
Complete Numerical Isolation of Real Zeros

in General Triangular Systems∗

Jin-San Cheng1, Xiao-Shan Gao1 and Chee-Keng Yap2,3

1 KLMM, Institute of Systems Science, AMSS,
Academia Sinica, Beijing 100080, China

2 Courant Institute of Mathematical Sciences
New York University, 251 Mercer Street

New York, NY 10012, USA

3 Korea Institute for Advanced Study, Seoul, Korea

Abstract. We consider the computational problem of isolating all
the real zeros of a zero-dimensional triangular polynomial system
Fn ⊆ Z[x1, . . . , xn]. We present a complete numerical algorithm
for this problem. Our system Fn is general, with no further as-
sumptions. In particular, our algorithm is the first to successfully
treat multiple zeros in such systems. A key idea is to introduce
evaluation and separation bounds, which are used in conjunction
with sleeve bounds to detect zeros of even multiplicity. Our algo-
rithm assumes a computational model of bigfloats with exact ring
operations. We have implemented our algorithm and promising
experimental results are shown.

Keywords. system of polynomial equations, triangular polyno-
mial system, zero-dimensional system, isolating interval, real zero
isolation, complete numerical algorithms, sleeve bound, evaluation
bound, separation bound.

1 Introduction

Many problems in the computational sciences and engineering can be reduced to the problem
of solving polynomial equations. There are two basic approaches to solving such polynomial
systems – numerically or algebraically. Usually, the numerical methods have no global guar-
antees of correctness. Algebraic methods for solving polynomial systems include Gröbner

∗Yap’s work is supported in part by NSF Grant No. 043086.

1

bases [6], characteristic sets [19, 15], CAD (Cylinder Algebraic Decomposition) [2, 3], or
resultants [1, 17]. One general idea in polynomial equation solving is to reduce the original
system into a triangular system. Zero-dimensional polynomial systems are among the most
important cases to solve. This paper considers this case only.

A zero-dimensional triangular system of polynomials has the form Fn = {f1, . . . , fn},
where each fi ∈ Z[x1, . . . , xi] (i = 1, . . . , n). We are interested in real zeros of Fn. A real
zero of Fn is ξ = (ξ1, . . . , ξn) ∈ Rn such that Fn(ξ) = 0, i.e.,

f1(ξ1) = f2(ξ1, ξ2) = · · · = fn(ξ1, . . . , ξn) = 0. (1)

The standard idea here is to first solve for f1(x1) = 0, and for each solution x1 = ξ1 of f1,
we find the solutions of x2 = ξ2 of f2(ξ1, x2) = 0, etc. This means that the problem can be
reduced to solving univariate polynomials of the form

fi(ξ1, . . . , ξi−1, xi) = 0. (2)

Such polynomials have algebraic number coefficients. We could isolate roots of such poly-
nomials by using standard root isolation algorithms, but using algebraic number arithmetic.
But even for n = 2 or 3, such algorithms are too slow. The numerical approach is to replace
the ξi’s by approximations, and thus reduce the problem to isolating roots of such numerical
polynomials. The challenge is how to guarantee completeness of such numerical algorithms.

Results of This Paper. We will provide a numerical algorithm that solves such triangular
systems completely in the following precise sense: given an n-dimensional box R = J1×· · ·×
Jn ⊆ Rn where Ji are intervals, and any precision ε > 0, it will isolate the zeros of Fn in R
to precision ε. To isolate the zeros of Fn in R means to compute a set of pairwise disjoint
n-dimensional boxes such that each zero of Fn in R is contained in one of these boxes, and
each box contains just one zero of Fn. These boxes have diameter bounded by ε.

Our solution places no restriction on Fn. In particular, ours is the first to achieve complete
root isolation in the presence of multiple zeros. All the existing algorithms require the system
Fn to be square-free (no multiple zeros) and some require Fn to be regular1 or even irreducible.
As is well known, it is expensive to make a triangular polynomial system to be square-free,
regular or irreducible.

Many algorithms that seek to provide “exact numerical” solution assume computation
over the rational numbers Q. But this is much less efficient than using dyadic numbers: let
D :=Z[1

2
] = {m2n : m, n ∈ Z} denote the set of dyadic numbers (or bigfloats). Most current

fast algorithms for bigfloats can be derived from Brent’s work [5]. In the following, we use
the symbol F to denote either D or Q. The only computational assumption about F we need
are: (1) the ring operations (+,−,×) and x 7→ x/2 (halving) are computed without error,
and (2) comparison among the elements of F is exact. The algorithms of this paper can be
implemented exactly over F. We use intervals to isolate real numbers: let F denote the
set of intervals of the form [a, b] where a ≤ b ∈ F. Note that assumptions (1) and (2) are
stronger than the axioms in Brent’s model [5]; see [24] for an axiomatic treatment of F.

1Fn is regular if for each zero (ξ1, . . . , ξn), the leading coefficient of the polynomial fi(ξ1, ξ2, . . . , ξi−1, xi)
does not vanish.

2

Given a polynomial f ∈ R[X] and an interval I = [a, b] ∈ F, the basic idea is to construct
two polynomials fu, fd ∈ F[X] such fu > f > fd holds in I. We call (fu, fd) a sleeve of
f over I. We show that if the sleeve bound SBI(f

u, fd) := sup{fu(x) − fd(x) : x ∈ I}
is sufficiently tight, then isolating the roots of fu and fd can lead to isolation of the roots
of f . Note that the coefficients of fufd are in F, but f have real coefficients which can be
arbitrarily approximated.

Univariate root isolation is a well-developed subject in its own right, with many efficient
solutions known (see [10, 12, 13, 14] for some recent work). We can use any of these solutions
in our algorithm. The only additional property we require in these univariate solvers is that
they handle multiple zeros. It is also easy to classify multiple zeros according to their parity:
the parity of the root is even (resp., odd) if the root has even (resp., odd) multiplicity. There
are simple ways to modify standard algorithms to satisfy our extra requirements.

The critical idea in this paper is the introduction of evaluation bounds. For a differ-
entiable function f : R→ R and a subset I ⊆ R, let its evaluation bound be

EBI(f) := inf{|f(x)| : f ′(x) = 0, |f(x)| 6= 0, x ∈ I}, (3)

and its separation bound be

∆I(f) := inf{|x− y| : f(x) = f(y) = 0, x, y ∈ I, x 6= y}. (4)

By definition, the infimum over an empty set is ∞. The subscript I may be omitted when
I = R. Although separation bounds are well-known tools in the area of root isolation, the
use of evaluation bounds appears to be new. It is the ability to compute lower estimates on
EBI(f) and ∆(f) that allows us to detect zeros of even multiplicities. In particular, if the
following sleeve-evaluation inequality

SBI(f
u, fd) < EBI(f) (5)

holds, then we show how the isolating intervals of fufd can be used to define isolating
intervals of f . In order to satisfy this inequality, we need to “refine” our sleeves to yield
tighter sleeve bounds. Furthermore, we need to generalize sleeves and (3) to the multivariate
case of triangular systems.

A major goal in our algorithmic design is the emphasis on “adaptive” techniques. In-
formally, adaptivity means that the computational complexity is sensitive to the nature of
the input instance, and in typical or nice instances, the complexity is low. Thus, we prefer
numerical (iterative) tests which are usually adaptive, over more powerful but non-adaptive
algebraic techniques. For instance, in our algorithm below we need determine the sign of
a derivative at a point: this could be reduced to detecting a zero of the derivative using a
Sturm sequence computation, but we prefer to deploy a numerical iteration whose halting
condition is provided by root separation estimates.

Literature Survey. The idea of using a sleeve to solve equations was used by [18] and
[16]. Lu et al [16] proposed an algorithm to isolate the real roots of triangular polynomial
system. Their method could solve many problems in practice. But their algorithm is not
complete in the sense that it does not have a termination condition and cannot handle

3

multiple zeros. Collins et al [8] considered the problem with interval arithmetic methods
and Descartes’ method using floating point computation. Based on the CAD method, they
considered isolating the real roots of a squarefree triangular system. They constructed a
bitstream interval for each real coefficient of a univariate polynomial f = fi(ξ1, . . . , ξi−1, X).
Then they obtain an interval polynomial for f . The sign determination of fi(ξ1, . . . , ξi−1, X)
can be replaced by determining the sign of the two corresponding endpoints of the interval
for each coefficient. In this way, they obtained isolating intervals of the triangular system.
They pointed out if a real coefficient is zero (but in some implicit representation), the method
will fail. Their system is restricted to be regular. Xia and Yang [20], based on the resultant
computation, proposed a method to isolate the real roots of a semi-algebraic set. In fact, they
ultimately considered the real root isolation of regular and square-free triangular systems.
They mentioned that their method is not complete and will fail in some cases. Our root
isolation of real polynomials using sleeves is related to Eigenwillig et al [11] who considered
root-isolation for real polynomials with bitstream coefficients. Their algorithm requires f to
be squarefree; but we require algebraic coefficients when f is non-squarefree. Their algorithm
is based on the Descartes method, but ours can be viewed as a generic reduction of the root
isolation problem to univariate root isolation in F[X]. Our evaluation bound is analogous the
curve separation bounds in Yap [23], who used them to provide the first complete subdivision
algorithm for detecting tangential intersection of Bezier curves.

Overview of Paper. In the next section, we describe the basic technique of using sleeves
and evaluation bounds of f . We next exploit a special property of sleeves called monotonic-
ity. This leads to an effective criteria for isolating zeros of even multiplicity. Using these
tools, we provide an algorithm to isolate the real roots of univariate polynomial with real
coefficients. In Section 3, we extend the isolation method to the multivariate case. We com-
pute lower estimates on evaluation and separation bounds. We also show how to construct
sleeves for fi(ξ1, . . . , ξi−1, X) and derive upper estimates on the sleeve bound, as a function
of the precision of the given isolating box for (ξ1, . . . , ξi−1). This shows convergence of our
algorithm. Subalgorithms for refinement of isolating boxes and for verifying zeros are in-
cluded. Finally, the overall isolation algorithm is presented here. Section 4 describes some
experimental work. We conclude in Section 5.

2 Root Isolation for Real Univariate Polynomials

In this section, we give a framework for isolating the real roots of a univariate polynomial
with real coefficients.

2.1 Evaluation and Sleeve Bounds

Let Q be the field of rational numbers, R the field of real numbers, D :=Z[1
2
] = {m2n :

m, n ∈ Z} the set of dyadic numbers, and F denote either D or Q. A real function f : R→ R

is C1 if it has a continuous derivative f ′(X) = ∂f
∂X

. In this section, we fix f, fu, fd to be C1

functions, and let I = [a, b] be an interval. In applications later, we will further assume that
f ∈ R[X], fu, fd ∈ F[X] and I ∈ F.

4

We call (I, fu, fd) a sleeve for f if, for all x ∈ I, we have fu(x) > f(x) > fd(x).
For any real function f , let ZeroI(f) denote the set of distinct real zeros of f in the

interval I. If I = R, then we simply write Zero(f). If ZeroI(f) has a single zero, we call I
an isolating interval of f . Sometimes, we need to count the zeros up to the parity (i.e.,
evenness or oddness) of their multiplicity. Call a zero ξ ∈ Zero(f) an even zero if its
multiplicity is even, and odd zero if its multiplicity is odd. Define the multiset2 ZEROI(f)
whose underlying set is ZeroI(f) and where the multiplicity of ξ ∈ ZEROI(f) is 1 (resp., 2)
if ξ is an odd (resp., even) zero of f .

To avoid special treatment near the endpoints of an interval, we would like to enforce the
following conditions.

|f(a)| ≥ EBI(f), fu(b)fd(b) > 0. (6)

We say that the sleeve (I, fu, fd) is faithful for f if (6) as well as the sleeve-evaluation
inequality (5) are both satisfied. We can easily see that |f(a)| ≥ EBI(f) implies fu(a)fd(a) >
0, using (5). We need a stronger condition at X = a than at X = b in (6) because there
might be a zero of f just to the left of X = a that can cause confusion for our lemmas
below: this asymmetry is a consequence of the monotonicity property below. An appendix
will treat the case of non-faithful sleeves.

Intuitively, f is nicely behaved when if we restrict f to a neighborhood of a zero ξ where
|f | < EB(f). This is illustrated in Figure 1.

bξ ξ bξ

ξ

EB(f)

−EB(f)

aξ

(a) (b)

0

f Aξ

f
Iξ

aξ

Bξ

Figure 1: Neighborhood of zero ξ: Iξ = Aξ ∪ {ξ} ∪ Bξ.

Given f and I, define the polynomials

f̂(X) := f(X)− EBI(f), f(X) := f(X) + EBI(f).

If ξ ∈ ZeroI(f), we define the points aξ, bξ as follows:

aξ := max{{a} ∪
(
Zero(f̂ · f) ∩ (−∞, ξ)

)
}, (7)

bξ := min{{b} ∪
(
Zero(f̂ · f) ∩ (ξ, +∞)

)
}. (8)

Then define the open intervals (see Figure 1):

Aξ :=(aξ, ξ), Bξ :=(ξ, bξ) and Iξ :=(aξ, bξ). (9)

2A multiset S is a pair (xS , µS) where xS is a set in the usual sense, and µS : xS → {1, 2, 3, . . .} is a
function. We call µS(X) the multiplicity of x ∈ xS , and xS the underlying set of S. For simplicity, we
write “x ∈ S” instead x ∈ xS . Also, the size of S is defined to be |S| :=∑

x∈X
µS(X).

5

The basic properties of these intervals are captured here:

Lemma 1. Let (I, fu, fd) be a faithful sleeve for f . For all ξ, ζ ∈ ZeroI(f), we have:
(i) If ξ 6= ζ then Iξ and Iζ are disjoint.
(ii) ZeroI(f

ufd) ⊆ ⋃
ξ Iξ.

(iii-a) Aξ ∩ Zero(fu) is empty iff Aξ ∩ Zero(fd) is non-empty.
(iii-b) Bξ ∩ Zero(fu) is empty iff Bξ ∩ Zero(fd) is non-empty.
(iv) The derivative f ′ has a constant non-zero sign in Aξ, and also in Bξ.

Proof. (i) Suppose ξ < ζ are consecutive zeros of ZeroI(f). Then either f is posi-
tive on (ξ, ζ) or f is negative on (ξ, ζ). Wlog, f is positive on (ξ, ζ). Then the multiset

ZEROI(f̂) = ZERO(f − EBI(f)) has at least two zeros (they may have the same value) in
(ξ, ζ). This proves bξ ≤ aζ and so Iξ and Iζ are disjoint.
(ii) Let z ∈ ZeroI(f

ufd). Then (5) implies that |f(z)| < EBI(f). By the definition of evalu-
ation bound, this also means that f ′(z) 6= 0. Thus there are two cases: either f(z)f ′(z) > 0
or f(z)f ′(z) < 0. First, suppose f(z)f ′(z) > 0. Then there is a unique largest ξ ∈ Zero(f)

that is less than z, and there is a unique smallest bξ ∈ Zero(f̂) that is greater than z. This
proves that z ∈ (ξ, bξ). Similarly, if f(z)f ′(z) < 0, we will see that z ∈ (aξ, ξ) for some
ξ ∈ ZeroI(f).
(iii-a) Either f(aξ) > 0 or f(aξ) < 0. If f(aξ) > 0 then (5) implies fd(aξ) > 0. But fd(ξ) < 0,
and hence Aξ ∩ Zero(fd) is non-empty. Now, since fu is positive over Aξ, we conclude that
Aξ ∩ Zero(fu) is empty. The other case, f(aξ) < 0 will similarly imply that Aξ ∩ Zero(fd)
is empty and Aξ ∩ Zero(fu) is non-empty.
(iii-b) This is similar to (iii-a).
(iv) Assume there exist s ∈ Aξ (for Bξ, the proof is similar) such that f ′(s) = 0. We derive
a contradiction from the definitions of aξ by (7), where Aξ = (aξ, ξ). Q.E.D.

If s, t ∈ ZeroI(f
ufd) such that s < t and (s, t)∩ ZeroI(f

ufd) is empty, then we call (s, t)
a sleeve interval of (I, fu, fd). The following is immediate from the preceding lemma(iii):

Corollary 2. Each zero of ZeroI(f) is isolated by some sleeve interval of (I, fu, fd).

Lemma 3. Let (I, fu, fd) be a faithful sleeve. For all ξ ∈ ZeroI(f), the multiset ZEROBξ
(fu ·

fd) has odd size. Similarly, the multiset ZEROAξ
(fu · fd) has odd size.

Proof. We just prove the result for the multiset ZEROBξ
(fu · fd). Wlog, let f(bξ) > 0 (the

case f(bξ) < 0 is similar). By the sleeve-evaluation inequality, fd(bξ) > 0. Note that when
bξ = b, the inequality is also true since (I, fu, fd) is faithful. But fd(ξ) < 0. Hence fd has an
odd number of zeros (counting multiplicities) in the interval Bξ = (ξ, bξ). Moreover, fu > f
implies fu has no zeros in Bξ. Q.E.D.

It follows from the preceding lemma that for each zero ξ of f , the multiset ZEROIξ
(fufd)

has even size. Hence the multiset ZEROI(f
ufd) has even size, say 2m. So we may denote the

sorted list of zeros of ZEROI(f
ufd) by

(t0, t1, . . . , t2m−1). (10)

where t0 ≤ t1 ≤ · · · ≤ t2m−1. Note that ti = ti+1 iff ti is an even zero of fufd. Intervals of
the form Ji :=[t2i, t2i+1] where t2i < t2i+1 are called candidate interval of the sleeve. We
immediately obtain:

6

Corollary 4. Each ξ ∈ ZeroI(f) is contained in some candidate interval of a faithful
sleeve (I, fu, fd).

Proof. We use the notations in (9) and (10), and use ξ to represent a root of f in I. From
Lemma 1 (ii), any element of ZEROI(f

ufd) is in some Iξ. From Lemma 3, Iξ ∩ ZEROI(f
ufd)

has even size. Therefore, the smallest element of Aξ ∩ ZEROI(f
ufd) is of the form t2k. From

Lemma 3, Aξ ∩ ZEROI(f
ufd) has odd size. Then the largest element of Aξ is also of the form

t2s and the smallest element of Bξ is t2s+1. As a consequence, ξ is in the candidate interval
(t2s, t2s+1). Q.E.D.

Which of these candidate intervals actually contain zeros of f? To do this, we classify a
candidate interval [t2j , t2j+1] in (10) into two types:

(Odd): t2j ∈ Zero(fd) if and only if t2j+1 ∈ Zero(fu)
(Even): t2j ∈ Zero(fd) if and only if t2j+1 ∈ Zero(fd)

}
(11)

Thus we call a candidate interval J an odd or even candidate interval depending on
whether it satifies (11)(Odd) or (11)(Even). We now treat the easy case of deciding which
candidate intervals are isolating intervals of f :

Lemma 5 (Odd Zero). Let J be a candidate interval. The following are equivalent:
(i) J is an odd candidate interval.
(ii) J contains a unique zero ξ of f . Moreover ξ is an odd zero of f .

Proof. Let J = [t, t′].
(i) implies (ii): Wlog, let fu(t) = 0 and fd(t′) = 0. Thus, f(t) < 0 and f(t′) > 0. Thus f
has an odd zero in J . By Corollary 2, we know that candidate intervals contain at most one
distinct zero.
(ii) implies (i): Since ξ is an odd zero, we see that f must be monotone over J . Wlog,
assume f is increasing. This implies fd(t) < 0 and hence fu(t) = 0. Similarly, fu(t′) > 0
and hence fd(t′) = 0. Hence J is an odd candidate. Q.E.D.

Lemma 5 provides the theoretical basis to isolate zeros of odd multiplicity. Isolate zeros
of even multiplicity is more subtle and will be dealt with in the following section. To do this

we need to look at the sign of ∂fu

∂X
and ∂fd

∂X
. We make a first observation along this line:

Lemma 6. Let ti ∈ ZERO(fufd).
(a) If ti is a zero of fu,
then i is even implies ∂fu

∂X
(ti) ≥ 0, and i is odd implies ∂fu

∂X
(ti) ≤ 0.

(b) If ti is a zero of fd,

then i is even implies ∂fd

∂X
(ti) ≤ 0. and i is odd implies ∂fd

∂X
(ti) ≥ 0.

Proof. The result is true for i = 0, using faithfulness. The rest follows by induction based
on parity tracking. Q.E.D.

2.2 Monotonicity Property

We will now exploit a special property of sleeve (I, fu, fd) for f :

∂fu

∂X
≥ ∂f

∂X
≥ ∂fd

∂X
holds in I (12)

7

We call this the monotonicity property. In this subsection, we assume the monotonicity
property (12) and as well the faithfulness of the sleeve.

We now strengthen one half of Lemma 3 above.

Lemma 7. For all ξ ∈ ZeroI(f), there is a unique zero of odd multiplicity of fu · fd in
Aξ = (aξ, ξ).

ξ

aξ z0 z1

f(z1)
f(z0)

EB(f)

0

−EB(f)

Figure 2: Aξ has a unique zero of fu · fd: CASE of fu(z0) = fu(z1) = 0.

Proof. Alternatively, this lemma says that the multiset ZEROAξ
(fufd) has size 1.

By way of contradiction, suppose z0 ≤ z1 are two zeros of fufd in Aξ = (aξ, ξ). Note
that we allow the possibility that z0 = z1 (in which case z0 is an even root of fufd). From
Lemma 1(iii), we know that either z0, z1 ∈ ZERO(fu) or z0, z1 ∈ ZERO(fd) (i.e., it is not
possible that one is a zero of ZERO(fu) and the other is a zero of ZERO(fd)). There are two
cases:

(A) z0, z1 are roots of fu. See Figure 2. By Rolle’s theorem, there exists z ∈ [z0, z1] such
that ∂fu

∂X
(z) = 0. Therefore, there exist z− < z < z+ that are arbitrarily close to z such that

∂fu

∂X
(z−) · ∂fu

∂X
(z+) < 0. (13)

On the other hand, note that f(zj) < fu(zj) = 0 for j = 0, 1. Since f(ξ) = 0, and zj < ξ,
this means that the interval (zj, ξ) contains a point z with f ′(z) > 0. But f ′ has constant
sign in Aξ from Lemma 1 (iv), and so this sign of f ′ is positive. Then by monotonicity (12),

∂fu

∂X
(z−) ≥ f ′(z−) > 0, and

∂fu

∂X
(z+) ≥ f ′(z+) > 0. (14)

Now we see that (13) and (14) are contradictory.
(B) z0, z1 are roots of fd. We similarly derive a contradiction. Q.E.D.

Remark: It should be observed that this lemma does not hold when Aξ is replaced by Bξ.
This somewhat surprising asymmetry can be seen in the proof of the preceding result.

Corollary 8. If t2j is an even zero of fufd, then Jj = [t2j , t2j+1] contains no zero of f .

Proof. If Jj contains a zero ξ of f , then t2j would be an even zero of fufd contained in
Aξ, contradicting Lemma 7. Q.E.D.

If t2j is an even zero we have either t2j = t2j+1 or t2j = t2j−1. But the former case only
give us a trivial candidate interval which clearly has no zeros of f . The next result is a
consequence of monotonicity and faithfulness:

8

Lemma 9. The interval J0 = [t0, t1] is a candidate interval and it isolates a zero of f .

In Lemma 5, we showed that (11)(Odd) holds iff Jj isolates an odd zero of f . The next
result shows what condition must be added to (11)(Even) in order to to characterize the
isolation of even zeros.

Lemma 10 (Even Zero). Let Jj = [t2j , t2j+1] be an even candidate interval.
Then Jj isolates an even zero ξ of f iff one of the following conditions hold:
(i) fd(t2j) = 0 and ∂fu

∂X
(t2j) < 0

(ii) fu(t2j) = 0 and ∂fd

∂X
(t2j) > 0.

Note: if j > 0 in this lemma, then t2j−1 is a zero of fd iff t2j is a zero of fd.

BξBξAξ

f

(a)

EB(f)

t2j−1 t2j t2j+1

ξ

−EB(f)

0
ζ

f

(b)

EB(f)

t2j−1 t2j t2j+1

−EB(f)

0
ξ

fd

Figure 3: Detection of even zero when t2j , t2j+1 ∈ ZeroI(f
d): (a) even zero, (b) no zero

Proof. Let t2j be a zero of fd (if it is a zero of fu, the proof is similar). So fd(t2j+1) = 0

and by Lemma 6, ∂fd

∂X
(t2j+1) ≥ 0. Then monotonicity implies ∂f

∂X
(t2j+1) ≥ 0. Next, t2j+1 ∈ Bξ

for some zero ξ of f . This means ∂f
∂X

is positive in the interval (ξ, t2j+1). There are two cases:
(a) t2j < ξ < t2j+1 or (b) ξ < t2j < t2j+1. If (a), then since f(t2j) > fd(t2j) = 0, we conclude
that ∂f

∂X
(t2j) < 0 (see Figure 3(a)). If (b), then ∂f

∂X
(t2j) > 0 since ∂f

∂X
has constant sign in Bξ

(see Figure 3(b)). Q.E.D.

2.3 Effective Root Isolation of f

So far, we have been treating the roots tj of fufd exactly. But in our algorithms, we only
have isolating intervals [ai, bi] of these tj’s. We now want to replace the candidate intervals
[t2i, t2i+1] by their “effective versions” of the form [a2i, b2i+1]. As usual, we assume that our
sleeve (I, fu, fd) is faithful and satisfies the monotonicity property (12). Let ZEROI(f

ufd)
be the sorted list given in (10), and [ai, bi] an isolating interval of ti, where any two distinct
intervals [ai, bi] and [aj , bj] are disjoint. Let

SLf,I = ([a0, b0], [a1, b1], . . . , [a2m−1, b2m−1]) (15)

be the corresponding list of isolating intervals for the roots of fufd in ZEROI(f
ufd). Assume

that [ai, bi] = [aj, bj] iff ti = tj . Note that ti = tj implies |i− j| ≤ 1. Let

Ki :=[a2i, b2i+1]. (16)

9

By Corollary 8, Ji is not an isolating interval if t2i is an even zero. Hence, we call Ki an
effective candidate iff t2i < t2i+1 and t2i is an odd zero. Thus, Ki contains the candidate
interval Ji = [t2i, t2i+1]. Furthermore, Ki is called an effective even candidate (resp.,
effective odd candidate) if Ji is an even (resp., odd) candidate interval (cf. (11)).

Our next theorem characterizes when Ki is an isolating interval of f . This is the “effective
version” of Lemma 5 and Lemma 10. But before this theorem, we provide a useful partial
criterion in the case when Ki is an effective even candidate:

Lemma 11. Let Ki = [a2i, b2i+1] be an effective even candidate. Then Ki isolates an even
zero provided one of the following conditions hold:
(E’)d: t2i ∈ Zero(fd) and ∂fu

∂X
is negative at a2i or b2i,

(E’)u: t2i ∈ Zero(fu) and ∂fd

∂X
is positive at a2i or b2i.

Proof. Say t2i is a zero of fd (the case where t2i ∈ Zero(fu) is similar). We have t2i+1 ∈ Bξ

for some ξ ∈ Zero(f), and we also know that f ′ = ∂f
∂X

is positive at t2i+1. There are just
two cases: either (a) t2i is in Aξ, or (b) t2i is in Bξ. If (a) holds, then ξ is an even zero in
[c, t2i+1], and our lemma is true.

So assume (b) and (E’)d. From (E’)d and the monotonicity (12), we know that f ′ is
negative at c where c = a2i or b2i. If c = b2i then we get a contradiction since (b) implies f ′

is positive over Bξ ⊇ [t2i, t2i+1] ⊇ [c, t2i+1]. If c = a2i, the argument is more subtle. We know
that ξ ∈ [t2j , t2j+1] for some j < i and t2j+1 < t2i (for t2i is an odd zero). Moreover, f ′ has
constant sign in Bξ ⊇ [t2j+1, t2i+1] ⊇ [c, t2i+1]. Again this yields a contradiction. Q.E.D.

This lemma is effective because we have reduced the condition Lemma 10 which evaluating
f ′ at an algebraic number t2i to evaluating f ′ at bigfloats a2i and b2i. We must next strengthen
this to a necessary and sufficient criterion:

Theorem 12 (Effective Isolation Criteria). Let Ki = [a2i, b2i+1] be an effective candidate.
If Ki is an even effective candidate, further assume that b2i − a2i < ∆(f ′). Then Ki is an
isolating interval of f iff one of the following conditions hold:
(O) Ki is an effective odd candidate.
(E)d: Ki is an effective even candidate, with fd(t2i) = 0 and ∂f

∂X
is negative at a2i or b2i.

(E)u: Ki is an effective even candidate, with fu(t2i) = 0 and ∂f
∂X

is positive at a2i or b2i.

Proof. As a preliminary remark, we note that Ki contains at most one zero of f . To see
this, since Ki = [a2i, t2i] ∪ [t2i ∪ t2i+1] ∪ [t2i+1, b2i+1], and [t2i, t2i+1] is a candidate interval,
it suffices to show that [a2i, t2i] and [t2i+1, b2i+1] has no zero of f . If Ki is the first (or
the last) effective candidate interval, it is clear that there is no root of f in [a2i, t2i] (or
[t2i+1, b2i+1]). Else, we have t2i−1 < t2i (since t2i is an odd zero), and so f has no zeros in
[t2i−1, t2i] ⊇ [a2i, t2i] since these are non-candidate intervals. Similarly, if t2i+1 < t2i+2 then
f has no zeros in [t2i+1, t2i+2] ⊇ [t2i+1, b2i+1]. It is possible that t2i+1 = t2i+2, but again f
has no zeros in the non-candidate interval [t2i+2, t2i+3] ⊇ [t2i+1, b2i+1]. This completes our
justification that Ki has at most one zero.

Suppose Ki is an effective odd candidate. Then Lemma 5 shows that Ki is isolating.
Suppose Ki is an effective even candidate. Assume fd(t2i) = 0 (the case fu(t2i) = 0 is
similar). Then the previous lemma shows if f ′ is negative at a2i or b2i then Ki is isolating.
Conversely, suppose Ki is isolating. We claim that f ′ is negative at a2i or b2i. Suppose

10

otherwise: f ′(a2i) ≥ 0 and f ′(b2i) ≥ 0. By Lemma 10, that f ′(t2i) < 0. This implies that
f ′(x) = f ′(y) = 0 for some x ∈ [a2i, t2i) and y ∈ (t2i, b2i]. This is a contradiction since
|x− y| ≤ b2i − a2i ≤ ∆(f ′). Q.E.D.

3 Bounds for Triangular Systems

In this section, we generalize the univariate evaluation and sleeves for a univariate polynomial
to a triangular polynomial system Fn where

Fn = {f1(x1), f2(x1, x2), . . . , fn(x1, . . . , xn)} (17)

where fi ∈ Z[x1, . . . , xi]. Generalizing our univariate notation, if B ⊆ Rn, let ZeroB(Fn)
denote the set of real zeros of Fn restricted to B.

Let B = I1 × · · · × In be a n-dimensional box, Ii = [ai, bi], and ξ = (ξ1, . . . , ξn−1) ∈ ξ =
I1 × · · · × In−1 be a real zero of Fn−1 = {f1, . . . , fn−1} = 0. Consider the polynomial

f(X) := fn(ξ1, . . . , ξn−1, X). (18)

We have a three-fold goal in this section:
1. Compute lower estimates on the evaluation EBIn

(f) and separation bounds ∆In
(f).

2. Compute a sleeve (In, fu, fd) for f that satisfies the monotonicity property.
3. Compute an upper estimate on the sleeve bound SBIn

(fu, fd).

3.1 Lower Estimate on Evaluation and Separation Bounds

We give two methods to compute lower estimates on the evaluation bound EBIn
(f). The

first method is based on a general result about multivariate zero bounds in [22]; the other is
based on resultant computation. The same ideas apply to estimating the separation bound
∆In

(f ′).
Let Σ = {p1, . . . , pn} ⊆ Z[x1, . . . , xn] be a system of n polynomials in n variables. Assume

Σ has finitely many complex zeros. Let (ξ1, . . . , ξn) ∈ Cn be one of these zeros. Suppose
di = deg(pi) and K := max{

√
n + 1, ‖p1‖2, . . . , ‖pn‖2} where ‖p‖2 is the 2-norm of p. Then

we have the following result [22, p. 341]:

Proposition 13. Let (ξ1, . . . , ξn) be a complex zero of Σ. For any i = 1, . . . , n, if |ξi| 6= 0
then

|ξi| > MRB(Σ) :=(23/2NK)−D 2−(n+1)d1···dn . (19)

where

N :=

(
1 +

∑n
i=1 di

n

)
, D :=(1 +

n∑

i=1

1

di
)

n∏

i=1

di.

Note that this proposition defines a numerical value MRB(Σ) (the multivariate root

bound) for any zero-dimensional system Σ ⊆ Z[x1, . . . , xn] of n polynomials. We will now
exploit such a value for suitable Σ associated with Fn as in (17). Consider the set

F̂n :={f1, . . . , fn−1,
∂fn(x1, . . . , xn−1, X)

∂X
, Y − fn(x1, . . . , xn−1, X)} (20)

of n + 1 polynomials in Z[x1, . . . , xn−1, X, Y].

11

Lemma 14. Let (ξ1, . . . , ξn−1) be a zero of Fn−1. The evaluation bound of f(X) := fn(ξ1, . . . ,

ξn−1, X) ∈ R[X] satisfies EBIn
(f) > MRB(F̂n).

Note that our evaluation bound EBIn
(f) in this lemma is a global one: it does not depend

on the interval In. We do not know any general method to exploit this In.
It is instructive to directly define the evaluation bound of a triangular system Fn: for

B ⊆ Rn, let B′ = B × R. Then define

EBB(Fn) :=min{|y| : (x1, . . . , xn−1, x, y) ∈ ZeroB′(F̂n), y 6= 0}. (21)

If the set that which we are minimizing over is empty, then EBB(Fn) = ∞. Observe that
(21) is a generalization of the corresponding univariate evaluation bound (3). Note that for
i = 2, . . . , n, we similarly have evaluation bounds EBBi

(Fi) for Fi, where Fi = {f1, . . . , fi}.
This multivariate evaluation bound is a lower bound on the univariate one: with f given

by (18), we have

EBIn
(f) ≥ EBB(Fn) > MRB(F̂n).

As MRB(F̂n) is easily computed, our algorithm can use it as a lower estimate on EB(Fn).

In general, however, MRB(F̂n) is too pessimistic. So we next propose a computational way
to derive a lower estimate, via resultants. In Section 4.5, this computational approach sped
up the computation of Example 1 (resp., Example 2) by two (resp., over five) orders of

magnitude. Consider F̂n defined by (20). Let

ei =

{
resX(Y − fn,

∂fn

∂X
) i = n,

resxi
(ei+1, fi) i = n− 1, . . . , 1

(22)

where resx(p, q) is the resultant of p and q relative to x. Thus e1 ∈ F[Y]. If e1 6≡ 0, define

R(Fn) := min{|z| : e1(z) = 0, z 6= 0}.
If e1 has no real roots, let R(Fn) =∞.

Lemma 15. If e1 6≡ 0, EB(Fn) ≥ R(Fn), and we can use R(Fn) as the evaluation bound.

Therefore, we may isolate the real roots of e1(Y) = 0 and take min{l1,−r2} as the
evaluation bound for Fn, where (l1, r1) and (l2, r2) are the isolating intervals for the smallest
positive root and the largest negative root of e1(Y) = 0 respectively.

Lower Estimate for Separation Bound. We similarly need a lower estimate on the
separation bound ∆(f ′). Consider the system Dn comprising the following n+2 polynomials:

f1(x1), f2(x1, x2), . . . , fn−1(x1, . . . , xn−1),
∂fn(x1, . . . , xn−1,X)

∂X
,

∂fn(x1, . . . , xn−1, Y)

∂Y
, Z −X + Y (23)

Thus for any zero (ξ1, . . . , ξn−1, x
′, y′, z′) ∈ Zero(Dn), we have x′, y′ are zeros of f ′ = ∂f

∂X
and f is given by (18). Moreover, z′ = x′−y′ and so z′ 6= 0 implies |z′| ≤ ∆(f ′). This proves
that MRB(Dn) is a lower bound on ∆(f ′). In fact, ∆(f ′) ≥ ∆B(Fn) where

∆B(Fn) := min{|z| : (x1, . . . , xn−1, x, y, z) ∈ ZeroB′′(Dn), z 6= 0} (24)

and B′′ = I1×· · · In−1×R3. We also develop a computational lower estimate for this bound.

12

3.2 Construction of a Sleeve

Our construction depend on In only in a very minimal way: we need only to assume a
definite sign in In. This means 0 6∈ In, or equivalently, either In > 0 or In < 0. In fact, the
construction depends on the signs of each of the intervals I1, . . . , In−1. We will assume that
Ii > 0 for i = 1, . . . , n; below we indicate how to reduce the general case to this “positive”
case.

Given a polynomial g ∈ R[x1, . . . , xn], we may decompose it uniquely as g = g+ − g−,
where g+, g− ∈ R[x1, . . . , xn] each has only positive coefficients, and the support of g+ and
g− are both minimum. Here, the support of a polynomial g is the set of power products with
non-zero coefficients in g.

Given f as in (18) and an isolating box ξ ∈ Fn−1 for ξ, following [16, 18], we define

fu(X) := fu
n (ξ; X) = f+

n (b1, . . . , bn−1, X)− f−
n (a1, . . . , an−1, X),

fd(X) := fd
n(ξ; X) = f+

n (a1, . . . , an−1, X)− f−
n (b1, . . . , bn−1, X) (25)

where fn = f+
n − f−

n and ξ = [a1, b1]× · · · × [an−1, bn−1].
We briefly indicate two possible solutions when our assumption that Ii > 0 fails. Perhaps

the simplest is to shift the origin of Fn so that the box I1× · · ·× In lies in the first quadrant
of Rn. E.g., replace xi by xi − ai in Fn and replace Ii by ai + Ii. Alternatively, proceed as
follows: for each i, if ξi = 0, we can replace xi in fn(x1, . . . , xn) by 0. After this, we can
split Ii if necessary so that Ii > 0 or Ii < 0. For each i such that Ii < 0, we replace xi in
fn(x1, . . . , xn) by −xi. Let f̄n(x1, . . . , xn) denote the polynomial after these replacements.
Now we may carry out the construction of (25) f̄n with the box B′ = I ′

1 × · · · × I ′
n where I ′

i

is −Ii iff Ii < 0 and otherwise I ′
i = Ii.

From the construction, it is clear that fu ≥ f ≥ fd. Moreover, both inequalities are strict
if ai = ξi = bi does not hold for any i = 1, . . . , n− 1. Hence (In, f

u(X), fd(X) is a sleeve for
f(X) [16, 18]. We further have:

Lemma 16. Over any positive interval In = [l, r] > 0, we have:

(i) (Monotonicity) ∂fu

∂X
≥ ∂f

∂X
≥ ∂fd

∂X
.

(ii) fu(X)− fd(X) is monotonously increasing over In.

Proof. Let f(X) = fn(ξ1, . . . , ξn−1, X) = f+
n (ξ1, . . . , ξn−1, X)− f−

n (ξ1, . . . , ξn−1, X) and

T1(X) = fu(X) − f(X) = (f+
n (b1, . . . , bn−1, X) − f+

n (ξ1, . . . , ξn−1, X)) + (f−

n (ξ1, . . . , ξn−1, X) − f−

n (a1, . . . , an−1, X)),

T2(X) = f(X) − fd(X) = (f+
n (ξ1, . . . , ξn−1, X) − f+

n (a1, . . . , an−1, X)) + (f−

n (b1, . . . , bn−1, X) − f−

n (ξ1, . . . , ξn−1, X)),

T3(X) = fu(X) − fd(X) = (f+
n (b1, . . . , bn−1, X) − f+

n (a1, . . . , an−1, X)) + (f−

n (b1, . . . , bn−1, X) − f−

n (a1, . . . , an−1, X)).

Since f+
n , f−

n are polynomials with positive coefficients and 0 < ai ≤ ξi ≤ bi for all
i, f+

n (b1, . . . , bn−1, X) − f+
n (ξ1, . . . , ξn−1, X), f−

n (ξ1, . . . , ξn−1, X) − f−
n (a1, . . . , an−1, X), and

hence T1(X) are polynomials in X with positive coefficients. Similarly, T2(X) and T3(X)

are polynomials with positive coefficients. For x > 0, we have ∂T1(x)
∂X

= ∂fu(x)
∂X
− ∂f(x)

∂X
≥ 0.

Similarly, we can show that ∂T2(x)
∂X

= ∂f(x)
∂X
− ∂fd(x)

∂X
≥ 0, and ∂T3(x)

∂X
= ∂fu(x)

∂X
− ∂fd(x)

∂X
≥ 0. Thus

∂fu

∂X
≥ ∂f

∂X
≥ ∂fd

∂X
. As consequence, fu(X)− fd(X) is monotone increasing in In. Q.E.D.

As an immediate corollary, we obtain an upper estimate on the sleeve bound:

Corollary 17.
SBIn

(fu, fd) ≤ fu(r)− fd(r). (26)

13

3.3 Upper Estimate on Sleeve Bound

How good is the upper estimate (26)? Our next goal is to give an upper bound on fu(r)−
fd(r) as a function of

b := max{b1, . . . , bn}, w :=max{w1, . . . , wn}

where wi = bi − ai. Also let w = (w1, . . . , wn). For f ∈ R[x1, . . . , xn], write f =∑
α

cαpα(x1, . . . , xn) where α = (α1, . . . , αn) ∈ Nn, and pα(x1, . . . , xn) denotes the mono-
mial xα1

1 · · ·xαn
n . Let ‖f‖1 :=maxα |cα| denote its 1-norm. The inner product of two vectors,

say w and α, is denoted 〈w, α〉 =
∑n

i=1 wiαi.

Lemma 18. Let α = (α1, . . . , αn) where m =
∑n

i=1 αi ≥ 1. Then

pα(b1, . . . , bn)− pα(a1, . . . , an) ≤ bm−1〈α,w〉 ≤ wmbm−1.

For example, if each αi = m/n then
∑n

i=1 wiαi ≤ mw/n.

Corollary 19. Let f =
∑

α
cαpα(x1, . . . , xn) ∈ R[x1, . . . , xn].

If each coefficient cα is positive and m = deg(f) ≥ 1, then

f(b1, . . . , bn)− f(a1, . . . , an) ≤ bm−1
∑

α

|cα|〈w, α〉 ≤ wmbm−1‖f‖1.

Theorem 20. Let (In, f
u, fd) be a sleeve as in (25), and n−1ξ = I1×· · ·×In−1 an isolating

box for ξ ∈ Rn−1, where Ii = [ai, bi] > 0, In = [l, r] > 0, and w = maxn−1
i=1 {bi − ai}. Then

SBI(f
u, fd) ≤ wm‖fn‖1bm−1,

where m = deg(fn), b = max{b1, . . . , bn−1, r}.
We give two corollaries to the above theorem.

Corollary 21. For a fixed Fn and In, when w → 0, SBIn
(fu, fd)→ 0.

So when w → 0, fu → f and fd → f . The correctness of our algorithm follows from the
fact with sufficient refinement, the sleeve-evaluation inequality (5) will eventually hold. The
next corollary gives an explicit condition to guarantee this:

Corollary 22. The sleeve-evaluation inequality (5) holds provided

w <
EBIn

(f)

m‖fn‖1bm−1
. (27)

4 The Main Algorithm

In this section, we present our root isolation algorithm for a triangular system: given Fn as in
(17), to isolate the real zeros of Fn in a given n-dimensional box B = I1×· · ·× In. But first,
we outline the method for the case n = 2. Most of the issues in the general algorithm already
appear in this case, but the notations are more transparent. We also give two subalgorithms
for root refinement and an effective method for verifying zeros.

14

4.1 Bivariate Isolation Algorithm

This is omitted in the abstract.

4.2 Refinement of Isolating Box

Since refining an isolation box is an essential subroutine in our algorithm, we now provide
more details of this subalgorithm. Let nξ = n−1ξ × [c, d] > 0 be an isolating box for a
zero ξ = (ξ1, . . . , ξn) of Fn. With f(X) = fn(ξ1, . . . , ξn−1, X) as usual, we construct the
sleeve ([c, d], fd, fu) associated with nξ satisfying the sleeve-evaluation inequality (5) and
the monotonicity property (12). Suppose ′

n−1ξ is a proper refinement of n−1ξ, i.e.,
′
n−1ξ n−1ξ (proper subset). We obtain the corresponding sleeve functions:

f̄u(X) = fu
n (′

n−1ξ, X)(see definition in (25)),

f̄d(X) = fd
n(′

n−1ξ, X).

Lemma 23. Let t0 < t1 be distinct zeros of fufd in [c, d], and t′0 < t′1 be the two smallest zeros
of f̄uf̄d in [c, d]. If ′

n−1 is not a point (i.e., 6= (ξ1, . . . , ξn−1)), then ξ ∈ ′
n−1ξ×[t′0, t

′
1] ⊆ nξ.

The lemma tells us how to refine the isolating box of a triangular system without checking
which of the subdivided intervals is the isolating interval with Theorem 12.

Refine(Fn,K, ǫ)
Input: K = I1 × · · · × In (an isolating box of the triangular system Fn) and ǫ (a given precision).

Output: A refined isolating box K̂ = Î1 × · · · × În of K such that w = maxn
j=1{|Îj |} ≤ ǫ.

1. If n = 1, subdivide In by half until |In| < ǫ and return In.
2. Let Kn−1 = I1 × · · · × In−1.

w = maxn
j=1{|Ij |}.

If w ≤ ǫ, return K.
δ = ǫ.

3. while w > ǫ, do

3.1. δ = δ/2.
3.2. Kn−1 ← Refine(Fn−1, Kn−1, δ).
3.3. If Kn−1 is a point, f(X)← fn(ξ1, . . . , ξn−1,X) is a univariate polynomial with rational

coefficients. Subdivide In by half until |In| < ǫ and return In.
3.4. Compute the sleeve: fu(X)← fu

n (Kn−1,X), fd(X)← fd
n(Kn−1,X).

3.5. Isolate the real roots of fufd in In with precision δ.
3.6. Denote the first two intervals as [c1, d1], [c2, d2].
3.7. w ← d2 − c1.

4. Return K̂ ← Kn−1 × [c1, d2].

Remark: In step 3.3, when Kn−1 is a point, Kn−1 = [ξ1, ξ1]×· · ·× [ξn−1, ξn−1] ∈ Fn−1, where
(ξ1, . . . , ξn−1) is the real root of Fn−1 in I1 × · · · × In−1.

Proof of Correctness. By Lemma 23, we need only select the first two isolating intervals
of fdfu = 0. By Corollary 21, when |Kn−1| → 0, fu → f and fd → f . Since we isolate the
real roots of fufd in In with precision δ, after enough subdivision, w will be smaller than ǫ
and the algorithm will terminate.

15

4.3 Verifying Zeros

We are given a box B = I1 × · · · × Ik, a triangular system Σ = {h1(x1), . . . , hk(x1, . . . , xk)}
and a polynomial g(x1, . . . , xk) ∈ Z[x1, . . . , xk]. If B is the isolating box of a zero ξ =
(ξ1, . . . , ξk) ∈ Zero(Σ), we will provide a subroutine to verify whether g(ξ1, . . . , ξk) = 0.
Consider the polynomial system:

Σg = {h1(x1), h2(x1, x2), . . . , hk(x1, . . . , xk), Y − g(x1, . . . , xk)}. (28)

We define a generalized evaluation bound,

EBB(g; Σ) := inf{|y| : (x1, . . . , xk, y) ∈ ZeroB(Σg), y 6= 0}.

Note that the evaluation bound definition (21) can be reduced to this case. It is easily seen
that if y0 := g(ξ1, . . . , ξk) 6= 0 then |y0| ≥ EBB(g; Σ). By Proposition 13, we obtain the
lower estimate EBB(g; Σ) > MRB(Σg). We again provide a resultant-based computational
estimate, as follows: define the sequence rk+1, rk, . . . , r1 of polynomials where rk+1 :=Y −
g(x1, . . . , xk) and ri := resxi

(hi(x1, . . . , xi), ri+1(x1, . . . , xi, Y)) for i = k, . . . , 1. Then r1 =
r1(Y). If r1 6≡ 0, let ξ+ (resp., ξ−) be the smallest positive zero of r1(Y) (resp., r1(−Y)). If
y0 = g(ξ1, . . . , ξk) 6= 0 then |y0| ≥ min{ξ+, ξ−}; this is because y0 is a zero of r1(Y) = 0. We
can compute lower bounds on ξ+, ξ− via root isolation. Note that the second method is only
complete for regular triangular systems (when r1 6≡ 0).

We give the following algorithm.

ZeroTest(Fn,K = I1 × · · · × In, g(x1, . . . , xn))
Input: an isolating box K of a zero ξ of triangular system Fn, g ∈ F[x1, . . . , xn], Ii = [ai, bi] > 0.
Output: TRUE iff g(ξ) = 0.
1. δ = maxn

j=1{|Ij |}.
2. Compute bounds similar to a sleeve of g:

gu = g+(b1, . . . , bn)− g−(a1, . . . , an),
gd = g+(a1, . . . , an)− g−(b1, . . . , bn).

3. If gd = gu, then g = gd = gu. If gd = 0 return TRUE; otherwise return FALSE.
4. If gugd ≥ 0, then g 6= 0 and return FALSE.
5. Compute the zero bound ρ if it does not exist.
6. If |gu| < ρ, and |gd| < ρ, then g < ρ and hence g = 0 and return TRUE.
7. δ = δ/2, K = Refine(Fn,K, δ), and goto step 2.

Proof of Correctness. From the construction, we have gd ≤ g ≤ gu. If gd = gu, then
g = gd = gu and g = 0 iff gd = 0. If gugd ≥ 0, then g 6= 0. Note that gd < g < gu in this
case. The sign of g is the same as the sign of sign(gu) or sign(gd). In the two cases, we
need not to compute zero bound of g. If gugd < 0, we need to compute the zero bound ρ. If
|gu| < ρ and |gd| < ρ, then g < ρ and hence g = 0 by the definition of the zero bound. It is
obvious that the algorithm will terminate since gu and gd approach g when |K| → 0.

4.4 Isolation Algorithm

We now give the main algorithm of this paper. Note that our algorithm can detect whether
the input triangular system is positive dimensional.

16

RootIsol(Fn, Bn, ǫ)
Input: Fn ⊆ Z[x1, . . . , xn], Bn =

∏n
i=1 Ii ⊂ Fn with Ii > 0 and ǫ > 0.

Output: An isolating set for ZeroBn(Fn), or else “Fn is positive dimensional”.

1. Compute an isolating interval set ZeroB1
(F1) for F1 to precision ǫ.

Result := ZeroB1
(F1). NewResult← ∅.

If Result = ∅, return Result.
2. For i from 2 to n, do

2.1. Compute an evaluation bound EBi :=EB(Fi) for Fi.
2.2. δ ← ǫ.
2.3. while Result 6= ∅, do

2.3.1. Choose an element i−1ξ from Result.
Result← Result \ { i−1ξ}.

2.3.2. Let f(X)← fi(ξ1, . . . , ξi−1,X) =
∑

k ck(ξ1, . . . , ξi−1)X
k.

If ZeroTest(Fi−1, i−1ξ, ck(x1, . . . , xi−1)) =TRUE for all k then fi ≡ 0, then
return(“Fn is positive dimensional”).

2.3.3. Compute the sleeve: fu(X)← fu
i (i−1ξ;X), fd(X)← fd

i (i−1ξ;X).
2.3.4. While fu(bi)− fd(bi) ≥ EBi,

δ ← δ/2 and i−1ξ ← Refine(Fi−1, i−1ξ, δ).
fu(X)← fu

i (i−1ξ;X), fd(X)← fd
i (i−1ξ;X).

2.3.5. Isolate the real roots of fufd in Ii.
2.3.6. Compute the parity of each root of fufd in Ii.
2.3.7. Construct the effective candidate intervals.
2.3.8. for each effective candidate interval K,

2.3.8.1. Apply Theorem 12 to decide whether K is isolating.
K is an effective odd candidate interval, K is isolating;
K is an effective even candidate interval:

If K satisfies the condition in Lemma 11, K is isolating;
Else, compute a lower estimate ∆i on the separation bound ∆(Di) by (23),

refine K to the precision ∆i.
K is isolating iff it satisfies the condition of Lemma 11.

2.3.8.2. If K is isolating, then
K ← Refine(Fi,K, ǫ).
NewResult← NewResult

⋃{ i−1ξ ×K}.
2.4. If NewResult = ∅, return NewResult.
2.5. Result← NewResult. NewResult← ∅.

3. return Result.

Remarks:

1. In Step 2.1, when the system is not regular, we need to compute the evaluation bound
by Proposition 13. When the system is not zero-dimensional, we still use Proposition 13 to
compute the evaluation bound. Though the evaluation bound is not right, the system can
be detected to be positive dimensional. The algorithm is correct in global sense.
2. Algorithm RootIsol can be improved in several ways.

• In the Section 3.3, we give two methods to compute the sleeve bound. Note that the
algorithm based on (26) is more adaptive. If we use (27) to give the sleeve bound, the

17

Sleeve-Evaluation Inequality holds automatically.

• Theorem 12 gives a criterion to isolate roots in an open interval. We thus need to
check whether a rational number r is a zero of f(X). In other words, we need to check
whether f(r) = fi(ξ1, . . . , ξi−1, r) = 0; this can be done using ZeroTest.

• We will show that the assumption Bn > 0 is reasonable. If we want to obtain the real
roots of f in the interval I = (a, b) < 0, we may consider g(X) = f(−X) in the interval
(−b,−a). If 0 ∈ (a, b), we can consider the two parts, (a, 0) and (0, b) respectively,
since we can check if 0 is a zero of f(X).

• If we want to find all the real roots of f , we first isolate the real roots of f in (0, 1),
then isolate the real roots of g(X) = Xn ∗ f(1/X) in (0, 1), and check whether 1 is
a root of f . As a result, we can find all the zeros of f(X) in (0, +∞). We can find
the zeros of f(X) in (−∞, 0) by isolating the zeros of f(−X) in (0, +∞). Finally, we
check whether 0 is a zero of f(X).

• Theorem 12 assumes that the sleeves are faithful (see (6)). We will show how to isolate
the real roots of f when the sleeve-evaluation inequality (5) holds but |f(a)| < EBI(f)
or fu(b)fd(b) ≤ 0. In fact, if we replace EBI(f) with

ETI(f) :=min{|f(z)| : z ∈ ZeroI(f
′) ∪ {a} \ ZeroI(f)}, (29)

then almost all the sleeve (I, fu, fd) is faithful except for f(a) = 0 or f(b) = 0. If
f(a) = 0 or f(b) = 0, we can ignore the first or last element in SLf,I to form effective
candidate intervals of f . When f(a) = 0, the first effective candidate interval may or
may not be the isolating interval of f , we need to check it by Theorem 12. And we need
to use the first isolating interval in SLf,I to decide whether the first effective candidate
interval is isolating if the first three elements in SLf,I are all isolating intervals of fu

(or fd).

Although we can simply solve the non-faithful problem as mentioned above, when
f(a) or f(b) is very close but not equal to 0, ETI(f) is very small. It is expensive to
construct (I, fu, fd) in order to satisfy the sleeve-evaluation inequality (5). In order to
avoid this case, we just use EBI(f) directly and deal with the non-faithful sleeve case
as in the Appendix.

4.5 Worked Examples

We provide some worked examples with multiple zeros. Note that all the rational numbers
in our examples are dyadics, D.

Example 1: Consider the system F2 = {f1, f2} where

f1 = x4 − 3x2 − x3 + 2x + 2,

f2 = y4 + xy3 + 3 y2 − 6x2y2 + 4x y + 2xy2 − 4x2y + 4x + 2.

18

We isolate all the real roots of the system to precision 2−4 with algorithm RootIsol.
Isolating the real roots of f1 to precision 2−4, we obtain the following isolating inter-
vals: [[−23

16
, −11

8
], [−5

8
, −9

16
], [11

8
, 23

16
], [25

16
, 13

8
]]. Next consider the first positive isolating interval

1ξ = [11
8
, 23

16
], where ξ satisfies f1(ξ) = 0 and ξ ∈ [11

8
, 23

16
]. We will isolate the real roots of

f2(ξ, y) = 0 in [0, 2].
Computing the evaluation bound with the resultant method introduced in Section 3.1,

we have EB2 = 1
2
. The sleeve computed using the interval 1ξ is

fu(y) = −
175

32
y2 −

29

16
y + y4 +

23

16
y3 +

31

4
,

fd(y) = −
851

128
y2 −

177

64
y + y4 +

11

8
y3 +

15

2
.

The sleeve bound of ([0, 2], fu, fd) is SB = fu(2) − fd(2) = 59
8
. Since the sleeve-evaluation

inequality (5) does not hold, we refine 1ξ. Let 1ξ = Refine(f1, 1ξ,
1
28) = [181

128
, 363

256
]. We

have the new sleeve

fu(y) = −
50475

8192
y2 −

9529

4096
y + y4 +

363

256
y3 +

491

64
,

fd(y) = −
204331

32768
y2 −

39097

16384
y + y4 +

181

128
y3 +

245

32

with sleeve bound SB = fu(2)−fd(2) = 949
2048

< 1
2

= EB2. The sleeve ([0, 2], fu, fd) is faithful
(6) since fu(0) = 491

64
> 1

2
, fd(0) = 245

32
> 1

2
, fu(2) = 2927

512
> 1

2
, fd(2) = 10759

2048
> 1

2
.

Isolating fufd in [0, 2] to precision 2−8, we obtain SLf2,[0,2]: [[165
128

, 331
256

], [395
256

, 99
64

]] both with
parities 1. The two isolating intervals are both isolating intervals of fd. It is an isolating
interval of f2(ξ, y) by Lemma 9. So there is an even root of f2(ξ, y) in [0, 2] by Theorem 12.
It is in [165

128
, 99

64
]. So [11

8
, 23

16
]× [165

128
, 99

64
] is an isolating box of triangular system F2.

The isolating box does not satisfy our output precision requirement. Refine the isolating
box with Refine, we obtain [181

128
, 5793

4096
]× [1423

1024
, 2947

2048
].

Eventually, we obtain all the isolating boxes for F2 = 0 in 0.141s with RootIsol. If we use
Lemma 14 to compute MRB(F2), we have 1

2289 < MRB(F2) < 1
2288 , and the time to isolate

the roots is 9.282s, about 100 times slower.

Example 2: Consider the system F3 = {f1, f2, f3} where

f1 = x3 − 2x2 + 8,

f2 = 4 y4 + (4x3 − 8x2 − 32) y2 + x6 − 4x5 + 4x4 + 16x3 − 32x2 + 64,

f3 = (2 z2 + 2 y2 + x3 − 2x2 − 8)2 + 32x3 − 64x2.

Here f3 = 0 is a surface in R3 discussed in [4] and [7]. Using Lemma 15 over Lemma 14
improves the time from > 49, 000s to 0.235s. We omit details in this abstract.

4.6 Experimental Results

In order to evaluate the effectiveness of our algorithms, we implemented RootIsol in Maple 10
and did extensive tests on randomly generated triangular systems. In our implementation,
we lower estimate the evaluation bound with the resultant computation method described in
Section 3.1. The most time-consuming parts are the computation of the evaluation bounds
for the system and the refinement for the isolating boxes.

19

We tested our program with three sets of examples. The coefficients of the tested polyno-
mials are between −100 and 100. The precision is set to 2−10. We use the method mentioned
in the Remarks for RootIsol to compute all the real solutions for the triangular systems.
The timings are collected on a PC with a 3.2G CPU and 512M memory.

The first set of examples are sparse polynomials and the results are given in Table 1.
We use the Maple command randpoly({x1, . . . , xn}, degree=d, terms =t) to generate poly-
nomials with given degree and given number of terms. The type of a triangular system
Fn = {f1, . . . , fn} is a list (d1, . . . , dn) where di is the degree of fi in xi. The tested trian-
gular systems have types indicated under the TYPE column. TIME is the average running
time for each triangular system in seconds. NS is the average number of real solutions for
each triangular system. NT is the number of tested triangular systems. NE is the average
number of terms in each polynomial.

TYPE TIME NS NT NE
(3, 3) 0.04862 2.04 100 (4, 10)
(9, 7) 0.52717 3.99 100 (10, 10)

(21, 21) 108.9115 5.45 20 (10, 10)
(3, 3, 3) 0.15783 3.48 100 (4, 10, 10)
(9, 7, 5) 16.20573 8.36 100 (10, 10, 10)

(3, 3, 3, 3) 1.69115 5.64 100 (4, 10, 10, 10)
(3, 3, 3, 3, 3) 159.1199 8.0 10 (4, 10, 10, 10, 10)

Table 1: Timings for solving sparse triangular systems

The second set of examples are dense polynomials and the results are given in Table 2.
A triangular system Fn = {f1, . . . , fn} of type (d1, . . . , dn) is called dense if fi =

∑di

k=0 ckx
k
i

and deg(ck, xj) = dj − 1 for all k and i > j.

TYPE TIME NS NT NE
(3, 3) 0.05355 1.91 100 (3.99, 8.02)
(9, 8) 1.87486 4.26 100 (9.94, 43.98)

(11, 11) 8.78255 4.5 80 (11.975, 72.5)
(16, 14) 50.22294 6.0 100 (16.9, 127.13)
(21, 15) 164.23443 6.22 100 (21.91, 176.8)
(3, 3, 3) 0.38702 2.91 100 (3.99, 7.77, 13.01)
(5, 4, 4) 2.97011 4.88 100 (5.99, 14.72, 24.24)
(5, 5, 5) 33.225275 5.6125 80 (5.9625, 17.775, 42.1375)
(8, 7, 6) 592.1848 7.6 10 (8.9, 36.0, 79.8)

(3, 3, 3, 3) 119.94042 6.96 50 (4.0, 8.12, 12.82, 20.92)
(5, 5, 3, 3) 551.4401 3.4 10 (6.0, 32.1, 42.3, 21.5)

Table 2: Timings for solving dense triangular systems

The third set of test examples are triangular systems with multiple roots and the results
are given in Table 3. A triangular system of type (d1, . . . , dn) is generated as follows: f1

is a random polynomial in x1 and with degree d1 in x1 and fi = a2
i (bixi + ci)

⌊
di+1

2
⌋−⌊

di
2
⌋

for i = 2, . . . , n, where ai is a random polynomial in x1, . . . , xi of degree ⌊di/2⌋ in xi, and
bi, ci are random polynomials in x1, . . . , xi−1. The column NM gives the average number of
multiple roots for the tested triangular systems.

From the above experimental results, we could conclude that our algorithm is capable of
handling quite large triangular systems.

20

TYPE TIME NS NM NT NE
(5, 5) 0.71251 3.71 1.57 100 (5.97, 34.47)
(9, 8) 0.60408 3.1 3.1 100 (9.94, 18.92)

(13, 11) 32.44376 6.55 3.92 100 (13.94, 107.68)
(23, 21) 466.0289 6.15 3.75 20 (24.0, 183.4)
(3, 3, 3) 3.21342 5.59 3.24 100 (3.99, 13.08, 31.71)
(9, 7, 5) 425.95055 12.95 8.15 20 (9.95, 60.85, 100.35)

(3, 3, 3, 3) 130.617 11.15 6.1 20 (4.0, 12.2, 33.7, 62.95)

Table 3: Timings for solving dense triangular systems

5 Conclusion

This paper provides a complete algorithm of isolating the real roots for arbitrary zero-
dimensional triangular polynomial systems. The key idea is to use a sleeve satisfying the the
sleeve-evaluation inequality to isolate the roots for a univariate polynomial with algebraic
number in its coefficients. We further introduce the new tools of evaluation and separation
bounds, as well as methods to estimate them. Even with our current simple implementa-
tion, the algorithm is shown to be quite effective for modest size problems. To solve larger
problems, the bottle neck of the algorithm is the estimation of evaluation and separation
bounds. An important research problem is to derive “local bounds”, i.e., bounds that exploit
the box B in ∆B(Fn) or EBB(Fn). Furthermore, current bounds cannot distinguish among
the different components of a zero of Fn, but we only want to bound the last component.

References

[1] E.L. Allgower, K. Georg, and R. Miranda, The method of resultants for computing real solu-

tions of polynomial systems, SIAM Journal on Numerical Analysis, 29: 831 - 844, 1992.

[2] D.S. Arnon, G.E. Collions, and S. McCallum, Cylindrical algebraic decomposition I: the basic

algorithm, Quantifier Elimination and Cylindrical Algebraic Decomposition (B.F. Caviness
and J.R. Johnson eds.), Springer, Wien, 136 - 151, 1998

[3] D. S. Arnon, G.E. Collions, and S. McCallum, Cylindrical algebraic decomposition II: an

adjacency algorithm, Quantifier Elimination and Cylindrical Algebraic Decomposition (B.F.
Caviness and J.R. Johnson eds.), Springer, Wien, 152 - 165, 1998.

[4] C. Bajaj and G. Xu, Spline approximations of real algebraic surfaces, J. Symb. Comput., 23:
315 - 333, 1997.

[5] R. P. Brent, Fast multiple-precision evaluation of elementary functions, J. ACM, 23: 242 -
251, 1976.

[6] B. Buchberger, An algorithm for finding a basis for the residue class of zero-dimension poly-

nomial idea, Aequationes Math, 374-383, 1970.

[7] J.S. Cheng, X.S. Gao, and M. Li, Determine the topology of real algebraic surfaces, Mathe-
matics of Surfaces XI, LNCS3604, Springer, 121 - 146, 2005.

[8] G.E. Collins, J.R. Johnson, and W. Krandick, Interval arithmetic in cylindrical algebraic

decomposition, J. Symb. Comput., 34: 145 - 157, 2002.

21

[9] D. Cox, J. Little, and D. O’shea, Ideals, varities, and algorithms, Second Edition. Springer,
New York, 1996.

[10] Z. Du, V. Sharma, and C.K. Yap, Amortized bound for root isolation via Sturm sequences,
in Proceedings of International Workshop on Symbolic-Numeric Computation, Xi’an, China,
July 19-21, 81 - 93, 2005.

[11] A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn, S. Schmitt, and N. Wolpert, A descartes

algorithm for polynomials with bit stream coefficients, 8th Int’l Workshop on Comp. Algebra
in Sci. Computing (CASC 2005), LNCS 3718, Springer, 138 - 149, 2005.

[12] A. Eigenwillig, V. Sharma, and C. Yap, Almost tight recursion tree bounds for the Descartes

method, in Proceedings of ISSAC’06, Genova, Italy, Jul 9-12, 71 - 78, 2006.

[13] L. González-Vega, T. Recio, H. Lombardi and M.F. Roy, Sturm-Habicht sequences, deter-

minants and real roots of univariate polynomials, Quantifier Elimination and Cylindrical Al-
gebraic Decomposition (B.F. Caviness and J.R. Johnson eds.), Springer, Wien, 300 - 316,
1998

[14] J.R. Johnson, Algorithms for polynomial real root isolation. Quantifier Elimination and Cylin-
drical Algebraic Decomposition (B.F. Caviness and J.R. Johnson eds.), Springer, Wien, 269 -
299, 1998.

[15] D. Lazard, A new method for solving algebraic systems of positive dimension, Discrete Appl.
Math., 33: 147 - 160, 1991.

[16] Z. Lu, B. He, Y. Luo and L. Pan, An algorithm of real root isolation for polynomial systems,
in Proceedings of International Workshop on Symbolic-Numeric Computation, Xi’an, China,
July 19-21, 94 - 107, 2005.

[17] B. Mourrain, Computing the isolated roots by matrix methods, J. Symb. Comput., 26: 715-738,
1998.

[18] C.B. Soh and C.S. Berger, Strict aperiodic-property of polynomials with perturbed coefficients,
IEEE Transactions on Automatic Control, 34: 546-548, 1989.

[19] W.T. Wu, Mathematics Mechanization, Sience Press/Kluwer, Beijing, 2000.

[20] B. Xia and L. Yang, An algorithm for isolating the real solutions of semi-algebraic systems, J.
Symb. Comput., 34: 461-477, 2002.

[21] C.K. Yap, Robust geometric computation, in Handbook in Discrete and Computational Ge-
ometry (JE Goodman and J. O’Rourke, editors), CRC Press, Boca Raton, 653 - 668, 1997.

[22] C.K. Yap, Fundamental problems of algorithmic algebra, Oxford Press, 2000.

[23] C.K. Yap, Complete subdivision algorithms, I: intersection of Bezier curves, in 22nd ACM
Symp. on Computational Geometry, 217 - 226, 2006.

[24] C.K. Yap, Theory of Real Computation according to EGC, LNCS Volume from Dagstuhl
Seminar “Reliable Implementation of Real Number Algorithms: Theory and Practice”, Jan
8-13, 2006. To appear, 2007.

The appendix is omitted in this abstract.

22

