRANSCENDENTAL; }

14

15 // v i r t u a l f unc t i on s f o r computing sign , uMSB, lMSB

16 virtual bool compute s ign () const

17 { s i gn () = 1 ; return true ; }

18 virtual bool compute uMSB () const

19 { uMSB() = 2 ; return true ; }

20 virtual bool compute lMSB () const

21 { lMSB() = 1 ; return true ; }

22

73

23 // v i r t u a l f unc t i on s f o r r approx , a approx

24 virtual void compute r approx (p r e c t prec) const

25 { ke rne l () . p i (prec) ; }

26 virtual bool compute a approx (p r e c t prec) const

27 { ke rne l () . p i (ab s 2 r e l (prec)) ; }

28 } ;

A global function in Expr can be:

1 template <typename T>

2 ExprT<T> pi ()

3 { return new PiRepT<T>() ; }

2.5 Benchmarks

§43. compare.cpp Figure 2.8 shows the timing of comparing

√
x+
√
y and

√
x+ y + 2

√
xy

where x and y are rational numbers with various bit length L. Our redesigned

bit length L Core Library 1.7 Core Library 2.0 Speedup

1000 0.82 0.59 1.4

2000 6.94 1.67 4.2

8000 91.9 11.63 7.9

10000 91.91 30.75 3.0

Figure 2.8: Timing Comparisons for compare.cpp

library speeds up about 2-8 times.

§44. testFilter.cpp Figure 2.9 and Figure 2.10 shows the timing of com-

puting the determinants of a set of matrices with the filter facility on and off (see

74

testFilter.cpp under benchmark/testFilter). The numbers in first column

in each table has the following format:

N × d× b

where N is the number of matrices, d is the dimension of each matrix and b is

the bit length of each entry in the matrix (entries are rationals).

MATRIX 1.7 w/ filter 2.0 w/ filter Speedup

1000x3x10 9 19 0.5

1000x4x10 26 43 0.6

500x5x10 449 204 2.2

500x6x10 1889 597 3.2

500x7x10 4443 1426 3.1

500x8x10 8100 2658 3.0

Figure 2.9: Timing testFilter.cpp w/ filter (in microseconds)

MATRIX 1.7 w/o filter 2.0 w/o filter Speedup

1000x3x10 621 232 2.7

1000x4x10 1666 530 3.1

500x5x10 1728 488 3.5

500x6x10 3493 894 3.9

500x7x10 6597 1580 4.2

500x8x10 11367 2820 4.0

Figure 2.10: Timing testFilter.cpp w/o filter (in microseconds)

75

2.6 InCore: an Interactive Core Library

While the Core Library provides a very simple programming interface, it still

requires users to have C++ programming experience. Moreover since the Core

Library is written in C++, the library itself as well as users’ programs have

to been compiled first before they are run. The compilation is slow. It is even

slower because of C++ template classes. Some users will be more interested in

using the Core Library for prototyping and testing, so an interpreted version

like Maple can be very useful.

Python is an interpreted language with an object oriented design. It is very

easy to use. It provides an interface for wrapping C/C++ codes.

§45. Tools for Writing Python Binding To wrap C++ code, there are

different solutions [78, 79, 7]:

Python/C API: Official C APIs for writing Python extension.

SWIG: Uses interfaces file to generate wrapper codes automatically. It can

generate wrapper codes for other script languages such as Perl, Tcl/Tk

and Ruby.

Boost.Python: a C++ library which enables seamless interoperability be-

tween C++ and Python.

SIP: a tool for automatically generating Python bindings for C and C++ li-

braries. SIP was originally developed in 1998 for PyQt —the Python

bindings for the Qt GUI toolkit—but is suitable for generating bindings

for any C or C++ library.

76

We developed our first Python binding using SWIG. However, we found the

speed was slow because it generated a very big Python interface program to call

underlying C++ codes. We tried Boost.Python as well, but had some problems

with function and operator overloading and the compilation time for building

binding was long. We finally turned to SIP. It is easy to use and has very good

performance [34] although the documentation is sparse.

InCore is the name of our Python binding for our Core Library. It exposes

Core Library’s classes such as BigInt, BigRat, BigFloat, Expr, so that the

users can use them as Python objects in Python programs while providing the

same features as our C++ library. Here is an example of a Python program

using InCore. It calls Python’s built-in math functions and our Core Library

functions (exposed via InCore) to test the following two identities:

√
2 ·
√

3−
√

6 = 0

and
√

1 + y2 − y − 1√
1 + y2 + y

= 0

for y = 5000, 5001, . . . , 5010.

1 import c o r e l i b

2 import math

3

4 def s impleTest (fn , c l s , x , y , z) :

5 ” t e s t x∗y − z”

6 name = fn . name

7 r e s u l t = fn (c l s (x))∗ fn (c l s (y))− fn (c l s (z))

8 print ”%s(%d) ∗ %s(%d) − %s(%d) = ” % (name , x , name , y , name , z) , r e s u l t

9

10 def kahan (fn , c l s , f i r s t , l a s t) :

11 ” t e s t (s q r t (1+y∗y)−y) − 1/(s q r t (1+y∗y)+y) ”

12 for n in range (f i r s t , l a s t) :

13 y = c l s (n)

77

14 yy = y ∗ y

15 g = (fn (yy+1) − y) − (1/(y + fn (yy+1)))

16 print ”n = %d ; G(n) = ” % n , g

17

18 def t e s tF l oa t i n g () :

19 print ”Test Python Float ing point computation : ”

20 s impleTest (math . sqrt , int , 2 , 3 , 6)

21 kahan (math . sqrt , int , 5000 , 5010)

22

23 def te s tCore () :

24 print ”Test Core Library Level 3 computation : ”

25 s impleTest (c o r e l i b . sqrt , c o r e l i b . Expr , 2 , 3 , 6)

26 kahan (c o r e l i b . sqrt , c o r e l i b . Expr , 5000 , 5010)

27

28 i f name == ” main ” :

29 t e s tF l oa t i n g ()

30 tes tCore ()

Currently, a Python binding for CGAL is also under development. It uses

Boost.Python.

78

Chapter 3

Absolute Approximation of

General Hypergeometric

Function

The redesigned Core Library provides a better mechanism for integrating tran-

scendental functions. We need algorithms to approximate such functions to ab-

solute precision since we do not have root bounds for them. Many important

results were obtained three decades ago by Brent (e.g., [10, 11]). In particu-

lar, he showed that all the common elementary functions can be approximated

efficiently using Newton-like schemes.

Most common elementary functions [64] are hypergeometric functions. In

this chapter, we present our research effort on the general hypergeometric func-

tions. We show that the absolute approximation of the general hypergeometric

function H(a;b; x) = pFq(a;b; x) is solvable. An explicit bound for the com-

plexity of our algorithm is given. We further address the problem of evaluating

H when x is a “blackbox number”, i.e., the number x is represented by a pro-

79

cedure that can return an approximation x̃ to any desired absolute precision.

This generalization allows us to extend our approximability results to most of

the familiar transcendental functions of classical analysis that can be derived

from H . In particular, this solves the so-called Table Maker’s Dilemma [51] for

such functions.

Overview of this chapter In Section 3.1, we give basic facts about

hypergeometric functions. In Section 3.2, we show that H is absolutely approx-

imable. Section 3.3 shows that H is absolutely approximable when x is a black

box number. An explicit bound on the complexity of H is given in Section 3.4.

In section 3.5, we address the problems of argument reduction, parameter pre-

processing and mathematical constants for efficient evaluation. Some details

of the implementation and integration of hypergeometric function package are

presented in Section 3.6. In Section 3.7, we give our final remarks and propose

some open problems.

3.1 Hypergeometric series and functions

3.1.1 Hypergeometric series

A function r(n) is a rational function of n if there are polynomials p(n) and

q(n) with

r(n) =
p(n)

q(n)
.

Consider a sequence with terms tn and the associated series

∞∑

n=0

tn.

80

If

tn+1

tn
= x,

then tn is called a geometric term and
∑

n tn a geometric series.

If

tn+1

tn
= r(n)x

where r(n) is a rational function, then tn is called a hypergeometric term

and
∑

n tn a hypergeometric series. So hypergeometric term and series are a

generalization of geometric term and series, respectively. See the second column

of Table 3.1 for some examples.

A given term and its corresponding series can be normalized: (1) by renum-

bering the terms such that the index of the first nonzero term is 0, (2) by fac-

toring out the first term such that the new first term is equal 1. After this

normalization, every geometric series can be written in its normal form
∞∑

n=0

xn

and every hypergeometric series can be written in its normal form
∞∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)nn!

xn

where the rising factorial or Pochhammer symbol (a)k is given by (a)k = a(a+

1)(a+ 2) · · · (a+ k − 1) for k ≥ 1 and (a)0 = 1.

The above normal form of hypergeometric series may be denoted by the

following F -notation:

pFq(a1, · · · , ap; b1, · · · , bq; x).

Thus, a hypergeometric series is completely defined by the sequences a =

(a1, a2, . . . , ap) and b = (b1, b2, . . . , bq). These are called the upper and lower

parameters of the hypergeometric series. x is called the argument.

81

Note the presence of the parameter 1(n! = (1)n) in the denominator; this is

a standard convention. Many common hypergeometric series have this factor;

but in case denominator does not naturally contain such a factor, we artificially

attach this factor to numerator and denominator and denote it as b0.

3.1.2 Hypergeometric function and convergence

A hypergeometric function is a hypergeometric series in which the evaluation

point is a variable. It is defined only for those x in which the hypergeometric

series converges. If one of the upper parameters is a non-positive integer, then

the hypergeometric series has finite number of terms and the hypergeometric

function become a polynomial. Otherwise the convergence is given by:

number of parameter convergence radius

p < q + 1 ∞

p = q + 1 1

p > q + 1 0

The interesting case is p = q + 1. Think of 1 as a hidden lower parameter,

this means that the number of upper parameters is equal to the number of lower

parameters. In the case of p = q + 1 the convergence depends on x and on the

value of

s :=

q∑

k=1

bk −
p∑

k=1

ak

called the parameter excess ([3]). The following Lemma 14 shows their rela-

tions.

82

Lemma 14. Let a = (a1, a2, . . . , ap) and b = (b1, b2, . . . , bq) where p, q ≤ 0. If

p = q + 1, then the hypergeometric series

∞∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)nn!

xn

is convergent for |x| < 1 and divergent for |x| > 1. When x = 1, it converges if

s > 0; when x = −1, it is absolutely convergent when s > 0, and convergent but

not absolutely when −1 ≤ s ≤ 0, where s is the parameter excess defined above.

Proof. The term ratio of the series is

tn+1

tn
=

(a1 + n) · · · (ap + n)

(b1 + n) · · · (bq + n)(1 + n)
x =

(1 + a1/n) · · · (1 + ap/n)

(1 + b1/n) · · · (1 + bq/n)(1 + 1/n)
x

so that as n→∞, the ratio ∣∣∣∣
tn+1

tn

∣∣∣∣→ |x|.

By D’Alembert’s test, the series is convergent for all values of x, real or complex

such that |x| < 1, and divergent for all values of x, real or complex, such that

|x| > 1. When |x| = 1,

∣∣∣∣
tn+1

tn

∣∣∣∣ =

∣∣∣∣
{

1 +

∑p
k=1 ak
n

+O(1/n2)

}{
1− 1 +

∑q
k=1 bk
n

+O(1/n2)

}∣∣∣∣

=

∣∣∣∣1−
1 +

∑q
k=1 bk −

∑p
k=1 ak

n
+O(1/n2)

∣∣∣∣

=

∣∣∣∣1−
1 + s

n
+O(1/n2)

∣∣∣∣

Thus, when x = 1, by Raabe’s test, it converges if s > 0. When x = −1, the

series is absolutely convergent when s > 0, and convergent but not absolutely

when −1 ≤ s ≤ 0. Q.E.D.

From now on, we assume that p ≤ q + 1 and |x| ≤ 1 if p = q + 1.

83

3.1.3 Elementary Functions in Hypergeometric Form

Table 3.1 lists the hypergeometric series representation of some elementary func-

tions. For each function, we list (i) the usual power series representation of that

function, (ii) the ratio tk+1/tk between two consecutive terms of that power se-

ries, and (iii) the corresponding hypergeometric series. In some cases, the first

term t0 of the power series is not 1, and has to be factored out from the series

(e.g., sin x, arcsin x).

Table 3.1: Some elementary functions in terms of hypergeometric series.

Functions Power series Ratio tk+1/tk Hypergeometric series

exp(x)
P∞

k=0
xk

k!
1

(k+1)
x 0F0(; ; x)

erf(x) 2x√
π

P∞
k=0

(−1)k

(2k+1)k!
x2k (k+ 1

2
)

(k+ 3
2
)(k+1)

(−x2)
“

2x√
π

”

1F1(
1
2
; 3

2
;−x2)

sin(x)
P∞

k=0
(−1)k

(2k+1)!
x2k+1 1

(k+ 3
2
)(k+1)

(−x2

4
) x · 0F1(;

3
2
; −x2

4
)

cos(x)
P∞

k=0
(−1)k

(2k)!
x2k 1

(k+ 1
2
)(k+1)

(−x2

4
) 0F1(;

1
2
; −x2

4
)

arcsin(x)
P∞

k=0
(2k)!

22k(2k+1)(k!)2
x2k+1 (k+ 1

2
)2

(k+ 3
2
)(k+1)

x2 x · 2F1(
1
2
, 1

2
; 3
2
;x2)

arctan(x)
P∞

k=0
(−1)k

2k+1
x2k+1 (k+ 1

2
)

(k+ 3
2
)
(−x2) x · 2F1(1

2
, 1; 3

2
;−x2)

log(1 + x)
P∞

k=0
(−1)k

k+1
xk+1 (k+1)(k+1)

(k+2)(k+1)
(−x) x · 2F1(1, 1; 2;−x)

ellipticK(x) π
2

P∞
k=0

h

(2k−1)!!
(2k)!!

i2
x2k (k+ 1

2
)(k+ 1

2
)

(k+1)(k+1)
x2 π

2
· 2F1(

1
2
, 1
2
; 1; x2)

ellipticE(x) π
2



1 −
P∞

k=0

h

(2k−1)!!
(2k)!!)

i2
x2k

2k−1

ff

(k− 1
2
)(k+ 1

2
)

(k+1)(k+1)
x2 π

2
· 2F1(− 1

2
, 1

2
; 1;x2)

erfi(x) 2xex2

√
π

P∞
k=0

(−1)k2k

(2k+1)!
x2k (k+1)

(k+ 3
2
)(k+1)

(−x2)

„

2xex2

√
π

«

1F1(1;
3
2
;−x2)

dilog(x)
P∞

k=0
xk

k2
k2

(k+1)(k+1)
x 2F2(0, 0; 1, 1; x)

xy
P∞

k=0
(k−y)!
(−y)!k!

(1 − x)k k−y
k+1

(1 − x) 1F0(−y; ; 1 − x)

BesselJ[p, x] 1
p!

(x
2
)p

P∞
k=0

(−1)kp!
k!(k+p)!

(x
2
)2k 1

(k+p+1)(k+1)
(−x2

4
) 1

p!
(x
2
)p

0F1(; p + 1;−x2

4
)

LaguerreL[p, x]
P∞

k=0
(k−p)!

(−p)!k!k!
xk (k−p)

(k+1)(k+1)
x 1F1(−p; 1; x)

LaguerreP[p, x]
P∞

k=0
(k−p)!(k+p+1)!
(−p)!(p+1)!k!k!

(1−x
2

)k (k−p)(k+p+1)
(k+1)(k+1)

1−x
2 2F1(−p, p+ 1; 1; 1−x

2
)

HermiteH2n(x) (−1)n(2n)!
P∞

k=0
(−1)k(2x)2k

(2k)!(n−k)!
(k−n)

(k+ 1
2
)(k+1)

x2 (−1)n(2n)!
n! 1F1(−n; 1

2
;x2)

HermiteH2n+1(x) (−1)n(2n+ 1)!
P∞

k=0
(−1)k(2x)2k+1

(2k+1)!(n−k)!
(k−n)

(k+ 3
2
)(k+1)

x2 2x(−1)n(2n+1)!
n! 1F1(−n; 3

2
;x2)

The standard series for log(1 + x) in Table 3.1 has poor convergence prop-

84

erties. By subtracting the standard series for log(1 + x) from log(1 − x), we

obtain

log
1− x
1 + x

= −2x

[
1 +

x2

3
+
x4

5
+ · · ·

]
= −2x · 2F1(1,

1

2
;
3

2
; x2).

Changing variables, we obtain

log y = −2

(
1− y
1 + y

)
2F1

(
1,

1

2
;
3

2
;

(
1− y
1 + y

)2
)
,

for 0 < y < ∞. In addition to the functions in Table 3.1, which are mostly

computed through direct evaluation of listed hypergeometric series, we also

compute tan(x), cot(x), and arccos(x) as

tan(x) =
sin(x)

cos(x)
, (3.1)

cot(x) =
cos(x)

sin(x)
, (3.2)

arccos(x) = arcsin
(√

1− x2
)
, 0 ≤ x ≤ 1. (3.3)

3.2 General Approximate Evaluation Algorithm

We regard the parameters a,b as fixed in pFq(a;b; x). In this thesis, we only

consider the case when a,b are rationals. Let H(a;b; x) = pFq(a;b; x) denote

the general hypergeometric function where the parameters as well as p, q can

now vary. It is conceivable that each hypergeometric function pFq(a;b; x) is

absolutely approximable, but the function H is not absolutely approximable.

In other word, the absolute approximation of H requires a uniform algorithmic

method that is applicable to arbitrary values of the parameters. We give this

approximate evaluation problem formally as follows:

85

Given a = (a1, . . . , ap) and b = (b1, . . . , bq) where p, q ≥ 0 and p ≤ q+1 and

the argument x and precision ℓ, compute an approximation H̃(a;b; x; ℓ) of

H = H(a;b; x)

such that

|H̃ −H| ≤ 2−ℓ.

In this section, we present an algorithm for computing H̃. Let H(a;b; x) =

Sn+Rn where Sn =
∑n−1

k=0 tk and Rn =
∑∞

k=n tk. The algorithm proceeds in two

stages: in STAGE A, we compute an n3 such that |Rn| ≤ 2−ℓ−1 for all n > n3.

In STAGE B, we compute an approximation S̃n such that |S̃n − Sn| ≤ 2−ℓ−1.

Since STAGE B is clearly computable, it remains to prove that STAGE A is

computable.

This basic strategy follows [23]. Among the improvements are: (1) The orig-

inal paper only addresses the case where the series
∑

k≥0 tk satisfies |tk| > |tk+1|

for all k ≥ 0, while our current method is completely general. (2) Originally,

STAGE A (in the non-alternating case) determines n3 by a computational pro-

cedure that evaluates tn for increasing values of n until n = n3. The STAGE A

presented below is able to compute n3 directly.

§46. STAGE A We introduce some notations: Let a+
max denote the maximum

value of the positive ai’s, and a−max denote the maximum of −ai’s where ai <

0. If all the ai’s are positive, we set a−max to 0, and similarly, if all ai’s are

negative, we set a+
max to 0. Also, set amax = max{a+

max, a
−
max}. We write s+

k (a)

for the sum
∑

i:ai>0 a
k
i which range over positive elements in a. Also s−k (a) is

the corresponding sum ranging over negative ai’s. Finally, let a = (
∑p

i ai) /p.

86

Each term tn+1 in our hypergeometric series H(a;b; x) can be written as

tn+1 = tnf(n)x where

f(n) = P (n)/Q(n), P (n) =

p∏

i=1

(n+ ai), Q(n) =

q∏

j=0

(n+ bj). (3.4)

and b0 = 1. Write b′ for (b0, b1, . . . , bq) where b0 = 1 is the implicit lower

parameter.

§47. Finding n0 Note that Rn =
∑∞

k=n tk; it is clear that tk has to be strictly

decreasing in order to guarantee |Rn| ≤ 2−ℓ−1. Therefore, the first step of our

algorithm is to compute a n0 such that | tn+1

tn
| = |x|f(n) < 1 holds for n ≥ n0.

The following lemma gives this formula:

Lemma 15. |x|f(n) < 1 holds for n > n0 where

n1 =





max{ā+ 2b−max, (2
p|x|) 1

q+1−p} if p < q + 1,

ā+b−max

1− p
√

|x|
+ b−max if p = q + 1.

(3.5)

Proof.

P (n) =

p∏

i=1

(ai + n)

≤
[
(a1 + n) + (a2 + n) + · · ·+ (ap + n)

p

]p
= (ā + n)p

and

Q(n) =

q∏

j=0

(bj + n) ≥ (n− b−max)q+1.

So we have ∣∣∣∣
tn+1

tn

∣∣∣∣ =
P (n)

Q(n)
|x| ≤ (ā+ n)p

(n− b−max)q+1
|x|.

We consider the following two cases:

87

1. p < q + 1. Thus

∣∣∣∣
tn+1

tn

∣∣∣∣ ≤
(

1 +
ā+ b−max
n− b−max

)p |x|
nq+1−p ≤

2p|x|
nq+1−p ≤ 1

provided n ≥ max{ā+ 2b−max, (2
p|x|) 1

q+1−p }.

2. p = q + 1. Thus

∣∣∣∣
tn+1

tn

∣∣∣∣ ≤
(

1 +
ā+ b−max
n− b−max

)p
|x| ≤ 1

provided n ≥ ā+b−max

1− p
√

|x|
+ b−max.

Q.E.D.

Recall that a series
∑∞

n=0 tn is called alternating if tntn+1 < 0 for all n ∈ N.

For alternating series, we have the following lemma:

Lemma 16. if |ti| ≥ |ti+1| for all i ≥ n, then |Rn| ≤ |tn| and Rntn ≥ 0.

For n > n0, |Rn| is bounded by |tn|. For non-alternating series, we obtain

the following bounds for |Rn|:

Lemma 17. If |x|f(n) < 1, then

1. if starting from some n, f(n) decreases, i.e., f(n) ≥ f(n+ 1), then

|Rn| ≤
|tn|

1− |x|f(n)
.

2. if starting from some n, f(n) increases, i.e., f(n) ≤ f(n+ 1), then

|Rn| ≤
|tn|

1− |x| .

Proof.

88

1. Note that if f(n) decreases, then for i ≥ 0,

|tn+i| = |tn| · |x|i
i−1∏

j=0

f(n+ j) ≤ |tn| · |x|i
i−1∏

j=0

f(n) ≤ |tn| · |x|if(n)i.

Summing,

|Rn| = |
∑

i≥0

tn+i| ≤
∑

i≥0

|tn+i| ≤ |tn|
∑

i≥0

|x|if(n)i =
|tn|

1− |x|f(n)
.

2. If f(n) increases, then f(n) < 1 since limn→∞ f(n) = 1 if p = q + 1 and

limn→∞ f(n) = 0 if p < q + 1. Hence,

|tn+i| = |tn| · |x|i
i−1∏

j=0

f(n+ j) ≤ |tn| · |x|i.

Summing,

|Rn| = |
∑

i≥0

tn+i| ≤
∑

i≥0

|tn+i| ≤ |tn|
∑

i≥0

|x|i =
|tn|

1− |x| .

Q.E.D.

We notice that the geometric case would also apply for the alternating series

as well. However, it is obvious that the upper bound (|tn|) of R(n) given by the

alternating case is better than here (|tn|
1−|x|f(n)

or |tn|
1−|x|).

§48. Determining n1 for p < q + 1 Now we need to determine a value n1

beyond which f(n) is monotone increasing or decreasing. Write “f(n)ր n1” to

mean that for all n > n1, f(n) < f(n + 1). Similarly, “f(n)ց n1” means that

for all n > n1, f(n) > f(n + 1). In either case, we can write “f(n) l n1”. We

may also write “f(n) ր” if f(n) ր n1 for some n1. Similarly, for “f(n) ց”.

The following Lemma 18 and Lemma 20 gives such a condition depends on

p < q + 1 and p = q + 1.

89

Lemma 18. Let p < q+1 and {a1, . . . , ap} 6= {b0, b1, . . . , bq} viewed as multi-sets.

Denote

r =
s1(b

′)− 1
2
s+
1 (a)− 2s−1 (a)

q + 1− p ,

then f(n)ց n1 where

n1 = max{a+
max, 2a

−
max, b

−
max, r} (3.6)

Proof. We have

f(n) =

∏p
i=1(ai + n)∏q
j=0(bj + n)

=

∏p
i=1(

ai

n
+ 1)

∏q
j=0(

bj
n

+ 1)

(
1

n

)q+1−p

log f(n) =

p∑

i=1

log(
ai
n

+ 1)−
q∑

j=0

log(
bj
n

+ 1)

+ (q + 1− p) log(
1

n
).

Let ν = 1/n and define h(ν) via

h(ν) = log f(1/ν)

=

p∑

i=1

log(aiν + 1)−
q∑

j=0

log(bjν + 1)

+ (q + 1− p) log ν

h′(ν) =

p∑

i=1

ai
aiν + 1

−
q∑

j=0

bj
bjν + 1

+
q + 1− p

ν
.

90

From the following facts:

ai
aiν + 1

>
ai
2

for ai > 0, n > a+
max,

ai
aiν + 1

> 2ai for ai < 0, n > 2a+
max,

bj
bjν + 1

> −bj for bi > 0, n > 0,

bj
bjν + 1

> −bj for bi < 0, n > b−max,

for n > max{a+
max, 2a

−
max, b

−
max}, we have

h′(ν) ≥ 1

2
s+
1 (a) + 2s−1 (a)− s1(b) +

q + 1− p
ν

.

Hence, if we choose

n1 = max{a+
max, 2a

−
max, b

−
max, r},

we conclude that h′(ν) > 0. This means as h(ν) increases with ν. But as

n → ∞, ν decreases towards 0 and so h(ν) is decreasing, i.e., f(n) ց as

claimed. Q.E.D.

§49. Determining n1 for p = q+1 For the case p = q+1, we need a lemma

from the Symmetric Polynomial theorem. Let

sk(a) =

p∑

i=1

aki , k = 1, . . . , p

and σk(a) be the kth elementary symmetric function on a. Thus

σ1(a) = s1(a), σ2(a) =
∑

1≤i<j≤p
aiaj ,

σ3(a) =
∑

1≤i<j<k≤p
aiajak, . . . , σp(a) =

p∏

i=1

ai.

91

Also, define the polynomials

Pa(n) =

p∏

i=1

(ai + n), Pb(n) =

p∏

i=1

(bi + n) (3.7)

Lemma 19. Let a = (a1, . . . , ap) and b = (b1, . . . , bp) where a1 ≤ · · · ≤ ap and

b1 ≤ · · · ≤ bp. The following three statements are equivalent:

(1) (∀k = 1, . . . , p)[sk(a) = sk(b)].

(2) (∀k = 1, . . . , p)[σk(a) = σk(b)].

(3) The polynomials Pa(n) and Pb(n) are equal.

(4) a = b.

Proof. The equivalence of (1) and (2) is a simple consequence of the Newton-

Girard formulas which show that the sk(a)’s and the σk(a)’s are derived from

each other:

s1(a) = σ1(a)

s2(a) = (σ1(a))2 − 2σ2(a)

s3(a) = (σ1(a))3 − σ1(a)σ2(a) + 3σ3(a)

· · ·

The equivalence of (2) and (3) follows since σk(a) is the coefficient of nk in

Pa(n) for all k = 1, . . . , n. The equivalence of (3) and (4) uses the following

remark: if the ith derivative P
(i)
a (n) vanishes at n = a for all i = 0, 1, . . . , r − 1

but P
(r)
a (a) 6= 0, then a occurs exactly r ≥ 0 times in a. Thus, Pa(n) = Pa(n)

implies that a occurs exactly the same number of times in a as in b. This shows

that Pa(n) = Pa(n) implies a = b. The converse implication is immediate:

a = b implies Pa(n) = Pa(n). Q.E.D.

Now we can prove the following lemma:

92

Lemma 20. Let p = q + 1 and {a1, . . . , ap} 6= {b0, b1, . . . , bq} viewed as multi-

sets, and k = 1, . . . , p be the smallest such index such that sk(a) 6= sk(b
′).

(a) f(n)ց iff (−1)k(sk(b
′)− sk(a)) > 0.

(b) Denote

r1 = k

√
sk(b′)

sk(a)
, r2 = k

√
s+
k (b′)− s−k (a)

s+
k (a)− s−k (b′)

,

then we have:

(i) if k is even, then f(n)ց n1 where

n1 = max

{
amax, bmax, bmax

1

r1 − 1

}
. (3.8)

provided that sk(b
′) > sk(a), and f(n)ր n1 where

n1 = max

{
amax, bmax, amax

r1
r1 − 1

}
. (3.9)

provided that sk(b
′) < sk(a),

(ii) if k is odd, then f(n)ր n1, where

n1 = max

{
amax, bmax,

b+max + b−maxr2
r2 − 1

}
. (3.10)

provided that sk(b
′) > sk(a), and f(n)ց n1 where

n1 = max

{
amax, bmax,

a+
maxr2 + a−max

1− r2

}
. (3.11)

provided that sk(b
′) < sk(a),

Proof. (a) In this case, we have

h′(ν) =

p∑

i=1

ai
aiν + 1

−
q∑

j=1

bj
bjν + 1

.

In general, for r ≥ 1, the rth derivative is

h(r)(ν) = (r − 1)!(−1)r

(
q∑

j=0

(
bj

bjν + 1

)r
−

p∑

i=1

(
ai

aiν + 1

)r)
.

93

Also, h(0)(ν) is simply h(ν). Evaluating at ν = 0, we get

h(r)(ν)
∣∣
ν=0

= (r − 1)!(−1)r

(
q∑

j=0

brj −
p∑

i=1

ari

)

= (r − 1)!(−1)r (sr(b
′)− sr(a)) .

By Lemma 19, we know that there exists a smallest index k such that sk(a) 6=
sk(b

′). Then h(r)(ν)
∣∣
ν=0

= 0 for r = 1, . . . , k − 1 and h(k)(ν)
∣∣
ν=0
6= 0. So

for ε > 0 small enough, h(ε) and h′(ε) has the sign of h(k)(ν)
∣∣
ν=0

. As in the

proof of Lemma 18, h′(ε) > 0 means that f(n) ց. This proves f(n) ց iff

(−1)k (sk(b
′)− sk(a)) > 0.

(b) Denoting

Sk(ν) =

q∑

j=0

(
bj

bjν + 1

)k
−

p∑

i=1

(
ai

aiν + 1

)k
,

then we have f(n)ց if (−1)kSk(ν) > 0 and f(n)ր if (−1)kSk(ν) < 0.

If k is even, then bkj and aki are positive. For n > max{amax, bmax}, we have

0 <
1

1 + amaxν
≤ 1

1 + aiν
≤ 1, 0 <

1

1 + bmaxν
≤ 1

1 + biν
≤ 1.

Hence,

Sk(ν) ≥
(

1

1 + bmaxν

)k q∑

j=0

bj
k −

p∑

i=1

ai
k

=

(
1

1 + bmaxν

)k
(sk(b

′)− sk(a)) .

We can choose

n > bmax
1

r1 − 1

94

to ensure Sk(ν) > 0 provided sk(b
′) > sk(a). In this case, f(n)ց n1 where

n1 = max

{
amax, bmax, bmax

1

r1 − 1

}
.

Similarly we can choose another n1 for the case sk(b
′) < sk(a).

If k is odd, then we can rewrite Sk(ν) as

Sk(ν) =
∑

j

(
b+j

1 + b+j ν

)k

+
∑

j

(
b−j

1 + b−j ν

)k

−
∑

i

(
a+
i

1 + a+
i ν

)k
−
∑

i

(
a−i

1 + a−i ν

)k
.

where a+
i , b

+
j are positive ai, bj and a−i , b

−
j are negative ai, bj .

For n > max{amax, bmax}, we have

0 <
1

1 + b+maxν
≤ 1

1 + b+j ν
≤ 1

1 + a−i ν
,

0 <
1

1 + a+
i ν
≤ 1

1 + b−i ν
≤ 1

1− b−max
.

Hence,

Sk(ν) ≥
(

1

1 + b+maxν

)k(∑

j

(b+j)k −
∑

i

(a−i)k

)

−
(

1

1− b−maxν

)k(∑

i

(a+
i)k −

∑

j

(b−j)k

)

=

(
1

1 + b+maxν

)k (
s+
k (b′)− s−k (a)

)

−
(

1

1− b−maxν

)k (
s+
k (a)− s−k (b′)

)
.

95

We can choose

n >
b+max + b−maxr2

r2 − 1

to ensure Sk(ν) > 0 provided sk(b
′) > sk(a). In this case, f(n)ր n1 where

n1 = max

{
amax, bmax,

b+max + b−maxr2
r2 − 1

}
.

Similarly we can choose another n1 for the case sk(b
′) < sk(a). Q.E.D.

§50. Defining n2 Let us further define

n2 := max{n0, n1} (3.12)

for the remainder of this section (this definition of n2 will be refined in the next

section). Let

un =
(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

1

n!
,

then

tn = unx
n

§51. Computing n3

Lemma 21. Denote

r = −ℓ− 1− lg |un2|, s = n2 lg f(n2),

then the bound |Rn| < 2−ℓ−1 for all n > n3 where

n3 =





max{n2,
r

lg |x|} if x < 0 and f(n)ր,

max{n2,
r+s

lg (|x|f(n2))
} if x < 0 and f(n)ց,

max{n2,
r+lg(1−x)

lg |x| } if x > 0 and f(n)ր,

max{n2,
r+s+lg(1−xf(n2))

lg (|x|f(n2))
} if x > 0 and f(n)ց .

(3.13)

96

Proof. If x < 0, then

|R(n)| ≤ |tn|

= |tn2 ||x|n−n2

n−n2−1∏

j=0

f(n2 + j)

= |un2||x|n
n−n2−1∏

j=0

f(n2 + j)

for n > n2.

If f(n)ր n2, then f(n) < 1 for n > n2. To ensure

|Rn| ≤ |un2||x|n < 2−ℓ−1,

we require

n > n3 =
−ℓ− 1− lg |un2|

lg |x| .

If f(n)ց n2, then f(n) > f(n+ 1) for n > n2. To ensure

|Rn| ≤ |un2||x|nf(n2)
n−n2 < 2−ℓ−1,

we require

n > n3 =
−ℓ− 1− lg |un2|+ n2 lg f(n2)

lg (|x|f(n2))
.

If x > 0, then

|R(n)| = |
∞∑

i=0

tn+i|

≤
∞∑

i=0

|tn+i|

≤ |tn|
∞∑

i=0

|x|i
i−1∏

j=0

f(n+ j)|.

97

If f(n)ր n2, then f(n) < 1 for n > n2. To ensure

|Rn| ≤ |tn|
∞∑

i=0

|x|i = |tn|
1

1− x < |un2||x|n
1

1− x < 2−ℓ−1

we require

n > n3 =
−ℓ− 1− lg |un2|+ lg(1− x)

lg |x| .

If f(n)ց n2, then f(n) > f(n+ 1) for n > n2. To ensure

|Rn| ≤ |tn|
∞∑

i=0

|x|if(n)i = |tn|
1

1− xf(n)

< |un2||x|nf(n2)
n−n2

1

1− xf(n2)
< 2−ℓ−1,

we require

n > n3 =
−ℓ− 1− lg |un2|+ n2 lg f(n2) + lg(1− xf(n2))

lg (|x|f(n2))
.

Q.E.D.

§52. Algorithm of computing n3 We are now ready to present the algo-

rithm to compute n3.

• STEP 0: PRELIMINARY. We first sort a and b in nondecreasing order.

By a merge-like process, we can delete pairs (ai, bj) of identical upper

and lower parameters where ai = bj . Continue to let a,b denote the

parameters after they are processed in this way. If p = q = 0 then we are

reduced to the evaluation of exp(x). Otherwise, we know that a 6= b. If

p = q + 1, verify that |x| < 1. If x = 0, return 1.

• STEP 1: Compute a value n0 = n0(a,b, x) such that |x|f(n) < 1.

– CASE p < q + 1: compute

n0 = max{a+ 2b−max, (2
p|x|)1/(q+1−p)}.

98

– CASE p = q + 1: compute

n0 =
a+ b−max

1− p
√
|x|

+ b−max.

• STEP 2: Compute a value n1 = n1(a,b) such that f(n) l n1.

– CASE p < q + 1: compute

r =
s1(b

′)− 1
2
s+
1 (a)− 2s−1 (a)

q + 1− p

Then compute

n1 = max{a+
max, 2a

−
max, b

−
max, r}

In this case, f(n)ց n1.

– CASE p = q+1: we find the smallest k = 1, . . . , p such that
∑

i a
k
i 6=

∑
j b

k
j . Such a k exists since a 6= b.

Then for k even, compute

r1 = k

√
sk(b′)

sk(a)
.

If sk(b
′) > sk(a), compute

n1 = max

{
amax, bmax, bmax

1

r1 − 1

}
.

If sk(b
′) < sk(a), compute

n1 = max

{
amax, bmax, amax

r1
r1 − 1

}
.

For k odd, compute

r2 = k

√
s+
k (b′)− s−k (a)

s+
k (a)− s−k (b′)

.

99

If sk(b
′) > sk(a), compute

n1 = max

{
amax, bmax,

b+max + b−maxr2
r2 − 1

}
.

If sk(b
′) < sk(a), compute

n1 = max

{
amax, bmax,

a+
maxr2 + a−max

1− r2

}
.

• STEP 3: Compute n2 = max{n0, n1}.

• STEP 4: Compute n3 such that |Rn| < 2−ℓ−1 for n ≥ n3. Compute

r = −ℓ− 1− lg |un2|, s = n2 lg f(n2)

then

– CASE x < 0: compute

n3 =





max{n2,
r

lg |x|} if f(n)ր,
max{n2,

r+s
lg (|x|f(n2))

} if f(n)ց .

– CASE x > 0: compute

n3 =





max{n2,
r+lg(1−x)

lg |x| } if f(n)ր,

max{n2,
r+s+lg(1−xf(n2))

lg (|x|f(n2))
} if f(n)ց .

This give us:

Theorem 22. The general hypergeometric function H is absolutely approx-

imable.

Proof. Given a,b, x, ℓ, we compute n3 as given in the above algorithm. We

then compute an approximation S̃n3 which approximates Sn3 to ℓ + 1 absolute

bits. This value also approximates H(a;b; x) to ℓ absolute bits. Q.E.D.

100

Table 3.2: Transformations of hypergeometric functions.

E(x) = A(x)F (B(x)) F (x) A(x) B(x)

exp(x) 0F0(; ; x) 1 1

cos(x) 0F1(;
1
2
; x) 1 −x2/4

sin(x) 0F1(;
3
2
; x) x −x2/4

cosh(x) 0F1(;
1
2
; x) 1 x2/4

sinh(x) 0F1(;
3
2
; x) x x2/4

erf(x) 1F1(
1
2
; 3

2
; x) x −x2

(1 + x)−v 1F0(v; x) 1 −x
ln(1 + x) 2F1(1, 1; 2; x) x −x

arcsin(x) 2F1(
1
2
, 1

2
; 3

2
; x) x x2

arctan(x) 2F1(
1
2
, 1; 3

2
; x) x −x2

Many well-known functions in analysis are obtained by the simple transfor-

mations of hypergeometric functions. For instance, if A(x) and B(x) are func-

tions (typically simple polynomials), we transform F (x) toE(x) :=A(x)F (B(x))

to obtain familiar functions. This is illustrated in Table 3.2 (see [56, p. 42ff] for

more examples).

We can extend this result to simple functions that are derived from H (e.g.,

Table 3.2):

Theorem 23. If A(x), B(x) ∈ Z[x] then the function of the form F (x) =

A(x)pFq(a;b;B(x)) is absolutely approximable.

Furthermore, it is clear that these results also hold when we view the func-

tions as complex.

101

3.3 Evaluation at a Blackbox Number

This section seeks to generalize the algorithm of Section 3 to the case where x

is a black-box number. In [23], such a solution is given for common elementary

functions, exploiting well-known properties of such functions. We shall now

solve this in complete generality.

In the following, we assume the usual rational parameters a,b, the preci-

sion ℓ ∈ Z and a blackbox number x. Our main result says that H(a;b; x)

is absolutely approximable. We can make this precise with the help of ora-

cle Turing machines. In general, if f(x1, . . . , xp; y1, . . . , yq) is a real function

where the xi’s are representable reals and yj’s are black box numbers, then we

say that f is absolutely approximable if there is an oracle Turing machine

taking representable real inputs x1, . . . , xp and ℓ, and q oracles for y1, . . . , yq,

such that within a finite time, it halts with an absolute ℓ-bit approximation

to f(x1, . . . , xp, y1, . . . , yq). We call an oracle for yi by writing a pair (i, ℓ′) on

a special tape, and in the next instant, an absolute ℓ′-bit approximation of yi

appears on another special output tape.

When a,b are understood, we will simply write F (x) or F̃ (x; ℓ) forH(a;b; x)

and H̃(a;b; x; ℓ) respectively. For any n ≥ 0, let F (x) = Sn(x) + Rn(x) where

Sn(x) =
∑n−1

k=0 tk and Rn(x) =
∑

k≥n tk.

Let [u] denote an interval [u, u] where u, u are bigfloats. We further assume

that

0 6∈ [u], and if p = q + 1 then [u] < 1. (3.14)

If f(x) is a real function, let f([u]) = {f(θ) : u ≤ θ ≤ u}. Write f([u]) < M if

each y ∈ f([u]) is less than M .

102

Lemma 24. Given [u] as in (3.14), we can compute n3 such that |Rn3([u])| <
2−ℓ.

Proof. Observe that all the inequalities required in STAGE A can be ex-

tended by replacing x by [u] since [u] satisfies (3.14). Q.E.D.

Lemma 25. Given [u] as in (3.14), we can compute an M ∈ F1 such that

|F ′([u])| ≤M where F ′(x) denotes differentiation with respect to x.

Proof. Note that F ′(x) is just another hypergeometric function multiplied

by a rational number since

F ′(x) =
Pa(0)

Pb(0)
H(a + 1;b + 1; x)

where Pa(n) is given by (3.7). Thus by Lemma 24, we can determine an n3 such

that truncating the series for F ′(x) after the first n3 terms incurs an error of at

most 1/2. Then compute an approximation S̃ of the sum of the first n3 terms,

error at most 1/2. Take M = S̃ + 1. Q.E.D.

§53. Blackbox Evaluation Algorithm The following algorithm will abso-

lutely approximate H relative to a blackbox number x:

103

Blackbox Evaluation Algorithm

Input: Rational a,b, ℓ and blackbox number x.

Output: A bigfloat ỹ such that |ỹ −H(a;b; x̃)| ≤ 2−ℓ.

0. Initialize s← ℓ+ 1.

1. Compute x̃ such that |x̃− x| < 2−s.

This is just one call to the black box x.

Let [u] = [u, u]

where u = x̃− 2−s and u = x̃+ 2−s.

2. While [u] does not satisfy (3.14),

keep doubling the precision s in x̃ until it does.

3. Using Lemma 25, compute M such that |F ′([u])| < M .

4. [Repeat Step 1]

Recompute x̃ such that |x̃− x| < 2−s−max{0,lgM}

Let [v] be the interval based on this new value of x̃.

5. Using Theorem 22, compute ỹ = H̃(a;b; x̃; ℓ+ 1).

6. Return ỹ.

Theorem 26. If x 6= 0 and (p = q + 1 implies |x| < 1), then the Blackbox

Evaluation Algorithm halts and gives a correct output:

|ỹ −H(a;b; x)| ≤ 2−ℓ.

Proof. Halting of the algorithm is guaranteed because of the assumption that

x 6= 0 and (|x| < 1 if p = q + 1). Next, we must show that |ỹ − F (x)| ≤ 2−ℓ.

But Step 5 implies |ỹ − F (x̃)| ≤ 2−ℓ−1. Hence it suffices to show that

F (x̃)− F (x)| ≤ 2−ℓ−1. (3.15)

104

By Step 4, x̃ = x+ δ where |δ| ≤ 2−s/max{1,M} ≤ 2−ℓ−1/M . Therefore

|F (x̃)− F (x)| = |F (x+ δ)− F (x)| ≤ |δ · F ′(x+ θδ)|

for some 0 ≤ θ ≤ 1 (intermediate value theorem). According to Step 2,

x+ θδ ∈ [u] = [x̃− 2−s, x̃+ 2−s] = [x+ δ − 2−s, x+ δ + 2−s],

and thus |F ′(x+ θδ)| ≤M by Step 3. Hence

|F (x̃)− F (x)| ≤ |δ · F ′(x+ θδ)| ≤ (2−ℓ−1/M)(M) = 2−ℓ−1.

Q.E.D.

Remark: the precision of x̃ in Step 1 is quite arbitrary. However, it seems

to be best to choose a precision (like ℓ) that is close to, but not exceeding,

the precision s in Step 4. We want it to be close to s so that our estimate of

M is not too far off, but we do not want to exceed s so that Step 1 will not

expend more effort than the effort in Step 4. Also, after Step 4, we might wish

to compute an updated (smaller) value of M based on [v]. But this requires a

corresponding update on x̃. This iteration can be repeated, but it seems to give

diminishing returns after the second iteration.

The power of the above blackbox algorithm is seen in the following applica-

tion:

Corollary 27. Fixing x, define G(a;b) :=H(a;b; x). If x is any approximable

real number, then G is absolutely approximable.

The approximable real numbers include all algebraic numbers and most of

the common constants of analysis such as π and e. They are also closed under

rational operations.

105

3.4 Complexity

We next derive the complexity of the procedure in Section 3.2. This is quite

involved, and we must further sharpen the algorithm of Section 3.2 before an

explicit bound is possible.

§54. Bigfloat Representation Our algorithm, however, will usually com-

pute using bigfloat approximations. We represent a bigfloat x by a pair e, f of

integers in binary notation. The pair (e, f) represents the value x = f2e−msb(f)

where msb(f) = ⌊lg f⌋ To emphasize the representation of x by (e, f), we write

x ∼ 〈e, f〉. Here, e and f are the exponent and fraction of the representation.

Note that 〈e, f〉 and 〈e − 1, 2f〉 represent the same number. A representation

〈e, f〉 is normal if f is odd, or if e = f = 0. Clearly every bigfloat in F has a

unique normal representation. Let 〈f〉 be a shorthand for f2−msb(f) ∼ 〈0, f〉.
Thus for f 6= 0, we have 〈f〉 ∈ [1, 2), representing the fraction obtained by

placing a binary point immediately to the left of the most significant bit in the

binary notation for f .

§55. Size of the Input We now give our input and representation of num-

bers more explicitly. If a is a rational number p/q then size(a) is defined as

max{lg |p|, lg |q|}. If a is a bigfloat then it is also a rational number, and hence

size(a) is well-defined. In fact, if a ∼ 〈e, f〉, then size(a) = max{e, lg |f |}. If

the input to H̃ is the usual (a,b, x, ℓ) (all rationals), we say the size of this in-

put is the quadruple (q′, n,m, ℓ) where q′ = q+1, n = maxi,j{size(ai), size(bj)}
and m = size(x).

106

§56. Brent’s Complexity Bounds Our complexity bounds will contain

terms involving M(n), defined as the complexity of multiplying two n-bit num-

bers. We can plug in the Schönhage-Strassen boundM(n) = O(n logn log log n),

but it may also be useful to substitute M(n) = n2 to estimate the complexity

of using naive multiplication.

The following result is taken from [20] with a correction 1:

Lemma 28. Let x = 〈ex, fx〉, y = 〈ey, fy〉 be bigfloats, and s be a positive number.

Then there exists an algorithm to

(1) evaluate x to s relative bits in O(s) time.

(2) evaluate x± y to s relative bits in O(s+ lg |exey|) time

(3) evaluate x · y, 1/x,√x to s relative bits in O(M(s) + lg |exey|) time.

(4) evaluate lg(x) to s relative bits in O(M(s) lg s+ lg |ex|) time.

Using the above results, we can easily get the complexity bound of approx-

imating a rational number and adding of two or more rational numbers:

Lemma 29. Let a = N
D

be a rational number and n = size(a) = max{lgN, lgD}.

There exist algorithms to approximate a to s bits relative precision in O(M(s)+

lg n) time.

Proof. We can express N and D by bigfloats 〈msb(N), N〉 and 〈msb(D), D〉,

then by Lemma 28, we can evaluate N
D

to s bits in O(M(s)+lg n) time. Q.E.D.

Corollary 30. (i) Let a, b be rational numbers with at most n bits in their

numerators and denominators. Then we can evaluate a+ b to s relative bits in

1The results in [20] say we can evaluate x± y to s relative bits in O(s+max{ex, ey}) time,

which is not true.

107

O(M(s)+lgn) time. (ii) We can compute s1(a) to s relative bits in O(q′(M(s+

lg q′) + lg n)) or O(q′(M(s + q′) + lg n)) time.

Proof. (i) Evaluating a+b to s relative bits can be done by first approximating

a and b to s + 2 relative bits, truncating them to s + 2 bits, and then adding

those values up to s relative bits. The first step takes O(M(s) + lg n) time and

the addition takes O(s+lgn) time, so the total running time is O(M(s)+ lgn).

(ii) The first complexity comes from evaluating a balanced binary tree whose

leaves are a1, . . . , ap. The second comes from evaluating a linear expression.

Q.E.D.

§57. Complexity of Computing n0 The upper bound for n0 in our algo-

rithm and the complexity of computing n0 is shown below:

Lemma 31. We have n0 ≤ 23q′(n+m). Computing n1 takes O(M(q) + m) time

for the case p < q+1 and O(M(n)+ lgm+lg q′) time for the case of p = q+1.

Proof. We note that (2p|x|)1/(q+1−p) ≤ 2p|x| ≤ 2np+m and ā

1− p
√

|x|
≤ 2n+mp,

so n0 ≤ 2(n+m)(q′+2) ≤ 23q′(n+m). For the case of p < q + 1, it is enough to

compute q+1−p
√
|x| to q′ relative precision, which takes O(M(q) +m) time. For

the case of p = q + 1, we compute 1

1− p
√

|x|
to n relative precision, which takes

O(M(n) + lgm+ lg q′) time. Q.E.D.

§58. Complexity of Computing n1 for p < q+ 1 In the case of p < q+ 1,

the complexity of computing n1 is easy and shown as follows:

Lemma 32. If p < q+1, then n1 ≤ 3q′2n. Moreover, we can compute it in time

O(q′M(n + lg q′)).

108

Proof. To bound n1, we note that

|s1(b
′)|, |s+

1 (a)|, |s−1 (a)|

are each bounded by q′2n. Hence |r| ≤ 3q′2n. We can compute

r′ =
⌈s1(b

′)⌉ − 1
2

⌊
s+
1 (a)

⌋
− 2

⌊
s−1 (a)

⌋

q + 1− p

and

n0 = max{
⌈
a+
max

⌉
, 2
⌈
a−max

⌉
,
⌈
b−max

⌉
, r′}.

Since s1(b
′), s+

1 (a), s−1 (a) has at most (n + lg q′) bits, we can evaluate them to

(n+lg q′) relative bits to get ⌈s1(b
′)⌉ ,

⌊
s+
1 (a)

⌋
,
⌊
s−1 (a)

⌋
in time O(q′M(n+lg q′))

by Corollary 30. Q.E.D.

§59. Complexity of Computing n1 for p = q+ 1 However, for the case of

p = q+ 1, we need first analyze the complexity of finding the smallest k, which

is shown in the following three lemmas:

Lemma 33. Let α = k
√
a − k
√
b where a, b > 0 are rational numbers of size t.

Then lg |α| ≥ −(2t+ 1)k2. If a, b are integers then lg |α| ≥ −(t+ k)k.

Proof. We use the BFMSS rule [16] to compute u(k
√
a) ≤ 2t and ℓ(k

√
a) ≤ 2t,

with the same bound when a is replaced by b. Hence u(α) = 22t+1. Since the

degree of α is ≤ k2, we get |α| ≥ u(α)−k
2

and lg |α| ≥ −(2t + 1)k2. When a, b

are integers, we obtain u(k
√
a) ≤ 2t/k and ℓ(k

√
a) = 1, giving us the improvement

stated. Q.E.D.

Corollary 34. Let α = sk(b
′)− sk(a), β = k

√
sk(a)− k

√
sk(b). Then lg |α| ≥

−2(kn + lg q′), lg |β| ≥ −(2q′(kn + lg q′) + 1)k2.

109

Proof. We note that sk(a) and sk(b) have size at most (kn+lg q′). Q.E.D.

Lemma 35. Deciding the sign of sk(b
′) − sk(a) takes O(kn + lg q′) time and

deciding the smallest k such that sk(b
′) 6= sk(a) takes O(q′2n+ q′ lg q′) time.

Proof. We can evaluate sk(b
′) − sk(a) to 2(kn + lg q′) relative precision to

get the sign in time O(kn+ lg q′). In at most q′ steps, we can find the smallest

index k, which takes O(q′2n+ q′ lg q′) time. Q.E.D.

Now we have the complexity of computing n1:

Lemma 36. If p = q+1, then n1 ≤ 24q′3n. Moreover, we can compute it in time

O(M(q3n)).

Proof. To see the upper bound for n1, we note from the definition in (3.10)

and (3.11) that the numerator is at most 22n+lg q′+1 and the denominator is at

least 2−q
′2(2(nq′+lg q′)+1), hence n1 ≤ 24q′3n. Then we can compute n1 to 4q′3n

relative bits which will take O(M(q′3n)) time. Q.E.D.

§60. Complexity of Computing n2 If we follow the scheme of the previous

section, it remains to bound n3. However, no finite bound is possible under that

scheme. To see this, note that for n > n2, although we know that |xf(n)| < 1, it

can be arbitrarily close to 1, which implies n3 can be arbitrarily large. Moreover,

this difficulty only arises when p = q+1. Hence, when p = q+1, we shall modify

the definition in (3.12).

Lemma 37. If p = q + 1, redefine n2 := max{n0, n1, n
′
2} where

n′
2 :=

a+
max + b−max

q
√

1 + 2−m − 1
+ b−max. (3.16)

110

Then,

1− |xf(n2)| ≥ 2−2m.

and hence − lg(|x|f(n2)) ≤ 2m.

Let us note that for 0 < x < 1 and p ≥ 1,

(1 + x)1/p − 1 ≥ x

2p
. (3.17)

Lemma 38. n2 ≤ 2q
′(7q′2n+3m). The computation of n2 takes O(q3n+m) time.

Proof. We have that n0 ≤ 24q′3n, and n1 ≤ 23q′(n+m). When p < q + 1, our

lemma is clearly true in view of (3.12). When p = q+1, we need to estimate n′
2

in (3.16). Using the bound (3.17), we conclude that q
√

1 + 2−m−1 ≥ 2−m−1−lg q′ .

Hence

n′
2 ≤

2n+1

2−m−1−lg q′
+ 2n ≤ 2n+3+m+lg q′ .

But this bound is dominated by the bound for n1. The computation time is

dominated by the computation of n0 and n1 in the case of p = q + 1, which

takes at most O(q3n+m) time. Q.E.D.

§61. Complexity of Computing n3

Lemma 39. We have the bound

n3 ≤ 4m
(
ℓ+ 1 + 2q′2(7q′2n + 3m)2q

′(7q′2n+3m)
)

≤ 4m
(
ℓ+ 24q′(2q′2n+m)

)

The computation of n3 takes time

O(M(lg(ℓ) + q′3n+ qm)).

111

Proof. Using the fact

|(ai)n2 | ≤ (ai + n2)
n2 ≤ (2n + n2)

n2

and

|(bj)n2 | ≥ |bj |n2 ≥ 2−nn2,

we first note that

1 + lg |un2| ≤ 1 + 2q′n2 lg(2n + n2)

≤ 1 + 2q′2q
′(7q′2n+3m)(n+ q′(7q′2n+ 3m))

≤ 24q′(2q′2n+m).

Moreover, if f(n) ր, then p must be equal to q + 1. In this case we require

|x| < 1− 2−m, i.e., lg |x| ≤ −2−m. So

n3 ≤ 2m(ℓ+ 24q′(2q′2n+m)).

If f(n)ց, by Lemma 37 we have lg |xf(n2)| ≤ −2−2m. Hence

n3 ≤ 4m(ℓ+ 24q′(2q′2n+m)).

Therefore, the running time of computing n3 is

O(M(lg(ℓ) + q′3n+ qm))

assuming that we use bigfloat approximations. Q.E.D.

§62. Complexity of Computing the Summation SN Let us define

N = 4m
(
ℓ+ 24q′(2q′2n+m)

)
. (3.18)

112

Now we analyze the complexity of computing the approximation S̃N such that

|S̃N −SN | ≤ 2−ℓ−1 where SN =
∑N

k=0 tk. It is sufficient that for each k, 0 ≤ k ≤

N , we compute an approximation t̃k such that

|t̃k − tk| ≤ 2−ℓ−1−lgN .

Noting that tk = ukx
k, lg |uk| ≤ 2kq′ lg(2n + k) and lg |xk| ≤ km, it is sufficient

to compute uk and xk to relative r + 2 bits where

r = (ℓ+ 1 + lgN + 2kq′ lg(2n + k) + km).

Lemma 40. We can compute xk to r + 2 relative precision in time O(kM(r)).

Proof. To compute xk to relative r + 2 bits, we can use two steps:

1. compute x to relative (r + 2 + lg(k + 1)) bits and truncate,

2. multiply them (in linear order or binary tree order).

Note that x is a rational number N
D

with bit length m, so the first step can

be done in time O(M(r + lg k) + lgm). For the second step, if we do the

multiplication in linear order, x2 = x× x can be done in time O(M(r + lg k) +

lgm), x3 = x2×x can be done in time O(M(r+lg k)+lg(2m)), . . . , xk = xk−1×x

can be done in time O(M(r + lg k) + lg((k − 1)m)), so the total running time

is O(kM(r + lg k) + k lg(km)) = O(kM(r)). Q.E.D.

Lemma 41. We can compute uk to r + 2 relative precision in time O((k +

q′)M(r)).

Proof. Computing uk to relative r + 2 bits can be done the following steps:

1. compute (ai)k, (bj)k to relative (r + 4 + lg q′) bits and truncate,

113

2. compute P (k) = (a1)k(a2)k · · · (ap)k to relative (r + 4) bits and truncate,

3. computeQ(k) = (b1)k(b2)k · · · (bq)k(1)k to relative (r+4) bits and truncate,

4. compute P (k)
Q(k)

to relative r + 2 bits.

The first step can be done in time O(kM(r+lg q+lg k)+k lg(kn)) = O(kM(r)).

The second and third step can be done in time O(q′M(r+lg q′)+kq′ lg(2n+k)) =

O(q′M(r)), and the final step can be done in time O(M(r) + kq′ lg(2n + k)) =

O(M(r)). Therefore, computing uk takes O((k + q′)M(r)) time. Q.E.D.

Corollary 42. The summation SN takes O(N2M(ℓ + q′N lgN +Nm)) time

where N is defined in (3.18).

Proof. Note that r = O(ℓ+ q′N lgN +Nm), so computing tk takes at most

O(NM(ℓ+ q′N lgN +Nm)) time, hence the total running time for computing

SN is O(N2M(ℓ + q′N lgN +Nm)). Q.E.D.

The upshot of these calculations yields:

Theorem 43. The general hypergeometric function H can be approximated in

time that is singly exponential in q′, n, m, and polynomial in ℓ.

3.5 Argument Reduction, Parameter Pre-processing

and Constants

3.5.1 Argument Reduction

An issue in the efficient evaluation of hypergeometric functions is the well-

known problem of argument reduction. Thus the evaluation of sin(1022) =

114

−0.8522008497671888017727... might well arise because its argument is auto-

matically generated in some sequence of evaluations [70] [39] [40] [41].

Each hypergeometric series is generally valid within a bounded range, and

the problem is to reduce a general argument to this range. Even when an ar-

gument is in the valid range, argument reduction can still be applied to achieve

faster convergence. As noted in [64, p.145–147], argument reduction in trigono-

metric functions (the “additive type” of reductions) are prone to catastrophic

errors, with the result that evaluating sin(1022) on many computers have widely

divergent answers (some outright wrong).

Whenever we perform argument reductions, an error is introduced into the

modified arguments. We need to bound the effects of this error. For instance,

argument reduction for the trigonometric functions uses the fact that they have

period 2π. By exploiting other properties, the arguments can be reduced to a

range of size π/2. If r is the reduced argument corresponding to an original

argument of x, we have

r = x− π

2

⌊
2

π
x

⌋
.

But we can only compute an approximation r̃ to r. Using a sufficiently accurate

approximation to π, we can bound |r − r̃| by any desired error bound ε′. The

choice of ε′ can be deduced using the following lemma:

115

Lemma 44. For ε > 0, we have the following bounds:

| sin(x+ ε)− sin x| ≤ ε

| cos(x+ ε)− cos x| ≤ ε

| tan(x+ ε)− tan x| ≤ 4ε, 0 ≤ x ≤ π/4, ε < π/12

| cot(x+ ε)− cot x| ≤ 2ε, π/4 ≤ x ≤ π/2, ε ≤ π/4

| arcsin(x+ ε)− arcsin x| ≤ 2ε, |x| < 0.5, ε ≤ 1/4

| arccos(x+ ε)− arccos x| ≤ 2ε, |x| < 0.5, ε ≤ 1/4

| arctan(x+ ε)− arctan x| ≤ ε, |x| < 1

| log(x+ ε)− log x| ≤ ε/x, x > 0.

| exp(x+ ε)− exp x| ≤ 2ε exp(x), ε ≤ log(2).

Proof. We use the remainder form of the Taylor expansion,

f(x+ h) = f(x) + hf ′(x+ θ), 0 ≤ θ ≤ h.

116

Then

| sin(x+ ε)− sin x| = ε| cos(x+ θ)| ≤ ε

| cos(x+ ε)− cosx| = ε| sin(x+ θ)| ≤ ε

| tan(x+ ε)− tanx| = ε| sec2(x+ θ)| ≤ 4ε

| cot(x+ ε)− cot x| = ε| csc2(x+ θ)| ≤ 2ε

| arcsin(x+ ε)− arcsin x| = ε| 1√
1− (x+ θ)2

| ≤ 2ε

| arccos(x+ ε)− arccosx| = ε| 1√
1− (x+ θ)2

| ≤ 2ε

| arctan(x+ ε)− arctanx| = ε| 1

1 + (x+ θ)2
| ≤ ε

| log(x+ ε)− log x| = ε|1/(x+ θ)| ≤ ε/x

| exp(x+ ε)− exp x| = ε| exp(x+ θ)| ≤ 2ε exp(x)

Q.E.D.

Now we give the detailed reduction algorithms for most common elementary

functions.

§63. Natural Log function If x > 2, we let x = 2kr where k ∈ N and

1 < r ≤ 2. Then

log(x) = k log(2) + log(r).

Here are the steps to approximate this expression:

1. First compute k = ⌊log2 x⌋.

2. Compute l̃og(2) as an approximation of log(2) to absolute error ≤ ε/(2k).

3. Compute r̃ such that |r − r̃| ≤ ε/4 where r = x2−k.

117

4. Compute l̃og(r̃) as an approximation of log(r̃) to absolute error ≤ ε/4.

5. Return z = kl̃og(2) + l̃og(r̃).

It is easy to show, using Lemma 44, that this procedure is correct. That is,

|z − log(x)| ≤ ε. Moreover, each of the steps is easily computed using the Core

Library. Step 2 requires an approximation to the constant log(2), which we

pre-compute (see Section 3.5.3).

§64. Exponential function Let k = ⌊x/ log(2)⌋ and r = x− k log(2). Then

exp(x) = 2k exp(r).

Note that 1 ≤ r < 2.

1. First, we compute k (the details of this computation are omitted, but will

require a suitable approximation to log 2).

2. Compute r̃ as an approximation to r = x − k log 2, to absolute error

ε2−k−2e−2.

3. Compute ẽxp(r̃) as an approximation to exp(r̃) to absolute error ε2−k−1.

4. Return z = 2kẽxp(r̃).

§65. Trigonometric functions reduction-trig To compute arcsin(x) when

0.5 < x ≤ 1, we use

arcsin(x) =
π

2
− 2 arcsin

(√
1− x

2

)
.

From Lemma 44, we see that it is sufficient to compute π to absolute error

bound of ε/2 and compute
√

(1− x)/2 to absolute error bound of ε/8. A

118

similar reduction applies for arccos(x). For arctan(x) when |x| > 1, we use

arctan(x) =
π

2
− arctan

(
1

x

)
.

Again, we need to compute 1/x to absolute error bound of ε/2. The cases for

sin, cos, tan, cot are even simpler.

3.5.2 Parameter Pre-processing

Hypergeometric parameters are sometimes artificially introduced in order to

achieve the standard form of these series. For instance, one of the upper pa-

rameters in x · 2F1(1, 1; 2;−x) (= log(1 + x)) amounts to canceling the im-

plicit lower parameter b0 = 1. This leads to a factor k!/k! in the kth term tk.

While mathematically harmless, this has major performance impact in the Core

Library evaluation mechanism. The example of log(1 + x) also illustrates an-

other improvement possible: the upper parameter of 1 with a lower parameter

of 2 amounts to the factor 1/(k+ 1) in the ratio tk+1/tk. Again, it is important

not to evaluate this factor as (1)k/(2)k. More generally, whenever an upper and

a lower parameter differ by an integer, cancellations occur and one can gain

improvements in efficiency by recognizing this.

§66. Parameter Pre-processing Algorithm We outline a general algo-

rithm for pre-processing the hypergeometric parameters. Let a1, a2, , . . . , ap and

b0, b1, , . . . , bq be the upper and lower parameters of pFq. Note that we have

added b0 = 1 to the standard list of lower parameters.

(1) We first sort the a’s and then the b’s. Let a1 ≤ a2 ≤ · · · ≤ ap and

b0 ≤ b1 ≤ · · · ≤ bq be the sorted result. In implementation, we use a simple

insertion sort. The advantage of this is that the insertion sort of a sorted list of

119

length n only requires n − 1 comparisons. Conventionally, parameter lists are

given in sorted order.

(2) By a merge-like algorithm we eliminate common terms from both lists.

Note that we still maintain the separate lists.

(3) Next we form the maximum number of (ai, bj) of an upper and a lower

parameter where a − i − bi is an integer. Let us call two real numbers x, y

equivalent if x−y ∈ Z. Let (Ai, Bi) (i = 1, . . . , r) be the set of such equivalent

pairs; these are called ab-pairs since Ai is an upper parameter and Bi a lower

parameter. Their corresponding values Ai, Bi are deleted from the original

parameter lists. It is easy to see that the maximum number r of ab-pairs is

unique. However, the set of these pairs are not unique. To ensure the most

efficient code, we must minimize the sum
∑r

i=1 |Ai − Bi| because this is the

number of linear factors that the pairs contribute to the term tn. Below, we

present a quadratic-time algorithm to solve this matching problem.

(4) We compute the successive terms tn as follows: Let sn be the term that

is computed from the upper and lower parameter list in the usual way:

sn = sn−1 × fn

where fn = (a1 + n)(a2 + n) · · · (ap + n)/(b0 + n) · · · (bq + n). We then initialize

tn to sn. Then for each pair (A,B) where B −A = k ≥ 1, we update

tn := tn ∗
A(A+ 1) · · · (A+ k − 1)

(A + n) · · · (A+ k + n− 1)
.

If A − B ≥ 1, there is an analogous factor. There is a special type of pair

that can be further exploited: when A,B are multiples of halves (this can be

generalized too). In case A = α/2 and B −A = k ≥ 1, then (A,B) contributes

120

the following factor to tn:

α(α+ 2) · · · (α + 2(k − 1))

(α+ 2n) · · · (α + 2(k + n− 1))
.

In the Core Library, this formulation will again lead to expressions of smaller

depth, and to a more efficient evaluation. The following table shows the speedup

as a result of exploiting parameter reduction (using the standard series for

log(1 + x)).

Number of digits 100 200 300 400 500

No preprocessing (sec) 1. 5.01 6.99 8.89 10.46

Parameter preprocessing (sec) 0.22 0.52 0.88 1.35 1.83

Speedup: 4.5 9.6 7.9 6.8 5.7

We give a solution to the following problem: given two lists a1, . . . , ap and

b1, . . . , bq of p+q distinct numbers, compute a maximal set {(A1, B1), . . . , (Ar, Br)}
of ab-pairs such that

∑r
i=1 |Ai−Bi| is minimized. We present an O(n logn) so-

lution, by a reduction to sorting. Put the ai’s and bj ’s into a common list and

sort them. The sort key for any number x is the pair key(x) = (x mod 1, x).

The comparison of two sort keys key(x) : key(y) is lexicographic (first compare

x mod 1 : y mod 1, and if there is a tie, we then compare x; y). This puts

the a’s and b’s into groups based on their equivalence classes. Then, we march

through the sorted lists of each equivalent classes:

§67. Minimum Matching Problem Consider the following problem2 where

we are given two sorted lists of real numbers, (A1 < A2 < · · · < Am) and

2 Although this might appear to be a known problem in the literature, we have not been

able to find a reference.

121

(B1 < B2 < · · · < Bn). Assume m ≤ n. We want to compute a set of m pairs

(A1, Bα(1)), . . . , (Am, Bα(m)) such that the sum

S =
m∑

i=1

|Ai − Bα(i)| (3.19)

is minimized where (α(1), · · · , α(n)) is a permutation of (1, · · · , m). We give

an O(mn) time algorithm. Two pairs (Ai, Bα(i)) and (Aj , Bα(j)) are said to

cross if i < j and α(i) > α(j). It is easy to see that if we “uncross” such a

pair, we obtain a solution whose sum S in (3.19) is not more than the original.

Consider the subproblems P (i, j) comprising the input lists (A1, . . . , Ai) and

(B1, . . . , Bj). Let S(i, j) be the minimum value for subproblem P (i, j). When

i = j, the solution is unique in the obvious way. Otherwise, for i < j,

S(i, j) = min{S(i, j − 1), S(i− 1, j − 1) + |Ai −Bj |}.

Then, using standard dynamic programming, we can solve this problem in time

O(mn).

3.5.3 Mathematical Constants: Evaluation, File Formats

The hypergeometric evaluation algorithm requires arbitrarily precise constants.

For instance, when doing argument reduction for trigonometric functions, we

need π. For argument reduction for exp(x) and for log(1 + x) we need log 2.

For the error function erf(x), we need 1/
√
π. While it is possible to compute

these constants on the fly, we can improve performance by pre-computing these

constants, storing them in files, and accessing them as needed. The following

raw timing results give some idea about possible gains: we compare the number

of seconds to compute π to a certain number of bits (using Machin’s formula)

versus the time it takes to read the same number of bits from a text file.

122

Bits 100 1000 3000 5000 7000 9000 10000 20000

On the fly (sec) 0.04 0.50 2.49 5.88 10.66 17.19 21.38 107.61

Pre-computed (sec) 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.11

Speedup 4 50 249 588 533 859 713 978

Thus, for 5000 bits or more, we can expect gains of up to three orders of mag-

nitude. Hence, we now describe facilities to compute, to store and to read

constants in file formats. A fundamental decision was to use text files rather

than binary files as the former is human readable. The reason for this choice

is that files admits better human interfaces, as an ordinary text editor can be

used to enter and modify values. The main drawback is a constant factor over-

head in storage as well as in speed. Storage is not an issue, considering that

storage is practically free within the modest space requirements of our appli-

cations. The format supports both integer, floating point and rational number

representations. Next, the base of the numbers can be binary, hexadecimal

or decimal. The advantage of binary/hexadecimal is that conversion into the

internal format of the Core Library takes linear time. The advantage of the

decimal format is that they are directly comprehensible by humans (a useful

fact for experimentation). Our files also allow comments, which also facilitates

memorization and collaboration. The formal specification is distributed with

the Core Library version 1.3 or higher. 3

3Look under the directory progs/fileIO.

123

3.6 Integration of Hypergeometric Functions

into the Core Library

Now we are ready to integrate hypergeometric functions into the Core Library

using the new extension framework we developed in Section 2.4. The main

function we provided for hypergeometric functions is

Expr hyper(const std::vector<BigRat>& A, const std::vector<BigRat>& B,

const Expr& fx, const Expr& fz);

It is used to evaluate the hypergeometric series

pFq = fzF (a1, a2, ..., ap, b1, b1, b2, ..., bp; fx).

The upper and lower parameters of the series are stored in the vectors A and

B respectively; fz and fx are scalars. We also defined the interfaces for the

following common elementary functions:

log, exp, erf, sin, cos, tan, arccos, arcsin, arctan

which are just inline functions to call hyper().

Like other functions, sum(), rootOf(), in the implementation of hyper()

a new type of node HyperRep is constructed. Inside HyperRep, we implemented

most functionalities. HyperRep is designed as a unary node. With the new ex-

tension mechanism in the Core Library, we need to overload the following func-

tions: compute filter(), compute sgn(), compute uMSB(), compute lMSB(),

comput r approx() and compute a approx(). Actually, we only need imple-

ment compute a approx() which basically uses the algorithms we developed in

Section 3.2. While we can easily compute the approximation of the summation

124

using Expr class, a more efficient method is to use the newly developed sum()

function to avoid build large expression DAGs.

Argument reduction and parameter pre-processing are done in the construc-

tor of HyperRep. The constants used in the argument reduction are read from

pre-computed files when it is available, otherwise computed on the fly.

To obtain more efficiency, we design some leaf nodes to compute those math-

ematical constants using fast algorithms. For example, we use AGM to compute

the approximations of π and log 2.

Since we have no root bound for hypergeometric functions, the escape bound

inside the Rootbd class is used when it is needed. Hence users should realize that

in the presence of hypergeometric functions, the sign computation is conditional,

i.e., it is only guaranteed to some finite precision.

3.7 Final Remarks and Open Problems

In work closely related to the new results of this chapter, van der Hoeven [90, 91]

presented fast algorithms for evaluating holonomic functions f(x). Such an f(x)

satisfies a linear differential equation
∑k

i=0 Pi(x)f
(i)(x) = 0 where Pi(x) ∈ Z[x].

For instance, if f(x) = 2F1(a, b; c; x) then it satisfies the equation

x(1− x)f ′′
(x) + (c− x(1 + a + b))f ′(x)− abf(x) = 0.

Van der Hoeven’s setting is more general than ours in two ways: first, hyperge-

ometric functions are holonomic and second, he treats complex functions which

live on Riemann surfaces. He shows that f(x) can be approximated to absolute

n-bits in time O(M(n log2 n)). But this complexity bound is a “local result” in

the sense that f is fixed and x restricted to a local neighborhood. In contrast,

125

our complexity bounds are global results: x is unbounded and our functions f

are specified by input parameters a,b. As seen in Section 3.4, global bounds

can be nontrivial with subtle difficulties. In any case, it remains a challenge to

give a global complexity bound in van der Hoeven’s setting.

We have shown for the first time that the general hypergeometric function

is absolutely approximable. Our complexity bound for H is the first step to-

wards gauging the inherent complexity of H or pFq (for fixed p, q), which is

useful for many applications (see, e.g., [48]). In particular, we are interested in

lower bounds for H and its relation to other important problems in algebraic

complexity.

Another natural question is the relative approximation of H . The zero

problem for H is this:

(ZD): Given rational a,b, x, is H(a;b; x) = 0?

This seems to be a difficult problem and is currently wide open. For instance,

Beukers has shown that

2F1(1− 3a, 3a; a; 1/2) = 22−3a cos(πa).

By setting a = 1/2, we obtain 2F1(−1
2
, 3

2
; 1

2
; 1

2
) = 0.

So the issue is to detect identities of this sort automatically. It is shown

in [94] that a real function f is relatively approximable iff it is absolutely ap-

proximable and the zero problem for f is decidable. Since H is absolutely

approximable, we conclude:

Lemma 45. The general hypergeometric problem is relatively approximable iff

the zero problem for H is decidable.

We can consider related problem:

126

(RD): Given rational a,b, x, is H(a;b; x) rational?

(RE): Given rational a,b, x, r, is H(a;b; x) = r?

Lemma 46. The problem (ZD) can be reduced to the special case of (RE) in

which the parameters a,b are positive.

In fact, if F = pFq(a;b; x) = Sn +Rn where Rn =
∑

k≥n tk, then

Rn = tnp+1Fq+1(a + n, 1;b + n, 1 + n; x)

For instance, Beuker’s example above can be transformed in this way to

2F1(−
1

2
,
3

2
;
1

2
;
1

2
) = 1 + t1 · 3F2(

1

2
,
5

2
, 1;

3

2
, 2;

1

2
)

where t1 = −3/4. Hence,

3F2(
1

2
,
5

2
, 1;

3

2
, 2;

1

2
) = 3/4.

127

Chapter 4

Non-asymptotic Error Analysis

of AGM Algorithm

Brent showed that an n-bit approximation of an elementary function f may be

evaluated in O(M(n) lg2(n)) operations. His algorithms depend on the theory of

elliptic integrals, and uses the arithmetic-geometric mean (AGM) iteration and

ascending Landen transformations. However, he only gave the asymptotic error

analysis and the precision for each operations in the algorithms are not given

explicitly. Thus, they cannot be used for direct implementation. In this chapter,

we present a non-asymptotic error analysis for these AGM-based algorithms.

With this analysis and the new mechanism we introduced in Chapter 2, we can

implement and incorporate many elementary functions into the Core Library.

Overview of this chapter In Section 4.1, we describe the AGM algorithm

and some of its properties. We give an error analysis for the AGM algorithm in

Section 4.2. In Section 4.3, we first present Brent’s AGM-based algorithm for

computing π, then we modify it with explicit precision given for each operation.

In Section 4.4, we describe the Brent’s method for computing the exponen-

128

tial and logarithm functions first, then with non-asymptotic error analysis we

present our modified algorithms which can be directly implemented.

4.1 Arithmetic-geometric Mean Iteration

Arithmetic-geometric mean (AGM) iteration was known to Gauss [33]. Let

a0, b0 be two positive numbers. We iterate as follows:

ai+1 =
ai + bi

2
(arithmetic mean)

and

bi+1 =
√
aibi (geometric mean)

for i = 0, 1,

§68. Second-order convergence AGM converges very fast. If bi ≪ ai, then

bi+1

ai+1
=

2
√
bi/ai

1 + bi/ai
≃ 2

√
bi
ai
,

so only about | lg (a0/b0)| iterations are required before bi/ai is of order 1. Once

ai and bi get close, the convergence is second order, since for bi/ai = 1− ǫi, then

ǫi+1 = 1− bi+1/ai+1 = 1− 2(1− ǫi)
1
2/(2− ǫi) = ǫ2i /8 +O(ǫ3i).

§69. Monotonicity of AGM From the definitions of ai+1 and bi+1, we have

ai+1 =
ai + bi

2
≥
√
aibi = bi+1

for i = 0, 1, Hence, if i ≥ 1, we have

ai+1 =
ai + bi

2
≤ ai + ai

2
= ai

129

and

bi+1 =
√
aibi ≥

√
bibi = bi,

i.e., {ai} is monotone decreasing and {bi} is monotone increasing. Thus, for

i ≥ 1, we have

a1 ≥ · · · ≥ ai ≥ ai+1 ≥ bi+1 ≥ bi ≥ · · · ≥ b1. (4.1)

Without loss of generality, we assume a0 ≥ b0. Then we have

a0 ≥ a1 ≥ · · ·ai ≥ ai+1 ≥ bi+1 ≥ bi ≥ · · · ≥ b1 ≥ b0.

for i = 1, 2,

§70. Limit of AGM By monotone convergence principle, {ai} is a conver-

gent sequence. Let A be the limit of {ai}, i.e.,

A = lim
i→∞

ai.

Note that limi→∞ bi = limi→∞ ai and

b0 ≤ A ≤ a0. (4.2)

4.2 Error Analysis of AGM

The algorithms that we are going to present in the rest of this chapter depend

on computing A, i.e., the limit of {ai}. Now we present the error analysis of

computing limi→∞ ai using the AGM iteration.

From (4.1), we have

ai ≥ lim
i→∞

ai ≥ bi

130

for i = 1, 2, Hence,

|ai − lim
i→∞

ai| ≤ |ai − bi|.

If |ai − bi| ≤ 2−n, then |ai − limi→∞ ai| ≤ 2−n, i.e., we can use ai as an ap-

proximation of limi→∞ ai with absolute precision n. Since the AGM iteration

converges with order 2 (§68), we need lg(n) + O(1) iterations. The following

lemma gives us the exact number of iterations we need in order to guarantee

|ai − bi| ≤ 2−n:

Lemma 47. Let δi = ai − bi, then

δi+1 ≤
1

8b0
δ2
i , (4.3)

for i = 0, 1, Moreover, let

C1(n) = log2 (n+ 3 + log2 b0)− log2

(
3 + log2

b0
δ0

)
,

If b0
a0
≥ 1

9
, then after i ≥ C1(n) iterations, δi ≤ 2−n. If b0

a0
≥ 1

5
, then after

i ≥ log2 (n+ 3 + log2 b0) iterations, δi ≤ 2−n.

Proof. Note that

δ2
i = (ai − bi)2 = (ai + bi)

2 − 4aibi

= 4a2
i+1 − 4b2i+1

= 4(ai+1 + bi+1)(ai+1 − bi+1)

≥ 8b0δi+1.

Hence,

δi+1 ≤
1

8b0
δ2
i .

131

Moreover,

δi ≤
1

8b0
δ2
i−1

≤ 1

8b0

(
1

8b0
δ2
i−2

)2

=

(
1

8b0

)3

δ4
i−2

≤ · · ·

≤
(

1

8b0

)2i−1

δ2i

0 .

In order to compute δi ≤ 2−n, it suffices to have

(
1

8b0

)2i−1

δ2i

0 ≤ 2−n.

If δ0
8b0

< 1, i.e., b0 >
1
9
a0, then

i ≥ log2 (n + 3 + log2 b0)− log2

(
3 + log2

b0
δ0

)
.

If b0 ≥ 1
5
a0, then we can choose

i ≥ log2 (n+ 3 + log2 b0)

since log2

(
3 + log2

b0
δ0

)
≥ 0.

Q.E.D.

However, the above analysis assumes that the initial values are exact and

arithmetic operations in each iteration can be performed exact. In our setting,

we use bigfloat computation. We would like to compute an approximation ãi

of ai. To obtain n bit accuracy in ai, we need work out the precision that we

need for the initial values and each arithmetic operations. The following lemma

gives the error propagation rules for the AGM iterations:

132

Lemma 48. Let a > 0 and b > 0.

(i) If c = (a+b)/2, to guarantee p relative bits in c, it suffices to guarantee p+1

relative bits in a and b and perform the addition in p+ 2 bits relative precision.

(ii) If c =
√
ab, to guarantee p relative bits in c, it suffices to guarantee p + 1

relative bits in a and b and p + 2 relative bits in the performing multiplication

and square root extraction.

Proof. Assume ã = a(1 + δ), b̃ = b(1 + δ′).

(i) If δ ≤ 2−(p+1), δ′ ≤ 2−(p+1), ρ+ ≤ 2−(p+2), then we have

c̃ =
˜
ã+ b̃

2

=
a(1 + δ) + b(1 + δ′)

2
(1 + ρ+)

≤ a+ b

2
(1 + 2−(p+1))(1 + 2−(p+2))

≤ c(1 + 2−p).

(ii) If δ ≤ 2−(p+1), δ′ ≤ 2−(p+1), ρ× ≤ 2−(p+2) and ρ+ ≤ 2−(p+2),

c̃ =
√̃
ãb̃

=
√
ab(1 + δ)(1 + δ′)(1 + ρ×)(1 + ρ√)

≤
√
ab
√

(1 + δ)(1 + δ′)(1 +
ρ×
2

)(1 + ρ√)

≤
√
ab(1 + 2−(p+1))(1 + 2−(p+3))(1 + 2−(p+2))

≤ c(1 + 2−p).

Q.E.D.

From the above lemma, we can see that in the AGM iteration, if ai, bi have

p + 1 bit relative precision and we perform the addition, multiplication and

square root in p + 2 relative precision (divide by 2 can be done exactly), then

133

ai+1 and bi+1 have p bits relative precision, i.e., 1 bit precision is lost in each

iteration. Thus, we have the following lemma:

Lemma 49. If 0 ≤ b0 ≤ a0 ≤ 1 and b0
a0
≥ 1

9
, then it suffices to approximate a0,

b0 within relative n+ 1+C1(n+1) bits and guarantee n+2 +C1(n+ 1)− i bits

relative precision in the addition, multiplication and square root operations in

ith iteration in order to compute limn→∞ an to absolute n bits using the AGM

iteration, where C1(n) is given in Lemma 47.

Proof. By Lemma 47, if b0
a0
≥ 1

9
, in C1(n + 1) iterations, we can guarantee

|ai − bi| ≤ 2−(n+1), hence

|ai − lim
i→∞

ai| ≤ 2−(n+1).

By Lemma 48, if we approximate a0, b0 within n + 1 + C1(n + 1) bits relative

precision and perform the addition, multiplication and square root operations

in n + 2 + C1(n + 1) − i in i-th iteration, then after C1(n + 1) iteration, the

computed ai and bi have n + 1 bits relative precision, i.e.,

|ãi − ai| ≤ |ai| · 2−(n+1) ≤ 2−(n+1).

Hence,

|ãi − lim
i→∞

ai| ≤ |ãi − ai|+ |ai − lim
i→∞

ai| ≤ 2−n.

Q.E.D.

4.3 Fast Multiple-precision Evaluation of π

The classical methods for evaluating π to precision n take time O(n2). Brent

described a O(M(n) log2(n)) method using Machin’s formula in [9]. Asymptot-

ically the fastest known methods require time O(M(n) log(n)). Brent presented

134

such a method in [10] which is based on the AGM iteration and Legendre’s Iden-

tity. In this section, we present this algorithm with non-asymptotic analysis.

Assume a0 = 1 and b0 = cosα for some α. If A(α) = limi→∞ ai = limi→∞ bi,

then

A(α) =
π

2F (α)
, (4.4)

where F (α) is the complete elliptic integral of the first kind, i.e.,

F (α) =

∫ π/2

0

dθ√
1− sin2 α sin2 θ

.

(A simple proof of (4.4) is given in [8, 60].) Also if c0 = sinα, ci+1 = ai − ai+1,

i = 0, 1, . . . , then
∞∑

i=0

2i−1c2i = 1− E(α)

F (α)
(4.5)

where E(α) is the complete elliptic integral of the second kind, i.e.,

E(α) =

∫ π/2

0

√
1− sin2 α sin2 θdθ

Both (4.4) and (4.5) were known by Gauss. Let ti = 1
2
−∑i

j=0 2j−1c2j for i ≥ 0,

and T (α) = limi→∞ ti. Then

T (α) =
E(α)

F (α)
− 1

2
. (4.6)

§71. Legendre’s Identity and Gauss-Legendre Method The following

Legendre’s Identity is used in Brent’s method:

F (α)E(α′) + F (α′)E(α)− F (α)F (α′) =
π

2
, (4.7)

where α + α′ = π
2
. Taking α = α′ = π/4, we obtain

2E(π/4)F (π/4)− F 2(π/4) = π/2. (4.8)

135

Thus, from (4.4), (4.6) and (4.8), we have

π = A2(α)/T (α). (4.9)

Let a0 = 1, b0 = c0 =
√

2
2

. Then t0 = 1
4
. Using (4.9) and the AGM iteration,

we obtain the following algorithm evaluating π:

Brent’s Algorithm for computing π

// A = ai, B = bi, T = ti, X = 2i

A← 1; B ← 2−
1
2; T ← 1

4
; X ← 1;

while (A− B > 2−n) {

Y ← A; A← (A+B)/2; B ←
√
BY ;

T ← T −X(A− Y)2; X ← 2X;

}

return A2/T;

Note that T (α) is a summation. Hence this AGM-based algorithm for com-

puting π is not self-correcting, i.e., we cannot start with low precision and in-

crease it. Brent showed that to obtain precision n, it is necessary to work with

precision n+O(lg lg(n)). But no constant was given explicitly in his asymptotic

analysis.

We propose the following modified algorithm using the Kernel class that we

described in Chapter 2.

136

Modified Algorithm Pi() for computing π to relative precision n

c← C1(n + 6); p← n+ 6 + c; pp← p + 1;

A← 1; B ← sqrt(2, p)/2; T ← 1
4
;

for (i=0; i<c; ++i) {

Y ← A; A← add(A,B, pp); A← div 2exp(A, 1);

B ← mul(B, Y, pp); B ← sqrt(B, pp);

P ← sub(A, Y, pp); P ← mul(P, P, pp); P ← mul 2exp(P, i);

T ← sub(T, P, pp); pp← pp− 1;

}

A← mul(A,A, n+ 4);

return div(A, T, n+ 2);

All these operations (add(A, B, p), sub(A, B, p), mul(A, B, p), sqrt(B,

p)) in above algorithm assume that p is a specified relative precision.

From Lemma 4 and Lemma 7, we know that to guarantee n relative bits in

computing π, it is sufficient to guarantee n + 4 relative bits in A(α) and n + 2

relative bits in T (α) and to perform the multiplication in n + 4 and division

in n + 2 relative precision. Since A(α) ≥ b0 =
√

2
2
≥ 1

2
, T (α) = A(α)2/π ≥ 1

8
,

the lower bound of lg |A(α)| is −1 and the lower bound of lg |T (α)| is −3. By

Lemma 1 (ii), it is enough to guarantee n+5 absolute precision A(α) and n+5

absolute bits in T (α). While Lemma 49 can show the above modified algorithm

can approximate A(α) to n+5 absolute bits, it remains to show that it compute

T (α) within n + 5 absolute bits:

Lemma 50. The modified Algorithm Pi() computes T (α) within n+ 5 absolute

precision.

137

Proof. We can first estimate the upper bound of ci using Lemma 47:

ci+1 = ai − ai+1

=
ai − bi

2

≤
(

1

8

)2i−1

· (a0 − b0)2i

≤
(

1

8

)2i−1

·
(

1

2

)2i

(since a0 − b0 ≤ 1/2)

= 2−(2i+2−4)

After c = C1(n+ 6) iterations, we have

|tc − lim
i→∞

ti| = |
∞∑

j=c+1

2j−1c2j | ≤ 2−2c+1 ≤ 2−(2n).

Let ãi be the approximation of ai in i-th iteration, then from Lemma 49, we

have ãi ≤ ai(1 + 2−(p−i)) where p = n+ 6 + c. Hence

c̃i = (ãi−1 − ãi)(1 + ρ−)

≤ (ai−1 − ai)(1 + 2−(p−i)+1)(1 + 2−(p+1−i))

≤ ci(1 + 2−(p−i)+2).

Thus, c̃i
2 ≤ c2i (1 + 2−(p−i)+2)2 ≤ c2i (1 + 2−(p−i)+4). After c iterations, we have

|t̃c − tc| =
c∑

j=0

2j−1(c̃j − cj)2 ≤
c∑

j=0

2j−1c2j2
−2(p−i)+8 ≤ 2−2p ≤ 2−2n

Therefore

|t̃c − lim
i→∞

ti| ≤ 2−2n) + 2−2n) ≤ 2−(n+5).

Q.E.D.

138

4.4 Fast Evaluation of Exponential and Loga-

rithm Functions

Brent’s fast evaluation algorithms of elementary functions are based on elliptic

integral theory.

4.4.1 Elliptic Integrals

Elliptic integrals of the first and second kind are defined by

F (ψ, α) =

∫ ψ

0

dθ√
1− sin2 α sin2 θ

(4.10)

and

E(ψ, α) =

∫ ψ

0

√
1− sin2 α sin2 θdθ (4.11)

The complete elliptic integrals, E(π/2, α) and F (π/2, α), are simply written as

E(α) and F (α), respectively, as seen in the previous section.

§72. Small Angle Approximation From (4.10) it is clear that

F (ψ, α) ≥
∫ ψ

0

dθ = ψ

and

F (ψ, α) ≤
∫ ψ

0

dθ√
1− sin2 α

=
ψ

cosα
≤ ψ

1− α2/2
≤ ψ(1 + α2) (4.12)

as |α| → 0.

§73. Large Angle Approximation From (4.10),

F (ψ, α) ≤
∫ ψ

0

dθ√
1− sin2 θ

= F (ψ, π/2) (4.13)

139

If 0 ≤ ψ ≤ ψ0 < π/2 and |π/2− α| → 0, then

√
1− sin2 θ√

1− sin2 α sin2 θ
=

√
1− sin2 θ√

cos2 θ + sin2 θ(1− sin2 α)

=
1√

1 + tan2 θ cos2 α

≥ 1− tan2 θ cos2 α

≥ 1− C(π/2− α)2

for 0 ≤ θ ≤ ψ and C = tan2 ψ0. Hence,

F (ψ, α) ≥ F (ψ, π/2)
(
1− C(π/2− α)2

)
(4.14)

Also, we note that

F (ψ, π/2) = log tan(π/4 + ψ/2). (4.15)

§74. Ascending Landen Transformation Let αi, ψi be two sequences

satisfying

0 < αi < αi+1 < π/2,

0 < ψi+1 < ψi < π/2,

sinαi = tan2(αi+1/2), (4.16)

and

sin(2ψi+1 − ψi) = sinαi sinψi. (4.17)

Then

F (ψi+1, αi+1) =
1 + sinαi

2
F (ψi, αi). (4.18)

If si = sinαi and vi = tan(ψi/2), then (4.16) gives

si+1 =
2
√
si

1 + si
, (4.19)

140

and (4.17) gives

vi+1 =
Wi

1 +
√

1 +Wi
2
, (4.20)

where

Wi = tanψi+1 =
vi +W ′

i

1− viW ′
i

, (4.21)

W ′
i = tan(ψi+1 − ψi/2) =

W ′′
i

1 +
√

1−W ′′
i

2
, (4.22)

and

W ′′
i = sin(2ψi+1 − ψi) =

2sivi
1 + v2

i

. (4.23)

(4.18) becomes

F (ψi+1, αi+1) =
1 + si

2
F (ψi, αi). (4.24)

It is clear that si can be computed using (4.19) and vi can be computed using

(4.20)-(4.23) recursively.

§75. Monotonicity of Ascending Landen Transformation It is inter-

esting to see how these transformation changed when i is increasing. Since

0 < ψi+1 < ψi < π/2,

vi+1 < vi < 1.

From (4.23), we have

∂W ′′
i

∂vi
=

2(1− v2
i)

1 + v2
i

> 0,

hence W ′′
i+1 < W ′′

i . From (4.22), we have

∂W ′
i

∂W ′′
i

=
1

1 +
√

1−W ′′
i

2
−
W ′′
i /

(
2
√

1−W ′′
i

2

)

(
1 +

√
1−W ′′

i
2

)2 > 0,

141

hence W ′
i+1 < W ′

i . From (4.21), we have

∂Wi

∂W ′
i

=
1 +W ′

i
2

(1− viW ′
i)

2
> 0,

and

∂Wi

∂vi
=

1 + vi
2

(1− viW ′
i)

2
> 0,

hence Wi+1 < Wi.

4.4.2 Brent’s method

§76. Uk(m) and Tk(m) We can apply the ascending Landen transformation

(4.24) with i = 0, 1, · · · , k − 1 and ψ0 = π/2 which gives

F (ψk, αk) = F (α0)
k−1∏

i=0

1 + si
2

(4.25)

where F (α0) may be evaluated using (4.4) and the AGM iteration. On the other

hand, from (4.13), (4.14) and (4.15), we have

F (ψk, αk) ≤ log tan(π/4 + ψk/2) (4.26)

and

F (ψk, αk) ≥ log tan(π/4 + ψk/2)
(
1− C(π/2− αk)2

)
. (4.27)

Define the functions

Uk(m) = F (α0)

k−1∏

i=0

1 + si
2

(4.28)

and

Tk(m) = tan(π/4 + ψk/2) =
1 + vk
1− vk

. (4.29)

Then, we have

log Tk(m) ≥ Uk ≥ logTk(m)
(
1− C(π/2− αk)2

)
.

142

Taking the limit as k tends to ∞, we have

lim
k→∞

Uk(m) = lim
k→∞

log Tk(m) = log lim
k→∞

Tk(m).

Define

U(m) = lim
k→∞

Uk(m) (4.30)

and

T (m) = lim
k→∞

Tk(m), (4.31)

we obtain the following fundamental identity:

U(m) = logT (m). (4.32)

This identity is used to evaluate the exponential and logarithm functions.

Using (4.19) - (4.23), we can evaluate Uk(m) and Tk(m) as follows:

Algorithm for computing Uk(m)

A← 1; B ←
√

1−m;

while (A− B > 2−n/2) {
C ← (A+B)/2; B ←

√
AB; A← C;

}

A← π/(A+B); S ←√m;

while (1− S > 2−n/2) {

A← A(1 + S)/2; S ← 2
√
S/(1 + S);

}
return A(1 + S)/2;

143

Algorithm for computing Tk(m)

V ← 1; S ← √m;

while (1− S > 2−n) {

W ← 2SV/(1 + V ∗ V); W ← W/(1 +
√

1−W ∗W);

W ← (V +W)/(1− V ∗W); V ←W/(1 +
√

1 +W ∗W);

S ← 2
√
S/(1 + S);

}

return (1 + V)/(1− V);

Some values of U(m) and T (m) for m ∈ (0, 1) are shown in Table 4.1 and

Figure 4.1.

m U(m) T (m) m U(m) T (m)

0.10 0.982438 2.670961 0.60 1.722836 5.600387

0.20 1.154937 3.173824 0.70 1.902090 6.699886

0.30 1.297205 3.659055 0.75 2.009459 7.459284

0.36 1.378276 3.968054 0.78 2.082689 8.026022

0.40 1.432174 4.187795 0.80 2.136394 8.468844

0.50 1.570796 4.810477 0.90 2.511507 12.323487

Table 4.1: The Functions U(m) and T (m)

Brent showed that in O(M(n) log(n)) operations, the above algorithms can

compute Uk(m) and Tk(m) to precision. However, the precision in each opera-

tions are unclear.

144

0.0 0.2 0.4 0.6 0.8 1.0
m

0

5

10

15

20

25

30

35

40

U
(m

)
a
n

d
 T

(m
)

U(m)

T(m)

Figure 4.1: The Functions U(m) and T (m) for m ∈ (0, 1)

4.4.3 Convergence of Uk(m) and Tk(m)

Suppose δ > 0 fixed, and m ∈ [δ, 1 − δ]. If s0 = sinα0 =
√
m, it follows from

(4.19) that si → 1 as i→∞. In fact, we have following lemma:

Lemma 51. Let δi = 1− si. If 0 < δi < 1/2, then

δi+1 ≤
3

8
δ2
i , (4.33)

i.e., si converges to 1 with order 2.

Proof. From (4.19), we have

δi+1 = 1− si+1 = 1−
√

1− δi
1− δi/2

≤ 1− 1− δi
2
− δ2i

4

1− δi
2

≤ δ2
i

4
(1 + δi) ≤

3

8
δ2
i

since 0 < δi < 1/2. So si → 1 with order 2. Q.E.D.

145

Moreover, we can compute the number of iterations k needed to guarantee

1− sk ≤ 2−n using the Lemma below:

Lemma 52. Let

C2(n) = log2

(
n+ log2

8

3

)
− log2 log2

(
8

3δ0

)
(4.34)

where δ0 = 1 − s0, then after k ≥ C2(n) iteration 1 − sk ≤ 2−n. Moreover, if

δ0 ≤ 1, then we have k ≥ log2(n+ 2).

Proof. From Lemma 51, we see that

1− sk = δk ≤
3

8
δ2
k−1 ≤

3

8

(
3

8
δ2
k−2

)2

=

(
3

8

)3

δ4
k−2 ≤ · · · ≤

(
3

8

)2k−1

δ2k

0 .

It suffices to let (
3

8

)2k−1

δ2k

0 ≤ 2−n,

i.e.,

k ≥ log2

(
n + log2

8

3

)
− log2 log2

(
8

3δ0

)
.

Moreover, if δ0 ≤ 1, then log2
8
3
≤ 2 and log2 log2

(
8

3δ0

)
> 0, we can choose

k ≥ log2(n+ 2).

Q.E.D.

4.4.4 Approximation of Uk(m) and Tk(m)

Since U(m) and T (m) are both limits which we cannot compute directly, we will

compute Uk(m) and Tk(m) instead for some k (we will describe how to compute

k in next section). In this section, we present the algorithms for approximating

Uk(m) and Tk(m) to n bits of absolute precision for fixed k.

146

Lemma 53. If s̃i = si(1+ ǫi) and |ǫi| ≤ 2−n, then to guarantee relative n bits in

si+1, it suffices to perform division with relative precision n+ 4 and square root

extraction with relative precision n + 4 bits when computing si+1 using (4.19).

Proof. From (4.19), we have

s̃i+1 =

˜(
2
√̃
s̃i

1 + s̃i

)

=
2
√
si
√

1 + ǫi(1 + ρi)

1 + si(1 + ǫi)
(1 + ρ′i)

If 0 < ǫi ≤ 1/2, we have

s̃i+1 ≤
2
√
si
√

1 + ǫi(1 + ρi)

1 + si
(1 + ρ′i) ≤ si+1(1 + ǫi/2)(1 + ρi)(1 + ρ′i).

If −1/2 < ǫi ≤ 0, we have

s̃i+1 ≤
2
√
si
√

1 + ǫi(1 + ρi)

(1 + si)(1 + ǫi)
(1 + ρ′i) ≤ si+1(1− 3ǫi/4)(1 + ρi)(1 + ρ′i).

i.e.,

s̃i+1 ≤ si+1(1 + 3|ǫi|/4)(1 + ρi)(1 + ρ′i).

If |ρi| ≤ 2−(n+4) and |ρ′i| ≤ 2−(n+4), then

(1 + 3|ǫi|/4)(1 + ρi)(1 + ρ′i) ≤ (1 + 3 · 2−n/4)(1 + 2−(n+4))2 ≤ 1 + 2−n,

i.e.,

s̃i+1 ≤ si+1(1 + 2−n).

Q.E.D.

The above lemma shows that if we can perform division and square root

extraction with relative n+ 4 bits, then we can compute si with relative n bits

for i = 0, 1, 2, . . . if we approximate s0 to n relative bits.

147

Lemma 54. We can approximate Uk(m) to absolute n bits if we compute s0 =
√
m to relative n + ⌈log2 F (α0)⌉ + ⌈log2 k⌉ + 2 bits and approximate F (α0) to

relative n+⌈log2 F (α0)⌉+2 bits. If b0 =
√

1−m ≥ 1
4
, then we just need compute

s0 to relative n+ ⌈log2 k⌉+ 5 bits and approximate F (α0) to relative n+ 5 bits.

Proof. Note that

Ũk(m) = F̃ (α0)
k−1∏

i=0

1 + s̃i
2

≤ F (α0)(1 + ρ)
k−1∏

i=0

1 + si
2

k−1∏

i=0

(1 + |ǫi|)

= Uk(m)(1 + ρ)
k−1∏

i=0

(1 + |ǫi|)

Let ǫ = 2−(n+log2 F (α0)+⌈log2 k⌉+2), from Lemma 53, if 0 < |ǫ0| ≤ ǫ ≤ 1
2
, then

|ǫi| ≤ ǫ, we see that

k−1∏

i=0

(1 + |ǫi|) ≤ (1 + ǫ)k ≤ 1 + 2k · ǫ ≤ 1 +
1

F (α0)
· 2−(n+1).

Thus, if |ρ| ≤ 2−(n+log2 F (α0)+2), then

∣∣∣Ũk(m)− Uk(m)
∣∣∣ ≤ Uk(m)

1

F (α0)
· 2−n

≤ 2−n

Since Uk(m) ≤ F (α0). If b0 ≥ 1
4
, then

F (α0) =
π

2A
≤ π

2b0
≤ 8.

Hence, ⌈log2 F (α0)⌉ ≤ 3. Q.E.D.

Now we assume b0 ≥ 1
4
. From (4.4), to obtain n+5 relative bits in F (α0), we

need compute π and A to n+7 relative bits and perform the division in relative

148

precision n + 7 . Since A ≥ b0 and π > 2, it requires to compute A to n + 5

absolute bits and compute π to n + 8 absolute bits using precision conversion.

Both can be done using the algorithm we present in Section 4.3. Hence, we

present the complete algorithm to compute Uk(m) to absolute precision n:

Algorithm U k() for computing Uk(m) to absolute precision n

Input: BigFloat m, integer k and precision n.

Output: BigFloat A such that |A− Uk(m)| ≤ 2−n.

c← C1(n + 6); p← n+ 6 + c; pp← p + 1;

A← 1; B ← sqrt(1−m, p);

for (i=0; i<c; ++i) {
Y ← A; A← add(A,B, pp); A← div 2exp(A, 1);

B ← mul(B, Y, pp); B ← sqrt(B, pp);

pp← pp− 1;

}

A← div(Pi(n+ 8), A, n+ 7); A← div 2exp(A, 1);

pp← n+ 5 + ceillg(k);

S ← sqrt(m, pp); S0 ← 0;

for (i=0; i<k-1; ++i) {

S0 ← add(1, S, pp+ 4); S0 ← div 2exp(S0, 1);

A← mul(A, S0, pp+ 4);

S1 ← sqrt(S, pp+ 4); S ← div(S1, S0, pp+ 4);

}

A← mul(A, S0, pp+ 4);

return A;

149

For approximating Tk(m) to n absolute bits, we need the following lemmas:

Lemma 55. If we have n bits relative precision in si and vi and we perform all

operations within (n + 1) bits relative precision in (4.23), then W ′′
i has n − 3

relative bits precision.

Proof. Let ǫsi
, ǫsi

be the relative errors in si and vi and ρ1, ρ2, ρ3 and ρ4 be

the relative errors in the corresponding operations. From (4.23), we have

W̃ ′′
i =

2sivi(1 + ǫsi
)(1 + ǫvi

)(1 + ρ1)

(1 + v2
i (1 + ǫvi

)2(1 + ρ2))(1 + ρ3)
(1 + ρ4)

≤ 2sivi
1 + v2

i

(1 + ǫsi
)(1 + ǫvi

)(1 + ρ1)(1 + 3|ǫvi
|)(1 + 2|ρ2|)(1 + 2|ρ3|)(1 + ρ4)

If ǫ = 2−n, then |ǫsi
| ≤ ǫ, |ǫvi

| ≤ ǫ, ρ1 ≤ ǫ
2
, ρ2 ≤ ǫ

2
, ρ3 ≤ ǫ

2
and ρ4 ≤ ǫ

2
. Hence

|W̃ ′′
i −W ′′

i | ≤ |W ′′
i | · (8ǫ) = |W ′′

i | · 2−(n−3).

Q.E.D.

Lemma 56. If we have n bits relative precision in W ′′
i and we perform all oper-

ations within (n+4) bits relative precision in (4.22), then W ′
i has n−1 relative

bits precision.

Proof. Let ǫW ′′
i

be the relative error in W ′′
i and ρ1, ρ2, ρ3 and ρ4 be the

relative errors in the corresponding operations. From (4.22), we have

W̃ ′
i =

W ′′
i (1 + ǫW ′′

i
)

(1 +
√

(1−W ′′
i

2(1 + ǫW ′′
i
)2)(1 + ρ1)(1 + ρ2))(1 + ρ3)

(1 + ρ4)

≤ W ′′
i

1 +
√

1−W ′′
i

2
(1 + ǫW ′′

i
)(1− |ǫW ′′

i
|/2)(1 + 2|ρ1|)(1 + 2|ρ2|)(1 + 2|ρ3|)(1 + ρ4)

If ǫ = 2−n, then |ǫW ′′
i
| ≤ ǫ, ρ1 ≤ ǫ

16
, ρ2 ≤ ǫ

16
, ρ3 ≤ ǫ

16
and ρ4 ≤ ǫ

16
. Hence

|W̃ ′
i −W ′

i | ≤ |W ′
i | · (2ǫ) = |W ′

i | · 2−(n−1).

150

Q.E.D.

Lemma 57. Let d =
⌈
log2

1
1−v0W ′

0

⌉
. If we have n bits relative precision in W ′

i

and vi and we perform all operations within (n + 1) bits relative precision in

(4.21), then Wi has n− 2− d relative bits precision

Proof. Let ǫW ′
i

be the relative error in W ′
i , ǫvi

be the relative error in vi and

ρ1, ρ2, ρ3 and ρ4 be the relative errors in the corresponding operations. From

(4.21), we have

W̃i =
(vi(1 + ǫvi

) +W ′
i (1 + ǫW ′

i
))(1 + ρ1)

(1− viW ′
i (1 + ǫvi

)(1 + ǫW ′
i
)(1 + ρ2))(1 + ρ3)

(1 + ρ4)

≤ vi +W ′
i

1− viW ′
i

(1 + |ǫvi
|)(1 + |ǫW ′

i
|)(1 + ρ1)(1 + 2|ρ3|)(1 + ρ4)

·
(

1 +
2

1− viW ′
i

∣∣(1 + ǫvi
)(1 + ǫW ′

i
)(1 + ρ2)− 1

∣∣
)

If ǫ = 2−n, then |ǫvi
| ≤ ǫ, |ǫW ′

i
| ≤ ǫ, ρ1 ≤ ǫ

2
, ρ2 ≤ ǫ

2
, ρ3 ≤ ǫ

2
and ρ4 ≤ ǫ

2
. Hence

|W̃i −Wi| ≤ |Wi| ·
4ǫ

1− viW ′
i

≤ |Wi| ·
4ǫ

1− v0W
′
0

≤ |Wi| · 2−(n−2−d).

Since vi, W
′
i are decreasing (§75). Q.E.D.

Since v0 = 1, s0 =
√
m, W ′′

0 =
√
m, W ′

0 =
√
m

1−
√

1−m . Thus,

1

1− v0W
′
0

=
1−
√

1−m
1−
√

1−m−√m.

We can compute d using IEEE double.

Lemma 58. If we have n bits relative precision in Wi and we perform all opera-

tions within (n+4) bits relative precision in (4.20), then vi+1 has n− 1 relative

bits precision.

151

Proof. Let ǫWi
be the relative error in Wi and ρ1, ρ2, ρ3 and ρ4 be the relative

errors in the corresponding operations. From (4.20), we have

ṽi+1 =
Wi(1 + ǫWi

)

(1 +
√

(1 +Wi
2(1 + ǫWi

)2)(1 + ρ1)(1 + ρ2))(1 + ρ3)
(1 + ρ4)

≤ Wi

1 +
√

1 +Wi
2
(1 + ǫWi

)(1− |ǫWi
|/2)(1 + 2|ρ1|)(1 + 2|ρ2|)(1 + 2|ρ3|)(1 + ρ4)

If ǫ = 2−n, then |ǫWi
| ≤ ǫ, ρ1 ≤ ǫ

16
, ρ2 ≤ ǫ

16
, ρ3 ≤ ǫ

16
and ρ4 ≤ ǫ

16
. Hence

|ṽi+1 − vi+1| ≤ |vi+1| · (2ǫ) = |vi+1| · 2−(n−1).

Q.E.D.

Therefore, we can see that if vi, si has precision n, then after one iteration,

vi+1 has only (((n−3)−1)−2−d)−1 = n−7−d bits because of accumulation of

errors. Now we describe the complete algorithm to compute Tk(m) to absolute

precision n:

152

Algorithm T k() for computing Tk(m) to precision n

Input: BigFloat m, integer k and precision n.

Output: BigFloat T such that |T − Tk(m)| ≤ 2−n.

m1 ← sqrt(m); m2 ← sqrt(1−m);

d← ilogb((1−m2)/(1−m2 −m1));

p← n+ k ∗ (7 + d) + 2; V ← 1; S ← sqrt(m, p);

for (i=0; i<k; ++i) {

pp← p+ 1; W0 ← mul(S, V, pp);

W0 ← mul 2exp(W0, 1); W1 ← mul(V, V, pp);

W1 ← add(1,W1, pp); W ← div(W0,W1, pp);

pp← p+ 1; W1 ← mul(W,W, pp);

W1 ← sub(1,W1, pp); W1 ← sqrt(W1, pp);

W1 ← add(1,W1, pp); W ← div(W,W1, pp);

pp← p− 3; W0 ← add(V,W, pp);

W1 ← mul(V,W, pp); W1 ← sub(1,W1, pp);

W ← div(W0,W1, pp); pp← p− 2− d;

W1 ← mul(W,W, pp); W1 ← add(1,W1, pp);

W1 ← sqrt(W1, pp); W1 ← add(1,W1, pp);

V ← div(W,W1, pp);

S0 ← add(1, S, p+ 4); S0 ← div 2exp(S0, 1);

S ← div(S1, S0, p+ 4); p← p− 7− d;

}

T1 ← add(1, V, p+ 2); T2 ← sub(1, V, p+ 2);

T ← div(V1, V2, p+ 2);

return T;

153

4.4.5 Approximation of U(m) and T (m)

Lemma 59. For k ≥ C2(n+ ⌈log2 F (α0)⌉+ 1), we have

Uk(m)− U(m) ≤ 2−n.

Proof. Note that

|Uk(m)− U(m)| = Uk(m)− Uk(m)

∞∏

i=k

1 + si
2

= Uk(m)

(
1−

∞∏

i=k

1 + si
2

)
(si < 1)

≤ F (α0)

(
1−

∞∏

i=k

1 + si
2

)
.

Let δi = 1−si

2
. If 0 < δi ≤ 1/2, then

∞∏

i=k

1 + si
2

=

∞∏

i=k

(1− δi) ≥
∞∏

i=k

e−
4
3
δi = e−

4
3

P∞
i=k δi ≥ e−

8
3
δk ≥ 1− 8

3
δk.

From Lemma 52, if k ≥ C2(n+ ⌈log2 F (α0)⌉+ 1) iterations, then

2δk = (1− sk) ≤ 2−(n+log2 F (α0)+1).

Thus,

Uk(m)− U(m) ≤ F (α0)
8

3
δk ≤ 2F (α0)(1− sk) ≤ 2−n.

Q.E.D.

Lemma 60. To approximate U(m) to n absolute bits, it suffices to evaluate

Uk(m) to (n+ 1) absolute bits with k ≥ C2(n + ⌈log2 F (α0)⌉+ 2).

Proof. If k ≥ C2(n+ ⌈log2 F (α0)⌉+ 2), then from Lemma 59 we have

|U(m)− Uk(m)| ≤ 2−(n+1).

154

Hence, if Ũk(m) is (n+ 1) bits absolute approximation of Uk(m), we see that

|Ũk(m)− U(m)| ≤ |Ũk(m)− Uk(m)| + |U(m)− Uk(m)|

≤ 2−(n+1) + 2−(n+1)

= 2−n.

Q.E.D.

Lemma 61. To approximate T (m) to n absolute bits, it suffices to evaluate

Tk(m) to (n+ 1) absolute bits with k = C2(n+ 2 ⌈F (α0)⌉+ ⌈log2 F (α0)⌉+ 2).

Proof. Note that

|T (m)− Tk(m)| ≤ eθ |log T (m)− logTk(m)|

where log T (m) ≤ θ ≤ log Tk(m). Since log Tk(m) ≤ Uk(m) ≤ F (α0),

|T (m)− Tk(m)| ≤ eF (α0) (log Tk(m)− logT (m))

≤ eF (α0) (Uk(m)− U(m)) .

From Lemma 59, after k = C2(n + 2 ⌈F (α0)⌉+ ⌈log2 F (α0)⌉+ 2) iterations,

|U(m)− Uk(m)| ≤ 2−(n+2⌈F (α0)⌉+1).

Hence, if T̃k(m) is (n+ 1) bits absolute approximation of Tk(m), we see that

|T̃k(m)− T (m)| ≤ |T̃k(m)− Tk(m)|+ |T (m)− Tk(m)|

≤ 2−(n+1) + eF (α0) · 2−(n+2⌈F (α0)⌉+1)

≤ 2−n.

Q.E.D.

155

4.4.6 Discrete Newton Iteration

Our algorithms for evaluating exponential and logarithm functions also involve

solving nonlinear equations, which we use discrete Newton iteration.

Consider the classical Newton iteration of the form:

xi+1 = xi −
f(xi)− c
f ′(xi)

. (4.35)

for solving the equation f(x) = c. By Taylor’s expansion, we have

0 = f(x)− c = f(xi)− c+ f ′(xi)(x− xi) + f ′′(ζ)(x− xi)2/2

where ζ is between x and xi. Hence

x = xi −
f(xi)− c
f ′(xi)

− f ′′(ζ)

2f ′(xi)
(x− xi)2.

If ǫi = |xi − x| is sufficiently small, then

|xi+1 − x| =
∣∣∣∣
f ′′(ζ)

2f ′(xi)

∣∣∣∣ (x− xi)2 = O(ǫ2i). (4.36)

so the convergence of Newton iteration is quadratic. The classical Newton

iteration assumed that (4.35) is satisfied exactly, but a results like (4.36) holds

if we evaluated f(x) with absolute error O(ǫ2i) and f ′(x) with absolute error

O(ǫi) and perform the division with relative error O(ǫi) [9, 88].

When f ′(x) is not available, we can approximate f ′(xi) using the one-sided

difference

f ′(xi) ≈
f(xi + hi)− f(xi)

hi
.

To obtain O(ǫi) bits of absolute precision in f ′(x), it requires hi is of order O(ǫi)

and the evaluation of f(xi +hi) and f(xi) are performed with an absolute error

O(ǫ2i). This is called discrete Newton Iteration. It has the following form:

xi+1 = xi +
(f(xi)− c)hi

f(xi + hi)− f(xi)
(4.37)

156

where we can choose h = 2−i. A pseudo code is shown below:

Algorithm Newton() for Discrete Newton Iteration:

Input: BigFloat x0, callback function f and precision n.

Output: BigFloat x such that |x− ζ | ≤ 2−n where ζ is the root of f .

x← x0; del← 1;

f ← 0; f ′ ← 0; p← 2;

do {

pp← 2 ∗ p; h← div 2exp(1, p);

f ← f(x, pp); f ′ ← f(x+ h, pp); f ′ ← sub(f ′, f, pp);

f ← sub(f, c, pp); f ← div 2exp(f, p);

del← div(f, f ′, p); x← sub(x, del, pp);

p← pp;

} while (−del.uMSB() < n);

return x;

4.4.7 Evaluation exp(x) and log(x)

We present our final algorithms for evaluating exp(x) and log(x):

§77. Evaluation of exp(x) To evaluate exp(x) to absolute precision n, we

first reduce the argument to a suitable domain (see below), then we solve the

equation:

U(m) = x, (4.38)

obtaining m to absolute precision n + 1 + ⌈logMexp⌉ using discrete Newton

iteration where Mexp is the Lipschitz constant of U(m) on this domain. Finally

157

we evaluate T (m) to absolute precision n+ 1. From (4.32) and (4.38), T (m) =

exp(x), so we have computed exp(x) to absolute precision n. The complete

algorithm is as follows:

Algorithm for Computing exp(x) to absolute precion n:

Input: BigFloat x, integer Mexp and precision n.

Output: BigFloat y such that |y − ex| ≤ 2−n.

1. find an initial value m0 for solving U(m) = x using Table 4.1.

2. solve U(m) = x using discrete Newton iteration with the initial

value m0 and precision n+ 1 +Mexp.

3. compute T (m) with precision n+ 1.

The correctness of this algorithm is shown by the following lemma:

Lemma 62. If ∞ < a < b < +∞, Mexp be the Lipschitz constants of U(m) for

the domain [a, b], then the above algorithm can compute exp(x) to n absolute

bits for x ∈ [a, b].

Proof. Let T̃ (m̃) be the (n + 1) absolute bits approximation of T (m̃), then

|T̃ (m̃)− ex| ≤ |T̃ (m̃)− T (m̃)|+ |T (m̃)− ex|

≤ |T̃ (m̃)− T (m̃)|+Mexp · |m̃−m|

≤ 2−(n+1) +Mexp · 2−(n+1+⌈logMexp⌉)

≤ 2−n.

Q.E.D.

§78. Evaluation of log(x) Similarly, to evaluate log(x) to absolute precision

n, we first reduce the argument to some domain (see below), then we solve the

158

equation:

T (m) = x, (4.39)

obtaining m to absolute precision n + 1 + ⌈logMlog⌉ using discrete Newton

iteration where Mlog is the Lipschitz constant of T (m) on this domain Finally we

evaluate U(m) to absolute precision n. From (4.32) and (4.39), U(m) = log(x),

we obtained log(x) within absolute precision n. The complete algorithm is as

follows:

Algorithm for Computing log(x) to absolute precion n:

Input: BigFloat x, integer Mlog and precision n.

Output: BigFloat y such that |y − log x| ≤ 2−n.

1. find an initial value m0 for solving T (m) = x using Table 4.1.

2. solve T (m) = x using discrete Newton iteration with the initial

value m0 and precision n+ 1 +Mlog.

3. compute U(m) with precision n + 1.

Lemma 63. If 0 < a < b < +∞, Mlog be the Lipschitz constants of T (m) for

the domain [a, b], then the above algorithm can compute log(x) to n absolute bits

for x ∈ [a, b].

Proof. Let Ũ(m̃) be the (n + 1) absolute bits approximation of U(m̃), then

|Ũ(m̃)− log(x)| ≤ |Ũ(m̃)− U(m̃)|+ |U(m̃)− log(x)|

≤ |Ũ(m̃)− U(m̃)|+Mlog · |m̃−m|

≤ 2−(n+1) +Mlog · 2−(n+1+⌈logMlog⌉)

≤ 2−n.

Q.E.D.

159

§79. Lipschitz Constants of U(m) and T (m) Our algorithms require to

find Lipschitz constants of U(m) and T (m). So we need to find a more explicit

formula for U(m) with respect to m.

Let a0 = 1 and b0 = sinα0 = cos(π
2
− α0) where α0 is defined in §74.

Then s0 = sinα0 = b0/a0. From (4.16) and the AGM iteration, it follows that

si = ai/bi for all i ≥ 0. Thus, (1 + si)/2 = ai+1/ai, and
∞∏

i=0

1 + si
2

= lim
i→∞

ai = A(
π

2
− α0) =

π

2F (π
2
− α0)

.

Substituting it into (4.28), we obtain another formula for U(m):

U(m) =
π

2
· F (α0)

F (π
2
− α0)

.

From [8, page 9], we can derive the following two derivatives (with respect to

m):

F ′(α0) =
E(α0)− (1−m)F (α0)

2m(1−m)

and

F ′(
π

2
− α0) = −E(π

2
− α0)−mF (π

2
− α0)

2m(1−m)
.

Hence,

U ′(m) =
π

2
· F

′(α0)F (π
2
− α0)− F (α0)F

′(π
2
− α0)

F 2(π
2
− α0)

=
π

2
· E(α0)F (π

2
− α0)− F (α0)F (π

2
− α0) + F (α0)E(π

2
− α0)

2m(1−m)F 2(π
2
− α0)

=
1

2m(1−m)
· (π

2
)2

F 2(π
2
− α0)

=
1

2m(1−m)
A2(

π

2
− α0).

Here we use Legendre’s Identity (4.7). From (4.2), we have A(π
2
−α0) ≤ a0 = 1,

therefore, we obtain the following upper bound function for U ′(m):

U ′(m) ≤ 1

2m(1−m)
.

160

From the identity (4.32), we have

U ′(m) =
T ′(m)

T (m)
.

Hence, we have the following upper bound function for T ′(m):

T ′(m) = T (m)U ′(m) ≤ T (m)

2m(1−m)
.

The graphs for these upper bound functions are shown in Figure 4.2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
m

0

5

10

15

20

25

U
p

p
e
r
 b

o
u

n
d

 f
u

n
c
ti

o
n

s
 f

o
r
 U

’(
m

)
a
n

d
 T

’(
m

)

upper bound function for U’(m)

upper bound function for T’(m)

Figure 4.2: Upper Bound Functions of U ′(m) and T ′(m) for m ∈ (0, 1)

We can easily see that the function

G(m) :=
1

2m(1−m)

decreases for m < 0.5 and increases for m > 0.5. So G(m) achieves its maximal

value on the endpoints of the specified domain.

161

For the exp(x) evaluation algorithm, we can reduce the argument x to [1, 2]

(see §64 for detailed algorithm). From Table 4.1, we can see that solution m

of (4.38) lies in (0.10, 0.75). Hence,

1

2m(1−m)
< G(0.10) < 6.

We can choose the Lipschitz constant Mexp of U(m) to be 6.

For the log(x) evaluation algorithm, we reduce x to [4, 8] (using a similar

algorithm in §63). We can see from Table 4.1 that the solution m of (4.39) lies

in (0.36, 0.78). Hence

1

2m(1−m)
< G(0.78) < 3.

Thus,

T ′(m) ≤ 3 · T (m) < 3 · 8.03 < 25,

i.e, we can choose Mlog = 25.

For any continuous function f(x), we can also compute an approximation

f̃ ′(x) of f ′(x) using f ′(x) ≈ f(x+h)−f(x)
h

. We compare the approximations of

U ′(m) and T ′(m) with the computed values of their upper bound functions in

Table 4.2.

m Ũ ′(m) G(m) T̃ ′(m) T (m)G(m) m Ũ ′(m) G(m) T̃ ′(m) T (m)G(m)

0.10 2.057144 5.555556 5.500076 14.838675 0.60 1.628218 2.083333 9.125906 11.667473

0.20 1.512100 3.125000 4.802686 9.918201 0.70 2.002509 2.380952 13.429708 15.952109

0.30 1.363641 2.380952 4.992963 8.712036 0.75 2.319130 2.666667 17.318653 19.948216

0.36 1.344962 2.170139 5.340387 8.611229 0.78 2.319130 2.913753 17.318653 23.385845

0.40 1.352635 2.083333 5.668301 8.724573 0.80 2.805413 3.248863 23.791176 26.465136

0.50 1.436182 2.000000 6.913569 9.620955 0.90 5.296746 5.555556 65.443490 68.463815

Table 4.2: Approximations and Upper Bounds of U ′(m) and T ′(m)

162

4.5 Summary

We presented a non-asymptotic error analysis of AGM algorithms in this chap-

ter to further investigate the evaluation problems of transcendental functions.

Our analysis gave the explicit precision required in each step of AGM based

evaluation algorithms. It will help users implement and verify their applica-

tions. Moreover, this analysis make it possible for us to incorporate elementary

functions into the Core Library using AGM algorithms. An implementation

of computing π, exponential and logarithm functions have been incorporated

into the Core Library.

163

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This dissertation investigates the first effort at bringing transcendental functions

into Exact Geometric Computation (EGC).

The key technique in EGC computation is the use of “constructive root

bounds”. It makes it possible to compute the exact sign of expressions. How-

ever, existing constructive root bounds apply only available to algebraic expres-

sions. In this thesis, we incorporate transcendental functions into expressions

by introducing an “escape bound” mechanism in lieu of root bounds. This is

not going to be the ultimate solution but it makes it possible for EGC to handle

transcendental applications.

Approximation algorithms for transcendental functions are essential for our

implementation. We present a complete algorithm for absolute approximation

of the general hypergeometric function and various AGM based algorithms for

the elementary functions. Although the hypergeometric functions include the

elementary functions, the performance of the general algorithm is inferior to the

164

AGM-based algorithms.

General EGC software libraries provide a basis for robust geometric comput-

ing. While theoretically the performance of EGC is constrained by root bounds

in the worst case, the design and implementation of a EGC library can impact

the complexity and the performance of the whole system. We review the design

and performance issues existing in our current Core Library. A new design

that aims to increase the modularity, extensibility and efficiency is presented.

The structure of the redesigned library is much cleaner and the code is easier

to maintain and debug. The most important improvement is the performance.

Our benchmark shows that our system can obtain 5-10 times speedup.

For improving usability of the Core Library, a new mechanism is provided

to help users develop their own operations. Several new operations: sum(),

product(), pi() are presented to demonstrate the use of this new mechanism.

Such operations can lead to greater efficiency for specific applications.

In conclusion, our redesigned Core Library is more efficient and easier for

both transcendental and algebraic computation. We have reasons to be opti-

mistic that the EGC approach will become more and more effective for many

problems.

5.2 Future Work

Root Bounds for Transcendental Functions While the zero problem for

transcendental functions is still an open problem, even partial results for this

problem would be useful. For example, in [69] several lower bounds are provided

for non-algebraic expressions

|eβ − α| and |β − log(α)|

165

where α, β are algebraic numbers. How to extend these results to arbitrary non-

algebraic expressions such as Ω3∪{exp(·), log(·)}, Ω3∪{exp(·), π} and compute

them efficiently will be a big challenge.

On Development of the Core Library Further effort is needed to im-

prove the efficiency of our Core Library at both the algorithmic level and the

system level.

At the algorithmic level, we need to continue to improve our key algorithms

and develop new algorithms for root bound, filter and bigfloat computation.

For instance, our expression evaluation algorithm propagates precision to the

operands symmetrically for binary operations. The optimal allocation of bits is

an interesting problem for future work.

In the current Core Library, only constants are allowed at the leaves of

the expression DAGs. An interesting topic is to allow leaf nodes in expression

DAG to be variables. This could speed up the whole computation for certain

applications since we can avoid re-construction of the DAG.

At the system level, we currently implemented our exact ring operations

for the BigFloat class by estimating the precision for results first and then

calling MPFR functions. A more efficient solution would be to implement those

operations directly using mpn functions in GMP.

We plan to support more operations in the Core Library, for example,

the diamond operator. Another important future work is to apply our EGC

approach to more areas of computation where guaranteed sign computation is

critical.

On Hypergeometric Functions Our approximation algorithm gives an

upper bound on the number of terms needed to guarantee a given absolute pre-

cision. Such a general bound could be over-estimated. Further work should

166

compare the performance of this algorithm with the progressive evaluation al-

gorithm.

Many hypergeometric series have poor convergence properties. The rate

of convergence of these series can be accelerated using some techniques. For

example, Gosper’s algorithm [37] and WZ method [2] proved to be very efficient

in series acceleration. Adding automatic transformations for series acceleration

into our hypergeometric package will further improve its performance.

On AGM algorithm While we analyzed and implemented the evaluation

algorithms for exponential and logarithm function in this thesis, similar work

for AGM-based algorithms of other elementary functions such as trigonometric

functions remains to be done.

In §79, we derive an explicit form of U ′(m) (and T ′(m)). So we can use

classical Newton iteration instead of discrete Newton iteration for solving (4.38)

and (4.39). Future work should compare these two methods.

AGM iteration is simple and efficient and it connects with elliptic integrals,

hypergeometric functions. We should further explore how we develop other

AGM-based algorithms.

167

Appendix A

BFS Filter

In the section we use BfsFilter as an example to show how users can write

their own Filter class. The Bfsfilter is based on BFS filter in [17].

To design a Filter class, a user needs to do the following steps:

1. Define internal data fields. BFS filter maintains 3 parameters: fpVal,

maxAbs and ind.

1 class B f sF i l t e r {

2 double fpVal ;

3 double maxAbs ;

4 int ind ;

5 . . .

6 } ;

2. Implement checking function is ok(). Given an expression E, the criteria

for certifying the sign of E for BFS filter is

|fpVal(E)| > maxAbs(E) · ind(E) · 2−p

where p is 52 for the standard C/C++ data type double. This can be

translated into the following code in a straightforward way:

168

1 bool i s o k () const {

2 return (g e t f i l t e r f l a g ()&&// check i f f i l t e r i s enab led

3 f i n i t e (fpVal)&& // t e s t f o r i n f i n i t e and NaNs

4 (f abs (fpVal)>maxAbs∗ ind ∗CORE EPS)) ;

5 }

Here, CORE EPS is pre-defined to be 2−52. Note that we need to call the

get filter flag() function.

3. Implement sgn(), uMSB() and lMSB(). When the filter is certified, the

sign of E is as same as fpVal(E):

1 int s i gn () const

2 { return (fpVal == 0 . 0) ? 0 : (fpVal > 0 .0 ? 1 : −1); }

and the upper and lower bound of lg |E| can be computed using the for-

mula below:

E+ =
⌈
log2 (|fpVal(E)|+ maxAbs(E) · ind(E) · 2−p)

⌉

and

E− =
⌊
log2 (|fpVal(E)| − maxAbs(E) · ind(E) · 2−p)

⌋

1 long uMSB() const

2 { return long (i l o gb (f abs (fpVal)+maxAbs∗ ind ∗CORE EPS))+1; }

3 long lMSB() const

4 { return long (i l o gb (f abs (fpVal)−maxAbs∗ ind ∗CORE EPS)) ; }

4. Implement assignment function and arithmetic functions. The recursive

computation rules for BFS filter are given in Table A.1, where ⊕,⊙,⊘ are

used to represent the corresponding floating-point arithmetic operations

and Ẽ is used to represent the fpVal(E). sqrt(), cbrt(), root() are the

functions which can computing the corresponding approximated results

169

in relative 52 bits precision (sqrt() is standard ANSI C function and we

implemented cbrt() and root() using MPFR).

Expr E maxAbs(E) ind(E)

exact E |E| 0

approx E |round(E)| 1

E = F ±G maxAbs(F) ⊕ maxAbs(G) 1 + max{ind(F), ind(G)}

E = F ×G maxAbs(F) ⊙ maxAbs(G) 1 + ind(F) + ind(G)

E = F/G (|F̃ |⊘|G̃|)⊕(maxAbs(F)⊘maxAbs(G))

(|G̃|⊘maxAbs(G))⊖(ind(G)+1)·2−p
1 + max{ind(F), ind(G) + 1}

E = 2
√
F

8

<

:

(maxAbs(F) ⊘ F̃) ⊙ sqrt(F̃) if F̃ > 0

sqrt(maxAbs(F)) ⊙ 2p/2 if F̃ = 0
1 + ind(F)

E = 3
√
F

8

<

:

(maxAbs(F) ⊘ F̃) ⊙ cbrt(F̃) if F̃ > 0

cbrt(maxAbs(F)) ⊙ 2p/3 if F̃ = 0
1 + ind(F)

E = k
√
F

8

<

:

(maxAbs(F) ⊘ F̃) ⊙ root(F̃ , k) if F̃ > 0

root(maxAbs(F), k) ⊙ 2p/k if F̃ = 0
1 + ind(F)

Table A.1: Rules for BFS filter, p=52.

For implementing set(), we can apply the rules in the first and second

row of above table. For example, we can implement it as follow when the

input parameter value is long type:

1 void s e t (long value) {

2 fpVal = value ; maxAbs = value > 0 ? value : (−value) ;

3 ind = (s izeof (long) > 4 && c e i l l g (value) >= 53) ? 1 : 0 ;

4 }

Here we set ind(E) to be 1 if the input integer has more than 53 bits since

it cannot be convert to double exactly. Otherwise we set it to be 0. The

arithmetic functions add() and sub() can be implemented using the rule

in the third row:

1 void add (const t h i sC l a s s& f , const t h i sC l a s s& s) {

2 fpVal = f . fpVal + s . fpVal ;

3 maxAbs = f .maxAbs + s .maxAbs ;

4 ind = 1 + (f . ind > s . ind ? f . ind : s . ind) ;

170

5 }

6 void sub (const t h i sC l a s s& f , const t h i sC l a s s& s) {

7 fpVal = f . fpVal − s . fpVal ;

8 maxAbs = f .maxAbs + s .maxAbs ;

9 ind = 1 + (f . ind > s . ind ? f . ind : s . ind) ;

10 }

Similarly, one can implement functions mul(), div(), sqrt(), cbrt(),

root() using the rules in rows 4-6.

Remarks:

(1) We did not use IEEE double interval as our floating-point filter [12] since the

mechanism for setting IEEE rounding modes is not very portable and switching

between different rounding modes is costly.

(2) When underflow in those machine floating-point arithmetic operations hap-

pens, we can ignore it for ⊕, ⊖ and k
√

, and add a small constant MIN DBL

= 2.2250738585072014e−308 to maxAbs(E) for ⊙ and ⊘. For overflow, we can

detect it using the function finite() from <cmath> (see the implementation of

is ok()).

171

Appendix B

BFMSS Root Bound

Here we give an example of how we write a Rootbd class from a set of con-

structive root bound rules. We use BFMSS bound [15, 16] as an example.

Conceptually, BFMSS bound first transforms a radical expression E to a quo-

tient of two division-free expression U(E) and L(E). But we do not have to

compute U(E) or L(E). Instead we maintain two parameters u(E) and l(E),

the upper bounds on the conjugates of U(E) and L(E), respectively by the

recursive rules in Table B.1:

Expr E u(E) l(E)

Rational a
b

|a| |b|

E = F ±G u(F)l(G) + l(F)u(G) l(F)l(G)

E = F ×G u(F)u(G) l(F)l(G)

E = F ÷G u(F)l(G) l(F)u(G)

E = k
√
F min{ k

p

u(F)l(F)k−1, u(F)} min{ k
p

u(F)k−1l(F), l(F)}

Table B.1: Rules for BFMSS bound.

The BFMSS root bound function is

B(E) =
1

u(E)d(E)−1l(E)

172

where d(E) is the degree bound that we mentioned in §19.

Now we are going to design our BfmssRootbd class:

1. Define internal data fields. Bfmss Rootbd maintains 3 data fields: u e,

l e and d e which store upper bounds on lg u(E), lg l(E) and d(E) re-

spectively:

1 class BfmssRootbd {

2 uns igned long u e ;

3 uns igned long l e ;

4 uns igned long d e ;

5 . . .

6 } ;

2. Implement get bound(). We just return − lg(E), i.e.,

lg u(E) · (d(E)− 1) + lg l(E) = u e ∗ (d e− 1) + l e.

1 uns igned long get bound () const

2 { return u e ∗(d e−1)+ l e ; }

3. Implement is degree based(), set degree bound() and get degree bound().

1 s t a t i c bool i s d eg r e e ba s ed ()

2 { return t rue ; }

3 void set degr ee bound (uns igned long d)

4 { d e = d ; }

5 uns igned long get degree bound () const

6 { return d e ; }

4. Implement assignment functions set() for different types:

1 void s e t (long value)

2 { u e = c e i l l g (value) ; l e = 0 ; }

3 void s e t (uns igned long value)

4 { u e = c e i l l g (value) ; l e = 0 ; }

173

5 void s e t (double value)

6 { s e t (BigFloat (value)) ; }

7 void s e t (const BigInt& value)

8 { u e = value . c e i l l g () ; l e = 0 ; }

9 void s e t (const BigRat& value)

10 { u e = value .num () . c e i l l g () ; l e = value . den () . c e i l l g () ; }

11 void s e t (const BigFloat& value) {

12 BigInt x ; exp t e = value . g e t z exp (x) ;

13 i f (e >= 0) { // convert to i n t e g e r

14 x . mul 2exp (x , e) ; s e t (x) ;

15 } else { // convert to r a t i o n a l

16 BigRat q ; q . div 2exp (x , −e) ; s e t (q) ;

17 }

18 }

5. Implement arithmetic functions. Since we now maintain u e and l e, we

derive logarithm form rules from above Table B.1:

E = F ±G max{F.u e +G.l e, F.l e +G.u e} + 1 F.l e +G.l e

E = F ×G F.u e +G.u e F.l e +G.l e

E = F ÷G F.u e +G.l e F.l e +G.u e

E =
k
√
F

8

<

:

F.u e+(k−1)∗F.l e

k
if F.u e ≥ F.l e

F.u e if F.u e < F.l e

8

<

:

F.l e if F.u e ≥ F.l e

(k−1)∗F.u e+F.l e

k
if F.u e < F.l e

Table B.2: Rules for BFMSS bound in logarithm form.

1 void neg (const t h i sC l a s s& ch i l d)

2 { u e = ch i l d . u e ; l e = ch i l d . l e ; }

3 void root (const t h i sC l a s s& ch i ld , uns igned long k) {

4 i f (ch i l d . u e >= ch i l d . l e) {

5 u e = (ch i l d . u e + (k−1)∗ ch i l d . l e + (k−1)) / k ;

6 l e = ch i l d . l e ;

7 } else {

8 u e = ch i l d . u e ;

9 l e = ((k−1)∗ ch i l d . u e + ch i l d . l e + (k−1)) / k ;

10 }

11 }

174

12 void add (const t h i sC l a s s& f , const t h i sC l a s s& s) {

13 u e = std : : max(f . u e + s . l e , f . l e + s . u e) + 1 ;

14 l e = f . l e + s . l e ;

15 }

16 void sub (const t h i sC l a s s& f , const t h i sC l a s s& s) {

17 u e = std : : max(f . u e + s . l e , f . l e + s . u e) + 1 ;

18 l e = f . l e + s . l e ;

19 }

20 void mul (const t h i sC l a s s& f , const t h i sC l a s s& s)

21 { u e = f . u e + s . u e ; l e = f . l e + s . l e ; }

22 void div (const t h i sC l a s s& f , const t h i sC l a s s& s)

23 { u e = f . u e + s . l e ; l e = f . l e + s . u e ; }

It is clear that once we have root bound functions and recursive rules, writing

a Rootbd is straightforward. We give this information for other two root bound

algorithms that we provided in the Core Library:

Degree-Measure bound: The root bound function is

B(E) =
1

m(E)
.

The recursive rules are shown in Table B.3:

Expr E d(E) m(E)

Rational a
b

1 max{|a|, |b|}

E = F ±G d(F)d(G) m(F)d(G)m(G)d(F)2d(E)

E = F ×G d(F)d(G) m(F)d(G)m(G)d(F)

E = F ÷G d(F)d(G) m(F)d(G)m(G)d(F)

E = k
√
F kd(F) m(F)

Table B.3: Rules for Degree-Measure bound.

Li-Yap bound: The root bound function for Li-Yap bound [54] is

B(E) =
1

µ(E)d(E)−1lc(E)
.

175

Expr E lc(E) tc(E) µ(E) ν(E)

Rational a
b

|b| |a| | a
b
| | a

b
|

E = F ±G lc(F)d(G)lc(G)d(F) m(F)d(G)m(G)d(F)2d(E) µ(F) + µ(G) (∗)

E = F ×G lc(F)d(G)lc(G)d(F) tc(F)d(G)tc(G)d(F) µ(F)µ(G) ν(F)ν(G)

E = F ÷G lc(F)d(G)tc(G)d(F) tc(F)d(G)lc(G)d(F) µ(F)/ν(G) ν(F)/µ(G)

E = k
√
F lc(F) tc(F) k

p

µ(F) k
p

ν(F)

Table B.4: Rules for Li-Yap bound.

The recursive rules are shown in Table B.4:

The last entry in Line 3 is missing: this special entry is

max{M(E)−1, (µ(E)d(E)−1lc(E))−1}.

176

Bibliography

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Aca-

demic Press, New York, 1983. Translated from German by Jon Rokne.

[2] T. Amdeberhan and D. Zeilberger. Hypergeometric series acceleration via

the WZ method, 1996.

[3] W. N. Bailey. Generalized Hypergeometric Series. Cambridge University

Press, 1935.

[4] Bernard Chazelle, et al. The computational geometry impact task force

report: an executive summary. In M. C. Lin and D. Manocha, editors,

Applied Computational Geometry: Towards Geometric Engineering, pages

59–66. Springer, 1996. Lecture Notes in Computer Science No. 1148.

[5] Bernard Chazelle, et al. Application challenges to computational geometry:

CG impact task force report. Tr-521-96, Princeton Univ., April, 1996. See

also URL www.cs.princeton.edu/˜chazelle/.

[6] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge Uni-

versity Press, 1997. Translated by Hervé Brönnimann.

177

[7] D. Booth. Integrating Python, C and C++.

http://www.suttoncourtenay.org.uk/duncan/accu/integratingpython.html.

Python Integration.

[8] J. M. Borwein and P. B. Borwein. Pi and the AGM. John Wiley and Sons,

New York, 1987.

[9] R. P. Brent. The complexity of multiple-precision arithmetic. In R. S. An-

derssen and R. P. Brent, editors, The Complexity of Computational Problem

Solving, pages 126–165. University of Queensland Press, Brisbane, 1976.

Retyped and postscript added 1999.

[10] R. P. Brent. Fast multiple-precision evaluation of elementary functions. J.

of the ACM, 23:242–251, 1976.

[11] R. P. Brent. Multiple-precision zero-finding methods and the complexity

of elementary function evaluation. In J. F. Traub, editor, Proc. Symp. on

Analytic Computational Complexity, pages 151–176. Academic Press, 1976.

[12] H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields effi-

cient dynamic filters for computational geometry. Discrete Applied Math-

ematics, 109(1-2):25–47, 2001.

[13] C. Burnikel. Exact Computation of Voronoi Diagrams and Line Segment

Intersections. Ph.D thesis, Universität des Saarlandes, Mar. 1996.

[14] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Exact efficient ge-

ometric computation made easy. In Proc. 15th ACM Symp. Comp. Geom.,

pages 341–450, New York, 1999. ACM Press.

178

[15] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily

computable separation bound for arithmetic expressions involving radicals.

Algorithmica, 27:87–99, 2000.

[16] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A sepa-

ration bound for real algebraic expressions. In Lecture Notes in Computer

Science, pages 254–265. Springer, 2001. to appear, Algorithmica.

[17] C. Burnikel, S. Funke, and M. Seel. Exact geometric predicates using

cascaded computation. In Symposium on Computational Geometry, pages

175–183, 1998.

[18] C. Burnikel, S. Funke, and M. Seel. Exact geometric computation using

cascading. Int’l. J. Comput. Geometry and Appl., 11(3):245–266, 2001.

Special Issue.

[19] CGAL Homepage, 1998. URL http://www.cgal.org/. Computational

Geometry Algorithms Library (CGAL) Project. A 7-institution European

Community effort.

[20] J. Choi, J. Sellen, and C. Yap. Approximate Euclidean shortest paths in

3-space. Int’l. J. Comput. Geometry and Appl., 7(4):271–295, 1997. Also:

10th ACM Symp. on Comp. Geom. (1994), pp.41–48.

[21] Core Library homepage, since 1999. Software downloads, documentation

and links: http://cs.nyu.edu/exact/core/.

[22] B. P. Demidovich and I. A. Maron. Computational Mathematics. MIR

Publishers, Moscow, 1976. Translated from Russian by G.Yankovsky.

179

[23] Z. Du, M. Eleftheriou, J. Moreira, and C. Yap. Hypergeometric func-

tions in exact geometric computation. In V. Brattka, M. Schoeder,

and K. Weihrauch, editors, Proc. 5th Workshop on Computability and

Complexity in Analysis, pages 55–66, 2002. Malaga, Spain, July 12-13,

2002. In Electronic Notes in Theoretical Computer Science, 66:1 (2002),

http://www.elsevier.nl/locate/entcs/volume66.html.

[24] T. Dubé and C. K. Yap. A basis for implementing exact geomet-

ric algorithms (extended abstract), September, 1993. Paper from

ftp://cs.nyu.edu/pub/local/yap/exact/basis.ps.gz.

[25] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,

1987.

[26] A. R. Forrest. Computational geometry and software engineering: Towards

a geometric computing environment. In D. F. Rogers and R. A. Earnshaw,

editors, Techniques for Computer Graphics, pages 23–37. Springer-Verlag,

1987.

[27] S. Fortune. Editorial: Special issue on implementation of geometric algo-

rithms. Algorithmica, 27(1), 2000.

[28] S. J. Fortune and C. J. van Wyk. Static analysis yields efficient exact integer

arithmetic for computational geometry. ACM Transactions on Graphics,

15(3):223–248, 1996.

[29] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann.

Mpfr: A multiple-precision binary floating-point library with correct round-

180

ing. Research Report 5753, INRIA, 2005. available electronically at

http://hal.inria.fr/inria-000000818.

[30] S. Funke. Exact arithmetic using cascaded computation. Master’s thesis,

Max Planck Institute for Computer Science, Saarbrücken, Germany, 1997.

[31] S. Funke, K. Mehlhorn, and S. Näher. Structural filtering: A paradigm for

efficient and exact geometric programs. In Proc. 11th Canadian Conference

on Computational Geometry, 1999.

[32] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison-Wesley Professional

Computing Series. Addison-Wesley Publishing Company, New York, NY,

1995.

[33] C. F. Gauss. Carl Friedrich Gauss Werke. Göttingen, 1876.

[34] R. Geus, O. Skavhaug, and H. P. Langtangen. Python wrapper tools; a

performance study. Talk at the EuroPython 2004 Conference, Gothenburg,

Sweden, 2004. Presented by R. Geus.

[35] GNU MP Homepage, 2000. GNU MP (=GMP) is a free library for arbi-

trary precision arithmetic on integers, rational numbers and floating point

numbers. URL http://www.swox.com/gmp/. GMP 3.1 released Aug 2000.

[36] D. Goldberg. What every computer scientist should know about floating-

point arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

[37] R. W. Gosper. Acceleration of series. Artificial Intelligence Lab. Memo

340, M.I.T., 1974.

181

[38] G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR. LORIA,

INRIA and INRIA Lorraine, 2.2.0 edition, 2005. available electronically at

http://www.mpfr.org/.

[39] J. Harrison. Formal verification of floating point trigonometric functions.

In Proceedings of the 3rd International Conference on Formal Methods in

Computer-Aided Design, pages 217–233, 2000.

[40] J. Harrison. Formal verification of ia-64 division algorithms. In Proceedings

of the 13th International Conference on Theorem Proving in Higher Order

Logics, pages 234–251, 2000.

[41] J. Harrison, T. Kubaska, S. Story, and P. T. P. Tang. The computation of

transcendental functions on the ia-64 architecture. pages 234–251, 1999.

[42] S. Hert, M. Hoffmann, L. Kettner, S. Pion, and M. Seel. An adaptable

and extensible geometry Kernel. In Proc. 5th Int’l Workshop on Algorithm

Engineering (WAE-01), pages 79–90, Berlin, 2001. Springer. Aarhus, Den-

mark, August 28 - 30, 2001.

[43] C. M. Hoffmann. The problems of accuracy and robustness in geometric

computation. IEEE Computer, 22(3):31–42, March 1989.

[44] IEEE. IEEE Standard 754-1985 for binary floating-point arithmetic, 1985.

ANSI/IEEE Std 754-1985. From The Institute of Electrical and Electronic

Engineers, Inc.

[45] E. Jeandel. Évaluation rapide de fonctions hypergéométriques. Rapport

Technique 242, INRIA, 2000. 17 pages.

182

[46] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Core library for

robust numerical and geometric computation. In 15th ACM Symp. Com-

putational Geometry, pages 351–359, 1999.

[47] M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay trian-

gulation using rational arithmetic. ACM Trans. on Graphics, 10:71–91,

1991.

[48] D.-S. Kim, K. Yu, Y. Cho, D. Kim, and C. Yap. Shortest paths for disc

obstacles. In A. L. et al., editor, Proc. Computational Sci. and Its Applic.

(ICCSA 2004), number 3045 in Lecture Notes in Computer Science, pages

62–70, 2004. Intl. Workshop on Comp. Geom. and Applic., at ICCSA 2004,

S. Maria degli Angeli, Assisi (Perugia, Italy) May 14–17, 2004.

[49] LEDA Homepage, Since 1995. URL http://www.mpi-sb.mpg.de/LEDA/.

Library of Efficient Data Structures and Algorithms (LEDA) Project. From

the Max Planck Institute of Computer Science.

[50] V. Lefèvre. The generic multiple-precision floating-point addition with

exact rounding (as in the mpfr library). In Proceedings of the 6th Conference

on Real Numbers and Computers, pages 135–145, 2004.

[51] V. Lefèvre, J.-M. Muller, and A. Tisserand. Towards correctly rounded

transcendentals. IEEE Trans. Computers, 47(11):1235–1243, 1998.

[52] C. Li. Exact Geometric Computation: Theory and Applications. Ph.d.

thesis, New York University, Department of Computer Science, Courant

Institute, Jan. 2001. Download from http://cs.nyu.edu/exact/doc/.

183

[53] C. Li, S. Pion, and C. Yap. Recent progress in exact geometric computation.

J. of Logic and Algebraic Programming, 64(1):85–111, 2004. Special issue

on “Practical Development of Exact Real Number Computation”.

[54] C. Li and C. Yap. A new constructive root bound for algebraic expressions.

In 12th ACM-SIAM Symp. on Discrete Algorithms, pages 496–505, Jan.

2001.

[55] D. Lozier and F. Olver. Numerical evaluation of special functions. In

W. Gautschi, editor, Mathematics of Computation 1943–1993: A Half-

Century of Computational Mathematics, volume 48, pages 79–125. Ameri-

can Math. Soc., Providence, Rhode Island, 1994 and 2000. Proceedings of

Symposia in Applied Mathematics. Updated version (2000) available from

http://math.nist.gov/nesf/.

[56] Y. L. Luke. Algorithms for the Computation of Mathematical Functions.

Academic Press, 1977.

[57] K. Mahler. Zur approximation der exponentialfunktionen und des logarith-

mus. J. Reine Angew. Math. 166, pages 118–136, 1932.

[58] M. Marden. The Geometry of Zeros of a Polynomial in a Complex Variable.

Math. Surveys. American Math. Soc., New York, 1949.

[59] K. Mehlhorn and S. Schirra. Exact computation with leda real – theory

and geometric applications. In G. Alefeld, J. Rohn, S. Rump, and T. Ya-

mamoto, editors, Symbolic Algebraic Methods and Verification Methods,

pages 163–172, Vienna, 2001. Springer-Verlag.

184

[60] Z. A. Melzak. Companion to Concrete Mathematics. Wiley, New York,

NY, 1973.

[61] M. Mignotte and D. Ştefănescu. Polynomials: An Algorithmic Approach.

Springer, 1999.

[62] R. E. Moore. Interval Analysis. Series in Automatic Computation. Prentice

Hall, Englewood Cliffs, NJ, 1966.

[63] MPFR Homepage, Since 2000. URL http://www.mpfr.org/. The MPFR

Library.

[64] J.-M. Muller. Elementary Functions: Algorithms and Implementation.

Birkhäuser, Boston, 1997.

[65] N. T. Müller. The iRRAM: Exact arithmetic in C++. In J. Blank, V. Brat-

tka, and P. Hertling, editors, Computability and Complexity in Analysis,

pages 222–252. Springer, 2000. 4th International Workshop, CCA 2000,

Swansea, UK, September 17-19, 2000, Selected Papers, Lecture Notes in

Computer Science, No. 2064.

[66] K. Mulmuley. Computational Geometry: an Introduction through Random-

ized Algorithms. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1994.

[67] M. Nardin, W. Perger, and A. Bhalla. Algorithm 707, CONHYP: A nu-

merical evaluator of the confluent hypergeometric function for complex

arguments of large magnitudes. ACM Trans. Math. Softw., 18(3):345–349,

1992.

185

[68] M. Nardin, W. Perger, and A. Bhalla. Numerical evaluation of the confluent

hypergeometric function for complex arguments of large magnitudes. J.

Computational and Applied Math., 39:193–200, 1992.

[69] Y. Nesterenko and M. Waldschmidt. On the approximation of the val-

ues of exponential function and logarithm by algebraic numbers. Mat.

Zapiski, 2:23–42, 196. Diophantine Approximations, Proc. of papers ded-

icated to the memory of Prof. N.I. Feldman, Moscow. Available from

http://arxiv.org/abs/math.NT/0002047.

[70] K. C. Ng. Argument reduction for huge arguments: Good to last

bits. Technical report, SunPro, 1992. available electronically at

http://www.validgh.com/.

[71] J. O’Rourke. Computational Geometry in C. Cambridge University Press,

second edition edition, 1998.

[72] K. Ouchi. Real/Expr: Implementation of an exact computation

package. Master’s thesis, New York University, Department of

Computer Science, Courant Institute, Jan. 1997. Download from

http://cs.nyu.edu/exact/doc/.

[73] N. M. Patrikalakis, W. Cho, C.-Y. Hu, T. Maekawa, E. C. Sherbrooke,

and J. Zhou. Towards robust geometric modelers, 1994 progress report.

In Proc. 1995 NSF Design and Manufacturing Grantees Conference, pages

139–140, 1995.

186

[74] S. Pion. Interval arithmetic: An efficient implementation and an applica-

tion to computational geometry. In Workshop on Applications of Interval

Analysis to Systems and Control, pages 99–110, 1999.

[75] S. Pion and C. Yap. Constructive root bound method for k-ary rational

input numbers. In 19th ACM Symp. on Comp. Geometry, pages 256–263,

San Diego, California., 2003.

[76] J. Popken. Zur transzendenz von e. Math. Z. 29, pages 525–541, 1929.

[77] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-

Verlag, 1985.

[78] Python Homepage, 1990. http://www.python.org/. Python Program-

ming Language.

[79] Topical Python Software. http://www.scipy.org/Topical Software.

Topical Python Software.

[80] D. Richardson. Some undecidable problems involving elementary functions

of a real variable. The Journal of Symbolic Logic, 33(4):511–520, 1968.

[81] D. Richardson. How to recognize zero. J. of Symbolic Computation, 24:627–

645, 1997.

[82] D. Richardson. The uniformity conjecture. In J. Blank, V. Brattka, and

P. Hertling, editors, Computability and Complexity in Analysis, pages 253–

272. Springer, 2000. 4th International Workshop, CCA 2000, Swansea,

UK, September 17-19, 2000, Selected Papers, Lecture Notes in Computer

Science, No. 2064.

187

[83] Roberto Tamassia, et al. Strategic directions in computational geometry:

Working group report. Computing Surveys, 28(4):591–606, Dec. 1996.

[84] S. Schirra. Robustness and precision issues in geometric computation. In

J. Sack and J. Urrutia, editors, Handbook of Computational Geometry.

Elsevier Science Publishers, B.V. North-Holland, Amsterdam, 1999.

[85] H. Sekigawa. Using interval computation with the Mahler measure for

zero determination of algebraic numbers. Josai Information Sciences Re-

searches, 9(1):83–99, 1998.

[86] J. Sellen, J. Choi, and C. Yap. Precision-sensitive Euclidean shortest path

in 3-Space. SIAM J. Computing, 29(5):1577–1595, 2000. Also: 11th ACM

Symp. on Comp. Geom., (1995)350–359.

[87] D. Shanks. Solved and Unsolved Problems in Number Theory. Dover Pub-

lications, Inc, New York, NY, 1993.

[88] V. Sharma, Z. Du, and C. Yap. Robust Approximate Zeros. In G. S.

Brodal and S. Leonardi, editors, Proc. 13th European Symp. on Algorithms

(ESA), volume 3669 of Lecture Notes in Computer Science, pages 874–887.

Springer-Verlag, Apr. 2005. Palma de Mallorca, Spain, Oct 3-6, 2005.

[89] B. Stroustup. The Design and Evolution of C++. Addison Wesley, New

York, NY, April 1994.

[90] J. van der Hoeven. Fast evaluation of holonomic functions. Theor. Comput.

Sci., 210(1):199–215, 1999.

[91] J. van der Hoeven. Fast evaluation of holonomic functions near and in

regular singularities. J. Symb. Comput., 31(6):717–743, 2001.

188

[92] C. Yap and K. Mehlhorn. Towards robust geometric computation, 2001. In-

vited White Paper. CSTB-NSF Conference on Fundamentals of Computer

Science, Washington DC, July 25-26, 2001. See Appendix, Computer Sci-

ence: Reflections on/from the Field, The National Academies Press,

Washington DC, 2004.

[93] C. K. Yap. A new number core for robust numerical and geometric libraries.

In 3rd CGC Workshop on Computational Geometry, 1998. Invited Talk.

Brown University, Oct 11–12, 1998.

Abstracts, http://www.cs.brown.edu/cgc/cgc98/home.html.

[94] C. K. Yap. On guaranteed accuracy computation. In F. Chen and D. Wang,

editors, Geometric Computation, chapter 12, pages 322–373. World Scien-

tific Publishing Co., Singapore, 2004.

[95] C. K. Yap. Robust geometric computation. In J. E. Goodman and

J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,

chapter 41, pages 927–952. Chapmen & Hall/CRC, Boca Raton, FL, 2nd

edition, 2004. Expanded from 1997 version.

[96] C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and

F. K. Hwang, editors, Computing in Euclidean Geometry, pages 452–492.

World Scientific Press, Singapore, 2nd edition, 1995.

[97] J. Yu. Exact arithmetic solid modeling. Ph.D. dissertation, Department

of Computer Science, Purdue University, West Lafayette, IN 47907, June

1992. Technical Report No. CSD-TR-92-037.

189

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Experiments
	List of Appendices
	Introduction
	Exact Geometric Computation (EGC)
	Previous work in EGC
	Need for Transcendental Functions
	Our Contributions

	Redesign of the Core Library
	Review of the current Core Library design
	Redesign of Expr Package
	Incorporation of Transcendental Nodes
	New template-based design of ExprRep
	Improved Approximate Evaluation Algorithms
	Improved Propagation of Precision

	Redesign of BigFloat system
	MPFR Overview
	Design of class BigFloat
	Design of class BigFloat2

	Extending Expr class
	How to Add Your Own Operation for Expr
	Adding Your Own Operation using Pre-defined Macros
	Summation operation for Expr
	Transcendental Node

	Benchmarks
	InCore: an Interactive Core Library

	Absolute Approximation of General Hypergeometric Function
	Hypergeometric series and functions
	Hypergeometric series
	Hypergeometric function and convergence
	Elementary Functions in Hypergeometric Form

	General Approximate Evaluation Algorithm
	Evaluation at a Blackbox Number
	Complexity
	Argument Reduction, Parameter Pre-processing and Constants
	Argument Reduction
	Parameter Pre-processing
	Mathematical Constants: Evaluation, File Formats

	Integration of Hypergeometric Functions into the Core Library
	Final Remarks and Open Problems

	Non-asymptotic Error Analysis of AGM Algorithm
	Arithmetic-geometric Mean Iteration
	Error Analysis of AGM
	Fast Multiple-precision Evaluation of
	Fast Evaluation of Exponential and Logarithm Functions
	Elliptic Integrals
	Brent's method
	Convergence of Uk(m) and Tk(m)
	Approximation of Uk(m) and Tk(m)
	Approximation of U(m) and T(m)
	Discrete Newton Iteration
	Evaluation exp(x) and log(x)

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendices
	Bibliography

