
Eurographics Symposium on Geometry Processing 2016

Maks Ovsjanikov and Daniele Panozzo

(Guest Editors)

Volume 35 (2016), Number 5

Planar Minimization Diagrams via Subdivision

with Applications to Anisotropic Voronoi Diagrams

H. Bennett1, E. Papadopoulou2† and C. Yap1‡

1Courant Institute, NYU, New York, USA
2Faculty of Informatics, USI, Lugano, Switzerland

Abstract

Let X = { f1, . . ., fn} be a set of scalar functions of the form fi : R2→ R which satisfy some natural properties. We describe a

subdivision algorithm for computing a clustered ε-isotopic approximation of the minimization diagram of X. By exploiting soft

predicates and clustering of Voronoi vertices, our algorithm is the first that can handle arbitrary degeneracies in X, and allow

scalar functions which are piecewise smooth, and not necessarily semi-algebraic.

We apply these ideas to the computation of anisotropic Voronoi diagram of polygonal sets; this is a natural generalization

of anisotropic Voronoi diagrams of point sites, which extends multiplicatively weighted Voronoi diagrams. We implement a

prototype of our anisotropic algorithm and provide experimental results.

Categories and Subject Descriptors (according to ACM CCS):

I.3.5 [Computer Graphics]: Computational Geometry and Ob-

ject Modeling—Geometric algorithms; F.2.2 [Analysis of Algo-

rithms and Problem Complexity]: Nonnumerical Algorithms and

Problems—Geometrical problems and computations; G.1.0 [Nu-

merical Analysis]: General—Interval arithmetic; G.1.2 [Numerical

Analysis]: Approximation—Approximation of surfaces and con-

tours; G.4 [Mathematical Software]: —Algorithm design and anal-

ysis.

1. Introduction

Voronoi diagrams have been extensively studied in Computational

Geometry [AK00, AKL13, BWY06] and find applications in many

areas [OBSC00]. As Voronoi diagrams can be defined in many dif-

ferent ways, let us informally indicate the kind that concerns us.

Given a set S = {S1, . . . ,Sn} of sites, the Voronoi diagram of S is

a partition of an ambient space into Voronoi regions. Each region

belongs to a site Si, comprising those points that are “nearest” to Si.

In our setting the ambient space is R2 and each site Si is a closed

subset of R2 associated with a norm ‖ · ‖Si
.

The Voronoi diagrams in Figures 1–2 are defined by a set S
of three polygons (triangle, square, pentagon) with various norms

specified by multiplicative weights. If their weights are (1,1,1)
then this corresponds to their usual Euclidean Voronoi diagram

shown in Figure 1(a). By increasing the weight of the triangle to

† Evanthia is supported by SNSF #20GG21-134355, #200021E-154387.
‡ Chee and Huck are supported by NSF Grant #CCF-1423228.

(a) Weights (1,1,1) (b) Weights (2,1,1)

Figure 1: Voronoi diagram of three polygons: unweighted and

weighted

2 in Figure 1(b) or to 4 in Figure 2(a), we see its Voronoi region

growing and those corresponding to other sites shrinking. The dia-

gram itself is computed by a subdivision process (using quadtrees)

to any desired geometric precision ε > 0. By choosing smaller ε,

we can obtain an arbitrarily more accurate representation as in Fig-

ure 2(b). However, our algorithm guarantees the correct topology,

regardless of ε. Interestingly, weighted Voronoi diagrams of poly-

gons generate all, and only, conic curves (see [Yap87] for another

such class).

More precisely, our goal is to compute an ε-isotopic approxi-

mation of Vor(S) restricted to a given box region B0 ⊆ R
2. The

input to our algorithm is (S ,ε,B0), and the output is an embedded

planar graph G = (V,E). Here, Vor(S) is a collection of pairwise

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John

Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

2 H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams

(a) Weights (4,1,1) (b) Computed with smaller ε

Figure 2: Voronoi diagram of three polygons with Weights (4,1,1)

disjoint cells (subsets of R2) of dimensions 0,1,2 called Voronoi

vertices, Voronoi curves and Voronoi regions (respectively). It is

necessary to slightly extend the standard algebraic topology notion

of a cell complex [Mun84]: our cells are connected subsets of R2

which are homeomorphic to a finite union of open Euclidean balls.

Our Voronoi vertex is a singleton as usual, but our Voronoi curve

can be a finite or infinite curve or a closed loop; our Voronoi re-

gion need not be simply-connected (i.e., it may have one or more

holes). Such non-standard cells are illustrated in Figure 2. In the

planar setting, what is usually called the “Voronoi diagram” of S is

just the subset of Vor(S) in which the Voronoi regions are omitted.

Write Vor1(S) for this subset; in Figures 1–2, this set is indicated

in red. The ability to freely specify different norms with each site

is a useful extension of weighted Voronoi diagrams.

This paper provides an algorithm to compute approximations of

these Voronoi diagrams that are topological correct (up to isotopy)

and geometrically accurate (up to ε in Hausdorff distance). Notably,

our algorithm is able to handle arbitrary degeneracy through the

concept of ε-clusters of Voronoi vertices. In fact, as we shall imme-

diately proceed to greatly generalize the setting of our algorithm:

sites are replaced by scalar functions, and Voronoi diagram by min-

imization diagrams.

1.1. Minimization Diagrams.

The above Voronoi diagrams can be generalized to the notion of

“minimization diagrams” defined for any set X of scalar func-

tions. Each f ∈ X is a Lipshitz continuous function of the form

f : dom(f)→ R, with dom(f) ⊆ R
2. For example, we associate a

scalar function, called a separation function to each site Si ∈ S as

follows:

SepSi
: dom(Si)→ R

where SepSi
(p) := inf{‖p− q‖Si

: q ∈ Si} and dom(Si) :=R
2 \ Si

(the complement of Si). Minimization diagrams were introduced

by Edelsbrunner and Seidel [ES86], and their computation has been

addressed by various authors (see Emiris, Mantzaflaris and Mour-

rain [EMM13] and references therein).

For any subset Y ⊆ X , the domain of Y is dom(Y) :=

⋂{dom(f) : f ∈ Y}, and its Voronoi variety is

Vvar(Y) :=
{

p ∈ dom(Y) : (∀ f ,g ∈ Y)
[

f (p) = g(p)
]}

. (1)

When Y = { f ,g}, f 6= g, we write Vvar(f ,g) for Vvar(Y), calling

it the bisector of f and g. Relative to X , the Voronoi semi-variety

of Y is

Vvar(Y ;X) :=
{

p ∈ Vvar(X) : (∀ f ∈ Y)(∀g ∈ X \Y)
[

f (p)< g(p)
]}

.

(2)

Each connected component of a non-empty semi-variety

Vvar(Y ;X) is called a Voronoi cell of X (defined by Y). The

Voronoi complex of X , denoted Vor(X), is defined as the partition

of dom(X) into Voronoi cells of X . We may interchangeably call

Vor(X) the minimization complex of X . Our original Voronoi

complex of S can now be defined as Vor(X) where X comprises

the separation function SepSi
for each Si ∈ S .

There are two issues with arbitrary minimization diagrams: (a)

We have no assurance that for a general X , the concept of Vor(X)
has nice geometric properties that we have come to expect from

standard examples. (b) It is unclear how to compute or approx-

imate Vor(X). One solution to these two issues is provided by

Klein’s [Kle89] concept of abstract Voronoi diagrams (AVD). He

introduces axioms that control the interaction of any pair of bisec-

tors (they intersect in a finite number of connected components) and

ensure that the Voronoi regions of Vor(Y) is (path-)connected for

all Y ⊆ X . Unfortunately, these axioms exclude many interesting

examples such as the Voronoi diagrams in Figure 2. A more seri-

ous issue is the (implicit) computational model for AVD: it assumes

a Real RAM computational model which has the capability to de-

termine the (exact) intersection points of two bisectors; if there are

multiple intersection points on a bisector, we can sort them along

the bisector; if multiple bisectors have a common intersection v, we

can circularly sort the bisectors around v, etc. Such capabilities are

known to be computable if the bisectors are algebraic curves, but

their exact implementation is expensive and rarely done. For non-

algebraic functions, it is not even clear that these capabilities are

Turing-computable (see [CCK∗06]).

1.2. Computational Model: Subdivision and Soft Predicates.

In this paper, we initiate an alternative approach to computing mini-

mization diagrams. The starting point is a numerical computational

model based on interval methods (see e.g., [LY11a]). We basically

need the ability to compute interval analogues of the scalar func-

tions in X to any desired precision. Not only algebraic functions,

but most common analytic functions fall within our scope.

We next formulate our algorithms using the well-known Subdi-

vision Paradigm. For subdivision in the plane, the most common

data structure is the quadtree [Sam90]. Subdivision algorithms are

typically controlled by predicates on boxes B ⊆ R
2. For instance,

we may recursively split a B until a box predicate P(B) holds. The

(exact) predicate P is hard to implement, so we replace it by a soft

predicate P̃ [WCY15]: if P̃(B) holds, then P(B) holds; but failure

of P̃ does not imply the negation of P. To compensate for this “one-

sided” nature of P̃, we assume that P̃ is convergent – intuitively, this

means that when B is small enough and P(B) holds, then P̃(B) also

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams 3

holds. The first example of algorithms for Voronoi diagram using

soft predicates is given by [YSL12].

Following the abstract Voronoi diagram approach of Klein, we

also introduce axioms to ensure the nice behavior of the minimiza-

tion diagrams. However it is seen that ours has wider applicability.

To compute Vor(X), we require X to be simple in the following

sense: for any triple of distinct functions f ,g,h ∈ X :

(S1) The bisector Vvar(f ,g) is a 1-dimensional set.

(S2) The variety Vvar(f ,g,h) is 0-dimensional (i.e., is a finite set).

Axiom (S1) admits bisectors with more than one connected com-

ponent, provided each component is either an infinite curve or

a closed loop. In contrast, Klein restricts Vvar(f ,g) to be con-

nected, and excludes closed loops. Axiom (S2) amounts to saying

the bisectors Vvar(f ,g) and Vvar(g,h) intersect finitely often; in

contrast Klein requires that every pair of bisectors Vvar(f ,g) and

Vvar(f ′,g′) intersect in finitely many components.

The following proposition shows that our axioms (S1,S2) are sat-

isfied by natural examples:

LEMMA 1 Let S be a set of distinct points and lines. For each point

or line S ∈ S , let SepS(p) = inf{‖p− q‖ : q ∈ S} where ‖ ·‖ is the

Euclidean norm. Then the set X = {SepS : S ∈ S} is simple.

Note that the lines in S may intersect and a point may lie

on a line. However, any two points or two lines in X must be

distinct. Unlike Klein, our (S2) is not concerned about the in-

tersection of arbitrary pairs of bisectors. This is important: con-

sider S = {A(−2,0),B(−1,0),C(1,0),D(2,0)} comprising of four

points. Then Vvar(A,D)∩Vvar(B,C) is a line, not a finite set of

points. Nevertheless, S is a valid input for our algorithm.

1.3. Clustered ε-Approximations.

In this paper, we will generalize the notion of “ε-approximate

Voronoi diagram” found in [YSL12]. Let us make this precise.

First, recall that an ε-approximation for input (X ,ε,B0) is an

embedded planar multigraph G = (V,E) that is ε-isotopic to

Vor1(X)∩B0. Here, G = (V,E) is an embedded planar multigraph

in the sense that V ⊆ R
2 and edges in E are pairwise disjoint pla-

nar curves which are either closed loops or whose endpoints are in

V . It is a multigraph (not just a graph) because there may be more

than one curve having the same pair of vertices as its endpoints.

Clearly, Vor1(X) can similarly be viewed as an embedded planar

multigraph. But we write “Vor1(X) ∩ B0” to denote the restric-

tion of Vor1(X) to B0. More precisely, each cell in Vor1(X)∩ B0

is a non-empty connected component of c∩ int(B0) or of c∩∂(B0)
where c∈Vor1(X) is a cell and int(B0) is the interior of B0. We de-

fine G to be ε-isomorphic to another embedded planar multigraph

G′ = (V ′,E′) if that there are two bijections ν : V →V ′, µ : E→ E′

such that ‖u− ν(u)‖ ≤ ε and dH (e,µ(e)) ≤ ε for all u ∈ V,e ∈ E

and dH is the Hausdorff metric. But G is ε-isotopic to G′ = (V ′,E′)
is a stronger requirement, and it means that there is a continuous

map I : [0,1]×R
2→ R

2 (called an isotopy) such that (by writing

It(x,y) for I(t,x,y)), we have I0 is the identity map, I1(G) = G′ (in

the obvious sense), and for all t, It(G) is a ε-isomorphic to G.

(A) For simplicity, we assume that Voronoi curves intersect ∂B0

transversally and there are no Voronoi vertices in ∂B0.

Assumption (A) is not essential; see [BCGY12] and [BSS∗16]

for ways to remove Assumption (A) without giving up our use

of soft (numerical) methods The idea is to compute an embedded

planar multigraph G∗ = (V∗,E∗) such that there exists a simply-

connected set B∗ satisfying (1− ε)B0 ⊆ B∗ ⊆ (1+ ε)B0, and G∗ is

is ε-isotopic to Vor(X)∩B∗. But in this paper, we focus on gener-

alizing the notion of ε-approximation in another direction: to take

full advantage of the ε parameter, we want the ability to replace a

set of ε-close Voronoi vertices by a single “super vertex” in V .

For any disc ∆(m, r)⊆ R
2 centered at m of radius r, let ∆X (m, r)

denote the set of Voronoi vertices in Vor(X) contained in ∆(m, r).
If ∆X (m, r) is non-empty, we call it a Voronoi cluster. If r < ε, it is

called an ε-cluster. Following [YSS13], we call ∆X (m, r) a natural

cluster if ∆X(m, r) = ∆X (m,3r). Natural clusters have the property

that any two such clusters are either disjoint or have an inclusion re-

lation. Thus the set of natural clusters forms a “cluster tree” whose

nodes are natural clusters and parent-child relation in the tree is

based on set inclusion. The root of this tree is the cluster contain-

ing all Voronoi vertices; if Vor(X) has n Voronoi vertices, this tree

has at most 2n− 1 nodes. The leaves of this tree are the singleton

clusters.

Note that the concept of natural clusters is directly applicable to

embedded planar multigraphs. To exploit clusters, we define what

it means for G′ = (V ′,E′) to be a simplification of G = (V,E): it

means that there is a pair

ν : V →V
′, µ : E→V

′∪E
′

(called simplification maps) such that ν is onto, and |µ−1(e′)|= 1

for all e′ ∈ E′ and if µ(e) ∈V ′ (i.e., curve e collapses to a vertex in

V ′) then ν(u) = µ(e) for any endpoint u of the curve e. Moreover,

we call G′ = (V ′,E′) a ε-simplification of G = (V,E) if, in addi-

tion, (1) dH (u′,ν−1(u′))≤ ε, (2) ν−1(u′) is a natural ε-cluster, and

(3) dH(e
′,µ−1(e′))≤ ε for all u′ ∈V ′,e′ ∈ E′.

Finally G′ is clustered ε-isotopic to G = (V,E) if there is a con-

tinuous map I : [0,1]×R
2 → R

2 such that I0 is the identity map,

for all t ∈ [0,1], It(G) is a ε-simplification of G, and in particular,

I1(G) = G′.

Our algorithm computes an embedded planar graph Gε(X) that

is clustered ε-isotopic to Vor1(X)∩B0. The introduction of Gε(X)
is a key ingredient towards computing minimization diagrams of

non-algebraic functions. Without this generalization, it would be

impossible to provide soft (i.e., numerical) methods to approximate

Vor1(X) when X has degenerate Voronoi vertices. A Voronoi ver-

tex v is degenerate when it is defined by a set of k > 3 sites. Soft

methods cannot distinguish between a single degenerate Voronoi

vertex defined by k > 3 sites and a cluster of k− 2 non-degenerate

Voronoi vertices defined by k sites. Our algorithm would have a

halting problem if it does not have the freedom to output ε-clusters.

This inherent limitation of soft methods is usually called the “Zero

Problem” of exact computation [CCK∗06].

Remark that if we set ε =∞, it means that we have no con-

cern for geometric accuracy (but topological correctness remains

in force). For simplicity, we tend to assume ε =∞ as default.

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

4 H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams

1.4. Anisotropic Voronoi Diagrams

The implementation work reported here provides a validation of our

general Voronoi diagram algorithm. We implement an algorithm

to compute Voronoi diagrams defined by polygonal sites equipped

with anisotropic norms. Anisotropic norms are those whose unit

balls are ellipses, and is discussed in detail in Section 5. The

well-known multiplicatively weighted Voronoi diagrams of a point

set is a special case. Labelle and Shewchuk [LS03] introduced

anisotropic norms for point sites, but their main focus was the asso-

ciated Delaunay triangulation. Our extension to polygonal sites will

greatly increase applicability in areas such as robot motion plan-

ning.

It is important to realize that the separation functions SepS

(S ∈ S) need not be smooth. This is an important aspect of our ap-

proach. Recall that a scalar function f : dom(f)→ R is smooth if

all its partial derivatives are well-defined in its domain. We say f is

semi-smooth if the domain of f can be subdivided into a minimal

number of connected subdomains D1, . . . ,Dm ⊆ R
2 with piecewise

smooth boundaries such that fi (the restriction of f to the interior of

Di) is smooth. Call each fi a feature function of f . If the Di’s are

defined by polynomial inequalities, and fi satisfies some polyno-

mial equations, we call f semi-algebraic. Thus f is smooth (resp.,

algebraic) if m = 1. This is illustrated in Figure 3 where S is (i) a

line segment and (ii) a triangle. Assuming ‖ · ‖S is the Euclidean

norm, then SepS is a semi-algebraic function with (i) m = 4 and (ii)

m = 6 feature functions. Thus these separation functions are not

algebraic.

D5

D1

D1

D4

D2
D3

D6

D2
D3

D4

Figure 3: The separation function SepS defined by (i) a line seg-

ment (m = 4) and (ii) a triangle (m = 6). Assuming the Euclidean

norm, SepS is algebraic in each of the subdomains D1, . . . ,Dm.

In implementation, it is useful to slightly shift our orientation

and to replace each SepS by its smooth parts. Each polygonal site

S can be replaced by the collection Φ(S) of its (boundary) fea-

tures, i.e., Φ(S) is a partition of ∂(S) into a finite set of corners

(points) and edges (open line segments). E.g., if S is the triangle in

Figure 3(ii), then Φ(S) has six such features. Each t ∈ Φ(S) has a

“feature function” Sept with domain dom(t) such that dom(S) =⋃{dom(t) : t ∈Φ(S)} and Sept is smooth in its domain. Note that

dom(S) is the union, not intersection, of the dom(t)’s. In [YSL12],

we call dom(t) the zone of feature t. Finally, we can define subcells

of X+ := {Φ(S) : S ∈ S} in such a way that each cell of Vor(X) is

a union of subcells of X+.

1.5. What is New

The main result of this paper is a general algorithm to compute

a topologically correct (up to isotopy) and geometrically accurate

(up to ε in Hausdorff distance) representation of the minimization

diagram of a simple set X of semi-smooth function. Its computa-

tional primitives are explicitly formulated within a realistic model

of computation, so the algorithm can be directly implementable.

Two noteworthy features of this algorithm are: (1) it can handle ar-

bitrary degeneracy in X by allowing ε-clusters of Voronoi vertices

to be coalesced into super vertices, and (2) the scalar functions can

be semi-smooth where the smooth parts admit interval approxima-

tions such as are commonly available with analytic functions.

The work closest to the present paper is [YSL12] where there is

also a survey of subdivision algorithms for Voronoi diagrams. The

basic approach of this paper first appeared there. They provided a

subdivision algorithm for the standard Euclidean Voronoi diagram

of a polygonal set, assuming non-degeneracy. Another closely re-

lated work is Emiris, Mantzaflaris and Mourrain [EMM13] who

also use subdivision to compute minimization diagrams. They as-

sume that the scalar functions are represented (explicitly or im-

plicitly) by polynomials – this is essential for their use of Bern-

stein polynomials in exclusion test (what we call the C0 predi-

cate). They do not address non-algebraic scalar functions, nor semi-

algebraic functions (e.g., sites which are not points). Degeneracy is

not treated, and Voronoi vertices appears to be computed with exact

operations.

A key challenge in our current setting is to design soft methods

for detecting and constructing representations of Voronoi clusters

within some box region. Some of these issues were addressed by

[YSL12]; but we now face a more general problem arising from

degeneracy. Our solution involves several non-trivial techniques,

involving 5 Phases (see Section 4).

Degeneracy is always a severe challenge for soft methods. We

overcame this barrier by introducing the notion of clustered ε-

approximations Gε(S) which are indifferent in its representation

of Voronoi clusters or degenerate vertices. This allows our algo-

rithm to treats non-algebraic scalar functions; this appears to be the

first such method.

Finally, our implementation of anisotropic Voronoi di-

agram, besides validating our approach, has independent

interest for applications. Our C++ implementation and

datasets will be publicly distributed through our Core Library

http://cs.nyu.edu/exact/core_pages/.

One limitation of our current implementation is that we use ma-

chine arithmetic. In theory, we could just replace this by a bigFloat

number package to guarantee that we always compute the correct

output. In practice, machine precision seems sufficient for the size

of examples used in typical experimental work. We plan to perform

error analysis to quantify the limitations of fixed precision compu-

tation in a future paper.

Another limitation is that our current algorithm only treat the

case of limited degeneracy (Section 4). This is mainly due to space

consideration. Limited degeneracy is already of interest, but we

plan to describe the general solution in the full paper.

1.6. Overview of Paper

Following this introduction, Section 2 gives some background com-

putational techniques that form the basis of our algorithm. Section

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams 5

3 introduces the notion of root boxes: this is a box where one or

more Voronoi vertices are located and “well-isolated”. Section 4

provides the basic algorithm but it is correct provided we have a

bound k0 on the degree of degeneracy. Section 5 discusses the ap-

plication of this algorithm to computing the Voronoi diagram of

a polygonal set where each component is associated with its own

anisotropic metric. We conclude in Section 6.

Appendix A provides an overview of three techniques: the

Plantinga-Vegter (PV) construction of non-singular curves, the

Moore-Kioustelidis (MK) test to detect singularities, and confor-

mal subdivision to ensures correct connection between the PV

curves and singularities. Appendix B contains proofs from the main

algorithm. Appendix C contains proofs on anisotropic Voronoi di-

agrams.

2. Background

2.1. Box subdivisions and data structures.

We recall standard concepts related to quadtrees. Fix B0 in the fol-

lowing. We maintain an implicit quadtree rooted in box B0 whose

nodes are subboxes of B0 obtained by repeated splits, and whose

leaves constitute a subdivision of B0. All our boxes will be full-

dimensional, squares and closed sets in R
2. The split of a leaf B

produces four congruent subboxes which become the children of

B in the quadtree. Two boxes are k-adjacent if they intersect in

a k-dimensional set (k = −1,0,1,2), where k = −1 means they

are disjoint. We are mainly interested in 1-adjacency, simply called

“adjacent”. Let mB = m(B) be the middle or center of B. The width

wB = w(B) (resp., radius rB = r(B)) of a box B is the length of one

of its sides (resp., distance from m(B) to a corner of B).

We write “B∩∗ B′” for the intersection of the interiors of B and

B′, i.e., int(B)∩ int(B′). We say that B and B′ are essentially dis-

joint if B∩∗ B′ = ∅. Alternatively, B and B′ are k-adjacent for some

k < 2. A set S of boxes is called a subdivision of the region
⋃
S if

any pair of distinct boxes in S are essentially disjoint. E.g., the set

of leaves of a quadtree forms a subdivision of the box at the root of

the quadtree. Note that
⋃
S need not be connected or simply con-

nected. A subdivision is smooth if any two adjacent boxes have

width that differ by at most a factor of 2. Typically, a subdivision

can be represented by the set of leaves of a quadtree. So a quadtree

represents a smooth sudivision if the depths of any two adjacent

leaves differ by at most one. In our root box construction, we will

need subdivisions that are not obtained as the leaves of a single

quadtree. Regardless, smoothness is essential for the correctness of

the PV construction [PV04] (see Appendix A).

Given a subdivision S, the operation smooth(S) returns a re-

finement of S into a smooth subdivision – this refinement is the

unique minimal one. If B is a box in a smooth subdivision S, the

smooth split of B, denoted sSplit(B;S) will replace B by its

four children in S, and then apply smooth(S). Again, we return

all the new boxes produced by splits. We write sSplit(B) for

sSplit(B;S) when S is understood. More generally, if C ⊆ S

is a set of boxes, we define sSplit(C;S) as the smooth split

of each B ∈ C in S. Recently, it was shown that in any sequence

of smooth split operations starting with S = {B0}, each operation

has amortized constant cost [BY14]. Our data structure for S pro-

vides the ability to retrieve the set of boxes adjacent to any B ∈ S.

(see [BY14]).

By an aligned box we mean any box that can appear in some

quadtree rooted in B0. If B is an aligned box, B 6= B0, then par(B)
denotes the parent of B. If S is a set of boxes, aligned or not, let

⋃
S

denote the union of the boxes in S. For any box B and k > 0, let kB

denote the box sharing the same center as B and scaled by factor k.

Note that if B is aligned, then kB is non-aligned for k 6= 1.

We need a variety of priority queues such as Qroot and Qk (for

k = 0,1,2,3). Each queue stores a set of boxes. For any queue Q,

we have the two standard operations: B← Q.pop() returns the box

B with highest priority (breaking ties arbitrarily); Q.push(S) where

S is a set of boxes and this operations puts all the boxes into Q.

In addition, if we have a reference to a box B in Q, we can also

directly remove it from Q via the operation Q.remove(B). Usually,

the priority has no effect on correctness (but might greatly affect

performance).

2.2. Numerical Interval Methods.

We briefly review our numerical computational model based on in-

terval methods [RR84]. Recall our goal is to compute the minimiza-

tion diagram Vor(X) of a set X of scalar functions. The function

f : dom(f)→R must be Lipshitz continuous and semi-smooth. We

write fx(q) ↑ if q is on the boundary of any Di; otherwise fx(q) ↓.
Lipschitz continuity of f means that there is a constant K f > 0 such

that for all p,q∈R
2, ‖ f (p)− f (q)‖ ≤ K f ‖p−‖. Unless otherwise

noted, ‖ · ‖ refers to the Euclidean norm ‖ · ‖2.

To use interval methods, f , fx, fy must have interval analogues.

More precisely, let R
n denote the set of closed boxes (i.e., Carte-

sian products of intervals) in R
n. The interval analogue of g (g =

f , fx, fy) has the form g : R
n → R. We call f a soft ver-

sion of f if it is conservative and convergent. Conservative means

f (B)⊆ f (B) for B ∈ R
n where f (B) := { f (q) : q ∈ B, f (q) ↓}.

Convergent means that if B1⊇B2⊇ ·· · is an infinite monotone de-

creasing sequence that converges to a point p, then f (Bi) = f (p)
for i large enough. There are many well-known ways to construct

such box functions using interval arithmetic [RR84].

Define the clearance function of X to be ClrX :

dom(X) → R where ClrX (p) := min{ f (p) : f ∈ X}. Let

φ : dom(X) → 2X be the set of closest feature functions, i.e.,

φ(p) := { f ∈ X : f (p) = Clr(p)}. We call φ(p) the label set of p.

Let Vor1(X) denote the subset of Vor(X) comprising the Voronoi

vertices and curves, also known as the 1-skeleton of Vor(X). This is

an embedded planar graph, and intuitively, our goal is to compute

a isotopic ε-approximation of Vor1(X) restricted to some box B0 ⊆
R

2 (see [YSL12] exact definition).

We extend the notion of label set from points to boxes:

φ(B) :=
⋃

p∈B φ(p), called the exact label set of B. Instead of

exact label sets, we compute a conservative approximation de-

noted φ̃(B); call this the active feature set for B. But to intro-

duce this, so we need some concepts. It is easy to verify that

if K f ,Kg are Lipshitz constants for f ,g ∈ X , the K f + Kg is a

Lipshitz constant for the function f − g. If Y ⊆ X , we define

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

6 H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams

K2(Y) := max
{

K f +Kg : f ,g ∈ Y, f 6= g
}

. In the subdivision tree

rooted at B0, we will compute φ̃(B) recursively using the following

rule. Let φ̃(B0) :=X ; recursively, for any box B with parent par(B),
define

φ̃(B) :=
{

f ∈ par(B) : f (mB)≤ Clr(mB)+K2(φ̃(par(B))rB

}
.

This generalizes a formulation from Milenkovic [Mil93, YSL12].

LEMMA 2 φ̃(B) is a soft version of φ(B):
(a) Conservative: φ(B)⊆ φ̃(B)
(b) Convergence: if Bi → p (for i→∞) converges monotonically

to p then φ̃(Bi) = φ(p) for i large enough.

The computation of φ̃(B) is very efficient since it is

hereditary (by definition): φ̃(B) ⊆ φ̃(par(B)). Furthermore,

Clr(mB) is efficiently computed via the formula Clr(mB) =

min
{

f (mB) : f ∈ φ̃(par(B))
}

.

2.3. Three Preliminary Techniques.

Our algorithm will build on three previous techniques. The first

technique is the PV Construction from Plantinga-Vegter [PV04] to

construct an isotopic approximation to a non-singular curve. The

second technique from Moore-Kioustelidis [MK80] (see [LSVY14,

Appendix]) detect root boxes which contain the transversal inter-

section of two curves. The third technique from [LSVY14] com-

bines the first two techniques to create a network of curves that is

isotopic to the Voronoi curves and vertices. An alternative approach

to computing intersection is based on root bounds [BCGY12], but

that appears to be less practical. See Section A in the appendix for

a review of these techniques.

3. Root Boxes and Voronoi Clusters

We address the critical issue of our algorithm: how to detect natu-

ral clusters and provide a topologically correct construction around

such clusters.

We focus on the concept of a “root box”: informally, this is an

aligned box B such that, among other things, has the property that

it has at least 3 active features (i.e., |φ̃(B)| ≥ 3) and for every triple

f ,g,h∈ φ̃(B), we have Vvar(f ,g,h)∩2B =Vvar(f ,g,h)∩10B and

|Vvar(f ,g,h)∩2B|= 1. So Vvar(f ,g,h) has a unique Voronoi ver-

tex in 2B, and no other in 10B. This root box would include the

case where there is a single degenerate Voronoi vertex v ∈ 2B de-

fined by Vvar(φ̃(B)). With soft methods, we can now detect this as

a root box, but we cannot distinguish this from two or more distinct

vertices of total multiplicity k. Therefore we treat all the Voronoi

vertices in 2B as a single (degenerate) Voronoi vertex. Formally, a

Voronoi cluster is any set of Voronoi vertices that is contained in

2B for some root box B. Thus, our algorithm will output an approx-

imation of such a “Voronoi cluster diagram”.

An aligned box B is called a root box if

(R1) φ̃(B) has at least 3 features.

(R2) φ̃(B) = φ̃(10B).

(R3) C1(10B) holds: this means C
f ,g
1 (10B) holds for any two f ,g∈

φ̃(B).

(R4) JC(12B) holds: this means JC f ,g,h(12B) holds for any triple

f ,g,h ∈ φ̃(B).
(R5) MK(2B) holds: this means MK f ,g,h(2B) holds for any triple

f ,g,h ∈ φ̃(B).

We could add another requirement (R0) which asserts that the

width of B must be smaller than some given ε > 0. This would

ensure that our clusters are ε-small. We omit this for simplicity.

The significance of these conditions is as follows: (R1) en-

sures that there are enough active features in B to define at least

a Voronoi vertex, while (R2) ensures that these features remain ac-

tive throughout 10B and no new active features are involved. (R3)

ensures that the bisectors defined by a pair of active features do not

turn by more than 90 degrees (so are either x- or y-monotone). (R4)

says that any triple of active features define at most one Voronoi

vertex in 12B. Finally (R5) ensures that every triple of active fea-

tures (in isolation) actually define a Voronoi vertex in 2B. Note that

it does not mean that this Voronoi vertex will remain valid in the

presence of other active features.

ann(B)

6B

10B

2B

(a) Root box B (b) Proper set of rootboxes

core(B)

B

Figure 4: Domain of root boxes

Refer to Figure 4(a): for any root box B, the domain of B refers

to the box 10B. There is a subdivision of this domain into 25 sub-

boxes, each congruent to 2B and semi-aligned. Of these 25 sub-

boxes, let core(B) be the set of 9 subboxes that forms a subdivision

of 6B. The remaining 16 boxes (colored yellow in Figure 4) repre-

sent a subdivision of the annulus region around 6B and is denoted

ann(B).

The listing of the root box conditions (R1-R5) is intended to de-

termine the order of testing these conditions. If any of the con-

ditions fail, we will abort the root box test. First of all, they are

listed in order of increasing complexity in this sense: let |φ̃(B)|= k.

To check (R1) and (R2), we need to compute φ̃(B) and φ̃(10B).
This work is O(|φ̃(B′)|) and O(|φ̃(10B′)|) where B′ is the parent

of B. But in a certain amortized sense, it is O(k). The complex-

ity of checking (R3), i.e., computing C1(10B) is O(k2). Similarly,

checking (R4) and (R5) requires computing JC(12B) and MK(2B),
which is O(k3).

Next we observe that the properties (R2)-(R4) are hereditary in

the sense that if they hold at box B, then they can be assumed to

hold in any subbox of B. To exploit hereditary, we can associate a

“sticky index” i ≥ 2 with each box, indicating that property (R j)

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams 7

has been satisfied for all j < i. When we split a box, this index is

inherited by its children.

3.1. Proper set of root boxes.

A setR of root boxes is said to be proper if

(P1) They are well-separated in the sense that for any two dis-

tinct boxes B,B′ ∈ R, the interiors of 12B and 10B′ are dis-

joint. By symmetry, 10B and 12B′ are essentially disjoint,

so that there is a buffer between 10B and 10B′ of width

max
{

w(2B),w(2B′)
}

.

(P2) They are not close to the boundary of B0 in the sense that

12B⊆ B0.

Figure 4(b) shows a set R of four boxes that is proper. Each

B ∈ R is represented by three concentric squares (blue 2B, green

6B, yellow 10B).

Fix R to be a proper set of root boxes. The complement of R
refers to the region

B0 \
⋃

B∈R

10B. (3)

By property (P2), this is a region with |R| many holes. Suppose

we know that there are no Voronoi vertices in this complement. Let

S1 be any initial subdivision of B0 (e.g., the subdivision obtained

in the process of computing R). It is easy to construct a unique

subdivision S2 of the complement (3) such that the following holds:

each box in S1 that is disjoint from
⋃

B∈R 10B is also preserved in

S2.

B′

(i)

B′

B∗
1

(ii)

Figure 5: (i) w(B′)≤ w(B)/2, (ii) 2B∗
1 must split to be conformal

LEMMA 3 Let B ∈ R and B′ ∈ S2 such that B′ is adjacent to 10B.

Then B′ is congruent to kB for some k = 2−i for some i≥ 1. Thus,

w(B′)≤ w(B)/2; see Figure 5(i).

We then refine the subdivision S2 into S3 as follows. First, we

describe a general strategy: starting with S2, we keep subdividing

(via smooth splits) each box B ∈ S3 until the following holds: for

all f ,g ∈ φ̃(B), C
f ,g
0 (B)∨C

f ,g
1 (B) holds. This means that upon ter-

mination, we can do the PV construction on S3 for each bisector

Vvar(f ,g) where f ,g ∈ X . Moreover, we know that no two bisec-

tors intersect since S3 is a subdivision of the complement of the

root boxes. But there is a catch: in general, we only know about

“bundles” of bisectors in each box B: we do not know their order-

ing relationship along the boundary of B. Of course, sometimes a

bundle entering B may split into two or three bundles on exit, and

this information can be maintained. But not all ordering informa-

tion can be resolved this way until we treat the root boxes (below).

In our main algorithm below, for simplicity, but at the expense of

efficiency, we will enforce another condition: each box in S3 has at

most 2 active features (i.e., Q3 is empty). Thus we avoid the issue

of bundles.

3.2. The Smooth Construction and Conformal Subdivision

By the “Smooth Construction” we mean the construction of the

Voronoi diagram outside the domain of root boxes. Fundamentally,

we apply the PV construction (Appendix A) to S3. The output is an

embedded graph, which we may denote by PV (S3).

In the PV construction, we need to know the boundary of the

subdivision domain since we have special treatment for boundary

boxes. Although the domain of Smooth Construction is basically

B0 \
⋃

B∈R 10B, we must clarify that we consider a box B1 to be a

boundary box if it intersects ∂B0; boxes that intersect ∂(10B) (B ∈
R) are not automatically considered as boundary boxes.

The reason is that a box B1 that intersects ∂(10B) (B ∈ R) need

not be considered a boundary box is that we will propagate smooth-

ness requirement from B1 into the interior of 10B. This propaga-

tion turns out to be very well-behaved and local. Consider the sub-

division ann(B) comprising 16 boxes congruent to 2B. For each

B1 ∈ ann(B), consider the set S(B1)⊆ S3 of boxes that are adjacent

to B1. From Lemma 3, we know that S(B1) must have at least four

boxes, all smaller than 0.5B1. We now compute the unique mini-

mal smooth subdivision that is a refinement of B1 ∪ S(B1), call it

SS(B1). This is illustrated in Figure 5(ii). Clearly, B1 must be split

in SS(B1). Among the four children of B1, those children that are

not adjacent to boxes in S(B1) need not be further split, i.e., will

belong to SS(B1). There are two such children in general, but in

case B1 is one of the four corner boxes of core(B), there is only one

such child of B1.

Let S4 be the union of the set set

SS
′
:=

⋃

B∈R



 ⋃

B′∈ann(B)

SS(B′)





and also the set

SS
′′

:=
⋃

B∈R

core(B′).

LEMMA 4

1. The set S3∪S4 is a smooth subdivision of B0 \
⋃

Q1.

2. Moreover for each B ∈ R, core(B)⊆ S4. I.e., no box in core(B)
is split.

We say two subdivisions are conformal if their union is a smooth

subdivision. Thus, lemma 4 says that the subdivisions S3 and S4 =
SS′ ∪ SS′′ are conformal. As reminder, conformality is needed be-

cause the correctness of PV construction depends on having smooth

subdivision.

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

8 H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams

3.3. How to connect a cluster node

Given the smooth subdivision of S4 of lemma 4, we would like

to construct an embedded graph G(S4) representing our Voronoi

diagram. This is amounts to constructing the graph G(10B) for B∈
R. We split G(10B) into two sub-tasks: to construct a graph G(2B)
and also G(10B\2B).

invalid node

arc

(a) Graph of root box domain

a′

c

b′ a

c′

g

h

f

b

h− f

f −g

g−h

(b) Invalid nodes of 2B

ordinary node

KEY:

cluster node

w

w′

Figure 6: (a) Smooth subdivision of 10B, (b) Vvar(f ,g,h) has ver-

tex in 2B

Before we address the sub-tasks, we will prove a lemma on the

behavior of bisectors in the vicinity of a root box B. By definition of

a root box, for each triple f ,g,h∈ φ̃(B) of distinct features, we have

|Vvar(f ,g,h)∩2B|= |Vvar(f ,g,h)∩10B|= 1. Let V (B)⊆ 2B de-

note the multiset of all such points. If φ̃(B) has k features, then

|V (B)| =
(

k
3

)
(counted with multiplicity). All the Voronoi vertices

in 10B is (already) contained in the set V (B). For any bisector

Vvar(f ,g) where f ,g ∈ φ̃(B), the set Vvar(f ,g)∩ 10B might have

several connected components. Those components that intersect 2B

are called (f ,g)-principal components (or simply, principal).

b′′

c′

a′

b

a

c

a

b′

c′

c
a′

(i)

LL

(ii)

b′′

b

b′

Figure 7: Assuming two principal components (two possibilities)

LEMMA 5 Let f ,g ∈ φ̃(B).
(a) There is a unique (f ,g)-principal component in 10B.

(b) The Voronoi curve Vvar(f ,g;X) when restricted to the (f ,g)-
principal component is a connected (possibly empty) set.

We now address the first sub-task: Combinatorially, the graph

G(2B) is trivial: we introduce a single node at the center of 2B

representing the Voronoi cluster. Call it a cluster node. See Fig-

ure 6(a). All the other kinds of nodes will be called ordinary to

distinguish them from cluster nodes. If k = |φ̃(B)|, then we must

introduce k nodes on the boundary ∂(2B) and connect them to the

cluster node by arcs. Note that if k = 3, the cluster is trivial. Fig-

ure 6(a) illustrates the case where k = 8. The main issue is where

to place the nodes on ∂(2B). We use a basic lemma in [LSVY14]

which tells us how to order the nodes of bisectors along an edge of

2B.

We need an additional tool: refer to Figure 6(b). Suppose the

Vvar(f ,g,h) has a vertex in 2B. The graph PV (2B) will have three

arcs, [a,a′], [b,b′] and [c,c′] corresponding to f = g, g = h and h =
f . For each of these arcs, we can invalidate one of their endpoints.

In Figure 6(b), we show that a′,b′,c′ are all invalid. This is based

on the interactions of f ,g,h alone; in the presence of other feature

functions, a,b or c may also be invalid.

Consider a bisector f = h, where f ,h ∈ φ̃(2B), such that the

graph PV (2B) has a node n for f = h on a side e of 2B. We say

that bisector f = h is invalid on e, if there is a feature g ∈ φ̃(2B)
such that the portion of f = h from the Voronoi vertex Vvar(f ,g,h)
in 2B to e is contained in the Voronoi region Vvar(g;{ f ,g,h}). If

bisector f = h is invalid on e, because of feature g, we also say that

node n is invalidated by g. A node that is not invalidated by any

feature in φ̃(2B) is called valid.

To construct G(2B), we first identify the valid nodes on ∂(2B),
and then connect them to the cluster node in the center of 2B. The

ordering of the valid nodes along an edge e is implied by the labels

of the endpoints of e that have been obtained from φ̃(2B). Note that

the first valid node on e must share the same feature as the label

of the neighboring corner of e. Further, any two consecutive valid

nodes must share a common feature in φ̃(2B). Thus, the order of

valid nodes is fixed. The following lemma gives a necessary and

sufficient condition for a node on ∂(2B) to be invalid.

v

f = g

φ(u) = f

f = h

φ(v) = g

f = h

(a) (b)

vu u

φ(u) = g

Figure 8: Invalidation of a f = h node on an edge uv

LEMMA 6 Consider the graph PV (2B) and a node of bisector f = h

on an edge e = uv of the box 2B, where f ,h ∈ φ̃(2B). See Figure 8.

This node is invalidated by a feature g ∈ φ̃(B) iff one of the follow-

ing conditions holds:

(a) For an endpoint u of e, Sep f (u) < min(Sepg(u),Seph(u)) and

bisectors f = g and f = h intersect e in this order as we move

from u to v on e.

(b) For both endpoints of e, Sepg(u) < min(Sep f (u),Seph(u)) and

Sepg(v)< min(Sep f (v),Seph(v)).

Note that the ordering of two bisectors on e can be determined

as in [LSVY14].

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams 9

3.4. Graph construction in the domain of root boxes

For a root box B, we let (S4)10B denote the set of boxes in the

smooth subdivision S4, but restricted to the root box 10B. Thus

(S4)10B is a subdivision of the domain of B. Our goal is to do

a graph construction using (S4)10B. Figure 6(a) illustrates such a

graph.

We know that core(B) ⊆ (S4)10B. In particular, 2B ∈ (S4)10B,

and we had already constructed the graph G(2B) above. Let v∗ de-

note the cluster vertex in G(2B).

Now consider the other boxes B′ in core(B), B′ 6= 2B. Sup-

pose that G(2B) has m nodes u1,u2, . . . ,um ordered along the

edge B′ ∩ 2B. For each ui, there is bisector Vvar(fi,gi) such

that the arc [v∗,ui] is a normalized approximation of the Voronoi

curve Vvar(fi,gi;X) in 2B. We can do the PV construction for

Vvar(fi,gi;X) in the box B′: this will introduce a new node u′i
and arc [ui,u

′
i] in B′. Moreover, the ordering u1, . . .,um on the edge

B′ ∩ 2B will induce a unique ordering of the nodes u′1,u
′
2, . . . ,u

′
m

on the boundary of B′. This completes our description of the graph

G(B′) to be constructed.

We can continue in this way to trace the Voronoi curve defined by

Vvar(fi,gi) until it reaches the boundary of 10B. Note that this con-

struction is valid according to the PV theory because C
fi,gi

1 (10B)
holds (and hence C1 holds for each box in (S4)10B).

We are not quite done yet. Note that there might be nodes of

PV (S3) on the boundary of 10B which are not yet connected by an

arc into 10B. In Figure 6(a), we show such a node w. Therefore,

we consider all such nodes and similarly “trace” them into the 10B.

This is just the straight PV construction for each node, associated

with some bisector Vvar(f ,g). But note that such tracing will never

reach the boundary of 2B because of Lemma 5; in short, if it enters

the root box, it must eventually return to the boundary of 10B again

(w′ in Figure 6(a)). These represent “incursions” into 10B. In trac-

ing the the curve for Vvar(f ,g) through a box B′′ ∈ (S4)10B, we

can always order the nodes on the boundary of B′′ correctly based

on the principle of non-crossing of edges.

To summarize: we have traced the curves from the boundary of

2B to the boundary of 10B, and we have traced curves from the

boundary of 10 back to the boundary of 10B. This results in a graph

G(B′′) for each B′′ ∈ (S4)10B, and their union is the desired graph

G(10B).

4. The Main Algorithm

Voronoi diagrams can be considerably simplified if X is non-

degenerate. In fact, many papers in the literature on Voronoi di-

agrams (e.g., [YSL12, EMM13]) assume (implicitly or explicitly)

non-degenerate inputs. We say X is non-degenerate if for every

subset Y ⊆ X with more than 3 functions, Vvar(Y) is empty. Oth-

erwise X is degenerate. A family of inputs is said to have limited

degeneracy if there is a constant k0 ≥ 3 such that for all X in this

family, if Y ⊆ X and |Y | > k0 then Vvar(Y) is empty. Many prac-

tical data sets have limited degeneracy: for instance, planar archi-

tectural drawings are inevitably degenerate (four co-circular points

or co-circular edges are universal) but the order of degeneracy is

generally limited to k0 = 4.

We now outline the algorithm to approximate Vor(X) under the

assumption of limited degeneracy for some fixed k0. Note that our

algorithm will works for arbitrarily degenerate inputs, simply by

setting k0 = |X |. However, we do not see this as an efficient solu-

tion. Our algorithm has 5 phases:

Minimization Diagram Clustering Algorithm

Input: (X ,ε,B0) where X is a simple set of feature functions

with limited degeneracy k0 ≥ 3.

Output: Embedded planar graph G that is an ε-isotopic

approximation of Vor(X)∩B∗

(see Correctness Theorem, Appendix A).

(I) SUBDIVISION PHASE

Subdivide B0 until all boxes have at most k0 features.

(II) ROOTBOX PHASE

Among the boxes with≥ 3 features,

compute a proper set Qroot of root boxes.

(III) SMOOTH PV CONSTRUCTION PHASE

Apply the PV process to the complement

of the domain of root boxes in Qroot

Resulting subdivision is S3 (Section 3.1).

Construct PV (S3)
(IV) CONFORMAL SUBDIVISION PHASE

For each B ∈ Qroot ,

construct a smooth subdivision of 10B

which is conformal with S3.

(V) CLUSTER CONSTRUCTION PHASE

For each B ∈ Qroot ,

construct the embedded graph G(10B) (Section 3.4)

We next provide details for each phase.

4.1. (I) Subdivision Phase.

We will maintain four queues Qk (k = 0,1,2,3) of boxes, with this

invariant: the union of these queues forms a subdivision of B0. We

assume that the feature set φ̃(B) is computed as each box B is cre-

ated. Boxes in queue Qk (k = 0,1,2,3) are characterized by the size

|φ̃(B)| of the active feature set of B:

|φ̃(B)|





> k0 if k = 0,
= 1 if k = 1,
= 2 if k = 2,
∈ {3,4, . . . ,k0} if k = 3.

(4)

Phase (I) will keep splitting the boxes in Q0 until it is empty. Ter-

mination is assured under the assumption of limited degeneracy.

We would like the boxes in these queues form a smooth subdivi-

sion of B0. However, the boxes in Q1 have no part in the graph con-

struction, and so the region
⋃

Q1 may be omitted from this smooth-

ing. Thus it is sufficient to maintain the following invariant:

The boxes in Q0 ∪Q2 ∪Q3 form a smooth

subdivision of the region B0 \
⋃

Q1.
(5)

It is easy to modify the smooth split routines to avoid splitting

boxes in Q1. The first phase can now be presented:

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

10 H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams

(I) SUBDIVISION PHASE

Q0← {B0} ; Q1← Q2← Q3←∅
While Q0 6= ∅

B← Q0.pop()

k← |φ̃(B)|
If k = 1 or 2

Qk.push(B)
If k ≤ k0

Q3.push(B)
Else

Q0.push(sSplit(B))

4.2. (II) Root Box Phase.

At the beginning of this phase, Q0 is empty and Q2∪Q3 is a smooth

subdivision of B0 \
⋃

Q1. Our goal in this phase is to construct a

proper set of root boxes, to be stored in Qroot . Note that the boxes

in Q3 are candidates for root boxes. We keep removing boxes from

Q3 and test if they are root boxes. Moreover, Q3 will be a priority

queue in which larger boxes are removed first.

To check if B ∈ Q3 is a root box, we need to check conditions

(R1)-(R5) in Section 3. In fact, we will need a bit more, as encoded

in the following “IsRootBox(B)” predicate:

IsRootBox(B):

return [(12B⊆ B0)
∧ (10B∩∗ 12B′ = ∅ for all B′ ∈ Qroot)

∧ (φ̃(B) = φ̃(10B))
∧ (C0∨C1)(10B))
∧ (JC(12B))
∧ (MK(2B)))]

This is a conjunction of 6 conditions, ordered in order of increas-

ing complexity; we can terminate the evaluation as soon as a condi-

tion fails. The first two conjuncts concern the 12B and 10B respec-

tively. They relate to the requirement that the set of root boxes must

be proper. This predicate requires construction of the set φ̃(10B) in

addition to φ̃(B). As with φ̃(B), we want to exploit fact that φ̃(10B)
is a subset of φ̃(10B′) where B′ is the parent of B. Therefore, we

modify Phase (I) so that φ̃(10B) is computed alongside φ̃(B) when

box B is created. If this predicate fails, we will split B and put

its children into Q1,Q2,Q3, accordingly. Here then is the second

phase:

(II) ROOTBOX PHASE

Qroot ← ∅ // Initialization

While Q3 6= ∅
B← Q3.pop()
If IsRootBox(B)

Qroot .push(B)
CULL(B)

Else

for all B′ in split(B)
Push B′ into Q1 or Q2 or Q3 (see (4))

Note that just after adding a root box B to Qroot , we call a rou-

tine called CULL(B). The goal of this operation is to ensure the

following invariant:

Q2∪Q3 is a smooth subdivision of the region

B0 \ (
⋃

Q1)∪
(⋃

B∈Qroot
10B

)
.

(6)

The motivation for this invariant is to ensure that Qroot is a

proper set of root boxes. Indeed, at the end of this phase, Q3 is

empty, and the boxes in Q2 is a smooth subdivision of (
⋃

Q1)∪(⋃
B∈Qroot

10B
)
. The following implementation of CULL(B) uses a

temporary queue Qtmp that satisfies a simple invariant:

INVARIANT: B′ ∈ Qtmp implies B′ intersects the interior of 10B

We can now understand the operations of CULL(B) as removing

boxes from Q2∪Q3 which satisfies the invariant, and putting them

into Qtmp. The boxes in Qtmp fall under two cases. (Case A) If a

box is contained in 10B, then we use it to pull more boxes into

Qtmp. (Case B) otherwise, we smooth-split the box, and each of its

children are either placed in Qtmp or into Q1 ∪Q2 ∪Q3 using the

usual criteria in (4).

CULL(B): // B is a newly discovered root box

Qtmp← {B}
While Qtmp 6= ∅

B′← Qtmp.pop()
If B′ ⊆ 10B, // Case A

for all B′′ ∈ Q1∪Q2∪Q3 adjacent to B′

If B′′∩∗ 10B 6= ∅,
remove B′′ from Q1∪Q2∪Q3

Qtmp.push(B′′)
Else // Case B

Perform Split(B′)
for all B′′ ∈ Split(B′)

If B′′∩∗ 10B 6= ∅,
Qtmp.push(B′′)

Else

Place B′′ into Q1,Q2 or Q3.

The following lemma assures us that the process will halt, and

the final set is a natural cluster:

LEMMA 7

(a) Phase (III) halts.

Upon halting, we have:

(b) The set of boxes in Q2 forms a smooth subdivision S2 of the

region B0 \ (
⋃

Q1)∪
(⋃

B∈Qroot
10B

)
.

(c) Every Voronoi vertex in B0 in contained in the set
⋃

B∈Qroot
2B.

(d) The set Qroot of root boxes is proper.

4.3. (III) Smooth or PV Construction Phase.

After Phase (II), the queue Q3 is empty and the boxes in Q2 forms a

smooth subdivision (denoted S2) of B0 \ (
⋃

Q1)∪
(⋃

B∈Qroot
10B

)
.

Our goal is to carry out the PV construction. This goal is clearly

achievable because there are no Voronoi vertices in
⋃
S2:

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams 11

(III) SMOOTH CONSTRUCTION PHASE

While Q2 is non-empty

B← Q2.pop()
If C0(B)

Q1.push(B)
Elif C1(B)

Construct PV (B)
Else

for each B′ ∈ sSplit(B),
place B′ in Q1 or Q2 accordingly.

Note that the boxes in Q1 are basically discarded since they play

no role in our construction (but note that in Phase (II), Q1 is actually

useful in the CULL(B) subroutine). If we interprete Q1 as the set

of discarded boxes, we can also put into Q1 any box B where the

exclusion predicate C0(B) holds, i.e., C
f ,g
0 (B) holds for all f ,g ∈

φ̃(B) (see Appendix A on PV construction). We could have done

this in earlier phases, but it would be expensive (quadratic in the

size of φ̃(B)). But now that φ̃(B) has at most 2 elements, we could

apply this test.

After this phase, we have constructed the output graph for the

region B0 \ (
⋃

Q1)∪
(⋃

B∈Qroot
10B

)
.

4.4. (IV) Conformal Subdivision Phase

At this point, we have a smooth subdivision S3 of the region

B0 \(
⋃

Q1)∪
(⋃

B∈Qroot
10B

)
. For each root box B∈Qroot , we also

have the subdivision of 10B into 25 boxes. According to Lemma 4

(Section 3.1), we must subdivide each of the 16 boxes in ann(B).
The lemma tells us that this can be achieved by a very local method

(i.e., if B1 6= B2 ∈ ann(B), the subdivision of B1 can be done inde-

pendently of B2).

(IV) CONFORMAL SUBDIVISION PHASE

For each B ∈ Qroot

for each B1 ∈ ann(B)
let S(B1) the set of boxes in S3 adjacent to B1

Subdivide B1 and its descendants until

they are conformal with S(B1)

4.5. (V) Cluster Construction Phase

The final phase will construct the graphs G(10B) for each root box

B ∈ Qroot . Again, the construction is local to each B. The details

from Section 3.4 are summarized here:

(V) CLUSTER CONSTRUCTION PHASE

For each B ∈ Qroot

Construct a cluster node in the center of B.

Determine the set of valid nodes on ∂(2B).
Sort the valid nodes on each side of 2B.

Add an arc from the cluster node to each valid node.

For each valid node u in ∂(2B),
trace arcs from u until we reach ∂(10B).

For each node on ∂(10B) from Phase (III),

trace arcs from u until we return to ∂(10B).

We summarize with the following theorem:

THEOREM 8 (Correctness) The Algorithm terminates and the

constructed graph is a clustered ε-isotopic approximation of

Vor(X)∩B0.

5. Anisotropic Voronoi Diagrams

In this section we introduce the class of Voronoi diagrams of point

and polygonal sites equipped with anisotropic norms in the plane.

This generalizes [LS03] which introduced anisotropic norms for

point sites only. We show how to compute these Voronoi diagrams

as an application of the algorithm that we developed in the previous

section. We assume that the ambient space is a square box B0 ⊆R
2.

Let M ∈ R
2×2 be a symmetric positive definite matrix, and let

QM(v) = vT Mv where v ∈ R
2. The anisotropic norm associated

with M is ‖v‖M :=
√

QM(v).

We can define any norm in terms of its unit ball which must be a

centrally symmetric convex body. In this interpretation, anisotropic

norms are those whose unit balls are ellipses. Using this view it is

easy to see that anisotropic Voronoi diagrams generalize multiplica-

tively weighted Voronoi diagrams. The latter represents the special

case when M =

[
c2 0

0 c2

]
for some c > 0, which corresponds to

a norm with a (1/c)-scaled Euclidean disk as its unit ball.

5.1. Distance Computations

We wish to compute the separation between a point r and a point

site p or a line segment site (p,q) under an anisotropic norm ‖·‖M

where p,q, r ∈ R
2. In order to simplify our computations, we in-

stead work with the squares of the separation functions. These in-

duce the same bisectors. We also compute the gradients of the sep-

aration functions, which we need in order to compute our box pred-

icates. Let v = q− p in the case of the line segment and w = r− p

in both cases.

w

p = L(0)

q = L(1)

v

r

Figure 9: Notations for distance to line computation

For a point p,

Sepp(r)
2 = QM(w) (7)

∇Sepp(r)
2 = 2Mw. (8)

Next consider a line feature L with parametrization

L : R → R
2. Then the separation of a point r from

L is given by min{‖L(t)− r‖M : t ∈ R}. Let t∗(r) =
argmin{‖L(t)− r‖M : t ∈ R}.

In fact, we are interested in the separation function not for a line

L, but for a line segment (p,q). Given such a segment, let L be

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

12 H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams

the parametrization of the line passing through p,q where L(0) = p

and L(1) = q. Then Sep(p,q)(r) is defined piecewise, with the active

component depending on whether r is closest to the interior of L or

one of the endpoints of L.

We give a formula for t∗(r), and use it to derive a formula for

SepL(r) and Sep(p,q)(r). See Appendix C for the proof.

LEMMA 9 Let p,q, r∈R2 be points, let L(t) be the parametrization

of the line running through p,q with L(0) = p,L(1) = q, let v =
q− p and let w = r− p. Then

SepL(r) =
√

QM(w)− (vT Mw)2/QM(v).

This minimum distance is achieved at the point L(t∗(r)) where

t
∗(r) =

vT Mw

QM(v)
.

LEMMA 10 Consider the square separation function Sep(p,q)(r)
2

and its gradient:

(a) Its piecewise algebraic formula is given by:

Sep(p,q)(r)
2 =





Sepp(r)
2 if t∗(r)≤ 0,

QM(w)− (vT Mw)2/QM(v) if t∗(r) ∈ (0,1),

Sepq(r)
2 if t∗(r)≥ 1.

∇Sep(p,q)(r)
2 =






∇Sepp(r)
2 if t∗(r)≤ 0,

2M(w− vT Mw
QM(v)v) if t∗(r) ∈ (0,1),

∇Sepq(r)
2 if t∗(r)≥ 1.

(b) The square separation function is C1, i.e., it is continuous and

its the gradient ∇Sep(p,q)(r)
2 is well defined for all r ∈ R

2.

5.2. Lipschitz Constant Computations

In order to track active features (i.e., compute φ̃(B) for box B)

we need an upper bound on the Lipschitz constants of anisotropic

norms. In fact, we compute the Lipschitz constants exactly; see Ap-

pendix C for a derivation of the following expression.

LEMMA 11 Let M =



 a b

b c



 be a symmetric positive definite

matrix. Then for a site S equipped with ‖·‖M we have

K(S) =
1√
2

√
a+ c+

√
(a− c)2 +4b2.

5.3. Implementation

We have implemented a prototype of our algorithm for anisotropic

Voronoi diagrams. It follows our algorithm for tracking active fea-

tures, and using box predicates to achieve a topologically correct

Voronoi diagram. The visualization component uses OpenGL, and

supports basic interaction such as zooming.

However, we emphasize that the code is preliminary. In particu-

lar it does not yet implement all of the details described in the con-

struction phase of the algorithm, and computes up to machine (dou-

ble) precision. Additionally, it only guarantees topological correct-

ness for input in general position (meaning that exactly 3 Voronoi

bisectors meet at every Voronoi vertex), rather than supporting lim-

ited degeneracy as described in our algorithm.

The program takes two parameters, εa and εg, which control pre-

cision by either limiting or forcing quadtree boxes to split. The first,

εa, specifies an “absolute” minimum radius for quadtree boxes. If a

box’s radius is smaller than εa and the box is still unresolved then

the program ceases splitting and marks the box as unresolved. A

box may be marked as unresolved either because it contains a de-

generate Voronoi vertex (more than 3 Voronoi bisectors intersecting

at a point), or because εa was set higher than necessary for conver-

gence. If a box B is marked as unresolved then we do not guarantee

anything about the topology of the Voronoi diagram inside B.

The second parameter, εg, specifies a bound on the desired “ge-

ometric” accuracy of the computation. If a box intersects an active

Voronoi bisector then it will always be split down to radius εg/2,

ensuring that the Hausdorff distance between the actual Voronoi

diagram and the computed approximation is less than εg.

5.3.1. Examples

We next give examples of Voronoi diagrams computed by our pro-

gram. Input sites are shown in black, the subdivision grid in gray,

and the computed (approximate) Voronoi diagram in red. Unre-

solved boxes are shown in blue. We show four diagrams produced

by our program.

6. Conclusion

We have provided a general algorithm to compute a clustered ε-

isotopic approximation of the minimization diagram Vor(X) of a

set of scalar functions. Our requirements on X are natural proper-

ties commonly found in Voronoi diagram applications. Our current

algorithm can treat full degeneracy, but it is not expected to be effi-

cient. In practice, this is not an issue since unbounded degeneracy

seems to arise only by deliberate design. The current implementa-

tion assumes non-degeneracy (so it does not attempt to construct

root boxes). Further, it does not treat polygonal sites; though we

plan to handle this extension.

References

[AK00] AURENHAMMER F., KLEIN R.: Voronoi diagrams. In Hand-

book of computational geometry, Sack J. R., Urrutia J., (Eds.). Elsevier
Publishing House, 2000, pp. 201–290. 1

[AKL13] AURENHAMMER F., KLEIN R., LEE D.-T.: Voronoi Diagrams

and Delaunay Triangulations. World Scientific, 2013. 1

[BCGY12] BURR M., CHOI S., GALEHOUSE B., YAP C.: Complete
subdivision algorithms, II: Isotopic meshing of singular algebraic curves.
J. Symbolic Computation 47, 2 (2012), 131–152. Special Issue for IS-
SAC 2008. 3, 6, 14, 15

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams 13

Figure 10: These two images show a Voronoi diagram computed

on the same collection of line segments. The first image was pro-

duced with εa set to be relatively large, and with no εg, while the

second image was produced with small εg. The first image shows

that relatively little splitting is necessary to trace bisectors and con-

firm many Voronoi vertices. The second image (in which the grid is

turned off) shows the effect of computing to high geometric preci-

sion (small εg).

Figure 11: A Voronoi diagram with mixed point and line segment

input sites with small εg.

Figure 12: A Voronoi diagram with point sites each equipped with a

different anisotropic metric. Some of the metrics are very different,

leading to disconnected Voronoi regions.

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

14 H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams

[BSS∗16] BECKER R., SAGRALOFF M., SHARMA V., XU J., YAP C.:
Complexity analysis of root clustering for a complex polynomial. In 41st

Int’l Symp. Symbolic and Alge. Comp. (2016). To appear, ISSAC 2016.
July 20-22, Wilfrid Laurier University, Waterloo, Canada. 3

[BWY06] BOISSONNAT J.-D., WORMSER C., YVINEC M.: Curved
voronoi diagrams. In Effective Computational Geometry for Curves and

Surfaces, Boissonnat J.-D., Teillaud M., (Eds.). Springer, 2006. Chapter
2. 1

[BY14] BENNETT H., YAP C.: Amortized analysis of smooth box sub-
divisions in all dimensions. In 14th Scandinavian Symp. and Workshops

on Algorithm Theory (SWAT) (2014), vol. 8503 of Lect. Notes in C.S.,
Springer-Verlag, pp. 38–49. July 2-4 2014. Copenhagen, Denmark. To
appear in CGTA. 5

[CCK∗06] CHANG E.-C., CHOI S. W., KWON D., PARK H., YAP C.:
Shortest paths for disc obstacles is computable. Int’l. J. Comput. Ge-
ometry and Appl. 16, 5-6 (2006), 567–590. Special Issue of IJCGA on
Geometric Constraints. (Eds. X.S. Gao and D. Michelucci). 2, 3

[EMM13] EMIRIS I., MANTZAFLARIS A., MOURRAIN B.: Voronoi
Diagrams of algebraic distance fields. Computer Aided Design 45, 2
(2013), 511–516. 2, 4, 9

[ES86] EDELSBRUNNER H., SEIDEL R.: Voronoi diagrams and arrange-
ments. Discrete and Comp. Geom. 1 (1986), 25–44. 2

[Kle89] KLEIN R.: Concrete and abstract Voronoi diagrams. Lecture
Notes in Computer Science, No. 400. Springer-Verlag, Berlin, 1989. 2

[LS03] LABELLE F., SHEWCHUK J. R.: Anisotropic voronoi diagrams
and guaranteed-quality anisotropic mesh generation. In Proc. 19th ACM
Symp. on Comp. Geom. (New York, NY, USA, 2003), ACM, pp. 191–
200. 4, 11

[LSVY14] LIEN J.-M., SHARMA V., VEGTER G., YAP C.: Isotopic ar-
rangement of simple curves: An exact numerical approach based on sub-
division. In ICMS 2014 (2014), Springer, pp. 277–282. LNCS No. 8592.
Download from http://cs.nyu.edu/exact/papers/ for a version with Ap-
pendices and details on MK Test. 6, 8, 16, 17

[LY11a] LIN L., YAP C.: Adaptive isotopic approximation of nonsin-
gular curves: the parameterizability and nonlocal isotopy approach. In
Discrete and Comp. Geom. [LY11b], pp. 760–795. 2

[LY11b] LIN L., YAP C.: Adaptive isotopic approximation of nonsingu-
lar curves: the parameterizability and nonlocal isotopy approach. Dis-

crete and Comp. Geom. 45, 4 (2011), 760–795. 14

[Mil93] MILENKOVIC V.: Robust construction of the Voronoi diagram
of a polyhedron. In Proc. 5th Canadian Conf. on Computational Geom.

(CCCG) (1993), Lubiw A., Urrutia J., (Eds.), pp. 473–478. Univ. of
Waterloo, Ontario, Canada. Aug 5-9, 1993. 6

[MK80] MOORE R. E., KIOUSTELIDIS J. B.: A simple test for accu-
racy of approximate solutions to nonlinear (or linear) systems. SIAM J.

Numer. Anal. 17, 4 (1980), 521–529. 6, 15, 16

[Mun84] MUNKRES J. R.: Elements of Algebraic Topology. The Ben-
jamin/Cummings Publishing Company, Inc, Menlo Park, CA, 1984. 2

[OBSC00] OKABE A., BOOTS B., SUGIHARA K., CHIU S. N.: Spatial

Tessellations — Concepts and Applications of Voronoi Diagrams, 2nd ed.
John Wiley and Sons, 2000. 1

[PV04] PLANTINGA S., VEGTER G.: Isotopic approximation of implicit
curves and surfaces. In Proc. Eurographics Symposium on Geometry

Processing (New York, 2004), ACM Press, pp. 245–254. 5, 6, 14, 15

[RR84] RATSCHEK H., ROKNE J.: Computer Methods for the Range of

Functions. Horwood Publishing Limited, Chichester, West Sussex, UK,
1984. 5

[Sam90] SAMET H.: The Design and Analysis of Spatial Data Structures.
Addison Wesley, 1990. 2

[WCY15] WANG C., CHIANG Y.-J., YAP C.: On Soft Predicates in Sub-
division Motion Planning. Comput. Geometry: Theory and Appl. 48, 8
(Sept. 2015), 589–605. DOI:10.1016/j.comgeo.2015.04.002. 2

[Yap87] YAP C. K.: An O(n logn) algorithm for the Voronoi diagram
for a set of simple curve segments. Discrete and Comp. Geom. 2 (1987),
365–394. 1

[YSL12] YAP C., SHARMA V., LIEN J.-M.: Towards Exact Numerical
Voronoi diagrams. In 9th Proc. Int’l. Symp. of Voronoi Diagrams in

Science and Engineering (ISVD). (2012), IEEE, pp. 2–16. Invited Talk.
June 27-29, 2012, Rutgers University, NJ. 3, 4, 5, 6, 9

[YSS13] YAP C., SAGRALOFF M., SHARMA V.: Analytic root cluster-
ing: A complete algorithm using soft zero tests. In Computability in Eu-
rope (CiE2013) (Heidelberg, 2013), Bonizzoni P., Brattka V., Lowe B.,
(Eds.), vol. 7921 of Lect. Notes in C.S., Springer, pp. 434–444. Invited
Talk. Special Session on “Computational Complexity in the Continuous
World”, July 1-5, Milan, Italy. 3

Appendix A: Three Fundamental Techniques

PV Construction.

We review the basic theory from [PV04,LY11b,BCGY12]. In com-

puting Vor(X) restricted to a box B0. Suppose we want to approx-

imate the bisector f = g where f ,g ∈ X . Here, we will rely on

two box predicates from [PV04]: Exclusion Predicate C
f ,g
0 (B) :

0 /∈ (f − g)(B) and Normal Variation Predicate C
f ,g
1 (B) : 0 /∈

((f − g)x(B))
2 +((f − g)y(B))

2. Note that (f − g)x indicates

partial derivative with respect to x. Given a smooth subdivision S,

we define two embedded planar graphs G(S) and PV (S). This is

illustrated in Figure 13.

(a) G(S) = (V,E) where |V |= 23 (b) PV (S) = (N,A) with |N|= 13

Figure 13: G(S) and PV (S) where |S| = 14

• The graph G(S) = (V,E) is basically a “non-uniform grid graph”

where V = V (S) ⊆ R
2 is the set of vertices which are corners

of boxes in S, and E = E(S) is the set of edges which are line

segments [u,v] ⊆ R
2 such that u,v ∈ V (S) and the interior of

[u,v] does not contain any vertices of V (S). In Figure 13(a), we

have |S|= 14, |V |= 23 and |E| = 34.

• The graph PV (S) = PV f ,g(S) is defined relative to a bisector

f = g. It is well defined under these conditions:

(P1) The curve f = g does not pass vertices of V (S).
(P2) The curve is non-singular in

⋃
S.

(P3) Each box B ∈ S satisfies the predicate C0∨C1.

Then PV (S)= (N(S),A(S))where N(S)⊆R
2 is the set of nodes

and A(S) is the set of arcs. This is illustrated in Figure 13(b),

where |N| = 23 and |A|= 34.

In fact PV (S) is best seen as the union of subgraphs PV (B) =
(N(B),A(B)) for each box B ∈ S. The subgraph PV (B) is ex-

tremely simple having at most 4 nodes and at most 2 edges.

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams 15

For completeness, we explicitly describe it here. For each edge

[u,v]∈E(S) on the boundary of B, we introduce a node (u+v)/2

if f − g has different signs at u and at v. Let N(B) be the set of

these nodes. In general, N(B) can have up to 8 nodes, but under

the condition (P3), it can be shown that N(B) has 0,2 or 4 nodes.

We then introduce the set A(B) of arcs which connect the nodes

of N(B) in pairs as follows: if N(B) has two nodes u,v, there is

only one way to introduce an arc, namely [u,v]. In case N(B)
has four nodes u,v,u′,v′, then two of them (say u,v) must lie

on one of the four sides of B. In this case we introduce the arcs

[u,u′] and [v,v′] such that they do not intersect. This completes

our description of PV (B) and hence of PV (S).

Suppose B0 ⊆ R
2 is a box. Our goal is to compute an isotopic

approximation of the bisector f = g restricted to B0. The basic al-

gorithm amounts to computing a smooth subdivision S of B0 satis-

fying the conditions (P1-P3) above.

PV Algorithm for B0

I. SUBDIVISION PHASE:

Q0← {B0}; Q1← ∅
While Q0 6= ∅

B← Q0.pop()
If C0(B) holds, discard B

Elif C1(B) holds, Q1.push(B)
Else Q0.push(sSplit(B))

II. CONSTRUCTION PHASE:

G← ∅
While Q1 6= ∅

B← Q1.pop()
Construct PV (B), and add this to G

Return G

The output of the algorithm is G = PV (S) where S is the smooth

subdivision produced at the end of the Subdivision Phase. The main

correctness question is to characterize PV (S) in relation to the bi-

sector f = g. In [PV04], it is shown that PV (S) is isotopic to f = g

provided f = g is contained in B0. Clearly this proviso is too lim-

iting and [BCGY12] generalizes this. We will now provide such a

statement of correctness. To achieve this, we slightly modify the

above PV algorithm: suppose B is a boundary box (i.e., ∂B0∩∂B

is 1-dimensional).

Let B ⊆ B0 be a boundary box. Another box c(B) is called a

complement of B if there is a line L through one of the sides of

B0 such that c(B) is the reflection of B across L, and c(B)∩B0 is

1-dimensional. Let co(B) be the set of complements of B. Note that

co(B) has one, two or four boxes. By definition, co(B) is empty

if B is not a boundary box. Define the predicate safe(B) to mean

(∀B′ ∈ co(B))
[
C0(B

′)∨C1(B
′)
]
. In the PV algorithm above, we

replace the line

Elif C1(B) holds, Q1.push(B)

by

Elif (C1(B)∧ safe(B)), Q1.push(B)

Let S be the smooth subdivision of B0 produced by the modi-

fied PV algorithm. Let Z denote the set of boxes B ∈ S that are

c(B′) B′

c(B′)

c(B)

(i)

B

B0

Figure 14: The complements of boundary boxes B and B′

boundary boxes satisfying C1 but not C0. Let S
− :=S \ Z and

S
+ :=S

⋃{co(B) : B ∈ Z}.

Theorem A (Correctness of PV with boundary)

(Termination) If the curve f = g is regular with respect to S and

does not have a singularity in B0, then the modified algorithm ter-

minates.

(Correctness) On termination, the output graph G = PV (S) is iso-

topic to the curve f = g restricted to some region B∗ where
⋃

S
− ⊆ B

∗ ⊆ S
+

We can improve the uncertainty around the boundary of B0 by

making sure that boxes in Z must be ε-small (for any desired ε> 0).

Moore-Kioustelidis Test.

The second technique is necessary to compute Voronoi diagrams.

The fundamental issue is to determine whether a box B contains

a Voronoi vertex. Suppose we want to check if a Voronoi vertex

defined by three features f ,g,h lies inside B. We might think that

since PV can approximate the bisector f = g, g = h and f = h,

it should be able to determine if these bisectors intersect inside

a box. For consider the box B = [0,1]× [0,1] with three feature

functions f ,g,h illustrated in Figure 15. We order the feature func-

tions at each corner of B. E.g., at the top left corner (0,1), we have

f < g < h. Based on these orderings, the graph PV f ,g(B) has the

arc [(1
2 ,0), (

1
2 ,1)] and similarly, the graphs PV f ,h(B) and PV g,h(B)

have the arc [(0, 1
2), (1,

1
2)]. To visualize the construction, let us give

a direction to each of the bisectors as indicated in Figure 15(a).

Based on the labeling of corners, we may conclude that each of

these bisectors enter B but they terminate at the Voronoi vertex de-

fined by { f ,g,h} inside B. Thus, we introduce one node (not two

nodes) for each of these bisectors. But Figure 15 shows that the

three bisectors actually meet outside B. This example shows why

the PV theory for smooth curves does not immediately extend to

singularities.

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

16 H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams

f −h

g−h

node for f −h arc

h < f < g

f < g < h g < f < h

f −g

f −h

h < g < f

g−h

f −g

f is closest feature

g is closest feature

node for f −g arc

node for g−h arc

h is closest feature

KEY:

Voronoi vertex

Figure 15: PV construction mistaken about the presence of a

Voronoi vertex: the dashed curves represent bisectors

The technique we will use is based on the famous Miranda Test

[MK80] on a box B: suppose the four sides of B are e1,e
′
1,e2,e

′
2

where (ei,e
′
i) form a pair of opposite edges (for i = 1 and 2). Mi-

randa tells us that a sufficient condition for the f = g and g = h

bisectors to intersect inside B is this: f > g on e1 and f < g on e′1,

and g > h on e2 and g < h on e′2. By symmetry, there are several

other sufficient conditions obtained by interchanging the roles of

f ,g and g,h, or by reversing the inequalities. If the test fails on B,

we subdivide B and continue testing the children. There are two

twists to this idea: first, the iterated application of Miranda tests

may fail to terminate. Intuitively, the effective solution [MK80] to

apply the test to the system J−1F where F =



 f − h

g− h



, and J is

the Jacobian of F evaluated at the midpoint of B. To ensure conver-

gence, this must be properly implemented as the mean value form

of J−1F as discussed in [MK80]. The transformation J−1 is a pre-

conditioning transformation. The second twist is to apply the test,

not to B, but to 2B. We denote this test by MK f ,g,h(B). See the

appendix of [LSVY14] for details.

The success of MK f ,g,h(B) implies that Vvar(f ,g,h)∩2B is non-

empty. To ensure that Vvar(f ,g,h)∩ 2B has exactly one root, we

use the Jacobian test JC f ,g,h(B): if JF is the Jacobian of the sys-

tem F =



 f − h

g− h



 : R2 → R
2, the test succeeds if 0 /∈ JF (B).

Success implies that F has at most one root in B.

Conformal Subdivisions.

The third technique provides the glue between smooth curves and

the Voronoi vertices produced by the previous two techniques. Sup-

pose we have detected a root box B containing a { f ,g,h} Voronoi

vertex. We still need to know how the bisectors outside of B con-

nects to this Voronoi vertex. Imagine what can happen after the

PV construction in the complement of B: in case we see just three

nodes on the boundary ∂B corresponding to the f = g, g = h and

h = f bisectors, then we simply connect these nodes to a new node

u (representing the Voronoi vertex inside B) at the center of B. But

we might see more than three nodes on ∂B. For instance, if we see

three nodes corresponding to the f = g bisector, we know that two

of these nodes may be spurious, and they represent an incursion of

the f = g bisector into B. But how can we determine which two are

spurious? We will modify (simplify) the technique in [LSVY14]

whereby we provide B with a buffer area 10B such that we can

smoothly merge a subdivision of 10B with the PV construction on

the complement of 10B to provide the proper connections into the

Voronoi vertex inside B.

Appendix B: Minimization Diagrams

We provide all the proofs of lemmas from the main section of Min-

imization Diagrams.

Lemma 1 Let S be a set of distinct points and lines. For each

point or line S ∈ S , let SepS(p) = inf{‖p− q‖ : q ∈ S} where ‖ · ‖
is the Euclidean norm. Then the set X = {SepS : S ∈ S} is simple.

Proof. (S1) The bisectors of pairs of points or pairs of lines are

straight lines. The bisection of a point and a line is a parabola. In

the degenerate case of a point p that lies on a line L, the “parabola”

degenerates into a line perpendicular to L and passing through p.

(S2) The set Vvar(f ,g,h) is either intersection of the intersection

of a straight line with a parabola, or two straight lines. In the former

case, there are at most two points in Vvar(f ,g,h). In the latter case,

we may verify that these two lines are distinct and therefore has at

most one intersection point. Q.E.D.

Before we prove the next lemma, we prove a helper result:

Lemma B.1 Let B be a box with midpoint mB and radius rB. If

p∈ B, and f ,g∈ X such that Clr(p) = f (p) and Clr(mB) = g(mB).
Then f (mB)≤ Clr(mB)+ (K f +Kg)rB.

Proof.

f (mB) ≤ f (p)+K f ‖p−mB‖
≤ g(p)+K f ‖p−mB‖
≤ g(mB)+ (K f +Kg)‖p−mB‖
≤ Clr(mB)+ (K f +Kg)rB

Q.E.D.

Lemma 2 φ̃(B) is a soft version of φ(B):
(a) Conservative: φ(B)⊆ φ̃(B)
(b) Convergence: if Bi → p (for i→∞) converges monotonically

to p then φ̃(Bi) = φ(p) for i large enough.

Proof.

(a) Recall that f ∈ φ̃(B) iff

f (mB)≤ Clr(mB)+K2(φ̃(par(B))rB. (9)

Suppose f ∈ φ(B). Then Lemma B.1 above shows that (9) holds.

I.e., f ∈ φ̃(B), as we desired.

(b) As Bi → p, we see that f (mBi
)→ f (p), Clr(mBi

)→ Clr(p),
and rBi

→ 0. Therefore (9) eventually holds only when f ∈ φ(p).
Q.E.D.

Lemma 3 Let B ∈R and B′ ∈ S2 such that B′ is adjacent to 10B.

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams 17

Then B′ is congruent to kB for some k = 2−i for some i≥ 1. Thus,

w(B′)≤ w(B)/2; see Figure 5(i).

Proof. Recall that 10B is tiled by 25 boxes each congruent to 2B.

Let B1, . . . ,B25 be these 25 boxes. We can write Bi (i = 1, . . . ,25)

in the form 2B∗
i where B∗

i is congruent to B. It is not hard to see

that B∗
i is an aligned box (and therefore Bi is not aligned). Wlog,

let B′ ∈ S2 be adjacent to B1.

Suppose B′ has width greater that w(B)/2. Then there is an

aligned box B′′ congruent to B that is adjacent to B∗
1 and overlap-

ping B′. This implies that B′ is contained in B′′, and hence B′ has

width ≤ w(B′′)/2, contradiction. Q.E.D.

Lemma 4

1. The set S3∪S4 is a smooth subdivision of B0 \
⋃

Q1.

2. Moreover for each B ∈R, core(B)⊆ S4. I.e., no box in core(B)
is split.

Proof. 1. Let B ∈ R. It is sufficient to prove that if B′ and B′′ are

adjacent boxes in ann(B) then SS(B′)∪ SS(B′′) is smooth. To see

this, consider the 1-dimensional subdivision of B′∩B′′ induced by

SS(B′): this is a sequence of intervals, say (I′1, . . . , I
′
m) for some

m. Assuming I′1 is the interval touching the boundary of 10B, the

interval widths satisfy w(I′1) = w(I′2) and w(I′i) = w(I′i+1)/2 for i =
2, . . . ,m. Similarly, consider the subdivision of B′∩B′′ induced by

SS(B′′), say (I′′1 , . . . , I
′′
p) for some p. We have already argued above

that I′m = I′′p . Consider the smallest i ≥ 1 such that I′m−i 6= I′′p−i.

Wlog, let m≤ p. Then it is easy to see that m− i = 1 and p− i = 2.

This proves our claim that SS(B′)∪SS(B′′) is smooth.

2. This is based on our observation above that any for B′ ∈ ann(B),
the subdivision SS(B′) will contain the two children of B′ that are

adjacent to core(B). This means that none of the boxes in core(B)
need to be split. Q.E.D.

Lemma 5 Let f ,g ∈ φ̃(B).
(a) There is a unique (f ,g)-principal component in 10B.

(b) The Voronoi curve Vvar(f ,g;X) when restricted to the unique

(f ,g)-component is a connected (possibly empty) set.

Proof. (a) Clearly Vvar(f ,g) ∩ 10B has at least one compo-

nent since Vvar(f ,g,h)⊆ 2B is non-empty. Suppose there is more

than one such component. Figure 7 illustrates two possibilities.

Since C
f ,g
1 (10B) holds, we may assume wlog that Vvar(f ,g) is x-

monotone in 10B, i.e., every vertical line intersect Vvar(f ,g)∩10B

in at most one point. If C,C′ ⊆ 10B are the two principal com-

ponents, it means that they lie on opposite sides of some vertical

line L, and this line intersects 2B. Let a,b ∈ C (resp. a′,b′ ∈ C′)

be points with the largest and smallest y-coordinates on the respec-

tive components. Note that there might be two points with the same

largest (or smallest) y-coordinates, but in any case, we can always

choose a,b (resp., a′,b′) such that the curve C[a,b] (resp., C′[a′,b′])
passes through 2B (for instance, in Figure 7, if we replace b′ by b′′,

the curve C′[a′,b′′] would not pass through 2B).

By the intermediate value theorem, there is point c∈C[a,b] with

gradient perpendicular to the vector a−b, i.e.,∇ f−g(c)⊥ (a−b).
Similarly, there is a point c′ ∈ C′[a′,b′] satisfying ∇ f−g(c

′) ⊥

(a′− b′). Here∇ f−g(c) denotes the gradient of f − g evaluated at

c. Moreover, the gradients ∇ f−g(c) and ∇ f−g(c
′) must each have

horizontal components that points towards each other or directly

away from each other. This means 〈∇ f−g(c),∇ f−g(c
′)〉< 0. This

contradicts our assumption that the predicate C
f ,g
1 (10B) holds.

(b) This part of the lemma looks at the Voronoi curve Vvar(f ,g;X).
Again, Vvar(f ,g;X) ∩ 10B may several connected components.

Suppose we look that those components of Vvar(f ,g;X)∩ 10B

which are subsets of the (f ,g)-principal component P ⊆ 10B.

Part(b) amounts to saying that Vvar(f ,g;X)∩ P is a connected

set. To prove this, and we will order the features in φ̃(B) as

f1, f2, f3, . . . , fk for some k ≥ 3. The order is arbitrary except that

f = f1 and g = f2. Moreover, let Xi = { f1, f2, . . . , fi} (i = 2, . . . ,k).

Part(b) is a consequence of this CLAIM: Vvar(f ,g;Xi)∩P is con-

nected for all i = 2, . . . ,k.

We show this by induction on i. If i = 2, the claim follows from

part(a). For i ≥ 2, the claim is trivial if Vvar(f ,g;Xi+1) ∩ P is

empty. But it is non-empty, then the curve Vvar(g, fi+1) must inter-

sect Vvar(f ,g;Xi)∩P at a unique point, namely, Vvar(f ,g, fi+1)∩
10B. That means that Vvar(f ,g;Xi)∩P is split into two connected

subcurves by Vvar(f ,g, fi+1), and is exactly one of the subcurves

is Vvar(f ,g;Xi+1)∩P. This completes our induction. Q.E.D.

Lemma 6 Consider the graph PV (2B) and a node of bisector

f = h on an edge e = uv of the box 2B, where f ,h ∈ φ̃(2B). See

Figure 8. This node is invalidated by a feature g ∈ φ̃(B) iff one of

the following conditions holds:

(a) For an endpoint u of e, Sep f (u) < min(Sepg(u),Seph(u)) and

bisectors f = g and f = h intersect e in this order as we move

from u to v on e.

(b) For both endpoints of e, Sepg(u)< min(Sep f (u),Seph(u)) and

Sepg(v)< min(Sep f (v),Seph(v)).

Proof. First we give some terminology and a property from

[LSVY14]. Let v∗ denote the Voronoi vertex of Vvar(f ,g,h) in 2B.

Recall that connected component within 2B of a bisector incident to

v∗ is called principal. Since the box 2B satisfies MK(2B), the prin-

cipal component of any bisector in 2B must have endpoints on two

different sides of 2B. This is shown in Lemmas 7, 8 of [LSVY14].

Consider the endpoint p of the principal component of f = h on e.

Because the bisectors involving the features f ,g,h intersect exactly

once within 2B (at v∗), point p is in Vvar(g;{ f ,g,h}) iff the entire

segment v∗p is in Vvar(g;{ f ,g,h}). Thus, f = h is invalid on e iff

p ∈Vvar(g;{ f ,g,h}).
Suppose that f = h is invalid on e; then p ∈ Vvar(g;{ f ,g,h}).

Suppose first that Sep f (u) < min(Sepg(u),Seph(u)); thus, u ∈
Vvar(f ;{ f ,g,h}). Then the Voronoi edge Vvar(f ,g;{ f ,g,h}) in-

tersects segment up. But this implies that bisectors f = g and

f = h intersect e in the order given by Condition 1. If we exchange

the roles of f and h (i.e., if u ∈ Vvar(h;{ f ,g,h})) the argument

is symmetric resulting in Condition 1. Since the principal com-

ponent of f = h intersects e, not both endpoints of e can be in

Vvar(f ;{ f ,g,h}), nor in Vvar(h;{ f ,g,h}). Thus, the only remain-

ing possibility is that both endpoints of e are in Vvar(g;{ f ,g,h}),
resulting in Condition 2.

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

18 H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams

Conversely, suppose that Condition 1 holds. That is, suppose that

Sep f (u) < min(Sepg(u),Seph(u))) and bisectors f = g and f = h

intersect e in this order as we move from u to v. Then, by the defini-

tion of bisector f = g, and since Sep f (u)< Sepg(u), it follows that

Sepg(x) < Sep f (x) for any point x that is the intersection of f = h

and e. Thus, the endpoint p of the principal component of f = h

must be in Vvar(g;{ f ,g,h}). That is, f = h is invalid on e.

Suppose now that Condition 2 holds, that is, both endpoints of

e are in Vvar(g;{ f ,g,h}). Since any principal component of a bi-

sector in 2B can have at most one endpoint on e, and since both

endpoints of e belong in Vvar(g;{ f ,g,h}), it follows that no prin-

cipal component of bisector g = h or bisector g = f can intersect e.

But no other component of g = h or g = f (other than the principal

one) can intersect f = h in 2B. Thus, p∈Vvar(g;{ f ,g,h}). Hence,

bisector f = h is invalid on e. Q.E.D.

Lemma 7

(a) Phase (III) halts.

Upon halting, we have:

(b) The set of boxes in Q2 forms a smooth subdivision S2 of the

region B0 \ (
⋃

Q1)∪
(⋃

B∈Qroot
10B

)
.

(c) Every Voronoi vertex in B0 in contained in the set
⋃

B∈Qroot
2B.

(d) The set Qroot of root boxes is proper.

Proof. (a) To show halting, it is enough to show that for every

Voronoi vertex v ∈ Vvar(Y ;X) in the interior of B0, if v ∈ B and

B is small enough, the IsRootBox(B) will hold.

(b) This is simply a consequence of our invariant (6) since upon

termination Q3 is empty.

(c) Clearly there are no boxes outside the root box domains since

these boxes has at most two active features. Inside the domain of a

root box B, we also know that any Voronoi vertex is confined to 2B.

(d) Here we exploit the fact that Q3 is a priority queue where

boxes of largest width are popped first. In the IsRootBox(B) pred-

icate, we ensured that 10B∩∗ 12B′ = ∅ for all B′ ∈ Qroot . Since

w(B′)≥ w(B), it follows that 12B∩∗ 10B′ is empty. This, plus the

test that 12B⊆ B0 shows that Qroot will remain proper after we add

B to Qroot . Q.E.D.

Appendix C: Anisotropic Voronoi Diagrams

This appendix contain proofs for Section 5.

Lemma 9 Let p,q, r ∈ R
2 be points, let L(t) be the parametriza-

tion of the line running through p,q with L(0) = p,L(1) = q, let

v = q− p and let w = r− p. Then

SepL(r) =
√

QM(w)− (vT Mw)2/QM(v).

This minimum distance is achieved at the point L(t∗(r)) where

t
∗(r) =

vT Mw

QM(v)
.

Proof. We first compute t∗(r). Note that L(t) = L(0)+t ·(L(1)−
L(0)) = L(0)+ t ·v. Thus r−L(t) = (r−L(0)− t ·v) = w− tv. The

squared distance from r to L(t) is given by QM(r−L(t))=QM(w−
tv) = (w−tv)T M(w−tv). The minimum is achieved by the t which

satisfies QM(w− tv)′ = 0. Here (·)′ denotes differentiation with

respect to t. Thus

0 = ((w− tv)T
M(w− tv))′

= (w− tv)′ T
M(w− tv)+ (w− tv)T

M(w− tv)′

=−v
T

M(w− tv)− (w− tv)T
Mv

=−2v
T

M(w− tv).

v
T

Mtv = v
T

Mw

t = (vT
Mw)/(vT

Mv),

which is our minimizing parameter t∗(r).

To obtain the squared separation, we first expand the expression

for QM(w− tv):

QM(w− tv) = (w− tv)T
M(w− tv)

= QM(w)+ t
2
QM(v)− t(wT

Mv+ v
T

Mw)

= QM(w)+ t(tQM(v)− 2v
T

Mw).

Plugging in t = (vT Mw)/QM(v):

= QM(w)+
vT Mw

QM(v)
(vT

Mw− 2v
T

Mw)

= QM(w)+
vT Mw

QM(v)
(−v

T
Mw)

=
QM(w)QM(v)− (vT Mw)2

QM(v)
,

which yields our formula for the squared separation. Q.E.D.

Lemma 10 Consider the square separation function Sep(p,q)(r)
2

and its gradient:

(a) Its piecewise algebraic formula is given by:

Sep(p,q)(r)
2 =





Sepp(r)
2 if t∗(r)≤ 0,

QM(w)− (vT Mw)2/QM(v) if t∗(r) ∈ (0,1),

Sepq(r)
2 if t∗(r)≥ 1.

∇Sep(p,q)(r)
2 =






∇Sepp(r)
2 if t∗(r)≤ 0,

2M(w− vT Mw
QM(v)v) if t∗(r) ∈ (0,1),

∇Sepq(r)
2 if t∗(r)≥ 1.

(b) The square separation function is C1, i.e., it is continuous and

its the gradient ∇Sep(p,q)(r)
2 is well defined for all r ∈ R

2.

Proof. The formula for the separation function follows im-

mediately from the previous lemma. The formula for the gradient

of Sep(p,q)(r)
2 follows by direct computation.

It remains to show that the square separation function is C1.

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams 19

From our geometric intuition, it should be clear that the function

is continuous; but since we have a piece-wise formula, we expect

to algebraically verify this. I.e., we must verify that when t∗(r) = 0

or 1, then the distance to the line is equal to the distance to the end-

points L(0) or L(1). This is obvious when t∗(r) = 0; we ask the

reader to also check the case t∗(r) = 1.

Finally, we show that the piecewise defined gradient

∇Sep(p,q)(r)
2 is also continuous, i.e., well-defined when t∗(r) = 0

or t∗(r) = 1. If t∗(r) = 0, we have two formulas for the gradient:

∇Sepp(r)
2 and 2M(w− vT Mw

QM(v)
v). But t∗(r) = 0 implies vT Mw = 0

and so the second formula becomes 2Mw. As noted in (8) above,

∇Sepp(r)
2 = 2Mw.

If t∗(r) = 1, we have two formulas for the gradient: ∇Sepq(r)
2

and 2M(w− vT Mw
QM(v)v) = 2M(w−v) = 2M(r−q). Again, (8) implies

their equality. Q.E.D.

Lemma 11 Let M =



 a b

b c



 be a symmetric positive definite

matrix. Then for a site S equipped with ‖·‖M we have

K(S) =
1√
2

√
a+ c+

√
(a− c)2 +4b2.

Proof. If q = (x,y)T ∈ S1, then ‖q‖M =
√

ax2 +2bxy+ cy2 ≤√
a+2|b|+ c. Thus we have a simple upper bound KM ≤√
a+2|b|+ c.

To derive an exact bound, define the functions f ,h : R2→ R and

point q∗ by

f (q) := (‖q‖M)2 = ax
2 +2bxy+ cy

2,

h(q) := ‖q‖2 = x
2 + y

2,

q∗ := argmax{ f (q) : h(q) = 1} .

where q = (x,y)T . Clearly, f (q∗) = K2
M . The theory of Lagrange

multipliers tells us that there is a λ 6= 0 such that

∇ f (q∗) = λ∇h(q∗). (10)

A computation shows that ∇ f (q) = 2Mq and ∇h(q) = 2q. So

Equation (10) amounts to 2Mq∗ = λ2q∗. This shows that λ is

an eigenvalue of M, and q∗ a corresponding unit eigenvector:

(M−λI)q∗ =~0. Hence

f (q∗) = q
T
∗Mq∗ = q

T
∗ (λq∗) = λ.

We check that the eigenvalues of M are λ = 1
2

(
a + c ±√

(a− c)2 +4b2
)
, and since f (q∗) = λ is a maximum, we con-

clude that

λ =
1

2

(
a+ c+

√
(a− c)2 +4b2

)
.

This proves that

KM =
√

λ =
1√
2

√
a+ c+

√
(a− c)2 +4b2.

This is a strict improvement of the simple upper bound, and when

M = aI then KM =
√

a as expected. Q.E.D.

c© 2016 The Author(s)

Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

	1 Introduction
	1.1 Minimization Diagrams.
	1.2 Computational Model: Subdivision and Soft Predicates.
	1.3 Clustered -Approximations.
	1.4 Anisotropic Voronoi Diagrams
	1.5 What is New
	1.6 Overview of Paper

	2 Background
	2.1 Box subdivisions and data structures.
	2.2 Numerical Interval Methods.
	2.3 Three Preliminary Techniques.

	3 Root Boxes and Voronoi Clusters
	3.1 Proper set of root boxes.
	3.2 The Smooth Construction and Conformal Subdivision
	3.3 How to connect a cluster node
	3.4 Graph construction in the domain of root boxes

	4 The Main Algorithm
	4.1 (I) Subdivision Phase.
	4.2 (II) Root Box Phase.
	4.3 (III) Smooth or PV Construction Phase.
	4.4 (IV) Conformal Subdivision Phase
	4.5 (V) Cluster Construction Phase

	5 Anisotropic Voronoi Diagrams
	5.1 Distance Computations
	5.2 Lipschitz Constant Computations
	5.3 Implementation

	6 Conclusion
	References
	A Three Fundamental Techniques
	PV Construction.
	Moore-Kioustelidis Test.
	Conformal Subdivisions.

	B Minimization Diagrams
	C Anisotropic Voronoi Diagrams

