A Practical Study and Evaluation of Libraries
for Exact Geometric Computing

Diplomarbeit

zur Erlangung des Diplomingenieurgrades an der
Naturwissenschaftlichen Fakultat der Universitat Salzburg

eingereicht von

Alexander Schneider

Salzburg, 14. Juni 2002

Acknowledgements

First of all I want to thank my advisor Martin Held for his support during
the development of the Core-based version of FIST. Furthermore, his com-
ments helped to improve the technical aspects of this thesis as well as its
presentation. I want to thank the developer team of the Core-library, es-
pecially Chee Yap and Zilin Du who provided us with the newest versions
of the Core-library and tried to solve the problems we had with the library.
Thanks also go to Wolfram Stering, who gave me access to the Insure++
memory debugger and who was helpful whenever I had trouble with the li-
cense server. | also want to thank my brother Peter Schneider for his offer
to use his computer hardware, which is much faster than my current system,
as the test platform for all the programs presented in this thesis. Last but
not least I want to thank my parents who always supported me during my
studies in computer science.

Salzburg, June 2002 Alexander Schneider

Contents

1 Preface 1
1.1 Structure of this Thesis 2
1.2 Platform Specifications 2

2 Floating-Point Arithmetic 4
2.1 Basics of Number Representation 4

2.1.1 Fixed-Point Representation 5)
2.1.2 Significant Digits 0oL 7
2.1.3 Floating-Point Representation 8
2.2 Sources of Errors o oo 11
2.2.1 Representation Problems 12
2.2.2 Data Uncertainty 12
2.2.3 Roundoff Errors o oL 12
2.2.4 Overflows and Underflows 13
2.2.5 Problems Due to Floating-Point Errors 13
2.3 A Few Words on Error Analysis 16
2.3.1 Introduction to Error Analysis 16
2.3.2 Forward Error Analysis. 17
2.3.3 Backward Error Analysis 18
2.4 The IEEE-754 Standard 19
2.4.1 Storage Format 20
24.2 Operations.o 22

3 Non-robustness and the Problems That Arise in Geometric
Algorithms 25
3.1 Imtroduction 25

3.1.1 Why are Geometric Algorithms so Difficult to Implement 26

3.1.2 Predicates and Constructors 28
3.2 Non-robustness due to Floating-Point

Arithmetic o 29

3.2.1 Epsilon Tweaking 29

3.2.2 Interval Arithmetic 31

3.2.3 Careful Programming
3.2.4 Designing Robust Geometric Primitives
3.2.5 The Topology-Oriented Approach
3.3 Exact Arithmetic oL
3.3.1 Big Number Packages
3.3.2 Exact Arithmetic in Geometric Algorithms
3.4 Degeneracies
3.4.1 Handling Degeneracy Manually
3.4.2 A General Method for Handling Degeneracy

Exact Geometric Computation
4.1 What is Exact Geometric Computation
4.2 Basic Concepts of EGC
4.2.1 Root Separation Bounds and the Sign Determination
Process
4.2.2 Expressions
4.2.3 BigFloat as an Example for an Approximate Represen-
tation of Numerical Values
4.3 Accelerating EGC L.
4.3.1 Floating-Point Filter
4.3.2 Lazy Evaluation
4.3.3 The Precision-Driven Approach
4.4 EGC Libraries
4.4.1 Computational Geometry Algorithms Library — CGAL

52
53

4.4.2 Library of Efficient Data Types and Algorithms — LEDA 56

4.4.3 Core-Library

Core-Library

5.1 Introduction to the Core-Library

5.2 Internals of the Core-Library
5.2.1 Supported Data Types
5.2.2 Promotion and Demotion of Data Types
5.2.3 Classes Provided by the Core-Library
5.24 How Level I Works
5.2.5 How Level Il Works
5.2.6 Sources of Overhead and Optimization

5.3 Using The Core-Library
5.3.1 Building Programs That Use the Core-Library
5.3.2 Converting Existing Programs
5.3.3 An Example of a Simple Core-Based Program

i

28

6 Linking FIST with the Core-Library 74

6.1 ASurveyof FIST 74
6.1.1 The Ear Clipping Algorithm 74
6.1.2 Extending the Basic Ear Clipping Algorithm 76
6.1.3 Ensuring Robustness 76

6.2 Making FIST Compliant with the Core-Library 80
6.2.1 Adapting the I/O-Routines of FIST 81
6.2.2 Dynamic Memory Allocation. 83
6.2.3 Constant Literals 86
6.2.4 Setting all Epsilons to Zero 87
6.2.5 Miscellaneous Adaptions 87

6.3 Experimental Results 88
6.3.1 Two-Dimensional Test Data 89
6.3.2 Three-Dimensional Test Data 94

6.4 Conclusion Lo 95

A Sample Polygons for the Four Input Classes 98

il

Chapter 1

Preface

Computational Geometry is concerned with the study of geometric algo-
rithms — geometric problems are analyzed, algorithms to solve these prob-
lems are designed and their complexities are determined. While researchers
concentrated on the theoretical foundations of geometric algorithms, i.e., on
finding an algorithm for a geometric problem and analyzing its complex-
ity, the robust implementation of those theoretically correct algorithms has
gained more and more attention only in recent years. It turned out that, in
general, the straightforward implementation of a geometric algorithm is not
feasible. Although the algorithm is correct in theory, it may fail in practice.
The reason for this is twofold:

e In theory a geometric algorithm is constructed assuming real numbers
in the mathematical sense.

e In order to avoid unnecessary complexity in the algorithm description,
special cases are excluded, i.e., only input instances in a so-called ” gen-
eral position” are considered.

Unfortunately, neither of these assumptions hold in practice. In general,
geometric algorithms are implemented using floating-point arithmetic. Thus,
the majority of numerical quantities cannot be represented exactly and are
therefor only approximations. Furthermore, special cases are sure to occur
in real world data. As a consequence, a straightforward implementation of
a theoretically correct algorithm yields a computer program that crashes or,
even worse, computes incorrect results.

The goal of this thesis is to evaluate the Core-library — a library for
exact geometric computation. Exact geometric computation is an approach
to overcome robustness problems in geometric algorithms and is based on
exact arithmetic. Up till now, exact arithmetic is not widely accepted by
practitioners in the field of computational geometry. The reason for this

is that there is no suitable infrastructure for exact arithmetic, i.e., tools
and libraries that support the development of algorithms based on exact
arithmetic. Furthermore, the lack of efficiency is another argument against
it. The developers of the Core-library claim that their library is easy to
use and reasonably fast to be an alternative to floating-point arithmetic.
We want to evaluate those claims. Thus, we linked the Core-library with
FIST [21] — a triangulation algorithm by Martin Held which is based on
floating-point arithmetic, thoroughly tested and incorporated into several
industrial graphics packages, such as an implementation for Java 3D by Sun
Microsystems. It has to be mentioned, though, that exact arithmetic does not
solve any problems that arise due to the assumption of a ”general position”.
Even with exact arithmetic the software developer has to handle special
cases or, alternatively, use a general approach based on perturbation theory
to eliminate degeneracy.

1.1 Structure of this Thesis

In Chapter 2 we discuss number representation on computer systems. We
focus on the floating-point representation which is commonly used in prac-
tice and is the reason for the majority of robustness problems in the field of
computational geometry. Robustness problems in geometric algorithms and
approaches to avoid them are the topic of Chapter 3. The exact geometric
computation approach and libraries that implement exact geometric compu-
tation techniques are discussed in Chapter 4. The Core-library is the topic
of Chapter 5. We discuss basic concepts of the library and provide instruc-
tions on how to use the library in own software projects. Finally, Chapter
6 provides a survey of the triangulation algorithm FIST and describes the
changes we made to FIST in order to make it compliant with the Core-library.
Experimental results are also presented in this chapter.

1.2 Platform Specifications

The specifications of the platform we used for all the tests in thesis are as
follows:

CPU: AMD Athlon, 1400 MHz,
RAM: 256MB DDR-RAM,
Operating System: SuSE Linux 7.3,

Compiler: g++ 2.95.3,

Debugger: gdb 5.0

Memory Debugger: Parasoft Insure++ 6.0

Chapter 2

Floating-Point Arithmetic

In this chapter we take a closer look at the way numbers can be represented
on a computer system. In the next section we mention basics of fixed-point
and floating-point representation of real numbers. Furthermore, we explain
important concepts related to these two number representations. The focus
of this chapter will lie on the floating-point representation since it is more
flexible and therefor unavoidable if we want to implement geometric algo-
rithms. An important step towards applicability of floating-point numbers
on computer systems was its standardization by the IEEE. This standard is
the topic of Section 2.4 and concludes this chapter. Sources of errors in nu-
merical computations due to the use of floating-point arithmetic and a short
introduction to error analysis are the topics of Section 2.2 and 2.3

2.1 Basics of Number Representation

Using computer systems for numerical computations makes it necessary to
find a way to represent numbers. For complex computations the use of inte-
ger arithmetic does not suffice. This is especially true for many applications
in the field of computational geometry. Therefor, a way to represent real
numbers is essential. The major problem is that it is impossible to repre-
sent infinitely many real numbers with a computer system that only offers
a finite number of bits for number representation. The fact that we can
only represent a subset of real numbers introduces errors due to rounding
and truncation in numerical computations. While those errors may be in-
nocuous in some applications they may be harmful in other applications and
even cause those applications to fail. Geometric algorithms are susceptible
to numerical errors and software developers have to undertake great efforts
to ensure robustness of their applications. As mentioned above there are
two important ways real numbers can be represented on a computer sys-

tem — fixed-point representation and floating-point representation. We will
now look at the fixed-point representation in some detail and then focus on
the floating-point representation due to its importance for today’s computer
systems.

2.1.1 Fixed-Point Representation

Suppose we have n bits to represent a real number and we decide to place
the radix point in a way such that we use m bits for the fractional part and
n—m for the integer part of the number. Since the radix point is fixed in this
position! we speak of a fixed-point number representation. This means that
every number we deal with has to be represented according to this convention
even if there is no fractional part. As an example, let us assume that we have
8 bits to represent our number. We decide that we use 3 bits for the fractional
part and 5 bits for the integer part of the number. The number we want to
represent is 2 in decimal notation. The binary fixed-point representation
would be 00010.000. In order to get the decimal value of a binary number in
fixed-point representation we multiply each digit of the integer part with a
power of 2 according to its position (increasing from the right to the left) and
sum up the results. The fractional part is computed by multiplying each digit
to the right of the radix point with a negative power of 2 again according to
its position (decreasing from the left to the right) and subsequent addition
of the results. Recall our example from above. We have 8 bits to represent
a real number. We choose to take 3 bits for the fractional part so we have
5 bits left for the integer part of the number. With d; € {0, 1}, the decimal
value of the number d;ds;dod dy.d_1d_>d_35 would be

dy %2 +d3 %22 +dyx 22+ dy %2V +dy %20 +d 1 %27 +d 9 %272 +d 5 %273,

One characteristic of fixed-point numbers is that they are equally distributed
over the representable range. This means that the absolute distance between
two adjacent numbers, called the resolution?, is constant. The resolution
depends on the number of bits used for the fractional part of a real number.
According to [38], the resolution r is given by

r=2"",

where m is the number of bits used for the fractional part of the number
represented. The range of representable fixed-point numbers using n bits for

!The position of the radix point is arbitrary and depends on the range and precision
we want to achieve.

2The resolution of a fixed-point number distribution is often defined as the smallest
non-zero representable magnitude [50].

number representation and m bits for the fractional part is, according to [38],
given by

0,2"™ —),

where 7 is the resolution of the number distribution. There is an interest-
ing connection between the representable range of numbers and the resolu-
tion. If no bits are used for the fractional part, meaning m = 0, then the
representable range has reached its maximum, while the resolution » = 1
and is therefor very coarse. As m grows the range of representable num-
bers decreases while the resolution r increases. An advantage of fixed-point
numbers is that the basic arithmetic operations can be carried out using in-
teger arithmetic. Since fixed-point calculations were significantly faster than
floating-point calculations on older computer systems this number represen-
tation played an important role in computer graphics especially for inter-
active graphics on low-cost computer systems, e.g., consoles for computer
games. This situation has changed dramatically in recent years. Nowa-
days even conventional personal computers have high-performance hardware
floating-point units and modern graphics hardware supports the CPU in a
lot of calculations. Therefor, fixed-point arithmetic has lost its importance
in modern graphics applications. There is also a major drawback in the use
of fixed-point arithmetic. Since the radix point is fixed, problems will arise
if the numbers we intend to represent vary a lot in their magnitude. As an
example let us use the fixed-point representation from above. The three bits
we use for the fractional part are not enough to represent the decimal number
1—16. The binary representation of 1—16 equals

0.0001,

so we need an additional bit for the fractional part of the number. In our 5.3
fixed-point number representation we would represent %6 as

00000.000,

which is clearly wrong. The same is true for large numbers. The maximum
number we can represent with five bits is 31. So we run into similar problems
if we wish to represent the number 32. As we can see from these examples we
need some information on the bounds of the numbers we expect to represent
and then decide how many bits to use for the number representation. Finally,
a decision on how to divide those bits for the integer and the fractional
part has to be made. If we do not take this decision carefully we would
suffer from heavy truncation errors. This ends our insight on fixed number
representation. The reader is referred to [38, 50, 25] for more information
on the fixed-point representation, for details on how the basic arithmetic
operations are carried out, and on the representation of negative numbers
using the one’s and two’s compliment.

2.1.2 Significant Digits

Before we get to the floating-point representation of real numbers we want
to explain the notion of significant digits. As we saw in Subsection 2.1.1, we
have only a finite number of bits to represent numbers on a computer system.
As a consequence we may be forced to throw away digits if the number we
want to represent has more digits than we can store. Consider the number
1351245 that has seven digits in decimal notation. Assuming we can only
use five digits per number which digits should we throw away? First of all we
have to remember that the original number had seven digits instead of just
five. In other words the original number is hundred times bigger in magnitude
than the number we represent using only five digits. So we need to multiply
the five digit number by one hundred? if we want to reconstruct the original
number. Furthermore, it should be noted that this reconstruction actually
leads to an approximation of the original number since we are not able to
reconstruct the two digits that have been lost. Clearly this approximation
should be as close as possible to the original number. Therefor, we choose
to drop the last two digits of 1351245 and store the number? 13512. As a
second example consider the number 0023478. Trying to store this number
using five digits leads to 23478. No information is lost since the two leading
zeros are redundant. Apparently the leading zeros are not significant. All in
all we have four rules for determining the significant digits of a given number,
see also [32]:

1. Non-zero digits are always significant,
2. The digit zero is significant if it lies between other significant digits,

3. The digit zero is significant if it follows an embedded radix point and
other significant digits,

4. Zeros that precede all other non-zero digits are not significant.

Zero digits that follow an embedded radix point and other significant digits
are significant as stated in Rule 3 because they tell us something about
the accuracy of the number [32], e.g., the number 6.20 tells us that it was
measured to the nearest hundredth. Once we have determined the significant
digits according to these rules, we are able to define the terms most significant
digit and least significant digit. The significance of a digit corresponds to
the way we write down numbers on a piece of paper: the left most digit of
the significant digits determined is called the most significant digit and the

3This corresponds to the exponent of a floating-point number.
“‘Remember that we also need to store the multiplication factor 100 to reconstruct an
approximation to the original number.

other digits follow in descending order of significance from left to right. The
rightmost digit is therefor called the least significant digit.

2.1.3 Floating-Point Representation

A major drawback in the use of fixed-point arithmetic is its lack of flexibility
if the numbers we need to represent vary a lot in their magnitude. Remember
the problems we had before when we tried to represent the decimal number
32 with our 5.3 binary fixed-point representation. The result was 00000.000,
since we did not have enough bits to represent the integer part of the number.
On the other hand there are three bits for the fractional part of the fixed-
point number that are not needed to represent the integer 32. While a
fractional part may be needed for the representation of other numbers it is
useless in the case of the integer 32 and the bits used for the fractional part
are wasted. Problems like these can be softened but, as we will see later,
not completely avoided using the floating-point representation. Nevertheless
there is no doubt that the floating-point representation is more flexible than
the fixed-point representation in the sense that the radix point is not fixed
in one position but is floating around depending on the magnitude of the
number represented. A floating-point number x is of the form:

xr = +m x 3¢ where

m is called the significand® and represents the significant digits of the real
number we want to represent. The significand has a certain number of
digits p, called the precision.

3 is the base® and depends on the number system we use. Commonly used
bases are 2 (dual system), 10 (decimal system), 8 (octal system) and
16 (hexadecimal system).

e is called the exponent and corresponds to the power to which the base is to
be raised prior to multiplying with the significand. The exponent pin-
points the radix point in its correct position and, therefor, corresponds
to the number of digits the radix point has to be shifted to the left or
to the right. The value of the exponent ranges from its minimum e,;,
to its maximum e,,,,,;.

Floating-point numbers are not unique. Consider the decimal fraction 0.5.
We can represent 0.5 as 5.0 x 107 or 0.05 x 10!. Another possibility is

®The term significand replaced the older term mantissa [20].
6The base is sometimes called radix.

| | SN | NEF |
normalized significand 5.0 0.5
unique floating-point representation | 5.0 x 1071 | 0.5 x 10°

Table 2.1: Unique representation of the fraction 0.5 in scientific notation
(SN) and normalized exponential form (NEF).

0.000005 x 10°, and there are many more. In order to overcome this ambigu-
ity the significand of a floating-point number is normalized. There are two
common ways to normalize the significand [32]:

1. Scientific notation (SN): In scientific notation the radix point is as-
sumed to be located to the right of the most significant digit.

2. Normalized exponential form (NEF): If the normalized exponential
form is used, then the radix point is placed to the left of the most
significant digit.

Sticking to one of these conventions we get a unique floating-point repre-
sentation. The unique representations for 0.5 in scientific and normalized
exponential form are illustrated in Table 2.1.

Floating-point numbers are a subset of the reals. Their range depends
on the minimum and maximum values of the exponent while their accuracy
depends on the precision of the significand. As a consequence we can only
approximate a given real number with a number of the chosen floating-point
number system. Due to the fact that the radix point is floating around,
a floating-point number system is more flexible than a fixed-point number
system. Nevertheless there are similar representation problems as in fixed-
point systems if we want to represent numbers that are out of the floating-
point number system’s range, i.e., €, is too large or e,,q, is too small.

Now that we know what a floating-point number is, let us take a look on
how to represent them on a computer system’. Basically three components
are stored per floating-point number:

The sign: In general, one sign bit is used to determine the sign of the
floating-point number. Generally, if the sign bit equals 0 then the
corresponding number is positive. A sign bit set to 1 means that we
deal with a negative number.

The exponent: A certain number of bits is used to store the exponent. The
more bits we use for the exponent, the wider the range of representable

"The natural base 3 used for computers is 2.

—4 -3 -2 -1 0 1
]
]

N

3
000 001 010 011 100 101 110 111

Figure 2.1: Sorted exponents using a three bit biased form.

numbers will be. Since the exponent can be negative, it is stored using
either the two’s compliment® or a biased form. The advantage of the
biased form over the two’s compliment is that the exponents are sorted
from the smallest to the biggest value, see Figure 2.1. Assuming that
the floating-point number is stored the usual way with the sign first
followed by the exponent and the significand, all the bits of the floating-
point format can be treated as a single number that can be sorted
without determining its true value. This makes the biased form the
representation of choice for exponents in most cases and we will therefor
take a closer look at it. For more information on the two’s compliment
see [50, 38]. Storing the exponent e in biased form using m bits means
that a so-called characteristic c¢ is stored instead of e. As outlined in
[32], the characteristic is computed by adding a bias b to the exponent:

c=e+0b, (2.1)

with
b=2m"1t (2.2)

Given the characteristic of an exponent e one has to subtract the bias
from the characteristic to reconstruct the original exponent.

The significand: The third component that has to be stored is the normal-
ized significand?, i.e., the significant digits. The more bits we use for
the significand, the higher the precision of the floating-point number
will be. Higher precision results in a better approximation of the de-
sired real number. There is a trick called hidden bit to gain an extra
bit of precision for the significand without actually storing it if base
two is used. Since the first significant digit in binary form is always

8The two’s compliment represents negative decimal values with a bigger binary number
than positive decimal values.

9Note that the radix point is not stored but implied at certain position depending on
the normalization.

10

N bits
sign | exponent significand
1 bit | m bits | N —m — 1 bits

Table 2.2: Floating-point representation on a computer system.

a 1 we can imply the leading 1 and do not have to store it. E.g., if
we want to store the significand 110010101 we actually store 10010101.
When the stored significand is read back, we know that we did not
store the leading 1 and therefor prepend it to get the original signifi-
cand 110010101. Unfortunately, we are not able to represent 0 using
the hidden bit because we always imply a hidden 1. In order to solve
this problem a special value to represent 0 has to be defined.

Assuming that we have N bits to represent a single floating-point number
and use one bit for the sign and m bits for the exponent that leaves us
N —m —1 bits for the significand, see Table 2.2. It is easy to see that there is
a trade-off of bits between the exponent and the significand. The more bits
we use for the exponent the larger the range of representable floating-point
numbers and the poorer the precision will be, and vice versa. Unlike fixed-
point numbers, floating-point numbers are not distributed equally over their
representable range. In fact the density of binary floating-point numbers
halves at each power of two as we move farther away from zero, see [32, 23] .

2.2 Sources of Errors

We have seen in the previous section that floating-point representations have
some advantages over fixed-point representations. These advantages and
the fact that every modern computer system has a hardware floating-point
unit, has lead to a widespread use of floating-point numbers to represent real
numbers on a computer system. However, there are some drawbacks as men-
tioned above that may lead to irritating results of floating-point calculations
in some cases. As we will see in the next chapter, this is especially true if
we want to implement geometric algorithms. A software developer should
therefor be aware of these problems to be able to deal with errors introduced
by floating-point calculations. This subsection provides an overview on this
subject. Excellent resources on this topic are [11, 20].

11

2.2.1 Representation Problems

As a matter of principle, the problems start at the moment a program reads
its input data'’. Although there are exceptions almost every computer sys-
tem uses base two to represent floating-point numbers. Unfortunately, hu-
mans are used to the decimal system. Consequently, real numbers that are
fed to algorithms as input are in decimal notation and have to be con-
verted. This conversion introduces truncation errors since there are a lot
of decimal real numbers that have no finite dual representation but an in-
finite periodical representation. Examples include 0.1 which is represented
as 0.00011001100110011... or 0.4. Similar problems occur if we wish to
compute quantities that have no finite representation and have to be approx-
imated. Depending on the accuracy we wish to achieve, we have to stop this
approximation at one point introducing truncation errors again.

2.2.2 Data Uncertainty

Depending on the origin of the data we use as input there exist data uncer-
tainties for different reasons. If the input data we use was measured, i.e, if
we use physical quantities as input, errors occur due to measuring. Another
possibility is to use input data that was generated by another computer pro-
gram. Needless to say, computer-generated data suffers from all the possible
error sources discussed in this section.

2.2.3 Roundoff Errors

In Subsection 2.1.3 we already mentioned that floating-point numbers cover
only a finite subset of the reals. Consequently, results of arithmetic operations
have to be rounded to the nearest floating-point number which introduces
so-called roundoff errors. Let us take a look at an example that illustrates
an roundoff error. To keep things simple we only consider positive numbers,
choose base f = 10 and precision p = 1. We set the minimum exponent €,,;,
to zero and the maximum exponent e,,,, to one. The numbers representable
in this system are illustrated in Table 2.3. Let us see what happens if we
calculate the sum 6 + 8. The returned answer would be 10 and not 14 as one
might expect. The reason for this is simple. Without a doubt, the correct
result of the sum 6+ 8 is 14. Unfortunately, we have no way for representing
the number 14 in our floating-point number system. Therefor, the result is
rounded to the next representable value which is 10. Similar problems arise
if we want input the numbers 12 and 24 and want to compute their sum.

10 Assuming that the input are real numbers.

12

‘ Exponent ‘ Representable Numbers ‘

e=0 11213145167 18]9
e=1 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90

Table 2.3: Representable floating-point numbers using 5 = 10, p = 1, € =
0 and e,,,, = 1.

Since we cannot represent the numbers 12 and 24, they are rounded to 10
and 20, respectively. Their sum yields 30 instead of the expected value 36.

2.2.4 Overflows and Underflows

Overflows occur if the exponent of a quantity computed grows too large.
Referring to the floating-point number system illustrated in Table 2.3, the
computation of 50 + 50 yields an overflow error. The exact result of 50 + 50
is 100 which can be rewritten as

100 =1 x 10%

Since €,,4; = 1 in the corresponding floating-point number system and the
exponent required to represent the quantity 100 is 2, an overflow occurs.

While overflows occur if the exponent of a quantity computed grows too
large, we get an underflow error if the exponent of a quantity is too small.
The division % yields 0.5 on a piece of paper. Performing the same calculation
in the floating-point number system of Table 2.3 yields an underflow error
because

0.5=5x10"1

and the smallest allowable exponent e,,;, = 0. In general, underflows are con-
sidered to be more harmful than overflows because they are mapped to zero
in some floating-point implementations. This behavior could cause divisions
by zero.

2.2.5 Problems Due to Floating-Point Errors

There are a number of problems that arise whenever floating-point arith-
metic is used. These problems are the subject of this subsection. For more
information on this topic see [11, 20, 23].

13

Insignificant Digits

The following C program is based on the FORTRAN code in [11] and demon-
strates the phenomenon of insignificant digits.

#include <stdio.h>

int main()

{
float © = 1000.2;
float y = 1000.0;
float z;

p=x -y
printf(”%f — %f = %f\n”,z, y, 2);

return 0;

}

What we intended to do with this program was to compute the difference
between the two real numbers 1000.2 and 1000.0. Clearly, the correct result
is 0.2. When executed the program produces the following output:

1000.200012 — 1000.000000 = 0.200012.

If we would have printed the result only, we would have been rather surprised
to see 0.200012 instead of the expected 0.2. But since the print statement
prints the two operands as well as the result, we get an insight of what
really happened. The real number 1000.2 cannot be represented exactly
and is rounded to the closest representable floating-point number which is
1000.200012. On the other hand the second operand 1000.0 is represented
exactly and therefor the result of the subtraction is 0.200012. It is easy to
see in this example that the correct result is 0.20 and that the remaining
digits are insignificant but if the calculations get more complex it might not
necessarily be so obvious.

Inaccuracy Due to Conversions

Inaccuracies may also occur if a floating-point number is converted into an
integer value. The following C code is again based on a FORTRAN program
from [11] and demonstrates this conversion error.

#include <stdio.h>

int main()

14

float x = 21.22;
int z;
z = x % 100.0;

printf(”z = %d\n”, 2);

return 0;
}

The real number 21.22 has no exact representation and is represented as
21.2199.... Multiplying 21.2199. .. with 100.0 yields 2121.99... and is trun-
cated to 2121 before it is assigned to the integer variable z. The program
therefor prints the value 2121 instead of the expected value 2122.

Inaccuracies in Repeated Calculations

If a quantity that cannot be represented is involved in repeated calculations
the error can grow and the result might not be the one expected. Take the
real number 0.1 as an example. Adding 0.1 ten times yields 1.0. Unfortu-
nately, there is no floating-point number corresponding to the real value 0.1,
so it has to be rounded to the closest representable floating-point number.
Consequently, adding this approximate value ten times does not result in 1.0.
The error is illustrated by the following program.

#include <stdio.h>

int main()

{
double x = 0.0;

int counter;

for(counter = 0; counter < 10; counter + +)

r=ux+0.1;
if (z == 1.0)

printf("z == 1.0\n");
else

printf("z! = 1.0\n”);

return 0;
}

When executed the program outputs

15

z! =1.0

since 1.0 is represented exactly while 0.1 is not. The combinatorial part of
geometric algorithms is often constructed based on comparisons of computed
numerical quantities. Inaccuracies like these lead to errors in the combina-
torial structure and are a major problem for software developers.

Cancellation

Catastrophic cancellation occurs whenever we subtract two quantities of sim-
ilar magnitude or alternatively add such quantities having opposite signs.
Suppose we are given two quantities with precision p'! of similar magnitude
and wish to subtract them. What happens is that the majority of significant
digits cancel themselves leaving some of the less significant digits that may
already have suffered from rounding errors. In the worst case this leaves us
with a result where not a single digit is correct and the error is of the magni-
tude of the quantity itself, if it was exactly computed. While the arithmetic
operation, i.e., the subtraction is not the problem'? in this case, it uncov-
ers errors that have already occurred. The phenomenon described above is
known as catastrophic cancellation and can lead to very inaccurate results.
Nevertheless there are also other forms of cancellation that are benign or
that can even be beneficial whenever they cancel errors that occurred in pre-
vious calculations. For more details on catastrophic, benign and beneficial
cancellation see [20, 23].

2.3 A Few Words on Error Analysis

We saw in the previous sections that there is no way to avoid errors using
standard floating-point arithmetic. This leaves us with the question how
accurate the results computed really are? The field of numerical analysis
is concerned with this question and has developed a number of methods to
analyze and quantify errors. Since a thorough study of error analysis is far
out of the scope of this thesis, this section just provides a survey on this
topic. More information can be found in [23] and the papers cited therein.

2.3.1 Introduction to Error Analysis

Since the intension of this subsection is to take a glimpse at error analysis we
will look at two common methods of error analysis and keep things as simple

1 That is, we have p significant digits.
I2Tn fact this operation could even be exact.

16

Input Space Output Space

Exact Computation y = f(z)

3

Forward|Error

Approximate Computation

R
az\
N

:

Figure 2.2: Forward error.

as possible. Before we start, let us assume that we compute an approximate
value, g, for the exact value y. The exact value y is computed by a function
f(x), see [23]. Summarizing we have:

y = f(z), where

x is the input value; the input value is a real number and is a member of the
so-called input space;

y is the result of the function f(x); the value y is a real number and is a
member of the output space;

f(z) is an arbitrary function that computes exact answers.

If we were able to perform exact arithmetic operations we would take a real
number from the input space and calculate the exact result which is a real
number again. Operating with floating-point arithmetic the operation is per-
formed with floating-point numbers. Therefor, errors can occur in the input
space — recall Subsection 2.2.1 — as well as in the output space. Consequently,
we have two ways of looking at an error which is reflected in two different
methods of error analysis called forward and backward error analysis.

2.3.2 Forward Error Analysis

The method of forward error analysis, illustrated in Figure 2.2, tries to quan-
tify the error in output space. That is, the exact result y of the function f(x)

17

Input Space Output Space

Exact Computation y = f(z1)
l‘lx\ hd Yy

Approximate Computation

Backward|Error

Y
l‘g‘

\ / Exact Computation § = f(x2)

Figure 2.3: Backward error.

7

is compared to the result § computed in the floating-point number system.
Two common ways are used to calculate the forward error. The absolute
error F'Eys(7) is calculated using the following formula

FEas(9) = ly = gl. (2:3)

One drawback of absolute errors is that they change if y and y are scaled.
Scaling y and y by a factor of « yields an absolute error scaled by « itself.
This behavior can be avoided by calculating the relative error F E,(7) which
we get by dividing the absolute error F'E.(7) by |y| as shown in equation
2.4:

ly — 9|
ly|

Scaling y and 3 does not have any effect on the relative error which is the
reason why relative errors are preferred; they make it easy to compare errors
of computed quantities that vary a lot in their magnitude.

FE,.¢ (g) = (24)

2.3.3 Backward Error Analysis

Another way of quantifying the error is to check what input data corresponds
to the approximated result if the calculation was exact using the function
f(z). Recall that 7 is an approximation to y = f(z1). What we are looking
for is some value x5 of the input space such that

g = f(w2).

18

Similar to the forward error, the backward error can be expressed in absolute
terms as the absolute value of the difference between x; and x,

BEu5(9) = |z1 — x|, (2.5)

or in relative terms dividing the absolute error by the absolute value of x; as
expressed by the following equation

(2.6)

The backward error, which is illustrated in Figure 2.3, is interesting because
errors are interpreted as perturbations in the input data. In general, input
data is uncertain due to errors in measuring, storing or previous computa-
tions. If the backward error is smaller than the uncertainties in the input
data, the computed result is accurate enough. Backward errors are also con-
nected to perturbation theory which is discussed in the next chapter.

2.4 The IEEE-754 Standard

Before the standardization of floating-point formats, the porting of programs
from one computer system to another was very cumbersome. Differences
between the format of floating-point numbers and their corresponding op-
erations yielded different results on different architectures. When errors oc-
curred in numerical results, it was not clear if the error was due to round-
ing and truncation or due to a different implementation of floating-point
numbers and their corresponding operations. The IEEE standard defines
the representation of floating-point numbers as well as the basic operations,
making it easy to port programs from one IEEE machine to another. The
IEEE standard does not solve the problem of truncation and rounding er-
rors but, at least, they are the same on every architecture that implements
the standard. Last but not least the standard simplifies proofs concerning
floating-point numbers since one has a reference implementation and does
not have to bother with differences in floating-point representations. The
IEEE has defined two floating-point representation standards. The IEEE-
754 standard [4] defines the representation of floating-point numbers with
base f = 2. The majority of floating-point implementations on computer
systems use this standard. A second floating-point standard that was pro-
posed by the IEEE is called IEEE-854 and requires either 5 = 2 or 8 = 10.
We will focus on the IEEE-754 standard. For more information on IEEE-854,
see [20].

19

32 bits
sign exponent significand
bit 31 | bits 30...23 | bits 22...0

Table 2.4: IEEE-754 single precision floating-point number.

2.4.1 Storage Format

Four different precisions are proposed in the IEEE-754 standard:
1. Single Precision,
2. Double Precision,
3. Single Extended Precision, and
4. Double Extended Precision.

The normalized exponential form is used to normalize IEEE-754 floating-
point numbers, so the radix point is assumed to be left of the first significant
digit. Furthermore, the exponent is stored in a biased form, recall Page 10.

Single Precision

Single precision floating-point numbers occupy 32 bits. One bit is used to
indicate the sign of the floating-point number. The exponent is stored using
8 bits, leaving 23 bits for the significand. Since IEEE-754 requires [= 2
the concept of the hidden bit is used to achieve 24 bits of precision. The
exact format of a IEEE single precision floating-point number is shown in
Table 2.4. The IEEE-754 standard defines several special values for a single
precision floating-point number, with exponent in biased form:

Zero: If all the bits of the exponent as well as all the bits of the significand
are set to zero, then the value of the floating-point number is defined
to be 0'%. Note that there are actually two representations for zero (+0
and —0) depending on the value of the sign bit.

Infinity: If all the bits of the exponent are set to one and all the bits of the
significand are set to zero then the value of the floating-point number
is infinite. Depending on the sign bit +infinity and —infinity is
represented.

13Remember that a special representation for zero is needed since the IEEE-754 numbers
use the hidden bit.

20

64 bits
sign exponent significand
bit 63 | bits 62...52 | bits 51...0

Table 2.5: IEEE-754 double precision floating-point number.

NaN (Not a Number): NaN is represented setting all the exponent’s bits
to one and not all the bits of the significand to zero. That is, the
decimal value of the exponent field is 255 and the decimal value of the
significand is non-zero.

Denormalized Number: A value is denormalized if the exponent is zero
but the significand is not. The leading one is no longer assumed in
this situation. A single precision denormalized floating-point number
is therefor represented as +0.m x 2°.

Double Precision

The standard requires to encode double precision floating-point numbers us-
ing 64 bits. Similar to single precision, one bit is used for the sign. The
exponent is encoded using 11 bits. The final 52 bits are occupied by the
significand that actually has 53 bits of precision due to the hidden bit. The
exact format of double precision IEEE-754 floating-point numbers is shown
in Table 2.5.

The special values for double precision floating-point numbers are defined
as follows:

Zero: The value 0 is represented by setting all of the exponent’s bits as well
as all the significand’s bits to 0, i.e., the decimal value of the exponent
and the significand is 0. Depending on the sign bit either +0 or —0 is
represented.

Infinity: Positive or negative infinity is represented setting the sign bit to 0
or 1, respectively. The exponent field has the decimal value 2047 and
therefor all the bits set to 1 while the significand’s bits are all set to 0.

NaN (Not a Number): If all the bits of the exponent are set and the
decimal value of the significand is non-zero then the value of the cor-
responding floating-point number is NaN.

Denormalized Number: Similar to single precision a value is denormal-
ized if the exponent is zero but the significand is not. Since the leading

21

one is no longer assumed the value represented by a double precision
denormalized floating-point number is +0.m x 2°¢.

Single Extended and Double Extended Precision

Single extended and double extended precision is used whenever there is a
need for higher precision. This is especially true for intermediate results.
Potential problems due to intermediate overflow and underflow or cancel-
lation can be softened if the results are in single or double precision while
intermediate results are calculated using extended precision. Nevertheless
a phenomenon called double rounding might occur if extended precision is
used for intermediate results. Double rounding is permitted in the IEEE-754
standard and means that a result of an operation is first rounded to extended
precision with subsequent rounding to the target format, i.e., single or double
precision. Since it depends on the IEEE implementation if results are double
rounded or rounded directly to the target format, different implementations
might yield slightly different results. The size of the single extended and
double extended format is not specified exactly but there are lower bounds.
Table 2.6 summerizes the four precisions defined in the IEEE-754 standard.

2.4.2 Operations

The results of additions, subtractions, multiplications, divisions and square
roots are well defined in the IEEE-754 standard. Floating-point implemen-
tations have to guarantee these results to be compliant with the standard.
IEEE requires operations to be carried out as if they were computed to
infinite-precision and then by default rounded to the next representable
floating-point number. Rounding to =+ infinity is also supported which fa-
cilitates interval arithmetic. Every operation yields a defined result, excep-
tional operations like divisions by zero or overflows raise signals. Operations
involving infinity are defined according to the well known mathematical con-
ventions:

® 00 + 00 = 00,

e (—1) X 00 =—00,

e == =0, with = being a finite representable floating-point number.

A NaN is generated for invalid operations such as:

22

0/0,

Ve for z <0,

e (X o0,

o0?

® OO — OQ.

Operations that involve a NaN result in NaN. NaN can also be used to
indicate that a variable has not been initialized yet. Underflows are not
flushed to zero but treated as denormalized numbers. The advantage of this
behavior called gradual underflow is that divisions by zero due to underflows
are prevented. As mentioned before there are two different representations
of zero depending on the sign bit. Nevertheless it is reasonable to treat them
as a single value in arithmetic operations. Therefor, —0 = +0 is required by
the standard.

23

Ve

Single Prec.

Double Prec.

Single Ext. Prec.

Double Ext. Prec.

Format size in bits 32 64 > 43 >79
Size of sign in bits 1 1 1 1

Size of exponent field in bits 8 bit 11 bit > 11 bit > 15 bit
Size of significand field in bits 24 bit 53 bit > 32 > 64
Hidden bit yes yes no no
Bias +127 +1023 unspecified unspecified
Emin —126 —1022 < —1022 < —16382
€max +127 +1023 > 41023 > 416383

Table 2.6: Summary of the IEEE-754 standard.

Chapter 3

Non-robustness and the
Problems That Arise in
Geometric Algorithms

This chapter is concerned with robustness issues in the field of computational
geometry. In Section 3.1 we will discuss the phenomenon of non-robustness
in geometric algorithms. Section 3.2 focuses on robustness problems in con-
nection with floating-point arithmetic. A possible solution to robustness
problems due to floating-point arithmetic is provided by the exact geometric
computation paradigm, which is discussed in Section 3.3. Concluding this
chapter, Section 3.4 is dedicated to the topic of degeneracies.

3.1 Introduction

The field of computational geometry and with it the research on geometric
algorithms is relatively young, see the book ” Computational Geometry - An
Introduction” by Preparata and Shamos [37] for a good introduction. In the
beginning researchers concentrated on the theory of geometric algorithms.
As research evolved, the need for robust implementations of the excogitated,
theoretically correct algorithms grew. It turned out that the robust imple-
mentation of an algorithm that is correct in theory is not such an easy task.
Robustness became a major issue in the last few years and researchers all
over the world are taking great efforts to solve the robustness problem. The
reason for the gap between theory and practice is twofold.

1. Theory requires a so-called real RAM. That is, algorithms are devel-
oped to run on a conceptional machine that operates with real numbers.
A single operation is carried out in constant time.

25

2. Furthermore, a so-called ”general position” assumption is made, ex-
cluding all degenerate cases.

It is easy to see that both assumptions do not hold in practice. Practical
implementations often use floating-point numbers to represent real numbers,
since they are usually supported by the computer system’s hardware and
are therefor very fast. We already saw in Chapter 2 that there are a lot of
potential problems connected with floating-point arithmetic.

The assumption of a ”"general position” is convenient to keep correctness
proofs simple. One can concentrate on the general solution of a geometric
problem and does not have to handle every special case. Applications, on
the other hand, have to deal with real-world data, computer-generated data
or interactive input. Degenerated input is sure to occur from time to time.
Take the intersection of two line segments as an example. ” General position”
reduces this problem to two different cases:

1. The two line segments do not intersect, or
2. the two line segments intersect in one point interior to both segments.

Clearly there might be special cases where the segments intersect at their
endpoints or partly overlap, yielding an intersection interval. A software
developer has to handle every possible special case to implement a robust
algorithm. Needless to say, this is a difficult task, especially if the geometric
objects involved get more complex or one moves to higher dimensions.

3.1.1 Why are Geometric Algorithms so Difficult to
Implement

Without a doubt, robustness and errors due to floating-point arithmetic are
an issue no matter what kind of algorithm a software developer wants to
implement. Nevertheless there are a lot of areas in computer science where
floating-point arithmetic suffices and thus the implementation of algorithms
is straightforward. On the other hand, it seems that the implementation
of geometric algorithms is very difficult even if the given geometric prob-
lem is quite simple. The reason for this is that geometric objects consist of
both combinatorial and numerical data. Combinatorial data like face and
boundary descriptions or adjacencies is based on numerical data like vertex
coordinates and plane equations. Due to the inexactness of floating-point
arithmetic the numerical data is only approximate, which may lead to con-
tradictions with the combinatorial data. A possible situation is illustrated
in Figure 3.1. The combinatorial data requires the three line segments to

26

(a) (b)

Figure 3.1: The intersection of three line segments. The information we get
from the combinatorial data is illustrated in (a), while the situation from the
numerical data’s point of view is illustrated in (b).

meet in a single point contradicting the information we get from the nu-
merical data, that specifies three nearby points instead of just a single one.
Since floating-point arithmetic is inaccurate, the information we get from the
numerical data is incomplete. Thus, there is an uncertainty inherent to all
decisions that are based upon numerical data, which might lead to combi-
natorial inconsistency. Redundant decisions made by the algorithm might
contradict each other and therefor have to be avoided, see Subsection 3.2.5.
The problem gets even worse in cascaded computations where the output
from one algorithm is used as input for a second one. The second algorithm
is likely to crash if the output produced by the first algorithm is corrupt.

Besides the problems described above, the complexity of solutions of even
simple geometric problems is another issue. As already mentioned above,
even the intersection of two line segments has a number of special cases that
have to be dealt with. It is up to the software developer to handle every single
special case that can arise during the program’s execution. This is quite a
challenging task for complex geometric problems or higher dimensions and
not even exact arithmetic can help with that.

In the following sections we will survey some of the techniques developed
to cope with the robustness problem in geometric algorithms. We start with
the different types of geometric primitives. Excellent introductions on the
robustness topic are [41, 17, 24, 27, 40].

27

(a (b)

Figure 3.2: The 2D orientation test (a): Is Ps located on the left, on the
right or on the oriented line through P, and P? And the 2D incircle test
(b): Is Py inside, outside or on the circle through P, P, and P3?

3.1.2 Predicates and Constructors

A basic operation in a geometric algorithm is called a geometric primitive.
There are two different types of geometric primitives [18] involved in geomet-
ric algorithms. The first type is called a predicate. Predicates are used to
make decisions in order to determine the combinatorial structure of a geo-
metric output. Examples of predicates are orientation tests and the incircle
test, see Figure 3.2. Decisions made with predicates are usually based on the
sign of some arithmetic expression like the determinant of a matrix. If the
magnitude of the expression computed is smaller than the rounding error,
the sign evaluation might be incorrect. Since the given input data is likely to
be inexact itself, for reasons mentioned in Chapter 2, the computed sign is
correct for some perturbation of the input data for a single predicate. Prob-
lems arise if predicates are repeatedly incorrect because there might not be
a global perturbation that satisfies all the incorrect results, thus leading to
a corruption of the combinatorial structure. There are some geometric al-
gorithms including the computation of convex hulls and triangulations that
solely rely on predicates. Those algorithms can be made robust if one can
guarantee that the signs of the predicates computed are correct, or, at the
very least consistent.

The second type of calculation involved in geometric algorithms is called
a constructor because it is used to construct new geometric objects. Con-
structors compute the numerical part of a geometric output. An example is

28

the calculation of an intersection point of two line segments. Guaranteeing
robustness of geometric algorithms that use both predicates and construc-
tors, e.g., in the case of computing Voronoi diagrams, is a much harder task
than for algorithms that rely on predicates only.

3.2 Non-robustness due to Floating-Point
Arithmetic

If a software developer decides to implement an algorithm based on floating-
point arithmetic, his/her decision was probably guided by the need for fast
arithmetic operations. Without a doubt there is no faster way to perform
the basic arithmetic operations than with the hardware floating-point unit of
the target platform. The drawback of this decision is that he/she has to live
with all the error-prone calculations that occur in the world of floating-point
arithmetic. Especially if the implemented algorithm relies on constructors
as well as on predicates, exact results cannot be expected. Nevertheless a
reasonable result has to be computed for correct input data. Algorithms that
do not compute the exact result, but a result that is reasonably close to the
exact result are called robust algorithms, see [16] and [41].

Ensuring robustness using floating-point arithmetic is a very difficult task.
Up till now, no general technique has been introduced to solve this problem.
Nevertheless there is a collection of techniques and guidelines that has been
developed by researchers in recent years. Since there is no general rule and
since the effectiveness of these techniques depends on the type of algorithm
one wants to implement, the main challenge is to pick the right technique
and adopt it appropriately for the specific needs.

3.2.1 Epsilon Tweaking

One of the most common methods used to increase robustness of an algorithm
is referred to as epsilon tweaking. Following the convention in [40] we will
assume that the comparison of numerical values in predicates is a comparison
of the value of some arithmetic expression with zero. Whenever a floating-
point value is used for a comparison there is an uncertainty associated with
it. Therefor, it is common practice to code an algorithm according to the
rule [40]:

If some numerical value is close to zero it is considered to be zero.

Predicates that are implemented this way do not compare a value computed

to zero but to a small constant € instead. A value z is considered to be zero
if

29

Figure 3.3: Epsilon tweaking in orientation tests.

|z| <€, with € > 0.

One possible choice for € is the so-called machine precision, which is the
smallest number ¢ such that (14 6) > 0 evaluates to true on the machine’s
particular floating-point unit. Nevertheless there is no general rule on how
to choose an appropriate €. One single € might be used for all predicates
in a geometric algorithm or several €’s are defined for different predicates.
The value of € is arbitrary but should be fairly small and greater than zero.
Depending on the application and the input data tested a software developer
normally adjusts an appropriate value for ¢ by trial and error.

In [22], Held uses an approach which he called relaxation of epsilon thresh-
olds: The user is asked to specify an upper bound on €. The lower bound is
given by the machine precision which is used as the initial value for e. If the
computation fails, e.g., because some "sanity check” is not passed, then the
value for € is increased and the computation is restarted. If, for some reason,
the upper bound on ¢ is reached, then a soundness check of the input data
is performed.

Epsilon tweaking is justified by the already mentioned fact that the input
data is not exact and we are computing an answer for a perturbed instance
of the input data. Consequently a small perturbation of the input suffices
for an expression to evaluate to zero. The geometric interpretation is that
the objects we are dealing with are fattened due to epsilon tweaking. Figure
3.3 shows the geometric interpretation of epsilon tweaking in an orientation
test.

There are some drawbacks if epsilon tweaking is used. First of all we
have already mentioned that there is no general rule on how to pick the
value for e. Finding an appropriate value can be a time-consuming task.

30

Since this value is found by trial and error based on the algorithm and the
input data tested, there is no guarantee that the algorithm is correct for
every input instance it is applied to. Furthermore, the equality relation
looses its transitivity property, and the same is true for collinearity, see [40].
From a geometric point of view we have left the Euclidean geometry as
soon as we use epsilon geometry and resort to some yet to be determined
geometry. Guibas et al. [28] introduced an approach which they called
epsilon geometry. They defined some basic properties of fattened geometric
objects in the plane and constructed some basic geometric predicates like the
2D collinearity and orientation test, the coincidence test for two points in
the plane and point inclusion tests for triangles and convex polygons. They
called these predicates epsilon predicates. It appears that this approach
has not been taken any further and so only a small set of predicates have
been defined this way. Besides there has not been a generalization to three
dimensions.

3.2.2 Interval Arithmetic

Another approach to increase robustness of geometric algorithms in the finite-
precision world is called interval arithmetic [27, 7]. Using interval arithmetic,
each number z is stored as an interval [x;, z,]' containing z and bounded by
the floating-point numbers x; and z,. Arithmetic operations are defined
on the intervals of the corresponding numbers. In [7] the basic arithmetic
operations of two numbers [z] and [y] are defined as follows:

(2] + [y] = [z + v, T + Yl
(2] = [y] = [%1 = Yu, Tu — 1],

[mm{xl * YL, Ty ok Yuy Ty * Y1, Ty * yu};
max{xl * YL, Ty ok Yuy Ty * Y, Ty * yu}];

{ (2] [] 0 ¢ [yl,

| — 00, 4+00] otherwise,

[x] * [y] =

[2]

vl =

[1‘] _ { [\/x_h \/E] if 0 ¢ [33]7

| — 00, +o0] otherwise.

A drawback of interval arithmetic is that the resulting intervals can grow
very large in the course of computation. Furthermore, correct rounding of
the interval bounds is necessary in order to ensure that the final interval still
contains the correct answer. For more information on interval arithmetic see
[27, 7] and the papers cited therein.

'We denote a number z stored as an interval by [z].

31

3.2.3 Careful Programming

No matter which geometric algorithm a software developer intends to imple-
ment, he/she has to do this very carefully. There are some basic guidelines
[35] one has to keep in mind in order to implement a robust algorithm:

e The sequence of numerical calculations does have an impact on the
magnitude of the error. If two different sequences of operations are
used to compute a single value, the results might differ, although they
should be mathematically equal. Furthermore, it is often possible to
compute a single quantity using different conceptional methods or for-
mulas. Although logically and mathematically equal, the results might
be different. It is therefor essential to always compute a numerical
quantity the same way, i.e., with the same formula.

e Computed or derived quantities have already suffered from roundoff er-
rors, so do use the original input data instead, wherever this is possible.

e Interchanging the input values in a formula may yield different results.
Assigning each input quantity a unique index and using them in the
same order, e.g., increasing order, each time the formula is used will
eliminate this problem.

e Handle cases that might cause problems during computation as special
cases. E.g., if the intersection of a vertical line and an oblique one has
to be computed, assign the abscissa with the vertical line and do not
compute it.

Held designed a triangulation algorithm [21] based on some of the techniques
described above. In addition, he implemented a so-called multilevel-recovery
system, which we will discuss in a subsequent chapter. The algorithm is fast
and to our knowledge has not crashed yet.

3.2.4 Designing Robust Geometric Primitives

One important prerequisite for implementing robust geometric algorithms is
the robust implementation of the underlying geometric primitives. Spending
some time thinking of tricks to increase the robustness of geometric primitives
is unavoidable. As an example we will now take a closer look at the benefits
of translating geometric entities.

As we already know from Chapter 2, precision decreases if the magnitude
of the input quantities grows larger, because more bits of the significand are
used for the integer part of the quantity. In [41] Shewchuk points out that,
in general,

32

1. the absolute coordinates, i.e., the distance to the origin of a geometric
entity are much bigger than their relative coordinates, i.e., the distances
of the geometric entity’s defining elements from each other, and

2. that the result of many geometric calculations is independent of the
geometric entity’s position in the coordinate system. That is, the result
is translation-invariant.

Together, both observations can be used to gain some extra precision for nu-
merical calculations. If a calculation satisfies the observations stated above,
then accuracy can be increased by translating the geometric primitive such
that one of its defining elements is located at the origin. Shewchuk illustrates
this with the well known formula for the area of a polygon. Assuming that we
are given a polygon with n points® p; ...p, in the plane, where p; = (24, y;),

the standard formula ;

Z(xinl — YiTis1)
=1

% (3.1)

can yield quite inaccurate results if the dimension of the polygon is small
compared to its distance from the origin. Translating p, to the origin by
replacing each p; with p; — p, results in the improved formula

3o e =)~ (5=)l —] 62)

In general, robustness does not come for free. There is always a trade-off
between robustness and speed. The loss of speed is not that dramatic in the
example above, nevertheless, it is apparent that the calculation of Formula
3.2 requires more floating-point operations than the calculation of Formula
3.1. One has to keep in mind that the translation of a geometric entity to the
origin might also introduce roundoff errors. Furthermore, there are geometric
calculations that are not translation-invariant. For more information see [41].

3.2.5 The Topology-Oriented Approach

A common problem that causes a corrupt combinatorial structure is inconsis-
tency of the predicates used. Even if errors in numerical calculations occur
that may lead to incorrect judgments, the algorithm could still produce a
reasonable output. As stated before this output may not be the exact solu-
tion but should be close to it. So it is not a matter of correct or incorrect
judgments. The important thing is that the judgments are consistent. Pred-
icates that contradict each other are likely to fail to produce a reasonable

2All indices taken modulo n.

33

output. If, on the other hand, both of them take the same decision, the
algorithm’s output should still be consistent. One way to achieve this goal
is to emphasize the combinatorial data of geometric entities and use the nu-
merical data as secondary information only. This technique is called the
topology-oriented approach and was introduced by Sugihara and Iri [43] in
1988. The advantage of the topology-oriented approach is that inconsisten-
cies in the geometric output are prevented, degeneracies do not have to be
treated explicitly and that the solution computed converges® to the exact
solution if the precision of the numerical operations is increased. Thus, the
topology-oriented approach seems to be very successful in designing robust
algorithms especially if it is combined with careful implemented geometric
primitives. Since its introduction, the topology-oriented approach has been
applied to a number of geometric problems like the three-dimensional De-
launay triangulation [12, 42] and Voronoi diagrams [44]. Held designed an
algorithm for computing the Voronoi diagram [22] of a set of points and line
segments in the plane based on [44].

We will now take a closer look on how to design topology-oriented al-
gorithms. The intension of the topology-oriented approach is to design an
algorithm that has the following properties:

Robust: The algorithm should never end in an endless loop, terminate ab-
normally or crash. Furthermore, it should always compute an output.

Consistent: The topological part of the output should satisfy some pre-
defined topological properties. Note that this does not mean that the
produced output is equal to the exact solution. If the precision of the
arithmetic operations is increased, the output computed converges to
the exact solution for non-degenerate input.

Easy to design: The design of the algorithm should be "easy” in the sense
that the design is independent from error analysis, i.e., error bounds,
thus separating the topological consistency issue from the numerical
error issue.

Easy to implement: There is no need to handle degeneracies in a special
way.

The topology-oriented approach is based on the following assumptions, see
[45]:

1. Logical and combinatorial computations can be done correctly.

2. Numerical computations are, in general, erroneous.

3 Assuming that the input is not degenerate.

34

3. No a-priori error bound is available.

Assumption 1 ensures the correctness of the implementation of a topological
algorithm. Assumptions 2 and 3 allow an algorithm design that is indepen-
dent from error analysis and free from handling any degenerate situation.
Based on these assumptions a topology-oriented algorithm can be designed
in three steps, see [45].

Step 1: Identify a set of purely combinatorial properties that should be
satisfied by the solutions of the geometric problem. Make sure that
these properties can be checked efficiently.

It is important to stress that this step is crucial for the correctness of the
algorithm. In a subsequent step the so-called topological skeleton is designed
in a way such that the topological properties specified in Step 1 are guaran-
teed in the algorithm’s output. If, however, these combinatorial properties
are not chosen carefully, the algorithm might not compute a reasonable so-
lution to the geometric problem. Furthermore, it should be noted that the
set of combinatorial properties is, in general, only a necessary condition to
insure topological consistency. Since a purely topological characterization
is not known for every set of solutions to a geometric problem, a sufficient
condition is often hard to find. Another limitation is the computational cost.
Note that Step 1 requires the combinatorial properties to be checked effi-
ciently. Thus, it is not possible to take a topological property into account,
if it cannot be checked with acceptable computational cost. Once the set of
topological properties is chosen, the actual algorithm can be designed:

Step 2: Construct the topological skeleton by describing the basic part of
the algorithm in purely combinatorial and topological terms such that
the combinatorial properties chosen in Step 1 are guaranteed.

Note that there is no need to handle degeneracy, since the design of the
topological skeleton is not based on any numerical operation. According
to Assumption 2, numerical computations are inaccurate anyway, thus we
cannot even detect reliably whether a degeneracy occurs. The topological
skeleton specifies every possible behavior of the algorithm, regardless of the
precision that is used for numerical operations. The algorithm is therefor
robust in the sense that it always terminates and produces an output. A
carefully chosen set of combinatorial properties and Assumption 1 ensure
topological consistency of the output computed. Unfortunately, there are
non-deterministic branches in the topological skeleton, see also [45]. This
situation is shown in Figure 3.4. The tree structure describes all the possible
branches of the topological algorithm. The algorithm starts at the root and
takes a non-deterministic branch at every node until it ends up in one of the

35

correct solution

Figure 3.4: Tree structure illustrating the non-deterministic branches of a
topological algorithm.

leaves. The combinatorial properties chosen in Step 1 are guaranteed at each
node of the tree but only one path corresponds to the true solution of the
geometric problem we wish to solve. In order to find the desired path, the
final step in the design of a topology-oriented algorithm relies on numerical
computations:

Step 3: Perform numerical computations at each node of the tree to choose
the branch that will likely lead to the correct solution of the geometric
problem.

This last step ensures that the designed algorithm is deterministic. If all
the judgments based on numerical computations are correct and there is
no degeneracy, the algorithm computes the exact answer to the geometric
problem. Without degeneracy the solution computed converges to the exact
solution with increasing precision of the numerical operations. For degenerate
input, the algorithm computes an output that converges to an infinitesimally
perturbed version of the correct answer.

We have already mentioned that robustness does not come for free. Gen-
erally, there is a trade-off between robustness and speed. Since the precision
of numerical operations does not affect the robustness? of topology-oriented

4The precision of numerical operations does, of course, affect the quality of the output
computed.

36

algorithms they can be implemented using standard floating-point arith-
metic. Nevertheless there is a slow-down due to checking the combinatorial
properties. Degenerate input data often introduce complicated microstruc-
tures, see [45], thus there might be additional computational cost. It seems
though, that carefully designed topological algorithms, especially if they are
combined with tuned primitive operations are both reliable and fast and yield
good results in practice, see [22].

3.3 Exact Arithmetic

As we saw in the previous section there are a couple of drawbacks and pit-
falls if one decides to implement a geometric algorithm using floating-point
arithmetic or any other finite-precision arithmetic. We have discussed meth-
ods to cope with these drawbacks and guidelines on how to implement a
robust algorithm. Unfortunately, we also saw that there is no general rule to
achieve robustness. Different geometric problems require different methods
and it is difficult to choose and implement the right techniques for a specific
algorithm. These problems motivated researchers to look for an alternative
number representation that would allow a straightforward implementation
of the theoretically developed algorithms. In order to achieve this goal it
is necessary to mimic the real RAM model. The arithmetic model where
every numerical quantity is computed exactly and that is closest to the real
RAM model is called exact arithmetic. It has to be noted, though, that
exact arithmetic is defined on a subset of the reals, e.g., integers or rationals
only. Furthermore, it is based on the assumption that the input data can be
represented exactly.

Using exact arithmetic, it is possible to compute every numerical quantity
to arbitrary precision. Naturally, there is a trade-off between precision and
speed. Higher precision results in higher computational cost. Thus, there is
a significant slow-down compared to finite-precision arithmetic.

3.3.1 Big Number Packages

A prerequisite to exact arithmetic is an arbitrary precision representation of
numerical quantities. Usually multi-precision integers, implemented in so-
called big number packages, are used achieve this goal. Overflows in integer
operations are prevented if big number packages are used, since they support
the representation of arbitrary integers. Due to the fact that the numerator
and denominator of rationals as well as the significand and the exponent of
floating-point numbers are integers, it is easy to extend multi-precision inte-
gers to multi-precision rationals and multi-precision floating-point numbers.

37

Multi-precision integers are represented by a sequence of fixed-size integers
and can be implemented using one of the following data structures:

Linked Lists: Implementing multi-precision integers as linked lists is very
flexible but imposes additional overhead due to pointer management.
Since linked lists can be extended at will, the only restriction on the
size of the represented integers is the available memory of the computer
system. Due to the trade-off between precision and computational cost,
the slow-down can be significant for operations involving very large
numerical quantities.

Arrays: Big number packages that are implemented using arrays usually
impose a restriction on the size of the representable integers. The
advantage of this method is that it is usually faster than the previous
method because the size of the representable numbers is limited and
there is no overhead due to use of pointers.

A variety of big number packages are available, see [49]. Each of them can
be used as a basis for exact arithmetic. The choice is up to the user.

3.3.2 Exact Arithmetic in Geometric Algorithms

The notion of exact arithmetic usually implies that every numerical quantity
is computed exactly. This may be necessary in some fields of computer science
like computer algebra, but can be relaxed in other fields like computational
geometry. Thus, problems like the high computational cost of exact arith-
metic can be softened if certain properties of algorithms in computational
geometry are exploited. Exact arithmetic in the context of computational
geometry therefor implies that a representation is found that guarantees a
certain accuracy.

There is also no uniform definition what an exact representation of a real
number really is. While Schirra [40] suggests to call the representation of
a real number x exact if an arbitrary approximation of whatever precision
to x can be computed, Yap [46] calls the representation of a subset of real
numbers exact if exact comparisons between any two numbers of this subset
are guaranteed.

Depending on the type of algorithm one wants to implement, different
requirements arise on exact arithmetic. We have already mentioned that
correct comparisons imply the correctness of the combinatorial structure of
an geometric output if the algorithm relies on predicates only. Thus, if
comparisons are computed exactly, i.e., the control flow of the implemented
algorithm is identical to the theoretical one, the correct combinatorial struc-
ture is guaranteed. Yap’s definition of an exact representation reflects this

38

Figure 3.5: The implicit representation of the expression 3z + 4%y + 5z
with an expression dag.

requirement of exact arithmetic. It should also be noted that the output of
an algorithm, that uses exact arithmetic is the correct result for the specified
input data and not just for some perturbation of it. Schirra’s definition of
exact arithmetic reflects the requirements of geometric algorithms that also
depend on constructors and thus have to create new geometric objects. There
are a number of different representation schemes for exact numbers like:

Rationals: One possibility to represent exact values is to use rationals of

the form d"“mﬂ, where the numerator as well as the denominator
. enomznato]‘ o
are integers of arbitrary precision, see Chapter 4.

Symbolic Representation: Combinatorial relationships are stored rather
than numerical values. E.g., if two line segments intersect we do not
store the intersection point but the two line segments that intersect.

Implicit Representation: Numerical quantities can be stored by remem-
bering their computation history. This can be done by storing a so-
called expression dag®. An expression dag is an acyclic directed graph
that stores the basic arithmetic operations in its interior nodes and the

®Dag is used as a short form for directed acyclic graph.

39

original operands, i.e., the original input data in its leaves, see Figure
3.5.

Despite the fact that there are ways to represent numerical data exactly it
is still an open problem how to round them back into a finite representation
without introducing errors in the combinatorial structure again. Further-
more, problems arise in cascaded computations because the algorithms that
use the output of an algorithm that has been run previously need to operate
with the same representation as the previous algorithm. The growth of the
operands and the high computational cost are further problems. Thus, an
algorithm that depends on exact arithmetic tends to be significantly slower
than an algorithm that is based on floating-point arithmetic.

This ends our insight on exact arithmetic in the field of computational
geometry for now. More information can be found in Chapter 4, which is
dedicated to this topic.

3.4 Degeneracies

We have already mentioned that theoretical algorithms are developed as-
suming general position thereby excluding all possible special cases. This
assumption makes it easier to present an algorithm and prove its correct-
ness. A ”general position” cannot be assumed if an algorithm is implemented
because special cases are sure to arise in real-world data for several reasons:

e Degeneracies might be introduced due to finite-precision arithmetic.
E.g., if floating-point arithmetic is used, two nearby but distinct in-
put points might have the same floating-point representation and are
therefor mapped to a single point.

e What is called degeneracy by an algorithm designer can be correct in
the real world. E.g., a CAD designer might need to position four points
such that they are cocircular. Degeneracy in the input data is therefor
meant to be that way.

The issues of precision and degeneracy are closely related. Degeneracy might
be introduced because the precision for representing numerical quantities is
not sufficient. On the other hand degeneracies might be removed for the same
reason. Degeneracies cause precision problems and robustness problems. We
already saw that branching in geometric algorithms is done by evaluating a
predicate. In general, evaluating a predicate means that the sign of some
polynomial is determined. Depending on whether the sign is positive or
negative a corresponding branch is chosen. If two geometric objects are
positioned very close to each other, a predicate might evaluate to zero, thus

40

making the decision which branch to take unclear. There are two different
ways of dealing with degenerate data which we will discuss in the following
subsections.

3.4.1 Handling Degeneracy Manually

One common method for coping with degeneracy is to treat a degenerate
case manually as a special case. Whenever a predicate evaluates to zero a
code fragment is activated that detects the type of degeneracy and handles it
appropriately. Although the treatment of degenerate cases as special cases is
common practice there are some drawbacks inherent to this method. First of
all, a software developer has to consider every possible degenerate case that
may arise in his application. There are a number of special cases for even
simple geometric input like point sets, e.g., two points coincide, three points
collinear or four points cocircular. The number of special cases increases
tremendously if more complex geometric objects or higher dimensions need
to be considered. Detecting the type of degeneracy is not such an easy task
either. And even if all possible degeneracies can be detected there might
be no straightforward method to handle them. Needless to say, that the
resulting code grows larger and is harder to maintain.

3.4.2 A General Method for Handling Degeneracy

Perturbation methods can be used to eliminate degeneracy as a whole. If
a perturbation method is used a software developer can implement an algo-
rithm assuming ”general position” and thus does not have to worry about
degeneracy at all. This makes the implementation easier and more stable.
The basic idea behind perturbation is to manipulate the input data such
that degenerate cases vanish. In general, it is important that the perturba-
tion is small such that the relative position of non-degenerate objects is not
changed.

A commonly known perturbation method is called Simulation of Simplic-
ity [13], or SoS for short. SoS perturbs the coordinates of geometric objects
symbolically, i.e., every coordinate is replaced by a polynomial in € with e
sufficiently small. The polynomial is chosen such that the perturbed set of
objects converges towards the original set as € goes to zero. Furthermore,
the polynomials should satisfy the following requirements:

1. The resulting perturbed set of objects has to be non-degenerate if € > 0
is sufficiently small.

2. The resulting perturbed set of objects has to retain all non-degenerate
properties of the original set.

41

3. The computational overhead caused by the simulation should be small.

Assuming we are given a set of n geometric objects O = {Op, Oy,...,0, 1}.
Each object has d coordinates:

Oi = {7Ti71,71'i72, PN 77rz',d} for 0 S 1 S n— 1.

As already mentioned above, the set O is perturbed by replacing each coor-
dinate m;;, 0 <i <n—1and 1 < j < d, with a polynomial in e. In [13]
the perturbed set O(e) is called the e-expansion of the original set O and is
defined as follows:

O(e) ={0i(e) = (mi1+e(i, 1), mio+€(i,2),...,ma+e(i,d) | 0<i<n—1},

Assuming that each geometric object O; has a unique index between 0 and
n — 1, the polynomials €(i,j) are chosen in different orders of magnitude
corresponding to the index pairs (i,7). E.g., in [13], €(7,) is chosen such
that

e(i,j)=€""for0<i<n—1,1<j<d 0<e<1andé>d.

Thus, an expression involving several factors of the form €(i, j) can be com-
pared solely on the basis of the index pairs (7, j) involved. Since the per-
turbation in SoS is not directly computed but carried out symbolically by
replacing each coordinate by a symbolic expression instead, geometric predi-
cates based on adapted operations that operate on symbolic expressions have
to be implemented. As an example, the function Smaller [13] which is passed
two coordinates as its arguments and returns true if the first argument is
smaller than the second one and returns false otherwise, can implemented
with the following pseudocode fragment:

boolean Smaller(m; ;, 7 ,)
{
if (755 # k)
return (m;; < Tgp);
else if (7 # k)
return (i > k);
else
return (j < [);

If 7; ; # m, then we have a non-degenerate situation and the coordinates
can be compared directly, else the index pairs (i,7) and (k,[) are used to
determine if 7; ; is smaller than ;.

42

A limitation of SoS is that the polynomials in € used as a replacement
for the actual coordinates can become very complicated if deep algebraic
computations are involved. Furthermore, SoS cannot be used if square root
operations are involved in the computation. It is also important to note that
the solution computed by an algorithm that utilizes a perturbation method is
the solution of a perturbed version of the input instance. If the result for the
original input instance is needed, some form of post processing is necessary,
which might also be non-trivial. The computational cost of algorithms that
depend on a perturbation technique is generally higher because perturbation
techniques usually resort to exact arithmetic for specific tasks. SoS, for
example, relies on exact arithmetic to detect degenerate cases. As a last
remark, it is also important to note that a perturbation method removes
every degeneracy, even if it was intensional. This ends our discussion of
symbolic perturbation, for more information see [13].

43

Chapter 4

Exact Geometric Computation

This chapter is concerned with Exact Geometric Computation (EGC), a
variant of exact arithmetic that exploits properties of geometric algorithms
in order to improve their efficiency. Following an introduction to EGC, we
provide an overview of basic EGC concepts followed by a survey of techniques
that can be used to accelerate EGC. A discussion of geometric libraries that
implement or utilize EGC techniques concludes this chapter.

4.1 What is Exact Geometric Computation

As we saw in the previous chapter, exact arithmetic can be used to avoid
numerical inacurracy. Exact arithmetic in conjunction with a perturbation
method simulates the real RAM model. Algorithms can therefor be imple-
mented in a straightforward manner. A major drawback of exact arithmetic
is its high computational cost. EGC relaxes the requirement to compute
every single numerical quantity exactly. EGC requires exact comparisons
only to ensure the correctness of the combinatorial structure of an geometric
output. According to [29], this approach has the following advantages over
naive exact arithmetic:

1. No exact values are computed where they are not feasible. Since full
numerical accuracy is not always needed it is a waste of CPU time to
compute every numerical quantity exactly.

2. The solution to a geometric problem is computed with the precision
that is actually needed. This is called the precision-driven approach and
facilitates the use of techniques like lazy evaluation, adaptive computa-
tion or floating-point filters to achieve an additional speed-up. Further-
more, the precision-driven approach allows user control of the precision
needed for a geometric output.

44

Assuming that the input is numerically accurate and consistent with the
combinatorial structure, EGC ensures the correctness of a geometric algo-
rithm that solely relies on predicates. For algorithms that also depend on
constructors, a numerical output that is consistent with its combinatorial
output to some absolute or relative precision requirements can be computed.
It has to be noted, though, that the numerical data of an geometric output
can grow very large which might cause problems in cascaded computations.
Rounding numerical quantities back to a finite-precision representation in-
troduces problems similar to those in standard floating-point computations
and is still an open problem.

As we have mentioned before, the goal of the EGC approach is to com-
pute numerical quantities sufficiently high such that exact comparisons are
guaranteed. The problem of computing exact comparisons can be reduced
to the problem of determining the correct sign of an arithmetic expression.
In EGC the class of radical expressions is considered. These are expressions
involving the basic arithmetic operations (+, —, *, /) and VR Expressions
with transcendental functions or 7 are still an open problem [29]. In order
to guarantee correct comparisons, an expression! is computed to a precision
where the sign can be determined exactly while root separation bounds are
used to test whether the expression evaluates to zero.

4.2 Basic Concepts of EGC

Let us recall that exact computation in the context of EGC does not imply
to compute every numerical quantity exactly. Instead, it suffices to insure
correct comparisons. There are three basic building blocks that EGC relies
on:

Root separation bounds: Root separation bounds are used to determine
if an expression evaluates to zero. Thus, they are a justification for the
use of approximate numbers in EGC.

Expressions: Expressions are used to represent a numerical quantity ex-
actly. This is achieved by remembering its whole computational his-
tory.

Big number package: Some big number package is used to represent nu-
merical quantities directly. This is necessary in the case of input data

'We will use the term expression as a synonym to radical expression throughout the
rest of this thesis, since radical expressions are the type of expressions that are commonly
used in EGC.

45

as well as for evaluated expressions. Due to the existence of root sep-
aration bounds some form of approximate representation based on a
big number package suffices to determine the sign of an expression cor-
rectly.

We will now take a closer look on these basic building blocks of EGC and
sketch the sign determination process. Concepts to accelerate EGC and
software libraries that implement EGC techniques will be discussed in the
subsequent sections.

4.2.1 Root Separation Bounds and the Sign Determi-
nation Process

Root separation bounds are used to determine whether an expression eval-
uates to zero or not. Without the theory of root separation bounds there
would be no way to determine the correct sign of an expression using ap-
proximate values. Therefor, root separation bounds are the justification for
EGC. In [29] a positive number b is called a root separation bound of an
algebraic expression E if the following holds:

if £ # 0 then |E| > b.

There are a number of different root separation bounds with different prop-
erties. In the context of EGC, it is important that the bound is reasonably
tight and easy to compute. It has to be mentioned, though, that there is
not a single bound that is always better than all the other known bounds.
Therefor, it is important to find a bound that is best suited for those classes
of expressions that frequently occur in geometric algorithms. The computa-
tion of root separation bounds is out of the scope of this thesis; see [29, 31, 9]
for more information on this topic.

We will now sketch the sign determination process and presume that we
have already found a suitable root separation bound b. In order to deter-
mine the correct sign of an expression it is necessary to check whether the
expression evaluates to zero or not. The sign determination of an algebraic
expression can then be executed in two steps, see [29, 31].

Step 1: Compute an numerical approximation E to the algebraic expression
E progressively until E satisfies either

|[E—-FE|<tor|E|>|E-E|

Step 2: If |E| > |E — E| is reached first, then the sign of the approximation
E is the same as the sign of E. Thus, no root separation bound is

46

needed to determine the sign safely. Note, that this condition is usually
reached first if |E| is large. If the condition |E — E| < % is reached
first, then the root separation bound is necessary and the sign of E is

determined according to the following rule:

: | sign(E) if |E| > b
sign(E) = { 0 otherwise.

The approximation F can be computed using double precision floating-point
arithmetic in a first step. If this is not sufficient, the precision is doubled and
the approximation is computed again. According to this procedure, precision
is increased until one of the conditions in Step 1 is reached. This ends our dis-
cussion of this topic; see [29, 10] for more information and implementational
details.

4.2.2 Expressions

The use of expressions in EGC is motivated by the observation that arith-
metic operations do not occur arbitrarily and unpredictably in geometric
algorithms [49]. Furthermore, they do not change dynamically [19]. An-
alyzing geometric problems, one can observe that there is a known set of
primitive operations that can be used to solve such problems. Determinant
evaluation is an example of such a primitive operation that suffices to solve
a variety of problems in computational geometry, such as triangulations or
convex hulls.

As already outlined in Chapter 3, an expression is represented as a labeled
directed acyclic graph (dag). The root as well as all the internal nodes of
the expression dag are labeled by an operator. The number of successors
of a non-leaf node corresponds to the number of operands of the arithmetic
operation that is represented by that particular node. E.g., if a node is labeled
by a binary operation, it has two successors. While the root represents the
value of the whole expression, each internal node represents the value of a
subexpression. Finally, the leaves are labeled by numerical variables that
represent the input values. If the expression is instantiated with some input
data, the expression is evaluated bottom-up by simply propagating values
to all the internal nodes until the root of the dag is reached. As already
mentioned, the class of expressions considered in EGC is generally the class
of radical expressions involving the basic arithmetic operations +, —, %, / and
the VR A new operation is simply inserted into the expression dag. Thus, an
arithmetic operation takes constant time. Besides the exact representation of
numerical values, expressions have the additional advantage of having a lot
of room for optimizations, see [19, 46, 29, 49, 19]. Similar to a compiler that

47

parses and optimizes the code of a programming language, the expression
can be compiled and optimized prior to their evaluation. As an example,
Yap suggests in [46] to exploit the associativity property of the addition
operation. If the signs of the operands can be estimated at compile-time,
then the operands can be grouped into positive and negative values which
are added among themselves first. This approach helps to avoid unnecessary
precision.

4.2.3 BigFloat as an Example for an Approximate Rep-
resentation of Numerical Values

We have already mentioned that the EGC approach is a relaxation of the
standard exact arithmetic. Therefor, EGC is based on exact arithmetic which
implies that a big number package is necessary to implement EGC techniques.
As we outlined in the previous chapter, several different big number packages
are available. It has to be noted though, that the majority of big number
packages have been developed for computer algebra. While the precision
needed in computer algebra programs is usually unpredictable, the precision
needed in geometric algorithms usually is, see [46]. Thus, there is room for
optimizations if such a package is redesigned to address the needs in computa-
tional geometry. For optimization reasons mentioned above the Core-library?
uses a big number package called BigFloat [48, 46, 49, 29]. We will now take a
closer look at it. Remember that in the context of EGC, exactness is defined
by guaranteeing error-free decisions. Therefor, there is no need to compute
every numerical quantity exactly. The existence of root separation bounds,
see Subsection 4.2.1, justifies the use of approximate numbers in EGC. Thus,
a proper representation for approximate numbers is needed. Furthermore,
this representation should satisfy the following requirements:

1. In contrast to fixed-precision arithmetic, where every numerical quan-
tity is computed with the same precision, a more flexible approach that
facilitates the specification of different precisions for different variables
is needed. The precision specified should be arbitrarily large.

2. The number representation should decouple the magnitude of a num-
ber from its precision. Similar to the precision, the magnitude of the
number should be arbitrarily large.

3. Each approximate number should carry an error bound that is auto-
matically computed.

2The Core-library is an EGC library that is implemented in C++. We will discuss it
in the next chapter.

48

The designers of the Core-library opted for a floating-point representation.
Since the exponent determines the size of the number and the significand
specifies its precision, floating-point numbers are best suited to decouple
precision from magnitude. By representing both the exponent as well as
the significand with big integers, the size and precision can be arbitrary
large. In order to satisfy requirement Number 3, an error bound is associated
with every floating-point number. An arbitrary BigFloat number x is of the
following form:

x = (m %) x B¢ where

B > 1 is the base, m and e are the significand and the exponent, both
represented by big integers and 0 is an error bound that is automatically
computed for each arithmetic operation. If 6 = 0, the represented number
is exact. Since a BigFloat number is actually an interval, care has to be
taken that the interval, i.e. §, does not grow too large. Thus, a BigFloat
number is normalized after each arithmetic operation. The reader is referred
to [36, 49, 48] for more information on how the arithmetic operations are
carried out, and for the details of the normalization process.

4.3 Accelerating EGC

The utilization of expression dags in EGC facilitates the use of techniques
like lazy evaluation [6] and the precision-driven approach [48, 49] to tune
the process of sign determination. Another technique to accelerate EGC is a
floating-point filter. We will now take a look at these concepts.

4.3.1 Floating-Point Filter

A common method to accelerate the exact computation of an expression is
to use a so-called floating-point filter [19, 7]. The purpose of a floating-
point filter is to filter out those computations that yield a correct result with
standard floating-point arithmetic, and to use exact arithmetic only in the
remaining cases. In a first step, the expression E is evaluated using standard
floating-point arithmetic yielding an approximation E. Depending on the
type of filter, an upper bound £ on the error of E is computed before or
during runtime. If

E| > ¢,

then the sign is known safely [7], otherwise exact arithmetic is used to deter-
mine the sign correctly. There are three types of floating-point filter:

49

Fully static filter: A fully static filter can be used with expressions that are
built from the basic arithmetic operations (+, —, *, /) and VE First,
an upper bound on the error of all the coefficients of the expression F
is computed. Then, based on these upper bounds, an upper bound &
which is valid for all possible input instances is computed. Therefor,
the upper bound £ is computed before runtime.

Semi-static filter: If it is not possible to find an upper bound on the error
of the coefficients of an expression E, a semi-static filter can be used
assuming that it is possible to find a formula similar to E that yields
an upper bound for a particular input instance. The upper bound
¢ is computed according to this formula at runtime but prior to the
evaluation of the expression F.

Dynamic filter: A dynamic filter computes ¢ at runtime during the eval-
uation of E. For each operation in F, an error bound is computed
resulting in the upper bound £ at the root of the expression.

In general, floating-point filter yield a significant speed-up in geometric algo-
rithms since the use of exact arithmetic can be reduced significantly in the
majority of input instances.

4.3.2 Lazy Evaluation

Lazy evaluation [6] utilizes interval arithmetic, see Page 31, and is based on
the following paradigm:

Why should a numerical quantity be computed exactly if it is not
involved in conflicting issues in subsequent computations.

The basic idea of lazy evaluation is to store enough information to compute
the exact value of a numerical quantity if this is necessary. Therefor, a
lazy number is basically an interval that contains the exact value of the
represented number. The interval is bounded by two floating-point numbers.
Such an interval is automatically assigned to each input quantity. The input
values form the leaves of an expression dag. As already mentioned above
an operation can be performed in constant time using expression dags. If
necessary, the intervals of a node can be refined or the expression is evaluated
using exact arithmetic. There are only three different cases [6] where this is
necessary:

1. The numerical quantity represented by an expression dag is compared
to another numerical quantity and their intervals intersect.

50

2. The reciprocal of a numerical quantity is required and its interval in-
cludes zero.

3. The evaluation of an predecessor in the expression dag is required.

The evaluation process is carried out in a bottom-up fashion. Starting with
the leaves of the expression dag, tighter intervals are propagated to the in-
ternal nodes until, finally, the root is reached. This procedure is carried out
until the interval at the root is tight enough to make a correct decision. If
this is not possible, the expression is evaluated with exact arithmetic.

The benefit of the lazy approach is that the evaluation of an expression
is delayed as long as possible. Furthermore, it is only necessary to reevaluate
an expression in the cases mentioned above. Thus, there can be a significant
speed-up compared to the naive use of exact arithmetic.

4.3.3 The Precision-Driven Approach

Another technique to accelerate EGC is the precision-driven approach of
Yap and Dubé [48, 49]. Similar to the lazy approach, an expression dag
is used to represent numerical quantities. The main difference between the
lazy approach and the precision-driven approach is the evaluation process
of an expression. The lazy approach specifies a precision at the leaves of
the expression dag. This precision is increased until the precision at the
root is acceptable. In the precision-driven approach, on the other hand, the
precision we want at the root is specified first. This precision is propagated
in a top-down fashion. At the leaves, a sufficient approximation is computed
such that the precision specified at the root holds. Finally, starting from the
leaves, the expression is evaluated bottom-up, similar to the lazy approach.

Yap and Dubé introduce a composite precision bound to specify the re-
quired precision at the root of an expression dag. In [48, 49] they define the
approximation Z of a real number z to a composite precision [a, r|, written
T = zfa,r], as follows:

r— x| < maxr{2™*27"|z|},
7| < 270 27T

where a is the absolute precision and r the relative precision. Thus, the
user can decide if he wants to specify the precision in relative terms only by
specifying [oco,], in absolute terms only by specifying [a, o] or in relative
and absolute terms by specifying [a,] at the root.

The precision-driven approach is a more active approach than lazy eval-
uation. By propagating the precision specified at the root of the expression
dag downwards, an approximation that satisfies this precision bound can be
computed at the leaves thus avoiding unnecessary iterations in the evaluation
process.

ol

4.4 EGC Libraries

A number of different libraries that implement EGC techniques have been
developed since the first proposal of EGC:

LEDA: LEDA [34, 33, 3|, which is distributed under a commercial license,
provides low-level data types, predicates and algorithms for EGC. More
information on the availability of LEDA and the LEDA academic pro-
gram can be found on the LEDA homepage [3].

CGAL: CGAL [14, 15] provides a set of data structures and algorithms. It
uses the standard machine data types or low-level data types provided
by other libraries. CGAL licenses are available free of charge for aca-
demic use; see the CGAL homepage [1] for more information on the
license model.

Core-library: The Core-library [26] provides low-level number types for
EGC and the corresponding operations. It is available free of charge
and can be downloaded at [2].

There are a number of design goals [39, 14] that have to be considered by
the developers of a geometric library such as:

Robustness and Correctness: Since the goal of geometric libraries is to
facilitate the development of robust geometric algorithms, it is neces-
sary that the implementation of the library itself is robust and correct.
If the library provides geometric predicates and algorithms in addi-
tion to some low-level data types and operations, care has to be taken
that those algorithms and predicates are correct. As pointed out in
(39, 14], an algorithm or predicate is correct if it behaves according to
its specification. For example, an algorithm that is restricted to input
in "general position” only is correct if it computes the correct answer
for the specified input instances.

Efficiency: Another important requirement for a geometric library is effi-
ciency. The practical value of a geometric library is questionable if the
computational cost is too high. Industrial-strength algorithms have to
cope with large input data sets and since "time is money”, a correct
output has to be produced quickly.

Ease of use: Implementing an algorithm based on a library with a com-
plicated interface can be very time-consuming. Furthermore, it is an
additional source of errors. It is therefor essential to hide implemen-
tational details from the user and provide him with a simple interface

52

instead. Ease of use is an important property for a library to become
widely accepted.

Generality, Modularity and Openness: The algorithms developed in com-
putational geometry have many potential applications in other areas
of computer science like computer graphics, virtual reality, computer
aided design (CAD), computer vision, solid modeling, robotics or geo-
graphical information systems (GIS). Different needs may arise in these
areas. A geometric library should therefor be designed in a rather
general way in order to provide a sound basis for all kinds of appli-
cations that arise in computer science. Besides generality, modularity
and openness are necessary to facilitate the adaption and extension of
the library according to a user’s needs.

The success and the acceptance of a library in computational geometry de-
pends heavily on the consideration of the design goals mentioned above. In
the following, we will survey the most important libraries for computational
geometry — LEDA, CGAL and the Core-library.

4.4.1 Computational Geometry Algorithms Library —
CGAL

CGAL [14, 15], the short form for Computational Geometry Algorithms Li-
brary, is the result of a cooperation between eight European institutions:
Utrecht University (Netherlands), ETH Ziirich (Switzerland), Free Univer-
sity Berlin (Germany), Martin-Luther University Halle (Germany), INRIA
Sophia-Antipolis (France), Max-Planck Institute of Computer Science and
University Saarbriicken (Germany), RISC Linz (Austria), and finally, Tel-
Aviv University (Israel). The goal of the CGAL project is to bring the
variety of efficient data structures and algorithms that have been developed
in the field of computational geometry to practice and make them available
for industrial application. The CGAL library is implemented in C++, since
C++ is widely accepted and it can easily be interfaced with existing C and
FORTRAN programs. Furthermore, it facilitates library design and imple-
mentation and the resulting code is usually faster than, for example, Java
code.

In order to achieve a maximum of flexibility and modularity, the CGAL-
library design is based on a lot of C++ concepts. Virtual base classes with
virtual functions are used to provide a uniform interface to the CGAL func-
tionality. Based on a virtual class, different classes can be derived, providing
the same functionality but with different implementations. For example,
geometric objects can be represented using standard Cartesian coordinates

53

or alternatively homogeneous coordinates, a line can be represented by the
coefficients of its equation or by its two endpoints, and so on. Another ap-
plication of this concept is to provide algorithms with different functionality,
e.g., an algorithm that can cope with degenerate input and is naturally slower
or, alternatively, an algorithm that is faster but does not handle degenerate
input. Depending on his/her needs, the user is free to choose the function-
ality and representation he/she desires. It has to be mentioned, though,
that virtual classes and virtual functions impose additional overhead due to
the virtual function table pointer that has to be stored in each object that
is derived from a virtual base class and the indirection through the virtual
function table. Furthermore, templates are used to implement, for example,
container classes like lists and trees for different data types. Finally, so-called
circulators, a concept closely related to the concept of iterators used in the
C++ Standard Template Library (STL), are introduced to iterate through
circular data structures which frequently arise in geometric algorithms. In
the following, we will focus on the structure and functionality of CGAL. For
more information on implementational details, see [15].

Basic library

o m o @

Geometric kernel

two-dimensional three-dimensional d-dimensional

module module module

Core library

configuration assertions circulators @

Figure 4.1: The three CGAL layers.

As illustrated in Figure 4.1, CGAL is comprised of three different layers

54

built on top of each other. The two lowest layers, the core library® and the
geometric kernel form the so-called CGAL kernel. In addition to the the three
layers of CGAL there is a support library that stands apart from the rest
and provides additional functionality like visualization of geometric objects.
We will now describe the functionality provided by each layer:

Core library: The core library is the lowest CGAL layer and provides func-
tionality that is needed by the upper layers but is not purely geometric.
It offers support for circulators, dealing with assertions, compatibility
issues of different C++ compilers, and random numbers.

Geometric kernel: The geometric kernel provides simple geometric objects
like points, lines, line segments, triangles, and tetrahedra, plus geo-
metric predicates, basic operations like intersection and distance, and
transformations on these objects. In order to utilize certain proper-
ties of different dimensions, the geometric kernel is divided into three
parts for two-dimensional, three-dimensional and general-dimensional
objects. Furthermore, Cartesian and homogeneous representations are
supported in every dimension. It is interesting to note that no basic
number type for the representation of numerical quantities is provided
by CGAL itself. Due to the use of templates, the data structures for the
basic geometric objects are parameterized. Thus, the user is free to pick
the number type that suits his/her needs. If, for example, speed is more
important than robustness, standard machine data types like float or
double can be chosen. If, on the other hand, robustness is more im-
portant than computational cost, then a data type like leda_real from
LEDA or Expr provided by the Core-library (NYU) can be chosen to
support EGC. Since divisions can be prevented using homogeneous co-
ordinates, it is an other interesting possibility to use arbitrary precision
integer arithmetic in conjunction with the homogeneous representation
of geometric objects.

Basic library: The basic library provides high-level data structures and
algorithms. Examples include polygons, polyhedrons, triangulations,
kd-trees and algorithms for computing convex hulls, the smallest en-
closing circle, and triangulations. Care is taken that all the functional-
ity provided by the basic library is independent from each other. Thus,
changes made in one component do not affect the other components.
Furthermore, this makes it easier to test the components independently.
The communication between components in a layer and between dif-
ferent layers is carried out using well-defined interfaces, see [15].

3Core library in the context of CGAL refers to the lowest layer of CGAL and must not
be confused with the Core-library developed at NYU.

%)

We have already mentioned above that there is a so-called support library
that is not part of a layer but stands apart from the rest of the library.
The support library adds functionality that is not vital for the rest of the
library but is quite useful for developing a geometric application. This in-
cludes support for visualization of CGAL objects by providing interfaces to
languages like VRML and PostScript, or to programs like GeomView and
LEDA windows.

Summarizing, CGAL is a high-level geometric library that provides a set
of geometric data structures and geometric algorithms. The library itself is
divided into three layers which communicate through a well-defined interface.
Components within a layer are designed to be independent from each other.
Communication between those components is again established through a
well-defined interface. CGAL does not provide a data type that supports
EGC. Instead, all geometric data structures are parameterized such that a
number type to represent numerical quantities can be chosen at will. If
robustness is the major issue then data types like leda_real or Expr can
be used to achieve EGC functionality. For ease of use, CGAL provides a
uniform interface with a functionality that is closely related to the interface
provided by the C++ STL. For more information on CGAL see [15, 14, 1].

4.4.2 Library of Efficient Data Types and Algorithms
— LEDA

The LEDA project [34, 33, 3| started 1989 prior to CGAL but with similar
intentions. Just like CGAL, the main goal of LEDA is to transfer technology
from theory to practice. Advanced knowledge gained in the field of compu-
tational geometry and combinatorial computing should be provided to the
user. Thus another similarity of LEDA and CGAL is that both are high-level
libraries that provide a collection of data structures and algorithms that op-
erate on these data structures. LEDA is written in C++ for reasons similar
to CGAL. Therefor, all high-level data structures are parameterized using
templates. The user decides which data type he wants to use to represent
numerical quantities. Unlike CGAL, LEDA provides a number of low-level
data types for this task. Among the supported data types are the standard
machine data types like int, float and double as well as arbitrary precision
versions called Int and Float. Int is an arbitrary precision integer type in
the mathematical sense and Float is a floating-point data type with arbi-
trary precision significand and exponent. The data type leda_real [8, 10] is
used to support EGC.

We will now survey the features of LEDA and take a closer look on the
data type leda_real because it has a lot of similarities to the type Expr

56

provided by the Core-library. LEDA is organized into six logical units, see
[34]:

Basic data types: The basic data types are strings, lists, queues, stacks,
arrays, partitions and trees. All of them are parameterized such that
any of the supported low-level number types can be chosen to represent
numerical quantities.

Numbers, vectors and matrices: The supported low-level number types
are the machine data types int, float, and double. In addition the
multi-precision versions Int and Float are implemented to support
exact computation. EGC is provided by the type leda_real. Vectors
and matrices are available for all these data types.

Dictionaries and priority queues: Dictionaries, priority queues, dictio-
nary and hashing arrays, sorted sequences and persistent dictionaries
are provided by this logical unit of LEDA.

Graphs: The graph unit of LEDA implements data structures for directed,
undirected and planar graphs like arrays indexed by nodes and edges,
priority queues on nodes and node partitions. Algorithms that oper-
ate on graphs like shortest paths, biconnected and strongly connected
components, transitive closure, topological sorting, unweighted and
weighted bipartite matching, network flow, planarity testing, planar
embedding, etc. are also provided by this unit.

Windows and panels: This LEDA unit provides an X11 interface and sup-
ports the output of geometric objects and interactive mouse input.

Geometry: Finally, the geometry unit provides points, lines and line seg-
ments plus some higher-level data structures on these objects like pla-
nar subdivisions, range trees, segment trees, and interval trees. Al-
gorithms like line-segment intersection, Voronoi diagrams, Delaunay
triangulations and convex hulls are also implemented in this unit.

The algorithms in LEDA are robust in the sense that exact rational arith-
metic can be used for geometric objects. Furthermore, the algorithms are
designed to cope with degeneracies. If the user prefers to use EGC techniques
instead of exact arithmetic he can resort to the LEDA data type leda_real.
We therefor take a closer look at it below. For flexibility and performance
reasons, different implementations of data structures and algorithms are pro-
vided and if computational speed is more important than robustness one can
use the machine types int, float and double to represent numerical quan-
tities.

57

There seems to have been a cooperation between the CGAL and the
LEDA project. Some of the developers are even contributing to both projects.
Thus, there are a lot of similarities in both LEDA and CGAL - both pro-
vide high-level data structures and algorithms for geometric computing. The
high-level data structures are parameterized in both libraries, thus providing
support for different low-level data types to represent and operate on nu-
merical quantities. While CGAL does not implement any arbitrary precision
number types, LEDA implements the data type leda_real, that supports
EGC and that is also used by CGAL as well as arbitrary precision integer
and floating-point arithmetic.

The data type leda_real is basically a C++ class implemented within
the LEDA framework. It it is closed under the basic operations +, —, x, /
and the Va operation. Comparisons of numerical quantities are reduced to
sign determinations, see Subsection 4.2.1, and can be done exactly. Thus,
leda_real provides EGC functionality. Similar to the Core-library, see Chap-
ter 5, leda_real represents a numerical quantity by remembering its whole
computational history in an expression dag. The nodes of the expression dag
are labeled by arithmetic operations. As already mentioned in Subsection
4.2.2, there is a correspondence between the operands of an operation in a
node and its successors. The leaves hold the input values which are arbi-
trary length integers. If an arithmetic operation occurs, it is inserted into
the expression dag and an initial approximate value using standard double
precision floating-point arithmetic is computed. Thus, an arithmetic oper-
ation takes constant time. Both leda_real and the Core-library use the
precision-driven approach from Subsection 4.3.3 to evaluate expressions but
with different precision bounds. For more information and implementational
details, see [8, 10].

4.4.3 Core-Library

The Core-library is an EGC library that has been developed at the Depart-
ment of Computer Science at New York University. In contrast to LEDA and
CGAL, the Core-library does not provide any high-level geometric data types
and algorithms, except for the data structures and corresponding operations
provided by so-called Core-extensions. Instead, it provides an expression
data type together with the supported operations (4, —,*, /, \/_) that al-
lows error-free comparisons and the computation of numerical quantities to
arbitrary precision. The Core-library is based on the Real/Expr-library [36]
and implements the EGC techniques outlined in [48] and [49]. Being a low-
level library, Core is very flexible in the sense that the user has to implement
the whole geometric algorithm by himself based on the expression data type
and assuming exact arithmetic. Furthermore, the Core-library is easy to

58

use because of the promotion of data types. While the Core-library itself
is based on a small number core, additional functionality can be added by
Core-extensions. For more information on the Core-library see the following
chapter.

59

Chapter 5

Core-Library

This chapter is dedicated to the Core-library. After a short introduction,
we discuss basic concepts and implementational issues of the library in Sec-
tion 5.2. Then, we discuss how to use the Core-library in existing C/C+-+
programs in Section 5.3. Finally, we present the Core-based version of the
program from Page 15. It is important to note that some of the concepts we
mention in this chapter, e.g., Level II, Level IV and the optimizing compiler
are not available in the current version 1.4 of the Core-library. Neverthe-
less we do not exclude these concepts from our discussion in order to take a
glimpse at future improvements.

5.1 Introduction to the Core-Library

The Core-library [47, 26, 30] is a C++ library that implements EGC tech-
niques. Besides stability, two major issues for EGC-libraries are ease of use
and efficiency. The developers of the Core-library tried to address both is-
sues. A simple interface is provided through the overloading of existing data
types. This technique should support software developers to use the library
in existing programs as well as in new ones. Compiler optimizations! and
the use of the newest knowledge of EGC techniques should ensure reasonable
performance. The Core-library provides four different accuracy levels:

Level I - Machine Accuracy: This level represents the conventional IEEE
standard, see Section 2.4. Thus, Level I is fast but does not provide
any EGC functionality, i.e., there are no gains in robustness compared
to programs using standard floating-point arithmetic.

Level 1II - Arbitrary Accuracy: Level II provides the functionality of big
number packages. The user is allowed to choose an accuracy that suits

!The compiler is still under development.

60

his/her needs. Specifying 100 bits of accuracy means that there will
be no overflows or underflows in the numerical operation until 100
bits are exceeded. Thus, numerical quantities can be computed to an
arbitrary, user-specified precision. Level II is useful if the user is aware
of the precision needed in his/her application in advance. Naturally,
there is a trade-off between precision and performance. The higher the
precision, the poorer the performance will be. Therefor, it is important
to find a balance between these two factors in order to achieve an
robust algorithm with reasonable performance. Level II is not fully
implemented yet.

Level III - Guaranteed Accuracy: Finally, Level III provides EGC func-
tionality and is therefor the key innovation of the Core-library. It is
slower than Level II but guarantees the correct results up to the speci-
fied number of bits. If 100 bits are specified, then the user is guaranteed
that 100 bits of a quantity computed are correct. In Level III, numeri-
cal quantities are represented using expression dags, see Page 47. The
precision-driven approach, described on Page 51, is implemented to
evaluate expressions. FKError-free comparisons are guaranteed in this
level only. In order to assure the correct sign of a numerical quantity,
it is sufficient to specify one bit of accuracy.

Level IV - Mixed Accuracy: This level is intended for finer accuracy con-
trol since the levels are intermixed and localized to individual variables.
Unfortunately, this feature has not been implemented in Version 1.4 of
the Core-library yet.

Since only Level I and Level III are fully supported by the current release of
the Core-library, we mean Level III functionality whenever we speak of the
Core-library unless we explicitly refer to a specific level.

The basic operations for EGC computations are provided by a small nu-
merical core of the library which currently supports the mathematical op-
erations +, —, *, / and Vv High-level data structures and algorithms
or functionality for specific applications is provided through so-called Core-
extensions. In the current release, two Core-extensions are available:

LinearAlgebra: The linear algebra Core-extension provides the class Ma-
trix for general n x m matrices and the class Vector for general n-
dimensional vectors. The classes also implement basic operations for
matrices and vectors, e.g., the Gaussian elimination algorithm.

Geometry: The geometry Core-extension is comprised of a 2D package
called geometry2D and a 3D package called geometry3D. Geometry2D

61

provides basic two-dimensional objects like points and lines. Geom-
etry3D offers points, lines and planes in the three-dimensional space.
Both packages depend on the LinearAlgebra Core-extension.

The functionality of both Core-extensions mentioned above is very rudimen-
tary in the current release. Nevertheless a software developer is free to im-
plement new Core-extensions or customize the existing ones to suit his/her
needs. Since a separate Core-extension can be built for every accuracy level,
high-level data structures and algorithms can be provided for different re-
quirements regarding robustness and computational cost.

In the next section we describe the internals of the Core-library. Section
3 will explain how to use the library in own programs and what has to be
considered when using the Core-library in existing programs.

5.2 Internals of the Core-Library

This section provides an overview of the promotion and demotion mechanism
which makes it easy to use the Core-library in existing C/C++ programs.
Furthermore, we will provide an overview of the classes that implement the
functionality of the numerical core and the data types provided by the Core-
library. Subsection 5.2.4 and Subsection 5.2.5 explain how Level II and Level
IIT work. A drawback in the use of C++ techniques like virtual functions and
parameterization is that there is additional overhead due to virtual function
tables and runtime type checking. These sources of overhead and ways to
avoid them in future releases of the library are discussed in Subsection 5.2.6.

5.2.1 Supported Data Types

In the Core-library every accuracy level, except of Level [V, operates on its
own set of data types. Level I uses the machine data types int, long, float
and double. Level II implements its own data types called Real, BigFloat,
BigInt and BigRat. These are all big number data types which are based
on a custom big number package?. The data type Real is not a particular
representation of numbers but a superclass of all the Level I and Level II
data types and provides a uniform interface to access them. The data type
Expr offers EGC functionality and is only available in Level III. Level IV
does not need an own data type since it is used to intermix the previous
three accuracy levels in order to provide finer accuracy control.

2Version 1.4 of the Core-library uses the big number package gmp.

62

5.2.2 Promotion and Demotion of Data Types

There is a natural partial ordering between the Level II data types which is
defined as follows:

float < double < BigFloat < BigRat,
int < long < BigInt < BigRat < Real.

Promotion and demotion of data types is carried out automatically when
certain operations are performed or when the accuracy level is changed. If, for
example, a BigFloat value is assigned to an int variable, then the BigFloat
value has to be demoted to an int before it is assigned. Similarly, whenever
the accuracy level is changed from Level I to Level III, then the data types
double and long promote to the Level III data type Expr, while int and
float remain unchanged. Even in Level III it is desirable to have Level I data
types for efficiency reasons, e.g., for values that do not need to be computed
exactly. The reason why int and float are not promoted is that they are
low-precision data types. If int and float are used in a program then high
precision, overflows and underflows do not seem to be an issue, otherwise the
software developer would have used long and double instead. Therefor, it
is reasonable to let int and float unchanged, even if the accuracy level is
changed from Level I to Level III. The Level III data type Expr is demoted
to Real if the accuracy level changes from Level III to Level II3. According
to [26], the general principles for promotion and demotion are:

1. A program is called a Level | (1 = 1,2,3) program if it explicitly declares
data types of Level 1 but no data types of a level above I.

2. The functionality of lower levels is also available at higher levels.

3. Variables and features are demoted if a program changes from a higher
level to a lower level.

4. In Level IV promotions and demotions are only performed whenever
assignments are carried out.

The concept of promotion and demotion makes it easy to use the Core-
library in existing C/C++ programs as well as in new ones. A software
developer does not have to use the data types provided by the Core-library
explictly. Instead, the well-known standard C/C++ data types can be used.
If a software developer wants EGC functionality, he/she simply has to set
the accuracy level, include the Core-library’s header file and has to link the

3Since Level II is not fully implemented, this is currently of no relevance in practical
applications.

63

program with the Core-library. This is especially true if the program was
designed to use the Core-library from the beginning. In existing programs,
however, there are a number of additional issues that have to be considered.
We will discuss them in Subsection 5.3.2 and in the next chapter.

5.2.3 Classes Provided by the Core-Library

The basic functionality of the Core-library is provided by five classes which
we describe briefly in this section.

The class Real: The class Real is the superclass of all Level II data types.
It defines common operations for the derived classes and manages ini-
tialization.

The class BigFloat: The class BigFloat depends on the class BigInt,
since the significand is a big integer. It is used to approximate val-
ues of the type Expr. A BigFloat number has three components:

1. A significand m which is of type BigInt.

2. An error 0 € {0,...,B — 1}, where B is the base of the floating-
point number. The type of the error value is unsigned long.

3. The exponent e which is of type long.

As we already mentioned in the previous chapter, instances of the
class BigFloat carry an error bound ¢ that is automatically computed.
Therefor, a BigFloat number actually represents an interval:

[((m —0) * B, (m + ¢) * B°].

The error bound is automatically adapted using interval arithmetic
when operations are performed. Due to interval arithmetic the error
can grow very quickly, see [26, 48, 49], and thus the interval might grow
too large. Since arbitrarily large intervals are not desirable, efforts are
made to ensure an interval that is as tight as possible. Thus, the error
is normalized such that:

0<6<B-1

For a detailed description on how the supported arithmetic operations
are implemented; see [36, 29].

64

The class Expr: EGC functionality is provided by the class Expr. Thus, in
Level III, numerical quantities are represented using expression dags.
The leaves hold the operands and the inner nodes represent the opera-
tions. Assuming that the values at the leaves are error-free, expression
dags represent the exact value of numerical operations. The class Expr
encapsulates three basic components:

1. an expression dag 7T,
2. a precision p,
3. a number E of the data type Real®.

The Real value E is used to approximate the value E of the expression
represented by 7" to the precision p. Internally, operations and operands
are represented using the class ExprRep. Therefor, the expression dag
is built from instances of the class ExprRep while an instance of the
class Expr points to the root of the expression dag. This situation is
illustrated in Figure 5.1.

The class ExprRep: As mentioned above, instances of the class ExprRep
hold unary operators, binary operators or an operand if they correspond
to a leaf of the expression dag. Currently, operands in an expression
are always BigFloat values. Instances of the class ExprRep hold two
pointers if they represent a binary operator, one pointer if they repre-
sent a unary operator, or no pointer if they hold an operand to other
ExprRep instances. Level III expressions are modeled as hierarchies of
ExprRep instances, see Figure 5.1.

The class extLong: The class extLong is a wrapper for the standard data
type long with three additional values:

1. CORE_neglInfty,
2. CORE_posInfty and
3. CORE_NaN.

The value CORE_negInfty and CORE_posInfty represent negative and
positive infinity respectively, while CORE_NaN is the value for not a num-
ber and indicates an illegal operation. The class extLong is designed in
a way that no overflows and underflows can occur; its main purpose is
to set the precision variable defInputDigits, which controls the accuracy
of the input data.

“Recall that Real is only a superclass of all Level II data types. Thus, E is actually of
the type BigFloat.

65

Expr

Y
ExprRep

binary operator

Y Y

ExprRep ExprRep
binary operator unary operator
Y Y Y
ExprRep ExprRep ExprRep
operand operand operand

Figure 5.1: Internally, the expression dag is constructed from instances of
the class ExprRep. The whole Expression is represented by an instance of
the class Expr, which points to the root of the expression dag.

66

Now that we know how an expression is represented internally, we are going
to see what happens to the variables used in a program when Level II or
Level III of the Core-library are used.

5.2.4 How Level II Works

Level II works just like a big number package. Variables of the data types
long and double are promoted to Real. Actually, long is converted to
BigInt and double is converted to BigFloat internally, since Real is just a
superclass of all the Level I and Level II data types. Variables of the type
int and float remain unchanged for reasons mentioned in Section 5.2.2. In
order to achieve a maximum of efficiency, the Core-library tries to leave long
and double variables unchanged as long as possible and converts them only
if overflows or underflows occur. Therefor, Level II has a built-in mechanism
to check for overflows and underflows at runtime. To illustrate this process
let us take a look at the following example:

double w, z, y, z;

int ;
T =Y k1
w=x/z;

If this code fragment is processed in Level II, the variables w, x, y, or z are
promoted to BigFloat as soon as an overflow or underflow occurs involving
that particular variable. The integer ¢ is unchanged during the execution of
the program.

5.2.5 How Level 111 Works

Variables of the data types long and double are converted to the data
type Expr if Level III is used. Again, int and float variables remain un-
changed. Whenever a program is executed in Level III, expression dags are
built that remember the dependency of values from other values. Following
the precision-driven approach from Page 51, a certain precision is specified at
the root of an expression dag, and is propagated downwards to the leaves. At
the leaves an error bound is computed by the system and propagated upwards
to the root. This process is iterated until the error is smaller than or equal
to the requested precision. E.g., if E is an expression, E an approximation
to E and [r,a] is a composite precision bound then an error

Erry < max{|E|*27",27%}

67

Figure 5.2: The expression dag that is constructed if the sample code from
Subsection 5.2.4 is executed in Level III.

is guaranteed by the system. The expression tree constructed for the example
in Subsection 5.2.4 is illustrated in Figure 5.2. The dependence of w from
x is remembered in a natural way due to the construction of the expression
dag.

5.2.6 Sources of Overhead and Optimization

The practical value of a library for EGC depends primarily on its perfor-
mance. Besides the use of fast algorithms and their careful implementation,
optimizations at the compiler level may help to gain additional performance.
The developers of the Core-library are therefor working on an optimizing
compiler that analyzes the expressions used in a program and tries to op-
timize them. Furthermore, additional overhead introduced by the object-
oriented programming style is reduced. According to [26], Level III evalua-
tion is suffering from the following sources of overhead that are not present
if Level I is used:

Function Call Overhead: Overhead is introduced through dynamic dis-
patching and binding due to the use of virtual functions.

Memory Management Overhead: Object hierarchies are created to im-

68

plement Level I1I expression dags. This introduces cache line fragmen-
tation and poor spatial locality — a general problem that comes with
the use of pointers for dynamic memory allocation and deallocation.

Operation Overhead: Several iterations of the downward propagation of
precision bounds and upward propagation of error bounds may be nec-
essary to evaluate an expression in Level III. For reasons of encapsu-
lation these steps are performed at the granularity of individual ex-
pression nodes (operations). Reduction of overhead by exploiting the
global structure of an expression is possible. E.g., similar operations
like 4+ could be grouped in one node in order to reduce the depth of
the expression dag.

General Overhead: General overhead is introduced by the object-oriented
programming style. E.g., global objects are constructed using smaller
component objects.

A compiler that optimizes memory management and brakes some of the
limitations imposed by the object-oriented programming style might yield
a significant speed-up. The developers of the Core-library therefor plan to
implement such an optimizing compiler. Some of the optimization ideas and
the results achieved are outlined in [26].

5.3 Using The Core-Library

We will now see how to use the Core-library in own software projects. First,
we take a look at the statements necessary to prepare, compile and link a
program with the Core-library. Then we mention basic guidelines which are
necessary to make a program compliant with the Core-library. Finally, we
present the Core-based version of the program from Page 15. We assume the
GNU g++ compiler throughout this section.

5.3.1 Building Programs That Use the Core-Library

Besides performance the developers of the Core-library also emphasized ease
of use. Thanks to the promotion and demotion mechanism that substitutes
the standard data types with the Core data types and vice versa, and operator
overloading, only minimal changes are required to convert existing C/C+-+
programs.

In the simplest case the software developer just has to do the following:

Set the accuracy level: The accuracy level is set by inserting the following
#define statement before the code starts:

69

#define <Level_ number>,

where Level number = 1,2,3 or 4. Since Level I and Level III are the
only levels that are fully implemented in Version 1.4 of the Core-library,
Level II and Level IV cannot be used at present.

Include the header file: To include the header file for the Core-library one
has to place the

#include <CORE.h>

statement after all the standard #include statements but before the
code starts.

Build the program: In order to build Core-based programs, the include
path and the library path need to be specified appropriately with the
-I and -L compiler flags. Then the program is linked with the Core-
library and the big number package gmp by specifying the -lcore and
-lgmp flags. Assuming one wants to link the Core-library with the
program foo.c, the command for building foo.c has to look like this:

g++ -I$(CORE_PATH) /inc foo.c -o foo -L$(CORE_PATH)/lib -lcore
-lgmp -lm,

where $(CORE_PATH) is the directory where the Core-library is in-
stalled.

Unfortunately, the situation is not so simple in practice. There are a number
of additional issues, see [30], that have to be considered if one wants to link
the Core-library with existing programs. We will describe these issues in the
next subsection.

5.3.2 Converting Existing Programs

We have already mentioned that in the simplest case it is sufficient to set
the accuracy level and include the Core-library’s header file appropriately.
In general, this is only true for very simple programs. Thus, there are some
basic guidelines that have to be considered if an existing program is linked
with the Core-library. Furthermore, a new program has to be implemented
according to these principles in order to be compliant with the Core-library.
We take a look at these guidelines in this subsection.

70

Assume error-free results and comparisons: Since existing programs of-
ten take precautions to prevent inconsistency and non-robustness due
to numerical errors this fundamental rule is violated and can cause
problems. A possible solution to solve problems with the commonly
used e-tweaking technique is to set e = 0.

Preventing promotion: All the variables of the machine data types long
and double that occur after the preamble are promoted to Expr® in
Level III. If one still wants to use the machine data types instead, one
has to resort to the data types machine_long and machine_double as
a replacement of long and double.

Initialization: All the objects that are explicitly declared to be of type Expr
or automatically promoted to Expr have to be initialized. For dynam-
ically allocated Expr objects, correct initialization is only performed if
the new operator is used. That is, malloc does not work in conjunction
with Level III objects.

Using library operations: The machine data types int and float are
never promoted to Expr. This means that the normal sqrt operation
of math.h is used in the following example:

int i = 2;
double z = sqrt(2);
double y = sqrt(i);

Since ¢ is of type int, y is computed using the standard sqrt opera-
tion. The situation for x is similar. A possible solution is given in the
following code fragment:

int i = 2

double z = i;

double z = sqrt(Expr(2));
double y = sqrt(z);

Since z is of type double it is promoted to Expr and y is computed with
the sqrt function of the Core-library. The variable x is also computed
exactly because of the explicit promotion of the constant 2.

Literals and constant arithmetic expressions: Literals and constant arith-
metic expressions are not promoted. E.g.:

A similar promotion occurs in Level II.

71

double z = 2/3;
double y = 2.0/3;
double z = 1.3;

In this example the value of x is 0 because the standard integer division
operator is used here. The value of y is an approximation to 2.0/3
since the standard division operator for floating-point numbers is used
to compute this fraction. A possible solution would be:

double x = Rational(2/3);
double y = Rational(2/3);
double z = “1.37;

In general, constant literals have to be placed in quotation marks and
the global variable deflnputDigits needs to be set to oo in order to
represent numerical values exactly.

5.3.3 An Example of a Simple Core-Based Program

We will now present the Core-based version of the program from Page 15.
The program is shown in Figure 5.3. Note, that the Core-based version looks
almost similar to the original program. The only differences are:

1. The inserted preamble (accuracy level and header file), and

2. the constant literals that have to be placed in quotation marks in or-
der to enable exact comparisons. Furthermore, we use the function
setDefaultInputDigits to set the global variable deflnputDigits to
infinity ©.

Since no Core objects are written, the standard output function printf can
still be used here. Fortunately, there is a major difference to the floating-
point version of the program in the result computed. Due to the use of exact
arithmetic, the program prints

x==1.0

which is the correct result while the floating-point version of the program
prints

x 1= 1.0.

SIf defInputDigits is not set to infinity then this Core-based version shows the same
incorrect behavior as its floating-point sibling: it also outputs the string ”x != 1.0”!

72

#define Level 3

#include <stdio.h>

#include <CORE.h>

int main()

{
setDefaultInputDigits(CORE_posInfty);
double x =70.0";
int counter;

for(counter = 0; counter < 10; counter + +)

x=a+"0.17;
if (x=="1.0")
printf("z == 1.0\n”);
else

printf("z | = 1.0\n”);

return 0;

Figure 5.3: The Core-based version of the program from Page 15.

This ends our discussion of the Core-library. For more information on how
to use the library in own projects, see the Core-library tutorial [30] which
is part of the full distribution of the Core-library and can be downloaded
together with the library from [2].

73

Chapter 6

Linking FIST with the
Core-Library

This chapter provides an introduction to the triangulation algorithm FIST
in Section 6.1. Steps for making FIST compliant with the Core-library are
presented in Section 6.2. Section 6.3 presents experimental results. We
conclude in Section 6.4.

6.1 A Survey of FIST

FIST [21], an acronym for fast industrial-strength triangulation, is a triangu-
lation algorithm for polygons including polygons with islands and polyhedral
faces based on ear clipping. FIST uses standard floating-point arithmetic
and was designed not to crash or loop. Furthermore, FIST also handles
degenerate input data. Thus, FIST always produces a topologically valid
triangulation of a polygon P, i.e., the vertices of P form the vertices of the
triangulation, every edge of every triangle is shared with one other triangle
or is on the border of P, and every edge of P belongs to exactly one triangle.
We explain the basics of the ear clipping algorithm and discuss the heuristics
needed to guarantee the robustness of FIST in this section.

6.1.1 The Ear Clipping Algorithm

We now explain the ear clipping algorithm used in FIST. Similar to [21], in
this discussion we assume that the polygon P is simple and oriented coun-
terclockwise (CCW). With FIST a polygon is triangulated by clipping ears.
Three vertices v;_1, v; and v; 4 form an ear of the polygon P if v; is a convex
vertex and the line segment [v;_1,v;41] is a diagonal of P, i.e., the open line
segment (v; 1,v;41) is completely contained in the interior of P, see Figure

74

Ug

Figure 6.1: The vertices vs, v, and vs form an ear of the polygon.

6.1. By clipping an ear formed by v;_;, v; and v;41, the ear is replaced by
the line segment [v;_1,v;41]. Thus, the number of vertices of P is reduced
by one every time an ear is clipped. This process is terminated when the
polygon is reduced to a single triangle, which forms the last triangle of the
triangulation.

The implementation of the ear clipping algorithm in FIST is executed in
five steps:

Step 1: First, in a preprocessing step, the vertices of the polygon are sorted
lexicographically according to their x and y-coordinates. Then every
vertex is assigned a unique index according to its position in the sorted
array. Vertices with identical coordinates have identical indices. Due
to those unique indices, comparisons of vertices are reduced to com-
paring their corresponding indices which are integers. In this sense,
comparisons between vertices can be done error-free! once the vertices
have been sorted.

Step 2: Determine the orientation of all polygonal loops. In case of multiply-
connected polygonal areas, also determine the outer contour.

LOf course, misjudgments can be made in the course of the sorting process since
floating-point values are compared. Nevertheless these misjudgments are used consistently
throughout the program.

75

Step 3: In Step 3 all the vertices of the polygon P are classified as convex
or reflex.

Step 4: In the fourth step, every consecutive triple of vertices is checked for
earity, i.e., if they form an ear. Detected ears are marked and stored.

Step 5: In the final step one of the previously stored ears is clipped and
stored in the triangulation. As already mentioned above, clipping an
ear of a polygon with n vertices yields a polygon with n — 1 vertices.
Furthermore, every previously detected ear is still valid except for up
to two ears that involve the clipped vertex. Thus, if the ear v;_q, v;,
v;11 1is clipped, the ears involving the vertex v; are not valid any more.
Instead, the vertex triples v;_o, v;_1, v;41 and v;_1, v;11, vi12 have to
be checked for earity. Step 5 is carried out until the original polygon
has been transformed into a triangle.

In [21] Held formulates two different sets of conditions that are necessary
and sufficient to detect an ear. Ear detection is carried out according to
both sets, which yield two different worst-case time complexities. One of
those sets yields an ear detection process that is sensitive to the shape of the
polygon: for a polygon with r reflex vertices its worst-case time complexity
is O(n - (r +1)). The worst-case complexity of the ear detection process
according to the second set depends on the vertices of the polygon only,
which results in O(n?) for a polygon with n vertices. For details on the ear
detection process and the condition sets mentioned above see [21].

6.1.2 Extending the Basic Ear Clipping Algorithm

The basic ear clipping algorithm is extended to handle multiply-connected
polygonal areas. This is achieved by linking the inner loops with the outer
contour by so-called contour bridges. Basically, a contour bridge is a doubled
diagonal which links two different boundary loops. Contour bridges are found
by determining the left-most vertex of each polygonal loop. Next, the inner
loops are sorted according to their left-most vertex. Recall that this can be
done error-free, since it is sufficient to compare the indices of the vertices —
see Step 1 of the ear clipping algorithm. Finally, starting from the left-most
inner loop, all inner loops are connected to the outer boundary. For details
on this process see [21].

6.1.3 Ensuring Robustness

A number of heuristics are implemented to support the basic ear clipping
algorithm. There are heuristics to soften the problems that arise whenever

76

floating-point arithmetic is used. Furthermore, heuristics are needed to cope
with degeneracies. In order to handle degenerate input data, the ear clipping
process has to be adopted appropriately. E.g., an ear v; 1, v;, v;y1 where v;
coincides either with v; ; or v;; is still considered a valid ear. In general,
degenerate ears are clipped first. Thus, for input that exhibits only little
degeneracies, the algorithm eliminates those degeneracies quickly and con-
tinues with the standard ear clipping process. Of course, there are a number
of additional degeneracies that have to be treated as special cases. We will
omit a thorough discussion at this point and concentrate on general concepts
implemented in FIST in order to improve robustness of the triangulation al-
gorithm. The reader is referred to [21] for more information on the treatment
of special cases.

Consistent Primitive Operation

As pointed out in [21], FIST is based on a single predicate namely the orien-
tation test, which is evaluated by computing the sign of a 3 x 3 determinant.
As we have pointed out on Page 32 the sequence of the input values passed
to the determinant evaluation function does matter, i.e., interchanging the
order of operands might yield different results. Since all the vertices are
assigned a unique index in Step 1 of the ear clipping algorithm, the determi-
nant is evaluated by ensuring that the index of the first argument is smaller
then the index of the second argument which is again smaller then the index
of the third argument, i.e., if the vertices v;, v; and v, are passed to the
determinant evaluation function, care is taken that ¢+ < j < k holds. This
reordering of the vertices might change their cyclic order. If so, the sign of
the determinant computed is inverted. Furthermore, epsilon tweaking is used
to increase robustness of the determinant evaluation function.

Determining the Orientation and the Outer Boundary of Polygonal
Loops

Since real-world data is likely to have all kinds of deficiencies including incor-
rectly specified orientations, FIST does not rely on the orientation specified
in the input file. Instead, the orientation of a polygon is determined by com-
puting its signed area, denoted by A(P). The signed area is computed by
determining the signed areas of each triangle A(vg, v;, v;11) and subsequent
summation of the results. There are three possibilities:

A(P) < 0: The polygon is oriented clockwise (CW),

A(P) =0: The polygon is twisted or collapsed to a chain and a random
orientation is chosen,

77

A(P) > 0: The polygon is oriented counterclockwise (CCW).

In case of multiply-connected polygonal areas, the outer contour has to be
determined. According to [21] this is achieved with the following heuristic:
The polygonal loop, which has the biggest absolute area is considered the
outer contour. After the outer contour is determined it is oriented CCW,
while all the inner loops are oriented clockwise.

Classifying Internal Angles

The classification of internal angles formed by v; 1, v;, and v;y; is again
reduced to the orientation test, i.e., the evaluation of the sign of a 3 x 3
determinant. Depending on the sign computed there are three different cases:

Positive Sign: If the sign computed is positive, then the internal angle at
v; 1S convex.

Negative Sign: A negative sign indicates that the internal angle at v; is
reflex.

Determinant equals zero: If the determinant equals zero, then the inter-
nal angle is either 0°, 180° or 360°. The angle is 180° if the dot product
of the vectors determined by v;v;_; and v;v;_; is less than zero. The
remaining cases cannot be determined locally. Thus, one has to move
away from v; in both CW and CCW direction until two non-overlapping
segments are found. The angle at v; is then determined by a lengthy
case study.

As usual the determinant is evaluated by passing it the vertices in increasing
order of their indices as arguments.

The Multi-Level Recovery Process

Despite all the efforts taken to find a valid ear, there are self-intersecting
polygons, where the algorithm runs out of ears before the polygon is com-
pletely triangulated. A multi-level recovery process together with a so-called
desperate mode is implemented to handle such situations. Simply speaking,
the triangulation process is restarted but with more aggressive methods for
the ear finding process. There are four different levels:

1. In the first level, there is a reclassification of ears. Since some of the re-
flex vertices may already have disappeared due to previous ear clipping,
this may reveal new valid ears that have not been valid before.

78

U1

U4 U3

U2
Figure 6.2: A self-intersecting polygon.

2. In the second level FIST checks the polygon for self-intersections. E.g.,
the open line segments of two edges (v;_1,v;) and (v;41, v;42) intersect.
If so, then the triangles A(v;, v;41, vir2) and A(v; 1, v;, vi42) are clipped.
For the example polygon in Figure 6.2, the triangles A(vq, v3,v4) and
A(vy,vq,vy) are clipped. As pointed out in [21], computing the point
of intersection of the line segment [vy, v3] with the line segment [vs, v4]
would result in a gap for 3D polyhedral input. Thus, clipping the
triangles as described above is a reasonable solution to this problem.

3. In the third level, the polygon is split into sub-polygons by inserting
a diagonal. Then, the resulting polygons are triangulated. It has to
be noted, though, that not every valid diagonal helps to improve the
situation. Thus, care has to be taken to choose a suitable one, see [21]
for more information.

4. If all of the above levels fail to find new ears, then FIST enters a so-
called desperate mode. In desperate mode, a random convex vertex
or, alternatively, if no convex vertex exists, a random reflex vertex is
chosen and the corresponding ear is clipped.

It is important to stress that FIST tries to resume the standard triangulation
process as soon as possible; e.g., if new ears are found in Level 1, then they

79

are clipped and the code resumes the standard ear clipping algorithm and
does not remain any of the subsequent levels. Similarly, FIST tries to leave
desperate mode as soon as possible.

Speeding Things Up

Depending on the ear detection process, see Page 76, used for the triangula-
tion, the worst-case time complexity for FIST is O(n?) or O(n-(r+1)), where
n is the number of vertices and r is the number of reflex vertices of the in-
put polygon. Therefor, the practical CPU time consumption would increase
tremendously with increasing number of vertices if no countermeasures are
taken.

FIST uses geometric hashing to overcome this deficiency. In [21], Held
evaluates bv-trees and grids to improve the practical running time. Experi-
ments showed that grids are faster than bv-trees and yield a slightly super-
linear time consumption in practice. For more information on geometric
hashing in FIST and experimental results see [21].

6.2 Making FIST Compliant with the Core-
Library

The goal of our work is to modify FIST in a way such that it is able to
work with exact arithmetic provided by the Core-library. Furthermore, we
wanted to evaluate if the Core-library is easy to use in existing programs and
reasonably fast as claimed by the developers of the library. Thus, we tried
to

1. make as minimal changes to FIST as possible, and
2. to achieve maximal speed.

Besides the evaluation of ease of use, the motivation for Design Goal 1 is to
keep FIST consistent, i.e., a user should be able to build both the floating-
point and the exact version of FIST. Thus, we used the C preprocessor and
included all the Core-related changes in the following preprocessor statement:

#ifdef LIB_.CORE

#endif

80

Furthermore it is important not to introduce any errors by the changes nec-
essary to use the Core-library. In order to achieve Design Goal 2, we tried
to use the Core-library in those parts of FIST only where it is necessary. Of
course, there were situations where a trade-off between Design Goal 1 and
Design Goal 2 was necessary.

The developers of the Core-library claim that is easy to use in both new
and existing programs and fast enough to be a reasonable alternative to
floating-point arithmetic. As stated above, we wanted to evaluate those
claims. As we have already mentioned in the previous chapter, one require-
ment for Core-based applications is to design them assuming exact arithmetic
and error-free decisions. Clearly, this is not the case with the standard ver-
sion of FIST since it was designed to cope with all kinds of problems that
arise in floating-point arithmetic. Thus, it is interesting to see if the mea-
sures that ensure robustness in the floating-point version of FIST cause any
problems in the exact version of FIST.

In the following subsection we explain the changes we made in order to
create a Core-based version of FIST. Since we use the Core-library in Level
3 only, all double and long variables are promoted to the Core data type
Expr.

6.2.1 Adapting the I/O-Routines of FIST

Since the standard C input and output routines cannot be used with Core
objects, they have to be adapted appropriately. Clearly, all the input values
need to be represented by Core objects. On the other hand there was no
need to produce an exact output since the graphical output is based on
integer coordinates and since FIST does not create new geometric objects.
In addition, rounding exact values back to a finite representation without
producing errors similar to floating-point arithmetic is still an open problem.
Thus, we decided to use the Expr class member doubleValue? to extract
the machine double value from an exact Expr value and used the standard
output routines. As we have mentioned above, the situation is different in
the case of input values. All the input values need to be represented by Core
objects in order to guarantee exact comparisons. Basically, there are two
possible solutions to this problem:

1. One way to solve this problem is to rewrite every input routine from
the scratch using the C++4 input stream cin.

2. A second possibility is to use the fact that Core objects can be ini-
tialized using string literals. Thus, all input values can be read in as

2Note that the use of the member doubleValue can cause silent overflows and under-
flows.

81

void ReadPolygon(. ..)

{
char Str_xcl[STR_LENGTH];
char Str_ycl[STR_LENGTH];
char Str_xc2[STR_LENGTH];
char Str_yc2[STR_LENGTH]|;
double zcl, ycl, xc2, yc2;

if (EOF == fscanf(inputfile, ”%s %s %s %s”, Str_zcl, Str_ycl, Str_zc2, Str_yc2))
/* print an error message */
else

{

xcl = Str_xzcl;
ycl = Str_ycl;
xe2 = Str_xc2;
yc2 = Str_yc2;

Figure 6.3: An example of an input function in the Core-based version of
FIST.

strings using the standard input routines.

We opted for the second possibility since this allowed us to read the exact
input values without rewriting every input routine. The code fragment in
Figure 6.3 demonstrates this approach. Recall, that the double variables
xcl, ycl, xc2 and yc2 are promoted to Expr when the Core-library is used.
Instead of reading double values, we read strings which are assigned to the
corresponding Expr objects in a subsequent step. Thus, the Expr objects are
properly initialized and hold the exact values of the input data if the global
variable deflnputDigits is set to infinity.

82

‘ Allocation method ‘ floating-point arithmetic ‘ exact arithmetic ‘

STL Vector 12 ms 294 ms
Copy (memcpy) 24 ms segmentation fault
Copy (for loop) 36 ms 1401 ms

Table 6.1: Dynamic memory allocation for 65000 elements using block size
8125.

6.2.2 Dynamic Memory Allocation

Another major issue is dynamic memory allocation. Core objects have to
be allocated using the C++ operator new in order to be initialized properly.
The data structures of the floating-point version of FIST are built on top
of arrays which are allocated by calling the function ReallocateArray. If
ReallocateArray is called for the first time, a memory block is allocated
using the C function calloc. If necessary the memory block is extended using
the C function realloc in subsequent calls to ReallocateArray. Again, we
had two possibilities to adapt dynamic memory allocation:

1. The STL data type vector could be used instead of arrays. Basically,
the data type vector implements a dynamic array. It supports ran-
dom access, new elements can be inserted, and old elements can be
deleted efficiently at the end of the vector. Memory is automatically
reallocated if this is necessary.

2. An alternative method is to allocate a new and bigger array. Then, the
elements of the old array are copied to the new array and the old array
is deleted.

The second method can be implemented using the C function memcpy or,
alternatively, by iterating through the old array with a for loop. In order to
detect any performance differences between these methods, we implemented
a test program that allocates memory for 65000 elements with different block
sizes according to the methods described above and measured the CPU time
consumption. The results for the block sizes 8125, 16250 and 32500 are
summarized in Table 6.1, Table 6.2, and Table 6.3 respectively. Note that the
CPU time consumption for the solution with the STL vector data structure
is independent from the block size used for memory allocation, since the
allocation process is managed automatically.

It turned out that using the STL vector data structure for memory allo-
cation is the fastest method. However, it does not fit well into the framework
of FIST. Thus, there are some major changes that have to be made to the

83

‘ Allocation method ‘ floating-point arithmetic ‘ exact arithmetic ‘

STL vector 12 ms 294 ms
Copy (memcpy) 12 ms segmentation fault
Copy (for loop) 13 ms 837 ms

Table 6.2: Dynamic memory allocation for 65000 elements using block size
16250.

‘ Allocation method ‘ floating-point arithmetic ‘ exact arithmetic ‘

STL vector 12 ms 294 ms
Copy (memcpy) 8 ms 540 ms
Copy (for loop) 6 ms 544 ms

Table 6.3: Dynamic memory allocation for 65000 elements using block size
32500.

code in order to use the STL vector data structure. Furthermore, the per-
formance difference is not that dramatic for large block sizes. We therefor
opted for the second method and chose to copy array elements in a for loop,
since the variant with memcpy suffered from occasional segmentation faults,
see Table 6.1 and Table 6.2.

There is another interesting fact that has to be mentioned. Looking at
Table 6.1, Table 6.2 and Table 6.3 one notices a dramatic slow-down in the
memory allocation of Expr objects compared to the allocation of double val-
ues in the floating-point version of FIST. Therefor, we can expect a significant
slow-down in the overall running time when the Core-library is used.

In order to implement a generic function for memory allocation, we uti-
lized C++ templates. Therefor, we were able to implement a single function
called ReallocateArray_Copy which can be used in the floating-point version
as well as in the Core-based version of FIST. Thus, a performance compar-
ison can be done using the same type of memory allocation. Summarizing,
the code for the function ReallocateArray_Copy is shown in Figure 6.4.

Of course, we need an additional function as a replacement for the func-
tion called FreeMemory which is used in the floating-point version of FIST
to free the memory that was previously allocated using ReallocateArray.
Therefor, we implemented another generic function called FreeMemory_Copy
which uses the C++ operator delete, see Figure 6.5.

It is important to stress that for performance reasons we use the function
ReallocateArray_Copy only where it is necessary, i.e., whenever memory is
allocated for Core objects.

84

template <class DATATYPE>
DATATYPE* ReallocateArray_Copy
(DATATYPE *old_mem, int old_size, int new_size, size_t size, char var_namel])

{
DATATYPE *new_mem = NULL;

if (old_mem! = NULL)

new_mem = new DATATYPE[new _size];
if (new_mem != NULL)

{
for (int ¢ = 0; i < old_size; i + +)
new_meml[i| = old_mem]i];
delete [Jold_mem;

}

else

{

/* Print an error message */
exit(1);

else

new_mem = new DATATYPE[new _size];
if (new_mem == NULL)
{

/* Print an error message */
exit(1);

}

return new-mem;

Figure 6.4: The function ReallocateArray_Copy is used for dynamic mem-
ory allocation in the Core-based version of FIST.

85

template <class DATATYPE>
voidFreeMemory_Copy(DATATYPE** ptr)

{
if (*ptr == NULL) return;

delete [|*ptr;
*ptr = NULL;

Figure 6.5: The function FreeMemory_Copy is used to free dynamically allo-
cated memory in the Core-based version of FIST.

6.2.3 Constant Literals

Constant literals are not promoted. If, for example, the statement
double z = 0.1;

is used to assign the value 0.1 to the variable x, then = holds only an approx-
imation of the assigned value. This can be changed by using the statement

double z ="0.17;

instead. Therefor, we had to change all constant literals in FIST appropri-
ately. Note, that enclosing every constant literal in quotation marks would
not be a feasible solution, since this prevents the successful compilation of the
floating-point version of FIST. We therefor labeled all the constant literals
that involved Core objects and placed them in a header file as follows:

#ifdef LIB_.CORE
#define C_0_0 70.0”

#define C_.0.01 70.017
#define C_0_1 70.17

#else
#define C_0_0 0.0

#define C_0_01 0.01
#define C_0_1 0.1

#endif

86

Depending on whether the Core-library is used or not, the labels are replaced
by the corresponding exact or approximate values. Furthermore, the function
setDefaultInputDigits is used to set the global variable defInputDigits to
infinity.

6.2.4 Setting all Epsilons to Zero

One requirement for a program to be compliant with the Core-library is that
it is implemented assuming exact arithmetic. This requirement conflicts with
the epsilon tweaking technique used to increase robustness in the floating-
point version of FIST. Therefor, all epsilons have to be set to zero while care
has to be taken that this measure does not cause divisions by zero. Similar
to the solution used for constant literals, we set all epsilons to zero if the
compiler option THRESHOLD is not specified. Thus, the compilation of
the Core-based version of FIST requires the compiler flags LIB_.CORE and
MEM_COPY while it is necessary to specify the compiler flag THRESHOLD
for the floating-point version of FIST in order to enable epsilon tweaking.
Note that setting all epsilons to zero would change the semantics of the
program if the comparison of a numerical value x with epsilon is performed
such that

|z] < e.

Thus, care has to be taken that all the epsilon-related comparisons are carried
out with < instead of <, i.e,

lz] < e.

6.2.5 Miscellaneous Adaptions

There are a number of minor changes that had to be made in order to make
FIST compliant with the Core-library. First of all there are some variables
of the types double and long that should not be promoted because they
are only used to model floating-point heuristics that do not affect the cor-
rectness of the program. In order to prevent their promotion, we replaced
them with the Core-library’s data types machine_long and machine_double
which represent the corresponding machine data types. The preprocessor
statements

#ifndef LIB_.CORE
#define machine_double double
#define machine_long long
#endif

87

make sure that this adaption is still compatible with the floating-point version
of FIST. Furthermore, statements like

i= (int) x;

where i is an integer variable and x is a double variable had to be replaced
by

i = x.intValue();

where intValue is a member function of the Core data type Expr that returns
the integer value of the Expr variable. As we have already mentioned before,
the use of the Expr member functions intValue, longValue, floatValue
and doubleValue might cause silent overflows and underflows and have to
be used with care as stated in the Core-library tutorial [30]. Nevertheless
there were situations where we had to use them. If, for example, the output
computed needs to be displayed on the screen, it has to be converted to an
integer and there are many other situations where we cannot get around this
problem.
Finally, the statements

#define Level 3
#include <CORE.h>

had to be included after the include statements of the standard header files
in every source file that calls functions of the Core-library. We included these
statements in a separate include file which is then included in the FIST source
files. Thus, there is one central file where we can change the behavior of the
Core-library, e.g., change the accuracy level.

6.3 Experimental Results

We now present experimental results. Basically, we tested different versions
of FIST with different classes of input data and measured the CPU time
consumption. Unfortunately, the Core-based version of FIST misbehaved
badly® on some of our input data. Therefor, we tried to get to the bottom of
this and used a standard and a memory debugger to see what causes these
problems. Based on the results from those debuggers, we expected memory
problems within the Core-library, which we reported to the developers. We
then got an improved version of the library which did not solve all the prob-
lems. Thus, we repeatedly sent bug reports, got new versions of the library,
and finally provided the source code of our Core-based version of FIST to

3We explain the details in the following subsections.

88

Input class ‘ Range of segments ‘

"random” 8 — 32768
”smooth” 16 — 32768
”smoother” 64 — 32768
”thinned” 8 — 8192

Table 6.4: Segment ranges for the four different input classes.

the Core-library developers to see if we made any obvious mistakes. Despite
all the efforts made by the developers of the Core-library and on our end, we
were not able to solve all the problems with the Core-based version of FIST.
In the following we report the CPU time consumptions for the data sets that
could be processed correctly and the problems we had in the remaining cases.

6.3.1 Two-Dimensional Test Data

We set up our experiment similar to [21]. That is, we have four different
classes of input data which were generated by the RANDOM POLYGON
GENERATOR (RPG), see [5] for more information on RPG. The first class
of our input data is called "random” and is generated by RPG by distributing
points uniformly in the unit sphere. The second class, called "smooth”, is
generated by applying the Smooth algorithm of RPG twice to the polygons
of the "random” class. The Smooth algorithm doubles the input polygon’s
number of vertices by replacing each vertex v; with two new vertices %
and % The third class of our test data, called ”smoother”, is generated
by applying RPG’s Smooth algorithm four times to the polygons of the "ran-
dom” class. Finally, the fourth class which is called ”thinned” is computed by
randomly clipping three quarters of the ears of the polygons in the ”random”
class. For each class, one sample polygon with 64 vertices (together with the
triangulation computed by FIST) is shown in Appendix A. As pointed out in
[21], the characteristics of the four classes are as follows: While the vertices
of the "random” polygons are uniformly distributed, this is not true for the
”smooth”, ”smoother” and ”thinned” polygons. In addition, the "smoother”
polygons tend to have very short edges and a number of long diagonals. The
"thinned” polygons, on the other hand, cover, in general, less space than the
polygons in the "random” class.

The "random” input class consists of polygons with the number of vertices
ranging from 8 to 32768 and there are ten different polygons for each number
of vertices. Thus, we get the segment ranges shown in Table 6.4 for the
different input classes. We tested all four input classes with four different
versions of FIST and measured the CPU time consumption. The four versions

89

of FIST are as follows:
FIST _fp_std: This is the standard floating-point version of FIST.

FIST _fp_mod: Same as FIST_fp_std but modified to use the same memory
management routines as the Core-based version of FIST.

FIST _exact_def: This is the Core-based version of FIST with the default
value of the global variable defInputDigits which is 16.

FIST exact_infty: Same as FIST exact_def but with the global variable
defInputDigits set to infinity.

As we pointed out in Subsection 6.2.2, we had to adopt the memory man-
agement routines in order to link FIST with the Core-library. As can be
seen in Table 6.1 — Table 6.3, the new routines are slower than the ones used
in the original version of FIST. Thus, for reasons of fairness, we wanted to
compare the original floating-point version and the modified floating-point
version of FIST to the exact version of FIST. The reason why we used two
different exact versions of FIST is that we had some trouble, which we dis-
cuss later, running our test data with FIST exact_infty, i.e., when the global
variable deflnputDigits is set to infinity. Thus, we also conducted tests with
FIST _exact_def, where the default value of defInputDigits is used. It is im-
portant to stress that only FIST exact_infty represents all input data exactly
while input data is represented with a maximum absolute error of 10716 if
FIST exact_def is used.

Test Results for FIST _exact_def

The tests for FIST _exact_def went quite smoothly. We measured the CPU
time consumption ¢, o4 for FIST fp_std , ¢, moeq for FIST fp_mod and tcecr_des
for FIST _exact_def in milliseconds, and computed the factors

t t
F — exact_def and F — evact_def .
std trp_std mod tfp_mod

The results for the different input classes are shown in Table 6.5 — Table
6.8. Since the CPU time consumption of the floating-point versions of FIST
is less than 10 ms for polygons with 8 to 1024 segments and we measure
the CPU time consumption accurate to 10 ms, we only present results for
polygons with at least 2048 segments. Finally, Table 6.9 shows the CPU time
consumption for FIST exact_def for all input classes.

As expected, the difference between the CPU time consumption of the
standard and the modified floating-point version of FIST is negligible and
within the inaccuracy in measurement, because the block sizes used in FIST

90

U3 U3 U3

(a) (b) (c)

Figure 6.6: The input polygon (a); the triangulation computed with the
floating-point version of FIST (b) and the triangulation computed with the
exact version of FIST (c).

are large enough such that there is no need to reallocate memory repeatedly.
Looking at Table 6.5 — Table 6.8, one can observe a slightly super-linear CPU
time consumption for the floating-point version of FIST; see also [21]. The
exact version of FIST, on the other hand, exhibits an almost linear running
time. A possible explanation for this behavior is that FIST uses prepro-
cessing that involves sorting, thus yielding a worst-case time complexity of
O(nlogn) for preprocessing. Due to geometric hashing, a linear average-
case time complexity can be expected for the ear clipping process. Since the
majority of exact calculations is executed in the course of the ear clipping
process, most of the CPU time of the exact version of FIST is spent there and
the time consumption for preprocessing is negligible. Thus, the CPU time
consumption for the exact version of FIST is dominated by the ear clipping
process and since it is growing almost linear, the ear clipping process seems
to have linear time consumption in practice.

Finally, we wanted to see if there is a difference in the triangulations
computed by the floating-point version and the exact version of FIST. We
used a convex polygon with 5 vertices which was created by Martin Held
and is depicted in Figure 6.6 (a). The z-coordinate of vertex vs is chosen
such that the vertices vy, v3 and vy are considered collinear by the floating-
point version of FIST. For clarity, we shifted vz to the right in Figure 6.6.
The triangulations computed by FIST fp_std and FIST exact_def are shown
in Figure 6.6 (b) and Figure 6.6 (c) respectively. While the floating-point
version of FIST cannot distinguish the z-coordinates of the vertices vy, v
and v, and considers them as collinear, the exact version of FIST is able

91

‘ Number of segments ‘ Tfp_std ‘ Fo ‘ T fp_mod ‘ Frod ‘

2048 81 321 10| 257
4096 171 302 19| 271
8192 45 | 231 46 | 226
16384 119 | 178 118 | 180
32768 274 | 156 272 | 157

Table 6.5: Random: CPU time consumption in milliseconds of FIST _fp_std
and FIST _fp_mod and the corresponding rounded factors Fy;q and Fjoq4.

‘ Number of segments ‘ T fp_std ‘ Fo ‘ T fp_mod ‘ Frod ‘

2048 10 | 302 12| 252
4096 22| 277 20| 304
8192 23 | 232 o4 | 227
16384 136 | 182 135 | 183
32768 316 | 159 306 | 164

Table 6.6: Smooth: CPU time consumption in milliseconds of FIST _fp_std
and FIST _fp_mod and the corresponding rounded factors Fy;; and F},,q.

to distinguish the x-coordinates of v and v, from vz and therefor clips the
triangle A(vg, vs, vy).

Test Results for FIST _exact_infty

As already mentioned above, we experienced some major problems when
we tried to process 2D data sets if the Core-library represents numerical
values exactly, i.e., if the global variable deflnputDigits is set to infinity.
We observed that FIST has to resort to its multi-level recovery process and

‘ Number of segments ‘ Lrp_std ‘ Fyq4 ‘ L fp_mod ‘ Frod ‘

2048 11 | 309 11 | 309
4096 22 | 315 23| 302
8192 53 | 269 56 | 254
16384 138 | 208 138 | 208
32768 330 | 176 331 | 175

Table 6.7: Smoother: CPU time consumption in milliseconds of FIST _fp_std
and FIST _fp_mod and the corresponding rounded factors Fy;; and F},q.

92

‘ Number of segments ‘ T fp_std ‘ Fo ‘ T fp_mod ‘ Frod ‘

2048 7| 363 8| 318
4096 18 | 285 18 | 285
8192 41 | 253 40 | 259

Table 6.8: Thinned: CPU time consumption in milliseconds of FIST fp_std
and FIST _fp_mod and the corresponding rounded factors Fy;q and Fjoq4.

Number of segments ‘ random ‘ smooth ‘ smoother ‘ thinned ‘

8 26 - - 9
16 19 63 - 19
32 37 72 - 39
64 73 88 93 76
128 152 177 213 148
256 312 365 402 308
512 619 730 821 623
1024 1286 1482 1667 1253
2048 2567 3021 3396 2542
4096 5140 6084 6939 5125
8192 10412 | 12284 14239 10376
16384 21219 | 24720 28692 -
32768 42649 | 50159 57951 -

Table 6.9: The CPU time consumption in milliseconds of FIST _exact_def for

all input classes.

93

| x | y |
-588.00000000000000 | -576.02699999999999820
-1.3000000000000000 | -1.122000000000000000
-26.875000000000000 | 11.799545454545454545
-30.625000000000000 | 0.0000000000000000000
-30.625000000000000 | -23.599090909090909091
-48.966666666666675 | -37.190561224489783065
-49.966666666666675 | -41.067602040816311862

Table 6.10: Some values for z and y for which the comparison x > y goes
wrong.

even enters desperate mode although the polygons are simple. Furthermore,
the triangulations computed are incorrect. Finally, we found some test data
where FIST terminates abnormally since an assertion fails. We tried to
understand the cause of these failures and found out that FIST enters an if
statement of the form

if (z >y),

where x is a value of the original input data and y is a value computed, that it
should not have. We printed the numerical values for x and y and found out
that the comparison x > y goes wrong. This could be observed for a variety
of different values like the ones in Table 6.10. It has to be mentioned, though,
that not every comparison involving a negative number goes wrong. Thus,
the Core-library does not simply ignore negative signs as it might appear at
first glance.

6.3.2 Three-Dimensional Test Data

Unfortunately, we were not able to process any but the simplest 3D data sets
with any of the Core-based versions of FIST. We tried some of the small 3D
test samples with about 8 — 50 vertices and FIST did not terminate although
we ran some of the tests over night.

Looking at the problem with a debugger, we found out that FIST does
not return from a gsort call. This is a really strange phenomenon since
gsort worked perfectly for the 2D data sets. Furthermore, the processing
of 3D data is reduced to the 2D case by projecting and triangulating each
face of a polyhedron. Thus, the only difference between the 2D and the
3D case is an additional for loop for iterating through all the faces of the
polyhedron and the projection of each face in order to get 2D coordinates.
We also wrote the projected points to a file, which we used as input for a

94

stand-alone program which sorted the data without any problem. Then we
replaced gsort with a self-coded bubble sort algorithm. Unfortunately, it
did not make a difference, since the bubble sort did not terminate. We used
a debugger again and stepped through the program. The debugger finally
stopped at a source file of the Core-library. Thus, we were not able to solve
the problem.

6.4 Conclusion

We wanted to evaluate the practical value of exact arithmetic in computa-
tional geometry by linking the Core-library with the triangulation algorithm
FIST. We have had some trouble with the Core-library from the beginning.
Thus, we sent several bug reports to the developers of the Core-library and
received a number of new releases of the library. We ended up with Ver-
sion 1.4, release date 15.03.2002. The experience with this release of the
Core-library can be summarized as follows:

e We did not manage to compile the Core-library and the example pro-
grams on Sun workstations with the g++ or SunPro cc compiler. Pre-
vious versions of the Core-library could be successfully compiled on Sun
workstations. Building the library on Linux boxes works but there are
a lot of warnings.

e Operating with infinite precision, the exact version of FIST computes
incorrect triangulations, resorts to the multi-level recovery process and
desperate mode although the polygons are simple, and does not pass an
assertion due to the comparison bug described on Page 94 for several
2D input data sets.

e 2D data sets seem to be processed correctly if we use the exact version
of FIST with default precision.

e As described in Subsection 6.3.2, the exact version of FIST hangs when-
ever 3D data sets have to be processed with both default and infinite
precision.

We spent a long time debugging FIST in order to find any bugs on our
end but without success. The floating-point version of FIST works perfectly
even if we use the modified memory management routines which are also
used in the exact version of FIST. As a last resort, we checked the floating-
point versions of FIST as well as the exact versions of FIST with a memory
debugger. While the memory debugger did not report any problems for both

95

floating-point versions, it reported tons of errors, e.g., wild pointers and
memory leaks within the Core-library for the exact versions of FIST.

Based on this experience and the problems we observed with 3D and
2D data, especially the comparison bug mentioned above, we assume that
there are memory problems within the Core-library. Since we experienced
problems whenever values computed are involved, e.g., the problem with
gsort whenever original input values are projected, and the comparison of
an input value with a value computed, while everything seems to be fine if
input values are used, it seems that something goes wrong when arithmetic
operations are performed.

Due to all the problems we have come across using the Core-library it is
difficult to rate ease of use, performance or the practical value of the library.
Nevertheless we assume that the bugs we expect within the Core-library will
be removed some day, and thus we also want to say a few words on our
experience regarding ease of use and performance. From our point of view,
the Core-library is easy to use. Of course, it is a substantial amount of work
to link an existing program with the Core-library, especially if it is written
in C. For C++ programs, there is no need to change memory management
and the I/O-routines which were two major issues in our work to link FIST
with the Core-library. Due to the promotion and demotion mechanism, a
software developer is free to use the standard C/C++ data types he is used
to. Therefor, it is easy to implement a new Core-based program from scratch
if it is implemented according to the guidelines described in Section 6.2.

Regarding the performance, we can only present results for the Core-based
version of FIST with default precision due to the problems with infinite pre-
cision described above. Naturally, there is a price to pay if the calculations
in a program are executed with exact arithmetic. Thus, the exact version of
FIST is 150 — 320 times slower than the floating-point version of FIST for our
input data sets; see Table 6.5 — Table 6.8. Furthermore, an additional slow-
down can be expected if a Core-based version of FIST with infinite precision
is used. Thus, the practical value for industrial-strength applications is ques-
tionable at present. Nevertheless, faster computer systems, better algorithms
or even hardware support for exact calculations might improve the situation
in the future and exact arithmetic might be an alternative to floating-point
arithmetic in future applications. Until that day, a software developer still
has to struggle with all the limitations of floating-point arithmetic if he/she
wants to develop industrial-strength applications.

Originally we also wanted to link the Core-library with VRONI [22]: an
algorithm for computing the Voronoi diagram of a sets of points and line-
segments designed by Martin Held. Since the computation of a Voronoi dia-
gram is based on predicates and constructors, rounding the results computed

96

back to a finite representation without introducing errors is an additional
issue with VRONI that does not have to be considered with FIST. Unfortu-
nately, we were forced to abandon those plans because of the problems we
experienced with the Core-based version of FIST.

97

Appendix A

Sample Polygons for the Four
Input Classes

The polygons shown in Figure A.1 — Figure A.4 depict samples of the poly-
gons of our four input classes of test polygons. The figures were provided by
Martin Held.

98

z
7
/ -
/ _
/ —
/

/ // -
2 —
////

-
~

~
\ ~
\

\

~

Figure A.1: Sample 64-gon for the "random” class.

99

Figure A.3: Sample 64-gon for the ”smoother” class.

100

Figure A.4: Sample 64-gon for the ”thinned” class.

101

Bibliography

[1]
2]
3]
[4]

[5]

[10]

Homepage of the CGAL project. http://www.cgal.org.
Homepage of the Core-library. http://www.cs.nyu.edu/exact/core.
Homepage of the LEDA project. http://www.algorithmic-solutions.com.

[EEE 1997. IEEE Standard 754-1985 for Binary Floating-Point Arith-
metic. SIGPLAN Notices, 2(22):9 — 25, 1987.

T. Auer and M. Held. Heuristics for the Generation of Random Poly-
gons. In Proc. 8th Canadian Conference on Computational Geometry,
pages 38 — 44, Ottawa, Canada, 1996.

M. O. Benouramer, P. Jaillon, D. Michelucci, and J. M. Moreau. A
"Lazy” Solution to Imprecision in Computational Geometry. In Proc.
5th Canadian Conference on Computational Geometry, pages 73 — 78,
Waterloo, Canada, 1993.

H. Bronnimann, C. Burnikel, and S. Pion. Interval Arithmetic Yields
Efficient Dynamic Filters for Computational Geometry. In Proc. 14th
Annual ACM Symposium on Computational Geometry, pages 165-174,
1998.

C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Efficient Exact
Geometric Computation Made Easy. In Proc. 15th ACM Symposium on
Computational Geometry, pages 341 — 450, Miami Beach, Florida, 1999.

C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A Strong and
Easily Computable Seperation Bound for Arithmetic Expressions In-
volving Radicals. Algorithmica, 27:87 — 99, 2000.

C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA Class Real Num-
ber. Technical Report MPI-1-96-1-001, Max-Planck Institute for Com-
puter Science, 1996.

102

[11]

[12]

[13]

[14]

[15]

[20]

[21]

22]

B. M. Bush. The Perils of Floating-Point. Lahey Computer Systems
Inc., Incline Village, NV 89450, USA.
http://www.lahey.com/float.htm.

T. K. Dey, K. Sugihara, and C. L. Bajaj. Delaunay Triangulations in
Three Dimensions with Finite Precision Arithmetic. Computer Aided
Design, 9:457 — 470, 1992.

H. Edelsbrunner and E. P. Miicke. Simulation of Simplicity: A Tech-
nique to Cope with Degenerate Cases in Geometric Algorithms. ACM
Trans. Graph., 9(1):66-104, 1990.

A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schonherr. The
CGAL Kernel: A Basis for Geometric Computation. In Proceedings
Workshop on Applied Computational Geometry, Philadelphia, Pennsyl-
vania, May 1996.

A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schénherr. On
the Design of CGAL, the Computational Geometry Algorithms Library.
Technical Report MPI-1-98-1-007, Max-Planck Institute for Computer
Science, 1998.

S. Fortune. Stable Maintenance of Point Set Triangulations in Two
Dimensions. In Proc. 30th Annual IEEE Symposium on Foundations of
Computer Science, pages 494 — 505, 1989.

S. Fortune. Robustness Issues in Geometric Algorithms. In Proc. 1st
ACM Workshop on Applied Computational Geometry, pages 20 — 23,
Philadelphia, PA, USA, 1996.

S. Fortune. Introduction. Algorithmica, 27:1 — 4, 2000.

S. Fortune and C. J. Van Wyk. Efficient Exact Arithmetic for Compu-
tational Geometry. In Proc. 9th Annual ACM Symposium on Computa-
tional Geometry, pages 163-172, May 1993.

D. Goldberg. What Every Computer Scientist Should Know About
Floating-Point Arithmetic. ACM Computing Surveys, 23(1):5—48, 1991.

M. Held. FIST: Fast Industrial-Strength Triangulation of Polygons.
Algorithmica, 30(4):563 — 596, 2001.

M. Held. VRONI: An Engineering Approach to the Reliable and Effi-
cient Computation of Voronoi Diagrams of Points and Line Segments.
Comput. Geom. Theory Appl., 18:95-123, 2001.

103

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

N. J. Highham. Accuracy and Stability of Numerical Algorithms. STAM,
1996. ISBN 0-89871-335-2.

C. M. Hoffmann. The Problems of Accuracy and Robustness in Geo-
metric Computation. IEEE Computer, 22(3):31 — 41, 1989.

O. Hommes. MathFP: The Basics.
http://home.rochester.rr.com/ohommes/MathFP /mathfp_bg.html.

V. Karamcheti, C. Li, I. Pechtchanski, and C. K. Yap. A Core Library
for Robust Numeric and Geometric Computation. In Proc. 15th Annual
Symposium on Computational Geometry, volume 15, 1999.

J. Keyser. Robustness Issues in Computational Geometry. Comp
234 Final Paper, A&M University, Texas, USA, Spring 1997.
http://citeseer.nj.nec.com/247595.html.

D. Salesin L. Guibas and J. Stolfi. Epsilon Geometry: Building Robust
Algorithms from Imprecise Computations. In Proc. 5th ACM Confer-
ence on Computational Geometry, pages 208 — 217, 1989.

C. Li. Ezact Geometric Computation: Theory and Applications. PhD
thesis, Dept. Comp. Sci, NYU, NYU, New York, NY 10012, USA, Jan-
uary 2001.

C. Li and C. K. Yap. Core Library Tutorial. NYU, New York, NY
10012, USA, January 1999. This tutorial is contained in the Core-library
distribution version 1.4.

C. Li and C. K. Yap. A New Constructive Root Bound for Algebraic
Expressions. In Proc. 12th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA °01), pages 496-505, 2001.

J. C. Lowery. CSC 110 — Computer Mathematics. Mississippi College,
Clinton, Mississippi, USA.
http://sandbox.mc.edu/bennet/cs110/textbook.

K. Mehlhorn and S. Naher. Algorithm Design and Software Libraries:
Recent Developments in the LEDA Project. In Algorithms, Software,

Architectures, Information Processing 92, volume 1, pages 493-505, Am-
sterdam, 1992. Elsevier Science Publishers B.V. North-Holland.

K. Mehlhorn and S. Naher. LEDA: A Platform for Combinatorial and
Geometric Computing. Commun. ACM, 38(1):96-102, 1995.

104

[35]

[36]

[37]

38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

D. Michelucci. The Robustness Issue.
Internal report, Laboratoire d’Image de Synthése de St. Etienne, France.
http://www.emse.fr micheluc/english /michelucci.html.

K. Ouchi. Real/Expr: Implementation of an Exact Computation Pack-
age. Master’s thesis, Dept. Comp. Sci, NYU, NYU, New York, NY
10012, USA, 1997.

F. P. Preparata and M. I. Shamos. Computational Geometry - An In-
troduction. Springer-Verlag, 1990. ISBN 3-540-96131-3.

W. Schiffmann and R. Schmitz. Technische Informatik 2: Grundlagen
der Computertechnik. Springer-Verlag, 1994. ISBN 3-540-57432-8.

S. Schirra. Designing a Computational Geometry Algorithms Library. In
Lecture Notes for Advanced School on Algorithmic Foundations of Geo-
graphic Information Systems, pages 1 — 9. CISM, Udine, Italy, Septem-
ber 1996.

S. Schirra. Robustness and Precision Issues in Geometric Computation.
In Handbook of Computational Geometry, chapter 14, pages 597-632.
Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

J. R. Shewchuk. Lecture Notes on Geometric Robustness. University of
California, Berkeley, USA.
http://www.cs.berkeley.edu /4rs/meshpapers/robnotes.ps.gz.

K. Sugihara and H. Inagaki. Why is the 3D Delaunay Triangulation
Difficult to Construct? Information Processing Letters, 54:275 — 280,
1995.

K. Sugihara and M. Iri. Geometric Algorithms in Finite-Precision Arith-
metic. Technical Report 88-10, Math. Eng. and Physics Dept, U. of
Tokyo, Japan, Sept 1988.

K. Sugihara and M. Iri. Construction of the Voronoi Diagram for ”One
Million” Generators in Single-Precision Arithmetic. Proceedings of the
IEEE, 80(9):1471 — 1484, 1992,

K. Sugihara, M. Iri, H. Inagaki, and T. Imai. Topology-Oriented Imple-
mentation - An Approach to Robust Geometric Algorithms. Algorith-
mica, 27:5 — 20, 2000.

C. K. Yap. Towards Exact Geometric Computation. In Fifth Canadian
Conference on Computational Geometry, pages 405 — 419, August 1993.

105

[47] C. K. Yap. A New Number Core for Robust Numerical and Geometric
Libraries, October 1998. Abstract of Invited Talk at 3rd CGC Workshop
on Computational Geometry, Brown University, October 11-12, 1998.

[48] C. K. Yap and T. Dubé. A Basis for Implementing Exact Geometric
Algorithms, September 1993. Extended Abstract.

[49] C. K. Yap and T. Dubé. The Exact Computation Paradigm. In Com-
puting in Fuclidean Geometry. World Scientific Press, 1994.

[50] C. R. Yates. Fixed-Point Arithmetic: An Introduction.
http://personal.mia.bellsouth.net/lig/y/a/yatesc/fp.pdf.

106

