
Towards Exact Numerical Voronoi Diagrams
(Invited Talk)

Chee K. Yap
Department of Computer Science

Courant Institute, NYU
New York, NY 10012, USA

yap@cs.nyu.edu

Vikram Sharma
Institute of Mathematical Sciences

Chennai, India, 600113
vikram@imsc.res.in

Jyh-Ming Lien
Department of Computer Science

George Mason University
Fairfax, VA 22030, USA

jmlien@cs.gmu.edu

Abstract—Voronoi diagrams are extremely versatile as
a data structure for many geometric applications. Com-
puting this diagram “exactly” for a polyhedral set in 3-
D has been a quest of computational geometers for over
two decades; this quest is still unrealized. We will locate
the difficulty in this quest, thanks to a recent result of
Everett et al (2009). More generally, it points to the need
for alternative computational models, and other notions
of exactness.

In this paper, we consider an alternative approach based
on the well-known Subdivision Paradigm. A brief review
of such algorithms for Voronoi diagrams is given. Our
unique emphasis is the use of purely numerical primitives.
We avoid exact (algebraic) primitives because (1) they
are hard to implement correctly, and (2) they fail to
take full advantage of the resolution-limited properties of
subdivision. We encapsulate our numerical approach using
the concept of soft primitives that conservatively converge
to the exact ones in the limit.

We illustrate our approach by designing the first purely
numerical algorithm for the Voronoi complex of a non-
degenerate polygonal set. We also discuss the critical role
of filters in such algorithms. A preliminary version of our
algorithm has been implemented.

Keywords-soft predicates; subdivision; filters

I. What is so hard about the Voronoi Dia-
gram of Polyhedra?

The concept of Voronoi diagrams is ubiquitous [25],
with many applications. It is also a core topic in compu-
tational geometry [6], [14]. For instance, one application
is in robotics where such diagrams are the basis of the
retraction approach to motion planning [24], [35], [13],
[31]. Much is known about Voronoi diagrams and its
many generalizations. The books [25], [18], [6] focus on
the planar cases. The Voronoi diagram of a point set in
any dimension is well-understood. But in 3-D, already
the Voronoi diagram of a set of polyhedral objects is
a barrier. For more than two decades, computational
geometers have been interested in an algorithm for such
diagrams (e.g., [23]). For reference, call this particular
problem (Voronoi diagram for polyhedral objects in 3-
D) the “Voronoi Quest”. This quest remains unfulfilled
today. Recently, Hemmer et al. [15] announced a major

milestone in this quest: they provided an algorithm for
a special case, the Voronoi diagram for a collection of
infinite lines. It has been implemented inCGAL.
¶1. Three Views of a Voronoi Diagram. It may

sound surprising that this basic problem is still open.
What are the barriers in this quest? There are three
views of the “Voronoi diagram” of a polyhedral set
Ω ⊆ R

d: a set-theoretic view, an algebraic topology
view, and a combinatorial view. We use the notations

Vor(Ω), Vor(Ω), Vor∗(Ω)

to distinguish them. Briefly,Vor(Ω) is just a subset
of Rd \ Ω called thegeometric Voronoi diagram; the
pointsp in Vor(Ω) are those whose Euclidean distance
to the closest pointq ∈ Ω is achieved by two or more
q’s. TheVoronoi complexVor(Ω) is a cell complex in
the sense of algebraic topology; each cell inVor(Ω) is a
subset ofRd that is homeomorphic to an open Euclidean
ball of some dimensioni = 0, . . . , d − 1. The support
of Vor(Ω) is justVor(Ω). Finally, theVoronoi graph
Vor∗(Ω) is a labeled combinatorial graph representing
the Voronoi complex: the vertices ofVor∗(Ω) are in 1-
1 correspondence with cells inVor(Ω), and the graph
edges correspond to adjacency relation between pairs of
cells. A cell of dimensioni in Vor(Ω) is also called a
Voronoi cell or ani-cell; wheni = 0 (resp.,i = 1, 2) it
is known as aVoronoi vertex (resp.,curve, surface).
Below, we provide a more detailed account of these
concepts.

These three views give rise to (at least) three in-
terpretations of what it means to “compute a Voronoi
diagram”:

• Perhaps we may call the computation ofVor∗(Ω)
the standard Computational Geometry view. There
is no explicit manipulation of numerical data, and
the computation can be carried out by postulating
certain abstract “geometric” operations (see [37]).

• In visualization and computer graphics, the prob-
lem amounts to computing anε-approximation of
Vor(Ω). Here, a set̃S ⊆ R

d is anε-approximation
of another S ⊆ R

d if the Hausdorff distance

dH(S̃, S) is at mostε; the approximating set̃S
might be a collection of boxes (voxels) or be some
piecewise linear representation.

• In computational semi-algebraic geometry, the
problem amounts to computingVor(Ω). Since
the cells inVor(Ω) are semi-algebraic sets, their
representation is a nontrivial issue. In one inter-
pretation, each cell may be represented symbol-
ically or implicitly by algebraic data (e.g., a set
of algebraic inequalities). Another interpretation
is to compute someε-approximation of each cell
(as in the visualization view). Although cell are
approximated, we require these approximations to
induceexactcombinatorial information like adja-
cencies and isotopy-type. The result is called an
ε-approximation of Vor(Ω).

Clearly the third view point is the most demanding:
an ε-approximation ofVor(Ω) in the above sense
subsumes the information forVor(Ω) and Vor∗(Ω).
In this paper, we adopt the third viewpoint as our
computational goal.
¶2. Types of Voronoi Cells. The cell complex

Vor(Ω) has variant definitions in the literature, so we
will be specific: first partition the boundary ofΩ into
a simplicial complex called theboundary complex of
Ω, denotedΦ(Ω). This is collection of simplices of
each dimension0, 1, . . . , d−1; cells inΦ(Ω) are called
(boundary)features of Ω. Our main concern isd = 3,
where features of dimensions0, 1, 2 (respectively) are
classified ascorners (c), edges(e) andwalls (w). In
general, we classify features into “types” based solely
on their dimension. Thus we haved types. In 3-
space, these types may be labeledc, e, w. Given a set
T ⊆ Φ(Ω) of sized− k+1 (k = 0, . . . , d− 1), we can
consider the semi-algebraic setS(T) ⊆ R

d \ Ω com-
prising those pointsq that are simultaneously closest
to each of the features inT , and such that no other
feature inΦ(Ω) is strictly closer toq. We define a
k-cell of Vor(Ω) to be a connected component1 of
such a semi-algebraic setS(T). We callT a generator
set for cell. In general, the generator set for ak-cell
will have at leastd − k + 1 features; if it could have
more thand − k + 1 features, we say thek-cell is
degenerate. Assuming non-degeneracy, the generator
set is unique. We sayΩ is non-degenerateif none of its
cells are degenerate. We will assume non-degeneracy in
the current discussion. Thetype of T is just the multiset
of d−k+1 types represented by the features inT . E.g.,
in R

3, if T = {c1, c2, w} has two corners and a wall,
then the setS(T) (if non-empty) will be a portion of
a curve in space, and its connected components would

1 It can be shown that each connected component is homeomorphic
to an open ball of some dimension.

be 1-cells of type{c, c, w} (or simply ccw). Thus in3-
space, we have 10 types of Voronoi curves (i.e., 1-cells),
namely

ccc, cce, ccw, cee, cew, cww, eee, eew, eww,www (1)

In R
d, the types ofk-cells may be identified with the

monic monomials2 of degreed−k+1 overd variables.
The number of such types is

(
2d− k

d− k + 1

)
=

(
2d− k

d− 1

)
. (2)

For instance, there are
(
2d−1
d−1

)
types of Voronoi curves

in d-space. Ford = 4, there are35 types of Voronoi
curves. Any code for the exact Voronoi diagram must
compute Voronoi cells of each type, and each type must
handle

(
2k−k
d−1

)
cases of the code.

¶3. On the Subtypes of Typeeee. In 3-space, the
type eee in (1) is recognized as the most demanding
case. Solving theeee case amounts to determining the
Voronoi curve determined by three infinite lines. The
classification of such curves was only recently deter-
mined by Everett, Gillot, Lazard, Lazard and Pouget
[12], [11]:

PROPOSITION1 (Everett et al. (2009)).
The Voronoi curve determined by three lines in space
are connected components of these curves:
(i) a non-singular quartic if the 3 lines are pairwise
skew but not all parallel to a common plane nor on the
surface of a hyperboloid of revolution;
(ii) a cubic and a line if the 3 lines are pairwise skew
and lies on the surface of a hyperboloid of revolution;
(iii) a nodal quartic if the 3 lines are pairwise skew and
all parallel to a common plane;
(iv) one or two parabolas or hyperbolas if there is
exactly one pair of coplanar lines;
(v) Between 0 and 4 lines if there are two pairs of
coplanar lines.

This theorem is the basis of the algorithm of Hemmer
et al. [15]. According to this classification, the caseeee
gives rise to5 subcases. In general, each type will
give rise to exponentially many cases, and each case
may give rise to further subcases. Unlike the growth
rate in the number of types (see (2)), the growth rate
of the number of subcases is less understood. The
determination of these subcases may be quite non-trivial
as illustrated by Proposition1. This issue already shows
up in the plane: see the classification of subcases in
the exact algorithm for Voronoi diagrams of circles
(“Apollonius diagrams”) [8] and of ellipses [9].

It should now be clear that any exact algorithm for
such Voronoi diagrams is a major undertaking, just

2 i.e., power products of (commutative) variables.

2

to completely enumerate all possibilities. One answer
to the question posed in the title of this section can
now be given: the difficulty in the Voronoi Quest lies
in providing the analogue of Proposition1 for the
other nine cases of (1). Of course, the good news is
that the hardest case has been cracked. Such analysis
requires some non-trivial algebraic geometry. So is
computational geometry destined to become a subfield
of algebraic geometry? The main good news of this
paper is that there is a way out. We will return to this
in the next section.
¶4. On Generic Voronoi Diagrams. Proposition1

can be mined for other insights. The first is that if
we try to design Voronoi diagram algorithm using
some “abstract computational model” (as is common in
Computational Geometry), the subcases of Proposition1
will never be revealed. It is another example of the
pitfalls of abstract computational models discussed in
[37].

Next, Proposition1 contains an outline for imple-
menting the primitives for constructing the Voronoi cells
determined by 3 lines. To detect case (i), we need three
predicates to check the following conditions:

• (a) if two lines are skew;
• (b) if three lines are parallel to a common plane;
• (c) if three lines lie on the surface of a hyperboloid

of revolution.

Using these predicates, we can then take the appropri-
ate branch into the 5 subcases. The efficient evaluation
of such predicates is a central theme of “Exact Geome-
try Computation” (EGC) since the 1990s. Methods for
their correct and automatic evaluation is today available
in libraries such as [22], [5], [38]. Nevertheless, the
combinatorial explosion in the number of cases remains
a serious barrier to implementations.

A partial remedy is possible if we could tolerate
infinitesimal perturbations of the input [7], [36]. Such
perturbations ensures that you only need to handle
the “generic inputs” i.e., those that do not satisfy
any algebraic conditions (such as (a), (b), (c) above).
Algorithms that only handle generic cases are called
generic algorithms. Let us understand what symbolic
perturbation achieves in the current setting: According
to Proposition1, infinitesimal perturbation reduces the
subcases(i) − (v) to just subcase(i). More generally,
symbolic perturbation amounts to getting rid of sub-
cases.This leads to the following corollary:

Corollary 2. The “generic” algorithm for computing
the exact Voronoi diagram of a set of polyhedral objects
in d-space has exactly

(
2d+1

d

)
− (d+ 1) cases.

Proof. There are
(
2d−k
d−1

)
cases for Voronoi cells of

dimensionk. Summing over all dimensions, the number

of cases is
∑d−1

k=0

(
2d−k
d−1

)
. But since

∑d+1
k=0

(
2d−k
d−1

)
=(

2d+1
d

)
, the corollary follows. Q.E.D.

Thus, the technique of symbolic perturbation does
not remove the exponential dependence ond. For low
dimensions, perturbation alone might be enough to
render exact algorithms practical. For instance, in the
Voronoi diagrams of polyhedral sets the number of cases
to handle are

(
7
3

)
−4 = 31 for d = 3 and

(
9
4

)
−5 = 121

for d = 4.
Interestingly, there is a paradox in the application

of symbolic perturbation. By avoiding the subcases,
we also opted to give up advantages conferred by
degeneracies. For example, suppose our input is a set
of horizontal rectangles whose edges are parallel to the
x- or y-directions. Then according to Proposition1,
the only Voronoi curves we need to handle falls under
subcase (iv); these are parabolas and hyperbolas. But
by opting for the generic situation, we cannot take
advantage of this “degenerate” situation. Such obser-
vations have prompted Burnikel et al. [3] to argue
that the explicit handling of degeneracies (subcases)
is preferable to symbolic perturbation. In view of our
discussions of the Voronoi quest, their argument is no
longer persuasive for dimensions3 or above. Indeed,
we do not even know what these subcases are! On the
other hand, it seems quite feasible to develop an exact
but generic algorithm for our Voronoi quest.
¶5. What is new in this paper?

• In view of the long history of subdivision ap-
proaches, it may be hard to imagine anything fun-
damentally new except for “yet another subdivision
algorithm”. The key observation is that the primi-
tives (i.e., predicates and constructors) used in sub-
division algorithms can be classified asexactand
or (purely) numerical. Previous subdivision algo-
rithms for computing the Voronoi complexVor(Ω)
inevitably resort to some exact primitives. Besides
causing an implementation gap, exact primitives
do not fully exploit the power of subdivision,
namely, the ability to produceresolution-limited
outputs. We note that the use of exact predicates
is unavoidable (short of using zero bounds as in
EGC) unless we weaken the notion of exactness.
Thus we advocate a paradigm-shift for subdivision
algorithms, away from traditional notions of exact-
ness, toward concepts of resolution exactness that
can be achieved using purely numerical primitives
(e.g., [32], [34]).

• We develop a new subdivision algorithm for the
Voronoi complex of a polygonal set. It is the
first complete solution based on purely numerical
primitives. There is a price for purely numerical
primitives: termination is guaranteed on assuming

3

non-degeneracy of the Voronoi complex. In our
implementations, we use anδ-cutoff. Upon cutoff,
one can invoke a weakened correctness criterion
or resort to exact computation which is relatively
easy in the planar setting. These aspects will be
elaborated in a future paper.

• One general contribution is to introduce the idea
of soft primitives to this domain. One could say
this idea is implicit in some prior work, but to
our knowledge it has never been made explicit.
We believe the full exploitation of soft primitives
will open up new classes of practical algorithms in
computational geometry. There are two main goals
in the design of soft predicates (1) simplicity of
implementation and (2) effectiveness. To achieve
(1), we try to reduce all predicate to computing and
comparing separations between pairs of features.
Such computations are very robust (see [34]) and
easy to approximate to high precision. Goal (2)
is achieved viafilters that provide conditions that
are sufficient (but not necessary) for a predicate to
hold or to fail. Filters should be relatively cheap
compared to its efficacy.

¶6. Overview of paper. In Section 2, we discuss an
alternative computational model based on the Subdivi-
sion Approach. Section 3 contains a review of some key
subdivision papers for Voronoi diagrams. We attempt
to provide a unifying framework for this literature. In
Section 4, we introduce the basic tools for our approach,
in particular, the notion of soft primitives. Section 5
describes our new subdivision algorithm for the Voronoi
complex of a polygonal set. Section 6 discuss our
implementation and address the issue of filters. We
conclude in Section 7.

II. Resolution-Bounded Solutions
There is a sense in which our Voronoi diagram quest

is a solved problem: it can be reduced to a key problem
in computational semi-algebraic geometry [1]: given a
set Σ of polynomial equations ind variables, we can
compute a cell complexK of Rd such thatΣ is sign-
invariant over each cellc ∈ K. Moreover, we can also
determine the adjacencies among these cells. It is not
hard to define such a setΣ = Σ(Ω) so that Voronoi di-
agramVor(Ω) can be partitioned naturally into a union
of such cells inK. A simple definition ofΣ to define,
for each pairf, f ′ ∈ Φ(Ω) of features, a polynomial of
the formDist(q, f)−Dist(q, f ′) whereDist(q, f) is
the squared distance from a variable pointq to the affine
span off . ThusΣ is a system of polynomials in thed
coordinate variables ofq. After a post-processing ofK,
we obtain an exact representation ofVor(Ω). The cells
in K are directly related to the combinatorial structure
of the polyhedral setΩ, and the size ofK can be

bounded as a function of the combinatorial complexity
of Ω. An algorithm for cell decomposition goes back
to Tarski’s procedure (1951) for deciding sentences in
the first-order theory of reals, and to Collin’s algorithm
for Cylindrical Algebraic Decomposition (1971). Recent
progress on this and related problems may be found in
[1]. Unfortunately, the reduction of Voronoi diagrams to
cell decomposition would be totally impractical. Thus,
our Voronoi quest has just acquired a new requirement:
we seek not just “any solution” but an efficient and
practical one.

But for this, we must turn to a different computational
model. Computational Geometers normally assume a
Real RAM model augmented with suitable (problem
specific) primitives. These primitives, if implemented,
would be reduced to semi-algebraic computation as
above. But Voronoi diagrams can also be computed
using a more explicitly numerical approach. Perhaps the
common form of this approach is based on the idea of
(spatial) subdivision. These are the familiar quadtrees
(2-D) or octrees (3-D); we call themsubdivision trees
in general. Figure 1 is a screen shot from our subdivision
algorithm’s output.

Figure 1. Subdivision output: Voronoi complex for Bugtrap Polygon

In brief, the subdivision method use an iterative
process that subdivides an initial regionB0 in R

d

into simple regions. For our purposes, we may assume
these regions ared-dimensional boxes. Once these cells
are sufficiently “simple” relative toΩ, the subdivision
process stops. Finally, we synthesize an approximation
to the setVor(Ω) from these simple boxes. To deter-
mine the correct combinatorial/topological nature of the
Voronoi complexVor(Ω) is much harder, especially
if exact predicates are disallowed. That is the main
challenge of this paper.

Thus we have two fundamentally different approaches

4

to computing Voronoi diagrams. TheExact Method
and theSubdivision Method. The complexity of Exact
Method is usually a function of the combinatorial size
of the input, i.e., the numbern of features ofΦ(Ω).
The number of Voronoi cells is polynomial inn; the
best upper bound for this size in 3-D isO(n2+ε)
[19]. In terms of abstract operation counts (but not
bit complexity, the computational complexity of exact
algorithms can achieve such limits. In contrast, the
boxes in Subdivision Methods are not directly related to
n but to the “resolution” of the geometric representation.
Typically, bound the number of boxes as a function of
n and the bit-size of the representation ofΩ.

In any Subdivision Method, there ultimately must be
some predicate to control the termination for subdivi-
sion, and predicates to confirm the presence of a Voronoi
vertex within a box. Generally speaking, previous al-
gorithms use a combination of exact and numerical
predicates for this purpose. Synthesizing an approximate
Vor(Ω) is an easier problem for which purely numerical
predicates are known. But to synthesize the Voronoi
complex, all previous methods ultimately rely on some
exact predicate. For instance, to confirm the presence
of a Voronoi vertex within a given box, some authors
directly compute the Voronoi vertex, while others infer
this by computing the exact Voronoi points on the
box boundary. Our goal is to avoid all such exact
computations.

III. Literature Review

In this section, we review several key papers on
subdivision algorithms for Voronoi diagrams: Laven-
der, Bowyer, Davenport, Wallis and Woodward (1992)
Vleugels and Overmars (1995), Teichmann and Teller
(1998), Etzion and Rappoport (2002), Sud, Zhang and
Manocha, (2007), Boada, Coll, Madern and Sellarés
(2008), and Stolpner, Whitesides and Siddiqi (2011) In
our assessment, only Etzion and Rappoport, and Sud,
Zhang and Manocha provide algorithms for computing
the Voronoi complex, while the other algorithms mainly
compute the geometric Voronoi diagram.

We first establish a common terminology for these
subdivision methods, basically following [21]. A box
(or d-box) B is a subset ofRd (d ≥ 1) of the form
B = I1 × I2 × · · · × Id where Ij = [aj , bj], aj <
bj , are closed non-degenerate intervals. Thecenter of
a box B is denotedm(B) (or mB). The box has2d

vertices and2d faces. Thus each face is a(d− 1)-box.
Its radius is the distance fromm(B) to any vertex,
where the distance between any two pointsp and q is
the Euclidean distance‖p−q‖. A collectionS of boxes
is called asubdivision if the boxes inS have pairwise
disjoint interiors; we sayS is a subdivision of the set
∪S (union of the boxes inS). For instance, ifB is a

box, then there is a unique subdivision ofB comprising
2d congruent boxes. This subdivision is called thefull
split of B. A subdivision treeT rooted at a boxB0 is a
finite tree whose tree nodes are boxes, and where each
internal nodeB has 2d congruent children that form
the full split of B. Thus the set of leaves ofT forms
a subdivision ofB0. Two boxesB,B′ are adjacent if
their interiors are disjoint andB ∩B′ is a (d− 1)-box.
A subdivision S is said to bebalanced if for every
pair of adjacent boxes inS, they either has the same
radius or one has twice the radius of the other. In our
development, boxes are assumed to be squares (d = 2)
or cubes (d = 3).
¶7. The Standard Subdivision Framework. To

help unify the literature, we borrow the “standard”
framework3 for describing subdivision algorithms from
Lin and Yap [21], where it was used for isotopic
approximation of surfaces. Input consists of a setΩ
of geometric objects, a boxB0 containing the region
of interest, anǫ > 0, and a cutoff parameterδ. Most
subdivision algorithms for computing Voronoi diagram
may be viewed as having three phases: Subdivision,
Refinement and Construction.

The Subdivision Phase constructs a subdivision tree
T rooted atB0 and expands leaves until some predicate
C(B) holds at each leafB. While subdividing a box
B, we also propagate certain information to each of its
children.

The Refinement Phase further refinesT , typically by
balancing the subdivision ofB0.

The Construction Phase takes the subdivisionS of
B0 from the Refinement Phase. For each boxB ∈ S,
the typical aim is to find the topology of the Voronoi
diagram inside the box. This involves detecting Voronoi
walls, edges and vertices in a box. The output of this
phase may be a collection of boxes (that form anε-
cover of the geometric Voronoi diagramVor(Ω) or an
ε-approximation of the Voronoi complexVor(Ω).

STANDARD SUBDIVISION FRAMEWORK

Input: A setΩ of objects,ǫ > 0 andB0.
Output: An ǫ-approximationG to Vor(Ω).

0. Let Qin ← {B0} be a queue of boxes.
1. Qout ← SUBDIV IDE(Qin).
2. Qref ← REFINE(Qout).
3. G← CONSTRUCT (Qref).

We next review the literature using this framework.
Many, but not all, of these algorithms can be put into
this standard framework. For instance, the Refinement
and Construction Phases are sometimes merged into one

3 Actually [21] calls this the “Generic Subdivision Framework” but
we call it “Standard” to avoid confusing this with the earlier discussion
of “Generic Algorithms” based on infinitesimal input perturbation.

5

computation.
¶8. Lavender et al. [20]
This paper claims credit as the first paper to provide

a subdivision algorithm for Voronoi diagrams.4 The
objects inΩ are semi-algebraic sets [1]. To reduce the
complexity of estimating distances toΩ, they subdivide
the objects, in addition to the usual spatial subdivision.
Thus, this can be viewed as a generalization of our
standard framework. It has no Refinement Phase.

Subdivision Phase:This phase consists of two sub-
phases: Object division phase and a Voronoi division
phase. In the former phase,B0 is subdivided to obtain
a sequences of boxes covering the boundary of eachf ∈
Ω. The Voronoi division phases uses this covering off
to estimate the distance from a pointp to f . The distance
of any point to an object is thus an interval; if two such
intervals are disjoint then we know thatp is closer to
one object than other. We label every boxB with a
set of objectsφ̃(B) as follows: compute the distance
of B to the objects inΩ; consider the interval that has
the smallest lower and upper bound;φ̃(B) is the set of
all objects whose lower bound is in this interval. The
termination criteria are either|φ̃(B)| = 1, or the size
of B is smaller thanδ. If both tests fail, then subdivide
B. The φ̃-set of the children ofB is a subset of̃φ(B).

Construction Phase: The topology of the Voronoi
diagram inside each leaf box in the Voronoi division
phase is detected by solving a corresponding system
of multivariate polynomial equations. For solving these
system of equations, Newton-Raphson method is used.

The algorithm computesVor(Ω). It does not provide
any topological guarantees; in fact, the Newton-Raphson
method can fail if the starting point for the iteration
is not carefully chosen. Moreover, the use of a box-
covering for representing objects implies that boxes far
away from the actual Voronoi diagram may have more
than one labels, since the distance computation deviates
a lot from the actual distance. The algorithm does not
handle degeneracies.
¶9. Vleugels and Overmars [31] The inputΩ is

an indexed set containing convex compact sets. They
compute the distance function to the objects exactly;
this avoids the box-covering approach of Lavender et al.,
and hence the distance between the computed Voronoi
diagram and the actual Voronoi diagram is bounded.

Subdivision Phase:Instead of labeling the box, they
label the vertices ofB with a unique object fromΩ; in
case of ties, choose the object with the smallest index.
Let λ(B) be the set of labels assigned to the vertices.
If |λ(B)| > 1 then the Voronoi diagram intersectsB.
The termination criteria are similar to Lavender et al.:
either |λ(B)| = 1, or the size ofB is smaller thanδ.

4 Subdivision has been used earlier in the context of solid modeling,
for instance [33].

If both these fail, then subdivideB. The children ofB
inherit the labels of the vertices shared withB; for the
remaining vertices, we have to compute their distance
from Ω; this is unlike Lavender et al.

Refinement Phase:The algorithm balances the sub-
division tree.

Construction Phase:There is no explicit construc-
tion of the topology of the Voronoi diagrams inside cells
with more than one label and size smaller thanδ.

There is no topological guarantee. The only guarantee
is that if δ is small enough then the set of output boxes
forms a connected component if the Voronoi diagram is
connected. Their key observation is the following: there
is a δ such that for a boxB whose interior contains the
Voronoi diagram, ifw(B) < δ then either|λ(B)| > 1
or |λ(B′)| > 1, for some boxB′ adjacent toB. No
quantitative value forδ is given. The algorithm does
not handle degeneracies.
¶10. Boada et al. [2] Their setΩ of objects contains

arbitrary geometric objects in 2-D and 3-D. Similar to
Vleugels and Overmars, they assume that the distance
function for these objects can be computed exactly.
Moreover, the metric underlying the distance function
need not be euclidean. We describe their algorithm in
2-D. There is no refinement phase.

Subdivision Phase:Let B be a boxB in a sub-
division rooted atB0. The objects close toB are
categorized into three types: objects contained inB are
called anI-objects (internal objects); objects closest
to a vertex ofB than any other object are called a
V-object; objects that are notV-objects and are close
to some subset of an edge ofB are calledB-objects
(boundary objects). The termination criteria are either
the union of theI- objects,V-objects andB-objects of
B is a singleton set, or the size ofB is smaller than
δ. The subdivision process always maintains a queue
Q. While subdividing theI- objects,V-objects andB-
objects ofB are appropriately distributed amongst its
children. The crucial step in subdivision is checking the
coherence between two adjacent boxesB, B′: theV,B-
objects ofB andB′ should match on the shared vertices
or edges. If not then the larger box is subdivided. Note
that a box that was terminal can become non-terminal
in this step.

Construction Phase:Assuming no-degeneracies, the
boxes in the partition ofB0 fall into 7 different patterns
depending upon whether the number ofV -objects of the
box is 1, 2, 3 or 4. Depending upon this number and
the pattern of theV -objects, marching-cube type rules
are given to obtain an approximation to the Voronoi
diagram in each of the boxes; e.g., if there is an
edge whose vertices have differentV -objects then the
Voronoi diagram must intersect this edge.

There is no topological guarantee. The algorithm

6

does not work correctly if the Voronoi regions are
disconnected (this is mainly governed byδ). However,
they give a qualitative bound on how smallδ should be
to guarantee the connectedness of the Voronoi diagram.
The same bound also implies that all boxes contained
in the Voronoi region of an object will have theirV -
objects correctly labelled. The algorithm cannot handle
degeneracies.
¶11. Teichmann and Teller [30] The setΩ con-

sists of triangles in 3-D. Output is an approximation
to Vor(Ω). Unlike other approaches where the boxes
are labelled while subdividing, their labeling is done
after an initial subdivision phase. Also, they subdivide
tetrahedrons rather than boxes.

This phase consists of three sub-phases: a covering
phase, a propagation phase and a standard-subdivision
phase.

• Covering phase.B0 is subdivided until a covering
of Ω is obtained such that each boxB contains at
most one triangle (assuming no two triangles are
adjacent), and the six tetrahedrons that share the
vertices ofB and partition it do not contain more
than one corner fromΩ. ReplaceB by these six
tetrahedrons; letT be such a tetrahedron.

• In propagation phase a label setφ(T) ⊆ Ω is
computed for eachT . In this phase a conceptual
wavefront emanates from each feature inΩ at
time zero. The region where two wavefronts meet
corresponds to the Voronoi diagram. The setφ(T)
contains the input triangles whose wavefront meets
T . The timeframe between which wavefronts enter
and leaveT is smaller than twice its radius. Also
label the corners ofT with the triangle nearest to
it; let λ(T) be this set.

• Standard-subdivision: Subdivide eachT until ei-
ther some predetermined number of labels remain
(usually determined experimentally), or|λ(T)| ≤
|φ(T)|, or radius ofT < δ. While subdividingT ,
the label setφ of its children is a subset ofφ(T),
and is obtained by a proximity test.

Refinement Phase:T is subdivided by planes paral-
lel to its sides and passing through the edge midpoints
to get a balanced subdivision. Updateφ(T) and λ(T)
during refinement.

Construction Phase: The Voronoi diagram is ap-
proximated inside eachT depending upon the size of
φ(T) andλ(T). The canonical case is|λ(T)| = |φ(T)|.
So, e.g., if |φ(T)| = |λ(T)| = 2 then compute the
bisector of the two labels and intersect it withT ; if
|φ(T)| = |λ(T)| = 3 then intersect the three bisectors
and find the edge that intersect withT ; similarly, find
a Voronoi vertex insideT if |φ(T)| = |λ(T)| = 4.

Their algorithm computes an approximation to
Vor(Ω). It cannot handle degeneracies, and there is no

guarantee on the topology.
¶12. Etzion and Rappoport [10]: They compute

the Voronoi diagram of a bounded 3-D polyhedron.
They guarantee the correct topology of Voronoi Dia-
gram when there are no degeneracies. The setΩ is the
boundary complex of the 3-D polyhedron, andB0 is
a bounding box for the polyhedron. There refinement
phase is called as a subroutine in the construction phase.

Subdivision PhaseFor every boxB, the setφ(B) of
objects whose Voronoi region intersectsB is computed.
To introduce their termination criteria, we need to define
some special combinations of objects: A type-0 set of
objects consists of a corner and two collinear edges such
that the two edges are incident on the corner; a type-
1 set of objects consists of an edge and two coplanar
walls such that the edge is shared by the two walls. A
box B is a leaf if one of the following predicates hold:

• |φ(B)| ≤ 4.
• |φ(B)| = 5 andφ(B) contains either a type-0 or

type-1 set.
• |φ(B)| = 6 andφ(B) contains either two type-0,

or two type-1, or a pair of type-0 and type-1 sets.
• All the objects inφ(B) share a vertex.
• All the objects inφ(B) except one share a vertex

and a plane.
They show that if there are no degeneracies, then
eventually one of these predicate will be true. The set
φ(B) is computed by checking whether the bisector of
a pair of objects intersects a face ofB; this uses exact
arithmetic. To compute the label-set of the children of
B, we only need to consider the objects inφ(B).

Construction Phase: Given a boxB and its set
φ(B), they first detect Voronoi edge intersections with
the faces ofB. Since a bisector of two objects is a
quadratic surface, its intersection with a face ofB is
a conic. Thus checking if a Voronoi edge intersectsB
reduces to intersecting two conic sections. To detect a
Voronoi vertex inside a box, they use the following char-
acterization: A boxB contains a Voronoi vertex iff there
is an edge that intersects its boundary an odd number of
times. Since the edge-intersections are known, this test
can be easily implemented; they assume, though, that
every box has at most one Voronoi vertex. To construct
Voronoi edges, they further refine the subdivision until
no edge intersects the box more than twice; if an edge
intersects a boxB exactly twice then connect the two
edge-intersections on the boundary ofB. A Voronoi
face is determined by a sequence of edges that have the
same generator set.

Their algorithm is the first complete algorithm that
constructs a topologically correct Voronoi diagram of a
3-D polyhedron assuming no degeneracies. To handle
degeneracy, theδ cutoff parameter is used to stop
the subdivision process. The topology of the Voronoi

7

diagram is guaranteed in boxes of size greater thanδ.
Their algorithm differs from our algorithm in the use of
exact arithmetic, since they need to intersect two conic
sections exactly, thus introducing algebraic predicates.
Moreover, they do not use soft predicates.
¶13. Sud et al. [29] They consider the same problem

as Etzion and Rappoport and build upon their work.
Two key difference are the use of some soft predicates,
and computing an approximation to the Voronoi dia-
gram that is homotopy equivalent to the exact Voronoi
diagram.

Subdivision Phase:Similar to Lavender et al., a label
set φ̃(B) is computed forB. To compute this set they
use a soft predicate first introduced by Milenkovic [23].
Let m be the center andr the radius ofB. Let d(m,Ω)
be the distance fromm to the nearest object inΩ. An
object f ∈ Ω belongs to the label set̃φ(B) if the
distance fromf to m is smaller thand(m,Ω)+2r. They
also use two exclusion tests based upon upper bounds
on Voronoi regions for objects. A boxB is a leaf if one
of the following holds:

• |φ̃(B)| = 1.
• (The Homotopy Criterion) the intersection of the

Voronoi region of af ∈ φ̃(B) with the boundary
of B is homeomorphic to a disc, which ensures
that the Voronoi diagram insideB can be retracted
to a point.

• If B intersects a setS ⊆ Ω of objects, theñφ(B) ⊆
S, and there is at most one corner inS and all the
other objects must be incident on this corner. Such
boxes are called boundary boxes.

To test the homotopy criterion they first compute the
arrangements of the conics obtained by intersecting
the Voronoi regions of the objects iñφ(B) with the
faces of the boxB. The edges and the vertices in the
arrangement are labelled with the objects generating
them. A connected sequence of edges sharing a common
label f ∈ φ̃(B) form the boundary of the intersection
of the Voronoi region corresponding to the objectf
with the faces ofB. For computing an arrangement of
conics, they use an algorithm by Keyser et al. [16]. The
termination criteria for boundary boxes implies that the
Voronoi diagram of the objects inS always intersects
the boxes. For completeness, they show that a box will
eventually satisfy one of the three criteria.

Construction Phase:They first construct an approx-
imate Voronoi graphVor∗(Ω). For each box satisfying
the homotopy criterion, they place a node at its center
and connect it to the intersections of the conics on the
faces of the box. The rest of the construction phase is
similar to Etzion and Rappoport.

Their homotopic approach can handle near-
degenerate situations, i.e., vertices with more than 4
generators, since these configurations can be retracted

to a point. Their algorithm is also complete, though,
again it uses exact arithmetic.

¶14. Stolpner et al. [28] They also consider the
problem of computing the medial axis of a 3-D poly-
hedronΩ; let ∂(Ω) be the boundary of the polyhedron.
The boxB0 is a bounding box forΩ.

Subdivision Phase:Let D(p) := infq∈∂(Ω) ‖p − q‖,
p ∈ R

3, be the distance function associated withΩ.
Consider the gradient∇D : R3 → R

3 of D. For all
points on the medial axis,∇D is multivalued; for all
points not on the medial axis, it has a unique value.
Let S be the boundary of a sphere insideΩ. The
average outward flux of∇D throughS is defined as
AOFS(∇D) :=

∫ ∫
S
∇·NsdS∫ ∫
S
dS

, whereNS is the outward
normal of S. It is not hard to see that if the medial
axis does not intersectS then as the area ofS tends to
zeroAOFS(∇D) tends to zero. To computeAOFS , a
set of N points is chosen fromS and the discretized
versionAOF′

S of AOFS is computed. Given an initial
resolutionσ < 0, partition the interior ofΩ into boxes
of sizeσ. The algorithm will refine these boxes. A box
B is a leaf in one of the following hold:

• AOF′

S(∇) ≥ 0, where S is the circumscribing
sphere aroundB.

• Size ofB is less thanδ andAOF′

S(∇) < 0.

Construction Phase:To find the medial axis inside
a box B from the subdivision phase, the following
observation is crucial: Letq := p+γ∇D(p), for a scalar
γ such that thep + γ∇D(p) ∈ Ω; the segment[p, q]
intersects the medial axis iff∇D(p) 6= ∇D(q). Thus
to find a point near the medial axis insideB a binary
search can be done. By choosing more pointsp on the
boundary ofB, a pointwise approximation to the medial
axis insideB can be obtained.

Usually, the input consists of an angleα, and the
output consists of points on the medial axis that have
exactly two nearby points on the boundary ofΩ and the
angle between these nearby points is2α. In this case,
the testAOF′

S(∇) < 0 is replaced byAOF′

S(∇) < −c·
sinα, for some positive constantc < 1. Thus vertices on
the medial axis cannot be detected, since they have more
than two points on the boundary nearest to them. Their
algorithm only provides a one-sided approximation to
Vor(Ω) and no guarantee on the topology.

Milenkovic [23] has described another algorithm for
approximating Voronoi diagrams of 3-D polyhedron
The algorithm does use subdivision, but only as an
optimization step. The main emphasis of his approach
is to trace the Voronoi edges starting from Voronoi
vertices. He uses linear programming to detect Voronoi
vertices.

8

IV. Voronoi Diagram of Polyhedral Sets
To begin the development our new algorithm, we now

introduce some basic concepts. LetΩ ⊆ R
3. Call it a

polyhedral set if it is a closed set whose boundary
can be partitioned into a finite set of vertices, open line
segments and open triangles. Our goal is to compute an
ε-approximation ofVor(Ω). For most of this paper,Ω
may be assumed to be fixed.
¶15. Geometric Voronoi diagram. To define the

geometric Voronoi diagramVor(Ω), we begin with the
well-known concept5 of separation. ForA,B ⊆ R

d, the
separation betweenA andB is

Sep(A,B) := inf {‖a− b‖ : a ∈ A, b ∈ B} .

This function is symmetric:Sep(A,B) = Sep(B,A).
If A = {p}, we simply write Sep(p,B) instead of
Sep({p} , B). We also introduce the “set extension” of
Sep, denoted Sep(A,B) where

Sep(A,B) := {Sep(a,B) : a ∈ A} .

Note that Sep(A,B) is non-symmetric as
Sep(A,B) 6= Sep(B,A) in general. If A is a

connected set, then Sep(A,B) would be a real
interval. Theclearance of a point q ∈ R

d is just its
separation fromΩ,

Cℓ(q) = CℓΩ(q) := Sep(q,Ω).

The clearance ball of q is the closed ballD(q) =
DΩ(q) centered atq with radiusCℓ(q). SinceΩ is non-
empty,Cℓ(q) < ∞ andDΩ(q) ∩ Ω is non-empty. Call
q ∈ R

d a Voronoi point of Ω if DΩ(q) ∩ Ω contains
more than one point. Finally, theVoronoi diagram
Vor(Ω) is defined to be the set of Voronoi points ofΩ.
Observe that Voronoi points must lie in the complement
of Ω, and henceVor(Ω) ∈ R

d \ Ω.
¶16. Voronoi complex. Next we define the Voronoi

complex Vor(Ω). Recall that the boundary∂(Ω) is
partitioned into the boundary complexΦ(Ω) of vertices,
edges and triangles where edges are open line segments,
and triangles do not include their boundaries. Note that
the usual notion of faces ofΩ are maximum connected
planar subsets of∂(Ω), and these are polygons. In
order to get a simplicial complex, we arbitrarily split
such polygons into triangles. The simplices inΦ(Ω)
are calledfeatures. For any pointq ∈ R

3, defineφ(q)
to be the set of those features inΦ(Ω) that intersect
D(q). For B ⊆ R

d, the feature set φ(B) of B is⋃
{φ(q) : q ∈ B}.

5 In the Voronoi diagram literature,Sep(A,B) is frequently
called a “distance function” and denotedd(A,B). Unfortunately, it
fails the triangular inequality expected of distances:Sep(A,C) ≤
Sep(A,B) + Sep(B,C). For instance, the relations fails if
Sep(A,C) > 0 andB = A∪C. So for Euclidean sets, we generally
let d(A,B) denote the Hausdorff distance.

(r)

e−

(ii)

(b)

Z(e−)

Z(e+)

Z(e0) Z(e1)

e1e0

(i)

e+

Figure 2. (i) Zones of the oriented featuresS =
{
e0, e1, e

+, e−
}

.
(ii) Corner and Edge Features

For simplicity, we first focus on the planar setting.
Generalization of the basic definitions to 3-D is then
straightforward. As motivation, consider the case where
Ω is just the closed line segmentΩ0 whose boundary
complex has three features:

Ω0 = {(x, 0) : 0 ≤ x ≤ 1} , Φ(Ω) = {e, e0, e1}
(3)

where e = {(x, 0) : 0 < x < 1} is an open line seg-
ment, ande0, e1 are its two end points. The zoneZ(e)
of an open line segmente in the above example was an
infinite strip (the strip is an open set, not including its
boundary). We thus obtain a partition ofR2 into three
simple regions calledzones, Z(e0), Z(e1), Z(e). Z(e)
can be further refined as follows: regard the segment
e as two oriented segmentse+ and e−. These are
called oriented features, and their respective zones
Z(e+), Z(e−) are semi-infinite strips whose union is
the original strip, and whose intersection ise, where
a zone lies to the right of its directed segment. These
zones are illustrated in Figure2(a).

The zones in the above example can be neatly
captured if we introduce a variation of our separation
function Sep(A,B): define

Sep∗(A,B) :=







Sep(A,B) if [‖a− b‖ = Sep(A,B)]
for somea ∈ A, b ∈ B,

∞ else.

Call Sep∗(A,B) the ∗-separation of A from B.
Clearly, if A,B are closed sets thenSep∗(A,B) =
Sep(A,B). Relative to (Ω,Φ(Ω)), we define the
Voronoi region of f ∈ Φ(Ω) to be the setV (f)
comprising those pointsq in the complement ofΩ
whose∗-separation fromf is at most the∗-separation
from any other featureg:

V (f) :=
{

q ∈ R
2 \ Ω : (∀g ∈ Φ(Ω))Sep∗(q, f) ≤ Sep∗(q, g)

}

In the exampleΩ0 in (3) above, we now see the zone of
f ∈ {e, e0, e1} is just the Voronoi region off relative to
Φ(Ω0). More generally, for any featuref in a arbitrary
set Ω, the zoneZ(f) can be viewed as the Voronoi
region of f relative to a subsetΩ0(f) = {f, f0, f1}
defined as follows: iff is an edge, thenf0, f1 are the

9

two endpoints off ; if f is a corner, thenf0, f1 are the
two edges that sharesf as endpoint.

SupposeF ⊆ Φ(Ω) is a set with at least two
features. LetV (F) := ∩ {V (f) : f ∈ F}. We define a
Voronoi cell to be a connected component of a set of
the formV (F). The simplicial nature of our boundary
complexΦ(Ω) ensures that each cell is either a point or
homeomorphic to an Euclidean ball of some dimension
i = 1, . . . , d − 1. Moreover, for each Voronoi cellC
we associate the maximal setF of features that define
C. The collection of these cells constitute our Voronoi
complexVor(Ω).

The zone idea originated in Kirkpatrick [17]. Tradi-
tionally, it is viewed as a method to split a Voronoi
cell into simpler “subcells”. But in in our subdivision
setting, we view Kirkpatrick’s trick as an effective
“filtering” mechanism in computing soft predicates. We
next address a refinement of this filtering.

Henceforth, we assumeΩ is regularized meaning
that it is non-empty andΩ is equal to the closure of
its interior. The latter requirement says thatΩ does
not contain isolated points or line segments or slits,
for instance. Thus the setΩ0 in (3) is not regularized.
Recall that the geometric Voronoi diagramVor(Ω) lies
in the complement ofΩ, i.e., Vor(Ω) ∩ Ω is empty.
We shall now refine the zone idea to take advantage
of a regularizedΩ. For each featuref ∈ Φ(Ω), we
have defined its zoneZ(f). We now define theoriented
zoneZ∗(f) which has the property thatZ∗(f) ⊆ Z(f).
Computationally, replacingZ(f) by Z∗(f) will greatly
improve the effectiveness of zone filtering.

For a regularizedΩ ⊆ R
2, we can replace each

segmente by its oriented versione+ where we adopt the
convention that thesee+ result in a counter-clockwise
orientation around the boundary of each polygon ofΩ.
We defineZ∗(e) to be the zone ofe+. Note that locally,
arounde, Z∗(e) lies in the complement ofΩ.

For each corner featurec, we defineZ∗(c) as follows:
supposec is the endpoint shared by two edgese ande′.
Intuitively, we would like to define the zone ofc to be
R∩R′ whereR (resp.,R′) is the zone ofc when viewed
as an endpoint ofe (resp.,e′). The setR∩R′ is a cone
pointed atc. But we can do better: the cone, locally at
c, either lies inΩ or lies in the complement ofΩ. Since
the Voronoi diagram lies only in the complement ofΩ,
we may therefore defineZ∗(c) to be the empty set in
the former case, andZ∗(c) = R∩R′ in the latter case.

The definition of oriented zones is illustrated by the
non-convex pentagon (colored cyan) in Figure2(ii).
There are 5 corner features and 5 edge features in the
boundary complexΦ(Ω). For an edgee, Z∗(e) is an
semi-infinite strip (two such zones are colored pink in
Figure 2(ii)). For a cornerc, the oriented zoneZ∗(c)
is empty if c is a concave corner, and otherwise it is

a cone with apexc. Figure 2(ii) illustrates these two
possibilities (convex corner in red, concave corner in
blue).
¶17. Soft Predicates. The most basic predicate

we consider is the following: given a boxB, doesB
intersectVor(Ω)? This is encapsulated by the logical6

predicateC(B) that returns true iffB ∩ Vor(Ω) = ∅.
But our true interest is in the 3-valued predicateC̃(B),

C̃ : B 7→ {IN, ON, OUT}

that approximatesC(B) in the following sense:
(1) Conservative:̃C(B) = IN impliesC(B) is true, and
C̃(B) = OUT impliesC(B) is false.
(2) Convergent: for any sequence{Bi : i ≥ 0} of boxes
that converges to a pointp, C̃(Bi) will converge toIN
(resp.,OUT) if p ∈ Vor(Ω) (resp.,p 6∈ Vor(Ω)).

Thus theON-answer is viewed as an indecisive an-
swer, as opposed to the decisiveIN- or OUT-answers.
We used the “distributional technique” to evaluate such
soft predicates. Recall the notion of the feature set
φ(B), comprising those features that are closest to some
point B. But for soft predicates, we prefer to define
the setφ̃(B) that is an approximation ofφ(B). The
influence discD(B) of B is centered atmB with radius
Cℓ(mB)+2rB . We say that featuref belongsto a box
B if the D(B)Z∗(f) is non-empty. In particular, we
have

Sep(m(B), f) ≤ Cℓ(m(B)) + 2r(B). (4)

This conservative predicate was first used by Milenkovic
[23]. Let φ̃(B) denote the set of features that belongs
to B. For example, in Figure3(a), the cornerf and
two edgesg, h belongs to the boxB. Thus φ̃(B) =
{f, g, h}. But in Figure 3(b), the cornerf does not
belong toB becauseZ∗(f) is empty. We say a set
of featuresφ̃(B) is inseparable if |φ̃(B)| = 1 or there
exists a cornerc ∈ φ̃(B) such that for each feature
g ∈ φ̃(B), g 6= c implies g is an edge with an endpoint
at c. Thus, the set̃φ(B) is inseparable in Figure3(a)
but separable in Figure3(b).

The key properties are:

LEMMA 3.
(i) Conservative:φ(B) ⊆ φ̃(B).
(ii) Convergent: Let(Bi : i ≥ 0) be an infinite sequence
of boxes that strictly converges to a pointq: Bi → q as
i → ∞. Thenφ̃(Bi) → φ(q), i.e., φ̃(Bi) = φ(q) for i
sufficiently large.
(iii) Distributional: If B′ is a child ofB, thenφ̃(B′) ⊆
φ̃(B).

This lemma implies that no feature outside ofφ̃(B)
has any influence on the Voronoi diagram restricted to

6 By “logical predicate”, we mean a standard 2-valued truth
function. Geometric predicates tend to be 3-valued.

10

f

g

g

h
mB

Cℓ(mB) + 2rB

(a) inseparable (b) separable

mB

f

h

Figure 3. (a)φ̃(B) = {f, g, h} is inseparable, (b)̃φ(B) = {g, h}
is separable

B, and that whenB is small enough,̃φ(B) = φ(B). The
distributional property ensures that when we split a box,
the children only need to inherit features from its parent.
The basic idea for defining the soft predicatẽC(B)
is defined to beON as long asφ̃(B) is not “simple”.
When φ̃(B) is “simple”, we will determine ifC̃(B) is
IN or OUT. Moreover, by repeated subdivision of boxes,
eventuallyφ̃(B) will be “simple”.

V. Subdivision Algorithm for the Voronoi
Complex

We now describe a new algorithm for computing an
ε-approximation of the Voronoi complexVor(Ω) for a
non-degenerate polygonal setΩ ⊆ R

2. The input is the
polygonal setΩ represented by its boundary complex
Φ(Ω), a resolution parameterε > 0 and an initial box
B0. The output will be anε-approximation ofVor(Ω)
restricted toB0. To avoid the issues of boundary pro-
cessing (cf. [4]), we assume that∂B0 is nice (has no
Voronoi vertices or tangential intersection with Voronoi
curves). Our algorithm follows the standard subdivision
algorithm of¶7 with its three Phases.

For simplicity, our description below assumesε =∞,
i.e., we are only concerned with topological correctness
and not geometric accuracy. A simple method to enforce
a finiteε-bound is to further subdivide any box that po-
tentially contains Voronoi points during the Refinement
Phase. More efficient methods can be devised, as a post-
processing Phase. We address this in the full paper.
¶18. Subdivision Phase.We only have to describe

the box predicateC(B) which provides the termination
criterion. We use the standard distributional approach:
for each boxB in the subdivision tree, we maintain
its feature setφ̃(B) and labels for each vertex of
B. In general, for any pointq, its label λ(q) is the
featuref which is closest toq subject toq ∈ Z∗(f).
Note thatλ(q) is undefined ifq belongs to noZ∗(f);
labels need not be unique, but we break ties arbitrarily.
The predicateC(B) is a conjunction of three simpler
predicates,C(B) ≡ C0(B) ∧ C1(B) ∧ C2(B) where

• C0(B) says|φ̃(B)| ≤ 3.
• C1(B) says: if Cℓ(mB) < rB then φ̃(B) is an

inseparable set.
• C2(B) says that if B is “(f, g)-special” then

Cℓ(mB) ≤ (3r2B)/(2α) whereα = Sep(f, g).
We must explain the concept of a “special” box here in
C2(B). A pair (f, g) of features is called aparabola
generator if f is a corner andg an edge, andZ∗(f)∩
Z∗(g) is non-empty. A boxB is said to be(f, g)-special
(or simply special) if the following three conditions
hold:

• (i) [B is g-monochromatic] The four vertices ofB
are all labeled withg.

• (ii) [B is free of features]Cℓ(mB) > rB
• (iii) [B has potential incursion]f, g ∈ φ̃(B) where

(f, g) is a parabola generator. It generates the
special parabolaof B.

One might naively conclude from condition (i) thatB
belongs to the Voronoi region ofg. Vleugels-Overmars
[31] points out this fallacy, and invoked a lemma
of Siersma to show that if the boxes are subdivided
“sufficiently”, then Voronoi bisectors must be detected
in a box adjacent toB. Our analysis provides explicit
bounds for detecting this condition and this is encoded
in our definition of special boxes.

LEMMA 4. If Ω is non-degenerate, then the Subdivision
Phase halts.

¶19. Refinement Phase. Following Vleugels-
Overmars [31], we balance the subdivision in this Phase
(i.e., split a box if it more than twice the size of a
neighbor). More precisely, at the start of this phase,
boxes satisfy|φ̃(B)| ∈ {1, 2, 3}. The candidate boxes
are those with|φ̃(B)| > 1, as these may contain Voronoi
points. It suffices to balance candidate boxes; this is
easily done using a priority queue.
¶20. Construction Phase. Our goal is to introduce

nodeswhich are either points in the interior of a box
(representing Voronoi vertices) or the interior of box
edges (representing via points for Voronoi curves). We
also need to introducearcs which connect these nodes,
representing portions of Voronoi curves. The resulting
graphG = (N,A) whereN is the node set andA the
arc set will be anε-approximation ofVor(Ω). Figure4
illustrates such nodes and arcs.

Let S be the subdivision ofB0 at the end of the
Refinement Phase. Asegmentrefers to a side of a box
in S that contains no vertices. Because of balancing, the
side of a box inS is either a segment or the union of
two segments. A segment ismonochromatic or bichro-
matic depending on whether its endpoints have identical
or different labels. Recall that a box is monochromatic
if all its vertices have the same label; we now say it is
fully monochromatic if every segment in its boundary

11

∗

−

− −++

+

+

(a+)

+

−

+

∗

+

(b+)

−

−

(d)
++

−

+

+−

(e)

h

+

(g)

+−

KEY
− ∗LABELS:

(a)

+ +

−

−

(b)
+

+

f g

NODES:

ARCS:
+

(f)

−

−

(c)

+

+

+

−

+

+

+

∗∗

+

−

−−

Figure 4. Some connection rules based on Labels.

is monochromatic. The main basis for introducing nodes
is the presence of bichromatic segments. The simplest
examples are shown Figure4(a,b,c) when the box has
only four segments. Case(c) cannot arise when there
are only kinds of labels. Figure4(a+,b+) are similar
to Cases(a,b) (respectively) but in situations where the
box has more than 4 segments. As a default, we place
the nodes in the middle of the segment, but simple
interpolations can produce more accurate placements
(we do not do exact computations to place the nodes as
they may have irrational coordinates). Besides bichro-
matic segments, there are two other basis for introducing
nodes: in the middle of a box for Voronoi vertices, and
there is also a possibility to introduce two nodes in a
segment.

Arcs are introduced inside each box, connecting
nodes on its boundary or its interior. As a default, we
use a straightline segment for an arc; the exception is
when we connect two nodes on the same side, as in
Figure4(g). Observe that each box has at most two arcs,
unless there is an interior node in which case there are
three arcs.

(b) separable but disconnected

mB

g

f

(c) separable but disconnected

g

f
mB

Cℓ(mB) + 2rB

g

f
mB

(a) separable and connected

Figure 5. φ̃(B) is separable: (a)Ω ∩ D(B) is connected. (b,c)
Ω ∩D(B) is disconnected.

¶21. Boxes with two features. Let us first process
the boxesB with only two features, sayf andg.

• DiscardB if φ̃(B) is inseparable or (Cℓ(B) < r
andD(B)∩Ω is a connected set). See Figure5(a).

• SupposeCℓ(B) < r andD(B)∩Ω is disconnected
(see Figure5(b) and (c)). Intersect the bisector of
f, g with the boundary ofB: if there are two inter-
section points (this happens only in Figure5(b)),
introduce two nodes and connect them with a
straightline segment as arc.

• Otherwise, we introduce a node in each bichro-
matic segment ofB. Either two or no node will
be introduced. In the former case, we introduce an
arc connecting them. The arc is generally a line
segment, but if two nodes belong to one side of
B, we use two line segments. See Figure5(b).

(a) (d) (e)
q1 q2

(b)

q

p p1 p2

q1 q2
(c)

−∗

−

−

++

−

∗

+

∗ −

+∗ −

∗ −

∗ −

−∗

−∗ +

+

Figure 6. Voronoi Vertex Test: (a) Fails (reduced to 2 features)
(b) Fails (three distinct labels) (c) Fails (two distinct labels) (d) Fails
(three distinct labels) (e) Passes (two distinct labels)

¶22. Boxes with three features.Next assumẽφ(B)
has three features,f, g and h. Wlog, assume thatf, g
have the same type (both corners or both edges). The
following computation constitutes theVoronoi Vertex
Test:

• Check if the straightline bisector off, g intersects
B. If it does not, the Testfails. We can discard
either f or g. Then the construction is reduced
to the previous case where|φ̃(B)| = 2. See
Figure6(a).

• Otherwise, suppose the bisector intersectB at the
points p, q. To be specific, we may direct the
bisector fromp towardsq with the property that
the approach begins from points which are closer
to f andg than toh. We may further assume that
the labels ofp andq are neverg (that is, if the label
could beg, we simply choosef as tie breaker). We
have three possibilities:

• If λ(p) = λ(q) = f , the Testfails. In this case,
we introduce two nodes in the segments containing
p and q respectively, and also an arc to connect
them. The featureh has no role in this box (i.e.,
h /∈ φ(B)). See Figure6(b).

• If λ(p) = λ(q) = h, the Testfails. Consider the
segment containingp: this segment is split into
two subsegments byp; similarly, q introduces two
subsegments. We check the subsegments and any
original segments ofB lying to one side ofpq,
to see if any is bichromatic (wherep, q have label
h). If so, we introduce nodes as usual. This will
introduce either no node or two nodesp1, q1. We
connect p1, q1. Similarly, we may introduce no
nodes or two nodesp2, q2 on the other side ofpq.
Figure6(c) illustrates the case where we introduced
four nodes in this way.

• If λ(p) = f, λ(q) = h, the Testpasses. This means
we have confirmed the presence of a Voronoi

12

vertex insideB. We introduce a nodev in interior
of B to represent the Voronoi vertex. There are
now two possibilities:

(1) B has three bichromatic segments, representing
the three Voronoi curves generated byf, g, h
in pairs:(f, g), (g, h), (f, h). We introduce three
nodes in the usual way, and join each of them
to thev. See Figure6(d).

(2) B has two bichromatic segments. These are
necessarily labeled byf and g. Moreover, one
of them contains the pointq. We introduce a
node in the segment containingp and two nodes
q1, q2 on either side of the segment containing
q. See Figure6(d).

The correctness of our algorithm comes from the
following properties. LetG = (N,A) be the PSLG
constructed above. The nodes inN are calledvia nodes
if they lie in the interior of a segment, and they are
called vertex nodes if in the interior of a box. A
maximal path in the graphG = (N,A) refers to a
path inG whose endpoints have degrees different than
2.

LEMMA 5. (a) Each via node has degree2 and each
vertex node has degree3.
(b) Each Voronoi vertex inVor(Ω) is isolated in some
box that passes the Voronoi Vertex Test.
(c) Each Voronoi curvec in Vor(Ω) is associated with
a maximal pathc̃. Moreover, there is an isotopyIc :
[0, 1] → R

2 from c to c̃ which respects the vertices of
boxes.Ic also respect the sides of non-special boxes.

THEOREM 6. (Correctness) AssumingΩ is non-
degenerate, our algorithm halts and the output graph
G = (N,A) is an approximation to the Voronoi complex
Vor(Ω).

¶23. Remarks. Although the basic primitives are
simple, the correctness arguments are intricate and will
appear in the full paper (and our webpages). An inter-
esting remark is that our algorithm is almost exclusively
relying on local isotopy (i.e., the arc connections within
each subdivision box is isotopic to the actual Voronoi
curves in the box). A mild exception is the case of
special boxes; non-local isotopy was first exploited by
Plantinga-Vegter [26], [21].

VI. Implementation and the Role of Filters

We have a preliminaryC++ implementation of our
new algorithm, freely available in our open-source Core
Library [38]. Our input files and test results are archived
there. The full paper will include experimental compar-
isons with known exact algorithms.
¶24. What is a Purely Numerical Algorithm? It is

important to understand the claim that our algorithm is

“purely numerical”. It means that all our predicates can
be reduced to comparisons of the formx < y (or x ≤ y)
wherex, y are computed quantities. Typically,x, y are
clearances or separations between features. But dis-
tances are irrational functions (involving square-roots)
of the input parameters. For exposition, we write them
in exact terms. But we do not (should not) compute
them exactly. One should think of all these quantities
x, y as intervals. We only require the widths of these
intervals to approach0 as r(B) → 0. An consequence
of this interpretation is that “x < y” is a one-sided test;
failure of the test does not imply “x ≤ y”. Our current
implementation is based on naive machine arithmetic,
and suffices for our demos. We plan to use the number
types ofCore Library [38] that can provide such
interval functionalities. The key difference between soft
predicates and usual exact predicates is termination is
based on non-degeneracy (or cut-offs), not zero-bounds.

In our Construction Phase, we prescribe certain oper-
ations by intersecting pairs of lines. This could be done
exactly if we are willing to use rational arithmetic. But
even this should be avoided as we wish to use dyadic
numbers (BigFloats) only. A correct implementation can
easily replace these by approximations.

¶25. Filters. The performance of exact numerical
algorithms depends critically on the design of effica-
cious filters. This theme is well-known from the Exact
Geometric Computation [37]. In our setting, filters are
aimed at preventing unnecessary subdivision. We pro-
vide two examples here. To measure the effectiveness of
the filters, we count number of subdivision boxes. Both
examples show two orders of magnitude improvements.
(a) The above definition of the predicateC1(B) is
sufficient for correctness. But we can redefineC1(B)
as:

Cℓ(mB) < rB implies{
φ̃(B) is an inseparable set, or

φ̃(B) = {e1, e2} where eachei is an edge
.

The extra filter condition, wherẽφ(B) = {e1, e2} is
illustrated in Figure5(a,b,c). The advantages of using
this extra filter is seen in Figure 7(a,b).

(b) As another example, we show the effects of turning
on the zone filterZ(f) and the oriented zone filter
Z∗(f). The former filter says that ifB ∩ Z(f) = ∅
then f /∈ φ̃(B). The latter is similar, except that we
useZ∗(f) instead ofZ(f). We can see the dramatic
reduction in the size of the subdivision for a relatively
simple input in Figure 8(a,b,c).

13

(a) using the originalC1 filter (b) using the newC1 filter

Figure 7. (a) Original with 11,932 boxes, (b) New with 169 boxes.

(a) (b) (c)

Figure 8. (a) Without Zone filter (13777 boxes), (b) With Zonefilter
(493 boxes) and (c) With Zone∗ filter (112 boxes)

VII. Conclusions

The 20-year old quest of Computational Geometers
for an exact Voronoi Diagram offers an object lesson
about computational models and their limitations. The
exact viewpoint of geometric computation offered by
Semi-Algebraic Geometry and Computational Geom-
etry is the “gold standard”, and rightly so. But that
does not mean that our computational goals must al-
ways be these ideal objects. Most practical applications
have no need for these ideal objects. What is often
needed is a resolution-bounded approximation of such
ideals. Instead of exact geometric primitives in standard
computational models, we can use soft primitives that
converge to the exact primitives in the limit. Highlight-
ing such primitives is a necessary step towards laying
a sound foundation for deeper algorithmic analysis in
this field. Moreover, non-trivial complexity analysis of
such algorithms remain largely undeveloped.

In this paper, we designed a new algorithm for the
Voronoi complex of polygonal sets. Our preliminary
implementation of the algorithm (available from [38])
shows great promise. There remain many fundamental
issues to be addressed even for this algorithm: weakened
correctness inδ-cutoff, analysis of numerical approxi-
mations, and complexity analysis.

We have also applied our viewpoint to the problem
of motion planning [32], [34], isotopic approximation of
curves [21] and even root isolation [27]. The resolution-
bounded view point has been around for a long time and

permeates many subjects. For instance, convergence is
the central to numerical computing. But it has made
few in-roads into Computational Geometry so far. We
believe that exciting new and practical algorithms will
emerge when the breakthrough comes.

Acknowledgment
Yap’s work is supported in part by NSF Grant CCF-

0917093. Lien’s work is supported in part by NSF Grant
IIS-096053.

References

[1] S. Basu, R. Pollack, and M.-F. Roy.Algorithms in Real
Algebraic Geometry. Algorithms and Computation in
Mathematics. Springer, 2003.

[2] I. Boada, N. Coll, N. Madern, and J. A. Sellarés. Approx-
imations of 2d and 3d generalized Voronoi diagrams.
Intl. J. of Computer Mathematics, 85(7):1003–1022,
2008.

[3] C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneracy
in geometric computations. InProc. 5th ACM-SIAM
Symp. on Discrete Algorithms, pages 16–23, 1995.

[4] M. Burr, S. Choi, B. Galehouse, and C. Yap. Complete
subdivision algorithms, II: Isotopic meshing of singular
algebraic curves.J. Symbolic Computation, 47(2):131–
152, 2012. Special Issue for ISSAC 2008.

[5] CGAL, Computational Geometry Algorithms Library.
http://www.cgal.org.

[6] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf.Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, 1997.

[7] H. Edelsbrunner and E. P. M̈ucke. Simulation of sim-
plicity: a technique to cope with degenerate cases in
geometric algorithms.ACM Trans. Graph., 9:66–104,
1990.

[8] I. Z. Emiris and M. I. Karavelas. The predicates of
the Apollonius diagram: Algorithmic analysis and imple-
mentation.Comput. Geometry: Theory and Appl., 33(1–
2):18–57, 2006. Special Issue on Robust Geometric
Algorithms and their Implementations.

[9] I. Z. Emiris, E. P. Tsigaridas, and G. M. Tzoumas. The
predicates for the Voronoi diagram of ellipses.22nd
ACM Symp. on Comp. Geom., 2006.

[10] M. Etzion and A. Rappoport. Computing Voronoi
skeletons of a 3-d polyhedron by space subdivision.
Computational Geometry, 21:87–120, 2002.

[11] H. Everett, C. Gillot, D. Lazard, S. Lazard, and
M. Pouget. The Voronoi diagram of three arbitrary lines
in r3. In 25th European Workshop on Computational
Geometry (EuroCG’09), 2009. Mar 2009, Bruxelles,
Belgium.

14

[12] H. Everett, D. Lazard, S. Lazard, and M. S. E. Din. The
Voronoi diagram of three lines.Discrete and Comp.
Geom., 42(1):94–130, 2009. See also 23rd SoCG, 2007.
pp.255–264.

[13] S. J. Fortune. A sweepline algorithm for Voronoi
diagrams.Algorithmica, 2:153–174, 1987.

[14] J. E. Goodman and J. O’Rourke, editors.Handbook of
Discrete and Computational Geometry. CRC Press LLC,
1997.

[15] M. Hemmer, O. Setter, and D. Halperin. Constructing
the exact Voronoi diagram of arbitrary lines in three-
dimensional space. InAlgorithms ESA 2010, volume
6346 ofLecture Notes in Computer Science, pages 398–
409. Springer Berlin / Heidelberg, 2010.

[16] J. Keyser, T. Culver, D. Manocha, and S. Krishnan.
Mapc: A library for efficient and exact manipulation
of algebraic points and curves.ACM Symp. on Comp.
Geom., 15:360–369, 1999.

[17] D. G. Kirkpatrick. Efficient computation of continuous
skeletons. IEEE Foundations of Comp. Sci., 20:18–27,
1979.

[18] R. Klein. Concrete and abstract Voronoi diagrams.
Lecture Notes in Computer Science, No. 400. Springer-
Verlag, Berlin, 1989.

[19] V. Koltun and M. Sharir. Polyhedral Voronoi diagrams
of polyhedra in three dimensions.Discrete and Comp.
Geom., 31:83–124, 2004.

[20] D. Lavender, A. Bowyer, J. Davenport, A. Wallis, and
J. Woodwark. Voronoi diagrams of set-theoretic solid
models. IEEE Computer Graphics and Applications,
12(5):69–77, 1992.

[21] L. Lin and C. Yap. Adaptive isotopic approximation
of nonsingular curves: the parameterizability and non-
local isotopy approach. Discrete and Comp. Geom.,
45(4):760–795, 2011.

[22] K. Mehlhorn and S. N̈aher. LEDA: a platform for
combinatorial and geometric computing.Comm. of the
ACM, 38:96–102, 1995.

[23] V. Milenkovic. Robust construction of the Voronoi
diagram of a polyhedron, 1993. Univ.of Waterloo,
Ontario, Canada. Aug 5-9, 1993.

[24] C. Ó’Dúnlaing, M. Sharir, and C. K. Yap. Retraction: a
new approach to motion-planning.ACM Symp. Theory
of Comput., 15:207–220, 1983.

[25] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu.Spatial
Tessellations — Concepts and Applications of Voronoi
Diagrams. John Wiley and Sons, 2nd edition edition,
2000.

[26] S. Plantinga and G. Vegter. Isotopic approximation of
implicit curves and surfaces. InProc. Eurographics
Symposium on Geometry Processing, pages 245–254,
New York, 2004. ACM Press.

[27] M. Sagraloff and C. K. Yap. A simple but exact
and efficient algorithm for complex root isolation. In
I. Z. Emiris, editor,36th Int’l Symp. Symbolic and Alge.
Comp. (ISSAC), pages 353–360, 2011. June 8-11, San
Jose, California.

[28] S. Stolpner, S. Whitesides, and K. Siddiqi. Sampled
medial loci for 3d shape representation.Computer Vision
and Image Understanding, 115(5):695–706, 2011.

[29] A. Sud, M. Foskey, and D. Manocha. Homotopy-
preserving medial axis simplification.Int. J. Comput.
Geometry Appl., 17(5):423–451, 2007.

[30] M. Teichmann and S. Teller. Polygonal approximation
of voronoi diagrams of a set of triangles in three dimen-
sions. LCS Technical Report 766, MIT, 1998.

[31] J. Vleugels and M. Overmars. Approximating general-
ized Voronoi diagrams in any dimension. Technical Re-
port UU-CS-1995-14, Department of Computer Science,
Utrecht University, 1995.

[32] C. Wang, Y.-J. Chiang, and C. Yap. On soft predicates
in subdivision motion planning, 2012. Submitted, April
20, 2012: Symp. on Geometric Processing (SGP).

[33] J. Woodwark and A. Boyer. Better and faster pictures
from solid models. Computer-Aided Eng., 3(1):17–24,
February 1986.

[34] C. Yap. Theory of soft subdivision search and motion
planning, 2012. Submitted.

[35] C. K. Yap. An O(n log n) algorithm for the Voronoi
diagram for a set of simple curve segments.Discrete and
Comp. Geom., 2:365–394, 1987. Also: NYU-Courant
Institute, Robotics Lab., No. 43, May 1985.

[36] C. K. Yap. A geometric consistency theorem for a
symbolic perturbation scheme.J. Computer and System
Sciences, 40(1):2–18, 1990.

[37] C. K. Yap. In praise of numerical computation. In S. Al-
bers, H. Alt, and S. N̈aher, editors,Efficient Algorithms,
volume 5760 ofLect. Notes in C.S., pages 308–407.
Springer-Verlag, 2009.

[38] J. Yu, C. Yap, Z. Du, S. Pion, and H. Bronnimann. Core
2: A library for Exact Numeric Computation in Geom-
etry and Algebra. In3rd Proc. Int’l Congress on Math-
ematical Software (ICMS), pages 121–141. Springer,
2010. LNCS No. 6327.

15

	What is so hard about the Voronoi Diagram of Polyhedra?
	Resolution-Bounded Solutions
	Literature Review
	Voronoi Diagram of Polyhedral Sets
	Subdivision Algorithm for the Voronoi Complex
	Implementation and the Role of Filters
	Conclusions
	References

