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Lemma 2 SHORTEST (s

1

; . . . ; s

n

) represents the set of all shortest paths

from s to t avoiding obstacles E. There are only �nitely many solutions in

SHORTEST (s

1

; . . . ; s

n

).

Let us remark that SHORTEST (s

1

; . . . ; s

n

) is a universal formula. Its

polynomials are at most quadratic but the formula has length n

O(n)

. However,

if we just want to decide if there is a path of length at most d, we can easily

reduce this to an existential Tarski sentence that is only polynomial in size and

hence this is decidable in polynomial time (see [4]).
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subsequence s

i

; s

i+1

; . . . ; s

j�1

; s

j

such that fi+1; i+2; . . .; j�1g\ I = ;. Then

s

i

; s

j

is uniquely determined. To see that each s

`

(i < ` < j) is also uniquely

determined, we may proceed as in [33, Lemma 3.3]. Basically their argument is

valid in any dimension provided �

`

; �

`

are well-de�ned). Q.E.D.

Let �

L

1

;...;L

k

(s

1

; . . . ; s

k

) be the disjunction of �

I

(s

1

; . . . ; s

k

), ranging

over all I � f1; . . . ; kg. It is not hard to see that every shortest path

(s; L

1

; . . . ; L

k

; t)-path \essentially" satis�es �

L

1

;...;L

k

(in the exceptional behav-

ior where s

i�1

; s

i

; s

i+1

2 L

i

, this can be suitably interpreted). So far, we have

not taken into account the obstacles.

Now we �x the input to ESP, namely, s; t 2 R

d

and a set E of polyhedral

obstacles. We can think of E as a union of simplices where the simplices are

given explicitly. If S

1

; . . . ; S

k

are edges inE, an (s; S

1

; . . . ; S

k

; t)-path is any path

(s; s

1

; . . . ; s

k

; t) where s

i

2 S

i

. In analogy to �

L

1

;...;L

k

above, we can construct

a Tarski predicate �

S

1

;...;S

k

(s

1

; . . . ; s

k

) de�ning a �nite set of (s; S

1

; . . . ; S

k

; t)-

paths. If we ignore obstacles, and assume S

i

; S

i+1

are non-collinear for each

i = 1; . . . ; k� 1, then all shortest (s; S

1

; . . . ; S

k

; t)-paths will be included in this

�nite set.

To account for the obstacles, we write a Tarski predicate FREE(s

0

; s

1

)

that asserts that the path segment (s

0

; s

1

) avoids the relative interior of the

polyhedral obstacles E. Also let FREE(s

1

; . . . ; s

k

) be the conjunction of

FREE(s

i�1

; s

i

) for i = 1; . . . ; k + 1 where s = s

0

; t = s

k+1

.

De�ne PATH

k

(s

1

; . . . ; s

k

) to be disjunction of �

S

1

;...;S

k

(s

1

; . . . ; s

k

)'s, vary-

ing over all S

1

; . . . ; S

k

. Although we do not know the number k of intermediate

edges that a shortest path goes through, we can easily bound k by the total

number n of edges in the obstacles. Let

PATH(s

1

; . . . ; s

n

) :=

n

WW

k=0

(PATH

k

(s

1

; . . . ; s

k

) ^ s

k

= s

k+1

= � � � = s

n

) :

Thus, there is again only a �nite set of solutions to PATH(s

1

; . . . ; s

n

), and all

shortest paths that avoid obstacles is among this set.

Let D(s

1

; . . . ; s

k

) denotes the Euclidean length of the path (s; s

1

; . . . ; s

k

; t).

The assertion \z = D(s

1

; . . . ; s

k

)" can be written as the Tarski formula

(8v

0

; . . . ; v

k

)[

k

VV

i=0

(v

2

i

= ks

i+1

� s

i

k

2

^ v

i

� 0):) :z =

k

X

i=0

v

i

]: (2)

Notice that we can as well replace the universal quanti�ers in (2) by existential

quanti�ers. Finally the Tarski predicate SHORTEST (s

1

; . . . ; s

n

) is given by

PATH(s

1

; . . . ; s

n

) ^ FREE(s

1

; . . . ; s

n

)^

(8s

0

1

; . . . ; s

0

n

)[PATH(s

0

1

; . . . ; s

0

n

) ^ FREE(s

0

1

; . . . ; s

0

n

)) D(s

1

; . . . ; s

n

) � D(s

0

1

; . . . ; s

0

n

)]:

This yields our desired result.
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APPENDIX

We show that the set of solutions to the Euclidean shortest path (ESP) problem

is a �nite semi-algebraic set. In particular, this shows that every shortest path

is algebraic.

Initially, let us �x the lines L

1

; . . . ; L

k

in R

d

and points s; t 2 R

d

. By an

(s; L

1

; . . . ; L

k

; t)-path we mean a polygonal path � = (s

0

; s

1

; . . . ; s

k+1

) from

s = s

0

to t = s

k+1

such that s

i

2 L

i

(i = 1; . . . ; k). The only restriction we have

on L

1

; . . . ; L

k

is that L

i

6= L

i+1

for i = 1; . . . ; k � 1. In our application, L

i

and

L

i+1

may not be skew and possibly L

i

= L

j

provided ji� jj > 1.

We make each line L

i

directed by picking an arbitrary vector u

i

parallel to L

i

and let

12

the angles of incidence and re
ection at s

i

to be �

i

= \(u

i

; s

i

� s

i�1

)

and �

i

= \(u

i

; s

i+1

� s

i

) (respectively). The angle �

i

is unde�ned if s

i

= s

i�1

and similarly for �

i

. The following is well-known (cf. [33, Lemma 3.1]):

(Snell's law) If � is a shortest path and �

i

; �

i

are de�ned then �

i

=

�

i

.

Besides �

i

; �

i

being unde�ned, another exceptional behavior arises when

s

i�1

; s

i

; s

i+1

all lie on the line L

i

. This may happen, say, because L

i�1

\ L

i

=

fs

i�1

g and L

i+1

\ L

i

= fs

i+1

g. To handle such exceptional cases, we proceed

as follows. Let I � f1; . . . ; kg and consider the predicate �

I

(s

1

; . . . ; s

k

) given

by

k

VV

i=1

(s

i

2 L

i

)^

VV

i2I

(s

i

= s

i+1

_s

i

= s

i�1

)^

VV

i 62I

(s

i�1

=2 L

i

^s

i+1

=2 L

i

^�

i

= �

i

):

[The symbol \

VV

" denotes the \anadic logical-and", used analogously to the

summation

P

i2I

x

i

notation.] It is easy to re-write �

I

as a Tarski predicate

involving kd real variables (s; t; L

1

; . . . ; L

k

are held constant).

Lemma 1 If �

I

is satis�able then it has a unique solution.

Proof. Suppose s

1

; . . . ; s

k

is a solution. Then s

`

is uniquely determined when-

ever ` 2 I. It remains to consider ` 62 I. It is enough to consider a maximal

12

For non-zero vectors u; v 2 R

d

, we de�ne \(u; v) := cos

�1

(hu; vi=kuk � kvk) where hu; vi

denotes the scalar product and kuk the Euclidean length.
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packages, and these should be tied together in a seamless way. Object oriented

languages can be e�ectively used here.

7 Summary

1. Exact computation is not much used despite the promise of many bene�ts.

Perhaps the most compelling reason for exact computation is that the �xed-

precision alternative is even less hopeful if we are serious about robustness.

2. We described a framework for exact geometric computation. General

results related to Tarski's decision problems imply that most problems in com-

putational geometry can be solved exactly. We identi�ed the pervasive class

of rational bounded-depth (RBD) problems for which exact computation seems

particularly promising. Known robust algorithms also fall under this class, so

it is a good place to compare the two approaches.

3. Exact computation embraces a broad range of computational tactics and

includes approximation problems. We must re-think the traditional bigNum-

ber package to �t the needs of geometric computation. Beyond this, we need

additional layers to be added on top of bigNumber. With such software infras-

tructure, we believe more users will migrate to exact computation.

4. Although there ought to be hardware support for exact computation, this

is unlikely in the near future. Impetus for its development may have to come

from successful software exploitation �rst.

5. It may be appropriate to end with a perspective of the 
oating-point

culture. The debate over the viability or non-viability of exact computation is

an issue of comparative advantages. There is no inherent reason against ex-

act computation, only that the �xed-precision approach is more e�cient. But

e�ciency is not the only issue. How do we account for the historical ascen-

dency of the 
oating-point culture from 1950-1990 (see [27, p. 249�])? After

all, it started ignominiously when von Neumann rejected 
oating-point num-

bers on technical grounds. If 
oating-point computation became less exotic and

understood, it is mainly due to the in
uence of Wilkinson and his in
uential er-

ror analysis of 
oating-point calculations. But the importance of 
oating-point

arithmetic derives from an era where computing cycles is the main bottleneck

of most applications. In the world of rapidly increasing computing power, with

no end in sight, a growing number of applications is no longer cycle-critical. For

such problems, other factors (robustness, adaptability, etc) begin to weigh in

more. These factors seem to favor exact computation. We imagine many appli-

cations to move from being cycle-critical to being non-cycle-critical. To be sure,

cycle-critical problems will always be around. It is possible that just as the


oating-point culture reached its current (apparently unassailable) ascendant

position, new technological advances may work to subvert it.
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� Assuming that the coe�cients of H

i

are rational numbers of bit size at

most s. Then we see that

P

i;j;k

d

i

b

j

c

k

has bit size at most 18s, and so x

has bit size at most 36s.

� If the coe�cients of H

i

are integers of bit size at most s, then x has bit

size at most 3s + log

2

6.

� If the coe�cients are rational numbers but we �rst convert H

i

, viewed as

the vector (a

i

; b

i

; c

i

; d

i

), into the common representation (E

i

: A

i

: B

i

:

C

i

: D

i

) where E

i

is the common denominator, then the integer A

i

has

bit size at most 4s. Ignoring the component E

i

, we can compute (x; y; z)

whose bit size is at most 12s+ log

2

6.

In all three cases, the output point (x; y; z) can be in the common representation

(U : X : Y : Z), for no additional cost.

This analysis can be carried out in any dimension as well. It suggests that

we should

11

try to convert rational vectors into the common representation. To

estimate the cost of this conversion, consider the rational n-vector (a

1

; . . . ; a

n

)

of bit size s. Let a

i

= n

i

=d

i

, D

0

=

Q

n

i=1

d

i

and D

i

= D

0

=d

i

(i = 1; . . . ; n).

So one common representation is (D

0

: a

1

D

1

: � � � : a

n

D

n

). We can compute

D

0

using n � 1 multiplications. Using a balanced binary tree T to compute

D

0

, we can extend this to the computation of D

1

; . . . ; D

n

: let each node u

of the tree store a value V (u) equal to the product of the the d

i

's stored in

leaves below u. These values are computed in a bottom-up fashion to obtain

D

0

. Now, in the top-down fashion, let each non-root u compute the product

W (u) :=W (p)V (s) where p; s (respectively) are the parent and sibling of node

u. By de�nition, W (u) = 1 if u is the root of T . Our desired values D

i

are

obtained as W (u) where the u are leaves. The total number of multiplications

to obtain the common representation is thus 2n. Note that we have avoided

GCD computations in this conversion process, as this could be expensive. By

the same token, we do not assume that rational numbers are automatically in

reduced form.

6.4 Heterogeneous representations.

The traditional BigNums assume a homogeneous internal representation, usu-

ally the positional notation. It is sometimes useful to allow other internal rep-

resentations: for instance, the number expression 2

1000

� 1 may be superior to

explicit binary notation using 999 bits. Of course, allowing number expressions

destroys the unique representation property and makes the equality testing or

sign-determination highly non-trivial. We must also provide conversion rou-

tines. This idea applies equally to other domains such as BigFloats. This is

not so much another package as the idea that there may be many 
avors of

11

In computer graphics it has been suggested that homogeneous coordinates is mainly a

mathematical device which, in practice, is a needless extra dimension.
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if either the absolute error jx� bxj is at most 2

�a

or the relative error j(x� bx)=xj

is at most 2

�r

. This is denoted

x � bx err[a; r]:

The expression \bx err[a; r]" is be viewed as an approximation to some unknown

x. Given any bx err[a; r], we can essentially decide whether the approximation

is in the absolute error regime or the relative error regime. By decreasing the

error bound (by increasing a and/or r) of a E-variable we are in e�ect asking for

a possible re�evaluation of the expression. One motivation for using composite

error is that as the alternatives (relative or absolute errors) are less 
exible:

relative errors are gracefully maintained when we multiply approximate numbers

but not when we add. Similarly, absolute errors are gracefully maintained during

addition but not during multiplication.

6.3 Geometric Objects

It is an obvious remark that geometric computation involves geometric objects

which can be viewed as aggregates of numbers with associated object operations.

There ought to be packages to encapsulate such object classes. The simplest

of these objects are points and hyperplanes (both can be viewed as types of

vectors). The natural operations (intersection of hyperplanes, point-hyperplane

incidence predicates, etc) on these objects can be implemented as part of the

package. Beyond convenience, the fact that the nature of these objects are

known to the packages means more opportunity for optimization.

Common representation of vectors. We give one example where deal-

ing with vectors rather than individual numbers can be exploited. This is

through the use of homogeneous coordinates. Indeed, rational numbers (\bi-

gRat") can be viewed as homogeneous 2-vectors of integers. In general, each

n-vector (a

1

; . . . ; a

n

) of rational numbers can be represented as the (n+1)-vector

of integers

(m

0

: m

1

: � � � : m

n

)

where a

i

= m

i

=m

0

and the colon separators suggest equivalence up to pro-

portionality. So m

0

is the common denominator and we call this the common

representation of rational n-vectors. We take the bit size of a vector (in common

representation or not) to be the maximumof the bit sizes of its entries. Suppose

H

i

(i = 1; 2; 3) is the plane with equation a

i

x + b

i

y + c

i

z = d

i

. We want to

compute their common intersection point (x; y; z)

T

where

0

@

a

1

b

1

c

1

a

2

b

2

c

2

a

3

b

3

c

3

1

A

�

0

@

x

y

z

1

A

=

0

@

d

1

d

2

d

3

1

A

:

Hence x =

1

�

P

i;j;k

d

i

b

j

c

k

where � is the determinant. We consider several

scenarios:
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a determinant, is needed. Then it calls the package to preprocess each expres-

sion: the result is, for lack of a better word, a \compiled expression". During

the actual computation, we make repeatedly calls to a functor BigEval to apply

a compiled expression to speci�c arguments. In our work on data degeneracies

[40], we have already postulated the existence of such an evaluator (albeit with

additional properties to allow symbolic perturbation). A form of such an evalu-

ator was implemented by Fortune-VanWyk [18]. With BigEval, the user never

need to directly call the bigNumber package.

It is important to understand why the use of BigEval can be a major advance

over bigNumber package: traditionally, the algorithm calls the bigNumber pack-

age for each arithmetic operation. The number package, having no idea how

these calls are interrelated, must forgo any possible optimizations across calls.

In contrast, BigEval has opportunity for

� Preprocessing of the expression: compilation of expression, global anal-

ysis of the expression including static error bounds, restructuring of the

expression.

� Run-time tactics: 
oating point �lter, dynamic error bounds, incremental

and/or lazy evaluation methods.

Many of these ideas are discussed in [18].

In the vanilla version of polynomial expressions, we have the usual arith-

metic operators with constant or variable operands. But there is opportunity

to improve the evaluation process if we allow generalizations of these opera-

tors: product operator

Q

n

i=1

, summation operator

P

n

i=1

, multiplication by a

constant, addition by a constant, and raising to a constant power. In the sum-

mation operator, it may make sense to classify the arguments according to their

signs (if they can be determined). It seems that the design of this package can

use many ideas from classic compiler technology.

Expression Variables. In general, we expect to evaluate expressions only up

to some prescribed precision, using bigFloats. Since our users (we may suppose)

intend to compute exactly, we expect to maintain some error bounds on these

approximate values. This gives rise to the concept of an expression variable (or

E-variable for short). An E-variable is essentially an object with three associated

components: de�ning expression E (as above), an error bound � (below), and an

approximate value bv. The leaves of E can be explicit values or, recursively, E-

variables. The (exact) value of the E-variable is de�ned to be the value v(E) of

E provided the expression, upon recursive expansion of E-variables at the leaves

of E, is ultimately well-founded in explicit values. The approximate value bv is

a bigFloat, guaranteed to be approximate v(E) to within the error bound �.

The error bound � is given by a pair of integers � = [a; r]. We say that a real

number x is approximated by another real number bx with composite error [a; r]
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6.1 BigFloats

It is often assumed that exact computation entails computing with integers or

rationals. But we have indicated that approximate number have a role. The

theoretical basis for this is the concept of root-separation bounds for algebraic

numbers (see [11]). We need a package for computing of each variable x

i

up

to some prescribed precision p

i

. In the usual �xed-precision, there is a �xed p

for the entire computation, but here, p

i

is localized to each x

i

. In general, p

i

may change dynamically. The basic principle of exact computation is preserved

if we ensure that p

i

is su�cient to make the necessary error-free decisions. For

instance, in problems where we only need the sign of a determinant, not its

value, some low precision computation may su�ce.

So we want a number representation with arbitrarily speci�ed precision.

Moreover, it is desirable to decouple this precision from the magnitude of the

number. This decoupling is, of course, embodied in the idea of 
oating numbers.

To describe this, let us �x any integer d > 1 (the base), and any integer in the

range [0; d � 1] is called a digit. Usually d = 10 or a power of 2. For any

integer f , let hfi

d

(or, simply hfi) denote the number which in d-ary notation

is sign(f)0:f

1

f

2

� � �f

k

where f

1

f

2

� � �f

k

is the standard d-ary notation for f .

Thus with d = 10 and f = �123, we have h�123i

10

= �0:123 and h�123i

2

=

�0:1111011. We call hfi the normalization of f (to base d). A 
oating number

is a pair (e; f)

d

(or, simply (e; f)) of integers representing the number hfi

d

� d

e

.

Here f carries the precision while e indicates the magnitude. Since e; f will

be represented by BigNums, we call such representations BigFloats. We are

currently developing a BigFloat package [11].

Each BigFloat carries an error bound. Since BigFloats are approximations

even for rational numbers (e.g., it cannot represent 1=(d+1) exactly), errors are

inevitable. Of course, a straightforward implementation need not include any

explicit error information, just that the last digit is uncertain. This is reasonable

when d = 2 but for large d, this loses too much information. We keep track of

an error that ranges between 1 and d� 1. Below, we describe another notion of

error bound that is under user-control.

6.2 Expression package

The basis of this package is the observation that individual arithmetic operations

in geometric algorithms are not completely random. Rather, they usually exhibit

well-de�ned local structures. For instance, a convex hull algorithmmay perform

all its arithmetic operations only in the context of computing determinants,

which has a well-de�ned structure. We want to exploit such local structures.

These structures are captured in suitable classes of \expressions", the most

important of which is the class of multivariate polynomials. We envision the fol-

lowing use of the package: before the actual computation begins, the algorithm

constructs the expressions that it will need. Often, only a single expression, e.g.,
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application areas, there is a lower threshold on the acceptable computation

speed. Once machine speeds exceed this threshold, other factors such robustness

and user-friendliness becomes increasingly important. As we believe that such

thresholds are being crossed for a growing number of problems, the advantage

of �xed-precision over exact computation will correspondingly diminish.

It is not hard to identify some sources of ine�ciency with standard BigNum

packages. One pays a large overhead for its generality; in particular, its space

management facilities and possibly its pointer structures. The heritage of

\BigNumber packages" seems to come from computer algebra applications. It is

a reasonable assumption in computer algebra that we cannot predict the preci-

sion needed during a computation. But we have indicated that in computational

geometry, the opposite assumption usually holds. One approach is to build a

poor-man's BigNum package to exploit just this property, avoiding the overhead

of generality. In other words, we wish the constant factor C to approach 1 �D

2

.

In fact, more sophisticated o(D

2

) techniques seems possible with hand-coding

for small D. Such a poor-man's package may be useful for demonstration but

the real goal is to achieve such performances in a general package that can adapt

to the application. As a concrete target, we want C to approach the anecdotal

number `10' in some reasonably general setting.

6 Beyond BigNumbers

To fully exploit geometry, we must go beyond numbers. In this section, we out-

line some general features of geometric computing that can be exploited. Each

of these features could be incorporated into a software package, built on top of

BigNum (or any substitute number package). We envision a rich environment

where exact geometric computing is achieved with relative e�ciency and conve-

nience. Perhaps this convenience, rather than achieving the ultimate e�ciency,

is key to encouraging more exact computation.

Before leaving the subject of number packages, we mention that there are

packages for multiprecision arithmetic that seems to be very good in pure num-

ber crunching. A well-known system is from Brent [3] (see also Bailey [1]).

It is possible that some of these packages, properly retargeted for geometric

computing, may be useful as a basis for building other packages.

Although we have focused on general packages below, it is also very interest-

ing to design packages for subdomains of geometric computation. For instance,

exact computation of determinants or their signs would constitute an impor-

tant software package { it can be viewed as a subpackage of the \bigExpression

package" below. Clarkson [6] has shown an interesting approach for building

such a determinant evaluator.
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(and barely a priority for software support). A notable attempt to put large

integer multiplication in hardware is reported in [2,32] using the concept of

programmable active memories. Their hardware multiplies 512-bit integers;

when coupled to low-end workstations, it apparently outperforms the fastest

computers of its day (circa 1990). One should note that the motivation there

is cryptography, which has di�erent concerns than us. Still, such a piece of

hardware would go a long way towards making exact solution of RBD problems

competitive and practical. While this is surely an avenue for more work, we

henceforth focus on software solutions.

First, we can simply try to improve on traditional BigNumber packages.

One attempt is reported by Vuillemin, Herv�e and Serpette [31]. They suggested

that any BigNumber package written in a high level language stands to gain a

factor of 4 � 10 when hand-crafted code is employed. This improvement alone

is insu�cient in view of the anecdotes next.

Some anecdotes. The �rst reality we face when using BigNums is not en-

couraging: o�-the-shelf use of this package incurs a tremendous overhead. For

instance, in the case of exact integer computations, Fortune and Van Wyk [18]

said that the geometric primitives in their program becomes slower by a factor

of 40-140. Their programs spend only between 20% and 50% of the running time

on such primitives. Note that the comparison is made against a 
oating-point

implementation. This methodology seems standard and we will keep it for this

discussion. If exact rational number computations are used o�-the-shelf, Kara-

sick, Lieber and Nackman [22] reported an initial slowdown factor of 10,000. The

good news is that in both cited papers, careful �ne-tuning eventually reduces

these factors to a small constant factor (less than 10).

What is the signi�cance of this \anecdotal number 10"? Note that a factor of

10 in the numerical part of an algorithm would only slow the overall algorithm

down by a factor of 3 if the algorithm uses (say) 25% of its time in number

crunching. For certain applications, such a small penalty tilts the balance in

favor of exact computation. To be sure, we do not claim that this penalty

is tolerable for all applications. In any case, comparing an exact algorithm

against an approximate algorithm (assuming that robustness has been achieved)

which is thrice faster must come down to user priorities. But more can be

said. For the sake of argument, let us assume that the anecdotal number 10

is technology-independent, that is, it will not change with improving hardware.

In a world where machine speed doubles every other year, a small technology-

independent constant seems negligible.

9

Again, with the increasing commercial

availability of medium-scale parallel computers (of a dozen nodes, say), small

technology-independent constants will be even less signi�cant.

10

These remarks

about technology-independent gaps should be understood as follows: in many

9

Just wait a few years instead of doing any research. : �)

10

Just throw some $$$ at the problem instead of waiting. : �()
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possible lines from the points at the start of the iteration, followed by forming

all possible lines from these constructed lines. After i iterations, the coordinates

of the points have size 4

i

(n + 1) assuming the initial data uses n-bit integers.

Thus exponential behavior already occurs with iterated rational operations.

4.2 Some robust algorithms

There are some successes in achieving robust algorithms using �xed-precision.

For instance, a systematic approach to robustness has been outlined by Sugi-

hara and Iri in several papers (e.g., see [35,34,36,37]). They propose to view

geometric algorithms as constructing combinatorial structures guided by numer-

ical computations. If we can structure such algorithms so that no redundant

combinatorial decisions are made, then the algorithm can be made robust. More

generally, we may say that the philosophy is to give priority to combinatorial

data over numerical data. The Sugihara-Iri approach has been applied to several

examples such as Delaunay triangulations and the gift-wrapping 3-dimensional

convex hull algorithms. \Robustness" in Sugihara-Iri approach means that cer-

tain (problem dependent) combinatorial properties hold; this is distinct from

the \stability" concept which roughly says that the output is correct for some

small perturbation of the input. It seems that stability is not seem easy to

achieve with their method [37]. On the other hand, Fortune [16] described two

robust O(n

2

) algorithms for planar Delaunay triangulation which are stable.

It turns out that these success stories all fall under the RBD class. So we

could solve these problems exactly, at the cost of some multiplicative constant

C. Why would one exchange a Cn logn exact algorithm for an C

0

n

2

stable

approximate algorithm for Delaunay triangulation problem? This depends on C

and C

0

. It is believable that with �ne-tuning, one can make this C competitive,

even assuming C

0

= 1. One of our goals is to achieve this using techniques that

are general, rather than just special to say, Delaunay triangulations.

So the RBD class is ideal for comparing these two competing approaches: for

�xed-precision, because that is where robust algorithms have been successfully

constructed, and for exact computation, because our observations suggest that

it will especially e�ective here. Unfortunately, the next two sections suggest

that the necessary software infra-structure for exact computation is not quite

ready for this exercise.

5 Re-inventing BigNumbers

We now address research goal (G1), which seeks reduce the cost of using ex-

act computation. Just as a 
oating-point package is the engine of most �xed-

precision computation, a \BigNumber package" is the basis of exact computa-

tion. Naturally this must be the �rst place to begin our investigation.

BigNumber packages, although widely available, have no hardware support
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for RBD algorithms do re
ect the running times of exact implementations of

these algorithms.

Clearly, the above constant C depends on D. Using classical algorithms for

arithmetic, we have C = O(D

2

). The constants C andD are crucially important

to our goal (G1). Note that we are outside the realm of asymptotics when we

discuss these constants. We can take D = 2

d

if the RBD algorithm has depth

d. This 2

d

bound can often be improved.

Example. Consider an algorithm A

k;b

whose numerical computations consist

only of repeated evaluations of k�k determinants. Moreover, the determinants

are evaluated on values of depth � b. It is well known that convex hulls of point

sets in dimensions k � 1 can be solved by such an algorithm with b = 0. Such

algorithms can also solve convex hulls in dimension k with b = 1. Again, it can

solve Voronoi diagrams in k� 1 dimensions, but with b = O(log k) which comes

from the use of the lifting map. The depth of the algorithm depends on how

one implements the determinant computation. For instance, using standard

Gaussian elimination or the division-free version due to Bareiss (e.g., see [38]),

the depth is d = O(k

3

) but we can take D = k (not 2

d

) and C = O(k

2

).

Remark. As Sch�onhage [29] pointed out, root �nding for bounded degree

algebraic numbers has the same asymptotic complexity as integer multiplica-

tion. So bounded-depth problems are, in principle, not much harder than RBD

problems. But the implicit constants may make such problems somewhat less

attractive than RBD.

4.1 Unbounded-depth problems

It is rare to �nd a problem in traditional computational geometry that is rational

but not bounded-depth. But imagine a solid polyhedral modeler in which we can

do rational transformations of solids and perform Boolean operations on solids.

This is not a \computational problem" as usually understood in algorithmics,

with well-de�ned inputs and outputs. Each transformation and operation on

these solids increases the depth of derivation. It is not surprising that �xed-

precision fails notoriously. It would be interesting to show that this must be so

(goal (G2)).

An arti�cial form of this iteration phenomenon which is useful for numerical

experimentation was invented by Dobkin and Silver [10]: it is based on repeated

application of two operations (going-in, going-out) on an initial pentagon, and

on the fact that in the exact world, going-in and going-out are inverses. Another

variant is as follows: suppose that we have just points and lines, and we are

allowed to construct a new point P as intersection of two prior lines, P  

intersect(L;L

0

); similarly, we can construct a new line L through two prior

points, L  span(P; P

0

). To see the kind of precision needed, suppose we

start out with a set of points in the plane, and in each iteration, we form all
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Another important subclass of algebraic problems comes from the concept

of depth of derivation (cf. [40]): relative to a set U of numbers, a number x is

of depth 0 if x 2 U ; x is of depth at most d + 1 if x is obtained by one of the

rational operations applied to numbers of depth at most d, or by root extraction

from a degree k polynomial where each coe�cient of the polynomial has depth

at most d � k + 1. An algorithm has depth at most d if there is a �nite set K

of numbers (i.e., the constants in the algorithm) such that on any input whose

numerical parameters form the set X, all intermediate values computed by the

algorithm are of depth at most d relative to U = K [X.

A problem is bounded-depth if it can be solved by an exact algorithm of at

most some �xed depth. Suppose � is a number that arises in a bounded-depth

computation. Then � satis�es a polynomial P (X) whose degree m is bounded.

If the input numbers have bit sizes at most s then the coe�cients of the P (X)

have O(s) bits. It is shown in [38] that if b� satis�es

jb�� �j <

1

K

ms

(for a suitable constant K) then applying Newton's approximation to b� is guar-

anteed to converge to �. Using known techniques, we can obtain an initial

approximation b� satisfying this bound. But subsequent re�nements can use

Newton's method which is known to be very e�cient. This can be the basis for

using lazy evaluation techniques in exact computation.

A problem is rational bounded-depth (RBD, for short) if it can be solved

by an algorithm of bounded-depth that performs only rational operations. Of

course, the (actual) depth of an algorithm or problem is the least d such that

it is of depth at most d. The class of RBD problems includes the majority

of problems in contemporary computational geometry (say, as treated in the

standard texts [12,28]). The following is an obvious but key property of RBD

algorithms:

(P) There is a constant D such that if the input instance to the algo-

rithm involves rational numbers of size (at most) s, then the interme-

diate computation involves only rational numbers of size Ds+O(1).

Here, the size of a rational number p=q is just the maximum of the bit sizes of

the integers p and q.

To state a consequence of (P), let us de�ne the algebraic complexity of an

algorithm to be the function T (n) where T (n) is the worst case number of arith-

metic or root-extraction operations used by the algorithm on inputs of size n.

Now assume that the numbers in the inputs �t into the machine word size. Then

we can implement exact arithmetic by representing each integer using D words,

and hence: for any RBD algorithm with algebraic complexity T (n), there is a

constant C > 0 such that the algorithm can be implemented in time C �T (n) us-

ing exact computation. Note that T (n) is the usual accounting function used for

measuring complexity of geometric algorithms. So the theoretical time bounds
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a problem because Collin's decomposition procedure can return an algebraic

point (called a \sample point") in any semi-algebraic set. But in the case of

ESP, every shortest path is algebraic. We show this in the appendix.

Disguised algebraic problems. Some problems that apparently involve

transcendental functions are actually algebraic problems in disguise. For in-

stance, in the so-called motion planning problem [30] where the robot and

the obstacles have piecewise algebraic boundaries, we seek the feasibility of an

obstacle-avoiding motion between two positions. Since the robot may rotate, we

might generally expect that the calculations would involve trigonometric func-

tions. It turns out that we can exploit the algebraic relations among trigono-

metric functions and avoid making transcendental decisions. For instance, we

view may sinx and cos x as two algebraic quantities connected by the relation

sin

2

x+ cos

2

x = 1.

3.3 Approximation Problems

One approach to the intrinsically di�cult algebraic problems is to modify the

problem into an approximation problem. That is, we modify the problem to

accept a prescribed amount of approximation in its solution. It is not a self-

contradiction to speak of \the exact solution of approximation problems". It is

best to clarify this via an example. Canny and Reif [5] have shown that short-

est paths (ESP) in 3-dimensions is NP -hard. The corresponding approximation

problem can be de�ned to take inputs as in the original problem, plus an ad-

ditional � > 0 parameter. The output is to be a path that is at most (1 + �)

longer than the shortest path. On the other hand, Papadimitrou [25] has shown

that the approximation version of the problem is polynomial time in the size of

the original input and in 1=�. Algorithms that drive computer graphics displays

can use such approximation algorithms since there is only a bounded resolution

in displays. The possibility of approximation problems is an indication of the

richness of what can come under the exact computation paradigm.

4 Rational Bounded-depth Problems

Since algebraic problems are intractable in general, we seek tractable subclasses.

Many problems do not require the full power of algebraic computation, but can

be solved using only

8

the four arithmetic operations but not root extraction.

We call such problems rational, provided the inputs only involve rational num-

bers. Linear programming and constructing hyperplane arrangements [12] are

examples of rational problems.

8

Other simple but non-algebraic functions such computing the sign of a number or taking

the 
oor of a number may be needed. In the context of the rational functions, these are

reasonable operations.
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exactly in a single-exponential space complexity. The super-polynomial com-

plexity is inevitable because some of these problems are provably intractable

{ by a reduction from the decision theory of real addition (which Fischer and

Rabin [15] have shown to be nondeterministic exponential-time hard).

Let us illustrate the above by considering three problems in R

d

:

(i) Euclidean minimum spanning tree (EMST): given a set of points in R

d

,

�nd the minimum spanning tree connecting these points.

(ii) Euclidean traveling salesman problem (ETSP): given a set of points in R

d

,

�nd a tour of these points of minimum length.

(iii) Shortest path amidst polyhedral obstacles (ESP): given a set E of poly-

hedral obstacles and points s; t, �nd the shortest path from s to t which

avoids E.

It is not hard to see that the �rst two problems can be reduced to determining

the signs of a �nite set of algebraic numbers. For instance, for ETSP, there are

�nitely many tours and for any two tours �

1

; �

2

, it su�ces to determine the sign

of L(�

1

) � L(�

2

) where L(�) is the Euclidean length of the tour �. (A tour is

a polygonal path � = (s

0

; . . . ; s

m

) where s

0

= s

m

and L(�) is the sum of the

Euclidean distances between consecutive points s

i�1

and s

i

.) So L(�) is a sum

of square-roots and it is not hard to determine the sign of L(�

1

) � L(�

2

) (but

the obvious method takes double exponential time). With a bit of care, we can

do this in single exponential space, but not much better is known. In the case

of EMST, the argument

7

is even simpler: because of the matroid properties

of forests, the EMST problem can be reduced to comparing distances between

pairs of points. But comparing two such distances is trivial and can be done

e�ciently. So that EMST is exactly solvable in polynomial time (as is well-

known).

But let us argue the exact solvability of ETSP in another way: note

that the length function L(s

0

; . . . ; s

m

) is an algebraic function, meaning that

there is a polynomial R(z; s

0

; . . . ; s

m

) with integer coe�cients such that

R(L(s

0

; . . . ; s

m

); s

0

; . . . ; s

m

) = 0 is valid. Hence, if the points s

i

are alge-

braic (meaning that its coordinates are algebraic numbers), then the length

L(s

0

; . . . ; s

m

) is also an algebraic number. In the case of ETSP, we only need

consider L(s

0

; . . . ; s

m

) where s

i

are input points. So L(s

0

; . . . ; s

m

) are alge-

braic. Since we know how to compute and compare algebraic numbers we again

conclude that ETSP can be solved exactly. For shortest paths in the plane, a

similar remark is true. But for d > 2, it is not so clear that the problem can be

exactly solvable. A �rst step would be to show that the problem is algebraic.

By de�nition, this means the set of shortest paths is a semi-algebraic set; it

need not imply that all shortest paths must be algebraic. This is because alge-

braic sets of positive dimension contain non-algebraic points. This is not really

7

We are thankful to Edelsbrunner for this remark.

10



3.2 Algebraic problems

Our example of algebraic numbers is felicitous

5

because almost all contemporary

problems in computational geometry can be computed exactly, via a reduction to

exact algebraic number computations. Of course, it must be assumed that the

inputs to a problem are algebraic numbers. We informally call such problems

algebraic. We can be slightly more precise, using Tarski's language which is the

�rst order language of the real closed �elds. Brie
y, a predicate P (x

1

; . . . ; x

n

)

in this language may be assumed to have the form

Q

1

y

1

Q

2

y

2

� � �Q

k

y

k

[M (y

1

; . . . ; y

k

; x

1

; . . . ; x

n

)]

where the Q

i

's are quanti�ers (8 or 9) and M is a Boolean combina-

tion of polynomial inequalities of the type P (y

1

; . . . ; y

k

; x

1

; . . . ; x

n

) = 0 or

P (y

1

; . . . ; y

k

; x

1

; . . . ; x

n

) > 0. Here x

i

; y

j

are real variables. A semi-algebraic is

the set de�nable by such a Tarski predicate. An algebraic decision problem is

given by a sequence of Tarski predicates,

'

1

; '

2

; . . . (1)

where '

n

is a predicate on the appropriate number of variables for describing

an input instance of \size n". For instance, if the input instance are points

in d-space, then there are dn real variables for inputs of size n. To formulate

algebraic construction problems, �rst assume that the output size is a function

of the input size. Then such a problem is again given by the sequence (1) where

each '

n

involves both the input and output variables. In case the output size

is not a function of the input size, we replace '

n

by a set of predicates, one for

each output size. To state complexity results for algebraic problems, we need

to place suitable complexity restrictions on the sequence (1); for instance, that

they be constructed in logarithmic space. This de�nition of algebraic problems

is simple but serves our purposes

6

.

Algebraic problems are essentially solved by reduction to two related general

results: algebraic decision problems can be solved using a decision procedure for

Tarski's language, and algebraic construction problems can be reduced to the

construction of suitable algebraic cell complexes. The cylindrical cell decompo-

sition of Collins [8] is the most notable method for constructing cell complexes,

and it also solves the decision problem. The general upper bound for both these

problems has seen great progress in recent years, and lead us to the following im-

portant meta-result: most problems in computational geometry can be computed

5

We do not know of any counter-example in the standard computational geometry litera-

ture. No doubt, as the �eld expands, we will see some exceptions.

6

A less arti�cial way to formulate problems in natural domains of computation is to intro-

duce \object logic" to represent the natural objects (hyperplanes, points, segments, etc). This

is basically a typed logic with functions to extract the real parameters characterizing the ob-

jects. For instance, we can have \point variables" P and functions to extract the coordinates

of P (in dot-notation, P:x; P:y, etc.).
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polynomialwith integer coe�cients. For instance, the number

p

5 is an algebraic

number as it is a root of X

2

� 5. We know that there is no �nite representation

of

p

5 = 2:236068::: in positional notation. But

p

5 can be represented exactly

as the pair (X

2

� 5; [1; 4]), interpreted as the unique root of the polynomial

X

2

�5 lying in interval [1; 4]. This is called the isolating interval representation

of real algebraic numbers. Of course, (X

3

�5X; [2; 3]) would represent the same

number exactly, while (X

2

� 5; [�3; 3]) represents no number because the range

[�3; 3] does not contain a unique root of X

2

� 5.

Clearly the precision of numbers used in such representations must be ar-

bitrarily large. The fact that we can represent

p

5 exactly suggests that in

some sense, we have in�nite precision. However, the terms \arbitrary precision

computation" or \in�nite precision computation" are inadequate substitutes for

\exact computation", since neither entails exact computation. In some sense,

the interval [1; 4] is an approximation to

p

5, and [2; 3] is an even better approx-

imation. But our representation of

p

5 itself is no approximation.

We understand in part (ii) of our characterization of exact computation

that, with respect to the representation of objects, there are e�ective proce-

dures to compute and make decisions about these objects. In the context of

algebraic numbers, this means that we can perform the usual arithmetic oper-

ations (+;�;�;�) and can determine the sign of real algebraic numbers. For

our purposes, we focus only on real algebraic numbers since the complex ones

can be represented as a pair of real algebraic numbers. It is well-known that

the set of real algebraic numbers is closed under the arithmetic operations. For

instance, if � is a root of

P

n

i=0

c

i

X

i

then �� and 1=� (respectively) are roots of

P

n

i=0

(�1)

i

c

i

X

i

and X

n

P

n

i=0

c

i

X

�i

. If �; � are roots of P (X); Q(X) (respec-

tively) then �+ � and �� are roots of

res

Y

(P (Y ); Q(X � Y )); res

Y

(P (Y ); Y

n

Q(X=Y ))

where res

Y

(P (Y ); Q(Y )) denotes the classical resultant of two polynomials in

Y . Since a resultant is a determinant, and using some classical bounds on the

separation of roots, we conclude that the basic arithmetic operations and the

sign of algebraic numbers can be e�ectively computed. For instance, we should

be able to give the isolating interval representation of

p

5�

p

3 and determine

the sign of 2

p

5� 2

p

3� 1.

Algebraic numbers have another important closure property: the root of a

polynomial with algebraic coe�cients is algebraic. In addition to the above

operations, we shall also include in the set of algebraic operations the root

extraction operation, which, given the coe�cients a

0

; a

1

; . . . ; a

n

of a polynomial

P (X) =

P

n

i=0

a

i

X

i

, extracts a root of P (X). Depending on the context and

application, this can be variously interpreted to mean one of the following: any

root, any real root, or all roots. Note that division and subtraction can be viewed

as root extractions of linear polynomials. For more details on computing with

algebraic numbers, see for instance [9,38].
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form of �xed-precision is where each variable carries its own precision which is

�xed throughout the computation. As we will show, many exact algorithms can

be carried out using this local version of �xed precision. Exact computations

may use internal approximations. Other variations are possible: for example

the language Numerical Turing [20] developed at the University of Toronto for

numerical computation has the concept of a precision block, which is syntacti-

cally like a do-loop. The computation of such a block is iterated with increasing

precision until some desired goal is attained.

Remark. There are genuine problems of rounding or approximation. That

is to say, there are rounding questions that are inherent in the problem formu-

lation, not just artifacts of using �xed-precision arithmetic for approximating

exact arithmetic. An example is the problem of transforming a simple polygon

so that it remains a simple polygon but such that each vertex is \snapped" to

one of the four corners of the unit square of the integer lattice that contains

the vertex. Milenkovic and Nackman [24] has shown that such problems can be

NP -hard. Another class of examples is where the input is an approximation

to some ideal data. For instance, the input may be visual data collected by a

camera. We may want to do various feature extractions on this imperfect data.

Such problems are outside our scope.

3 What is Exact Computation?

We clarify our use of the term: by an \exact computation", we mean a compu-

tational process that

(i) represents the underlying mathematical objects in an exact manner, and

(ii) in the course of computation, never makes an error in its decisions.

Of course, exactitude and error are relative to the underlying mathematical

model. In computational geometry, the mathematical model is usually (but not

necessarily) Euclidean geometry.

We understand in (i) that mathematical objects are characterized by suitable

numerical parameters. To say that the parameters \exactly" represent an object

means that we can decide whether or not two such objects are equal from

these parameters. The representation (i.e., parameters) need not be unique. In

applications where the input values are approximations to unknown values, we

must nevertheless treat these approximations as exact. If this is not possible,

we face a bona-�de problem of approximation which, as noted before, is outside

the present scope.

3.1 Algebraic Numbers

These concepts are illustrated by the representation and manipulation of alge-

braic numbers. By de�nition, an algebraic number is the root of an univariate

7



point culture enjoys so much

4

infra-structural support (hardware or otherwise)

that such claims are partly self-perpetuating. Goldberg [26, p. A-12] concludes

that \given the predominance of the 
oating-point representation, it appears

unlikely that any other representation will come into widespread use". It is

true in some sense that exact computation is inherently slower than 
oating

point. But by the same token, one can claim that 
oating-point is inherently

non-robust. Then it is up to the user to decide which horn of this dilemma to

choose. (Of course the truth is somewhere between these two positions.) While

we cannot make that decision for any user, we believe that the user should be

presented with viable alternatives. It is the starting point of this research that

the true viability of exact computation has not been well-represented. So this

is our �rst goal:

(G1) To improve the practical cost of exact computation.

The emphasis here is on \practical", although we indicate interesting theoretical

issues as well. For now, we just note that what makes (G1) interesting is the

fact that exact computation turns out to be extremely rich { it is not just a

matter of carrying out each arithmetic operation without error (which would be

boring indeed).

With respect to the user dilemma above, it is clear that certain users are

unwilling to pay the inherent cost of exact computation. For instance, [41]

concluded that \exact computation is not feasible for the problem of point

classi�cation". But surely if robustness is important enough (say, it relates to

the success of a mission into space), then exact computation may well be the

only choice. The literature contains many such claims about the infeasibility

of exact computation which need not have universal validity. We need some

theoretical framework to mediate the true di�erences between exact and �nite-

precision computation. This is motivation for our second goal:

(G2) To study the inherent tradeo�s between speed and precision, between

�xed-precision and exact computation.

This is a more abstract goal, involving the construction of theoretical models

and posing paradigmatic problems. In this regard, we may recall the conceptual

framework that complexity theory provides for the entire �eld of algorithms. We

shall not have more to say for this goal in this paper.

Varieties of precision. We should acknowledge that any simple characteri-

zation of exact versus �xed-precision approaches will run into gray areas. For

instance, we may distinguish between degrees of �xed-precision: the most re-

strictive form of �xed-precision prevails in practice, where there is a universal

precision (depending on the machine word-size) for all computations. A local

4

For instance, on CRAY systems and some RISC machines, 
oating-pointmultiply is faster

than integer multiply! The latter is emulated in software.
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Some examples of recent work are: epsilon geometry (Salesin, Stol� and

Guibas), backward error analysis (Fortune), approximate combinatorial con-

sistency (Milenkovic; Hopcroft, Ho�mann and Karasick), randomization and

sampling (Dobkin, Silver). The optimist might say that we need more time to

resolve these di�culties. But perhaps the di�culty is intrinsic: there will be no

satisfactory solution until we confront the \specter" of exact computation and

understand what is inherently involved there.

2.2 Exact Computation

We switch to a discussion of exact computation. For now, we simply say that

\exact computation" means that numerical values are computed exactly in a

suitable sense and only error-free decisions are made.

� The foremost advantage of exact computation is that \robustness" is a

non-issue! (A \robust exact algorithm" is an oxymoron.)

� All classical geometric concepts are preserved.

� In contrast to the obscure

3

theories of approximate geometry, classical

geometries (Euclidean or otherwise) have a wealth of theorems and many

important cases (planar geometry!) are relatively well-understood. So we

can reason with classical objects with relative con�dence.

� Practically all geometric algorithms in the literature pertain to classical

geometries. This means we avoid the daunting prospect of trying of \ro-

bustify" all known geometric algorithms.

� Sometimes we can use symbolic perturbation methods to automate

the handling of degeneracies, thus simplifying our coding of algorithms

(cf. [13,40]). These methods are meaningful only with exact computation.

� There are applications that simply require exact computation. Exam-

ples include geometric theorem proving, checking geometric conjectures or

checking topological properties of speci�c geometric con�gurations. Often

such applications are one-shot deals and one is willing to devote consider-

able time to their (o�-line) computation.

Thus, exact computation is a \generic" solution (cf. [39]) to the robustness

issue. Given these advantages, why is exact computation almost never used in

practice? We suggest that misconception and culture each plays a role. Many

authors simply assume that, except for very special domains such as number

theory and algebra, all continuous domain computations are necessarily approx-

imate. This surprisingly commonmisconception is easy to dispose of. The claim

that exact computation is too ine�cient seems harder to counter. The 
oating

3

as in \unfamiliar", not in the sense of being imprecise.
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a combinatorial structure (a labeled graph). Linear programming counts as

geometric computing but solving linear systems does not qualify. We justify this

exclusion on grounds that the combinatorial structure in geometric computing

ought to be implicitly determined by the numerical data. We similarly exclude

the usual problems of shortest paths or minimum spanning tree on weighted

graphs. But there are \geometric versions" of shortest paths and minimum

spanning trees (see section 3.1).

With these clari�cations then, the extra of di�culty of geometric problems

arises because it is not just numerical outputs we seek, but the associated com-

binatorial structure must somehow be consistent with the computed numbers.

Robustness issues arising this interplay between numerical and combinatorial

elements of geometric algorithms is treated in the survey of Fortune [17] (see

also [19]). To address this problem, some have insisted that algorithmic design

should take account the use of �xed-precision arithmetic. This has led to the

following di�culties:

� Robust algorithms are unknown for many basic and even conceptually

simple problems. For instance, Yu [41, p. 110] concluded that robust

algorithms for performing Boolean operations on solids lie in the distant

future. Yet such algorithms are fundamental in the �eld of solid modeling.

Even in the plane, the complexity of a solution proposed by Milenkovic

[23] suggests that there is more work to be done.

� When robust algorithms are achievable, they seem to require inordinate

e�ort relative to the known exact algorithms. Moreover, the techniques

do not easily generalize. As a consequence, only a handful of certi�ably

robust algorithms are known.

� Fixed-precision geometric models to approximate the original continuous

models are invariably hard to work with, and retain very few of desired

properties. For instance, the concept of an \approximate line" has vari-

ously been modeled by (i) using a suitable set of pixels [computer graphics],

(ii) fattening the line into a tubular region [Milenkovic], (iii) a suitably

\monotone" polygonal path [Greene-Yao], or (iv) an actual line whose

equation has bounded coe�cient sizes [Sugihara]. Beside losing many de-

sirable properties of lines, these models give rise to complicated algorithms.

We refer to Fortune's survey [17] for a more detail description.

� A more basic approach is go back to the arithmetic model and to intro-

duce uncertainty there. Logically, this means we have at least a third truth

value corresponding to \not-sure". Interval arithmetic is a well-known ver-

sion of this approach. Symptomatic of this general approach, we �nd that

the intervals in interval arithmetic can quickly grow into fairly worthless

bounds in the course of a geometric computation (although such intervals

seem useful in some purely numerical computation).

4



� Section 6 argues the need to go beyond a number package. It postulates

some software infra-structure (\beyond bigNumber") for exact computa-

tion: big-Floats, expressions, geometric objects.

� We conclude in section 7.

2 Two Approaches to Numerical Computing

2.1 Fixed-precision Computation

The root cause of non-robustness

1

seems clear: whereas algorithms are de-

scribed in exact terms, their implementations replaces exact arithmetic with

�xed-precision arithmetic. Floating-point arithmetic is the usual example of

�xed-precision arithmetic. The non-trivial probability of catastrophic loss of

signi�cance in such computations in practice is con�rmed in theoretical models

(e.g., [14]). More powerful �xed-precision models (e.g., level-index arithmetic

[7]) may be useful but only in delaying the onset of non-robustness problems.

Similarly, the growing acceptance of the IEEE standard 754-1985 in computer

architecture

2

should not obscure the fact that its main purpose is to make 
oat-

ing point errors predictable and architecture-independent. But it does not make

the non-robustness of 
oating-point computation disappear. So the logical step

is to work towards standards for exception handling (cf. [21]).

In practice, non-robustness in algorithms is frequently corrected using some

ad-hoc method that, at best, decreases the failure probability. It often amounts

to what is known in the trade as \epsilon tweaking" (choosing the right constant

for some epsilon parameter in the code). Observe that robustness issues already

appear in purely numerical computation (this is really a trite observation nowa-

days). For relatively simple numerical problems, the di�culties can be analyzed

and kept under control; embedded in larger problems, it becomes a matter of

educated guesses. But our main interest is in geometric computing which has

an additional dimension: its essence may be captured in the aphorism,

Geometric Computing = Numerical+Combinatorial Computing.

Numerical computing is exempli�ed by the problem of solving linear systems

of equations; graph searching is a typical problem of combinatorial computing.

The convex hull problem for a set of points is a canonical example of geometric

computing: the points are speci�ed by numbers but the convex hull is essentially

1

The term \robust" in this paper will be an informal catch-all term for all the di�culties

of �xed-precision computation. Technical de�nitions of robustness comes in several 
avors

and are model-dependent. But a precise de�nition is irrelevant for us as we are ultimately

interested in exact computation where all these concepts disappear. For this reason, the term

\robust algorithm" is only applied to algorithms that are based on �xed-precision arithmetic.

2

See [26, Appendix A] for a description of the IEEE standard.
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1 Introduction

In recent years, there has been considerable interest in \robust" geometric al-

gorithms. In practical terms, an algorithm is termed non-robust if it can pre-

cipitate unpredictable failures during execution. It is clear that such failures

occur with a su�ciently high probability to cause widespread concern. This

phenomenon is re
ected in diverse communities, and various approaches and

special solutions have been proposed. The unexamined premise in many of these

solutions is the commitment to �xed-precision computation. Our general theme

is that the alternative approach based on exact computation has a much larger

role to play than currently practiced or suspected. In any case, the goal of re-

liable computation is better served when both approaches are well-represented.

Of course, we are partisan in this quest, and this paper only hopes to contribute

to the development of exact computation.

Exact computation is the computing standard in the �eld of computer alge-

bra (a.k.a. symbolic computation). Most problems of computer algebra have lit-

tle use for �xed-precision arithmetic { a 
oating-point calculation usually cannot

shed light on whether an integer is prime. In some sense, we are just advocating

a wider role for this computing standard. What makes the new role for exact

computation interesting is that (as we hope to demonstrate) it raises uniquely

geometric issues. Although we address ourselves to geometric algorithms, it will

be clear that many of our ideas apply to related �elds. For instance, it is some-

what surprising that entire areas of \scienti�c computing" that are concerned

about robust algorithms simply overlook the use exact computation techniques.

But that goes beyond our present scope. This paper outlines some thoughts

on a research agenda that forms the basis of on-going research with Tom Dub�e

[11]:

� In section 2, we describe the two approaches to geometric computing:

�xed-precision versus exact computing, emphasizing special features of

\geometric" computing.

� Section 3 expands on our concept of exact computation, basically identify-

ing current problems in computational geometry with the class of algebraic

problems.

� Section 4 identi�es a subclass of the algebraic problems called \rational

bounded-depth problems" (RBD) for which exact computing seems to be

promising.

� In section 5, we discuss the \bigNumber package", the traditional piece of

software for achieving exact computation. Using two published work on

exact computation as anecdotal evidence, we suggest that practical goals

for revising this piece of software.
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Abstract

Exact computation is assumed in most algorithms in computational

geometry. In practice, implementors perform computation in some �xed-

precision model, usually the machine 
oating-point arithmetic. Such im-

plementations have many well-known problems, here informally called \ro-

bustness issues". To reconcile theory and practice, authors have suggested

that theoretical algorithms ought to be redesigned to become robust under

�xed-precision arithmetic. We suggest that in many cases, implementors

should make robustness a non-issue by computing exactly. The advantages

of exact computation are too many to ignore. Many of the presumed di�-

culties of exact computation are partly surmountable and partly inherent

with the robustness goal.

This paper formulates the theoretical framework for exact computa-

tion based on algebraic numbers. We then examine the practical support

needed to make the exact approach a viable alternative. It turns out

that the exact computation paradigm encompasses a rich set of computa-

tional tactics. Our fundamental premise is that the traditional \BigNum-

ber" package that forms the work-horse for exact computation must be

re-invented to take advantage of many features found in geometric algo-

rithms. Beyond this, we postulate several other packages to be built on

top of the BigNumber package.
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