
A Pra
ti
al Study and Evaluation of Libraries

for Exa
t Geometri
 Computing

Diplomarbeit

zur Erlangung des Diplomingenieurgrades an der

Naturwissens
haftli
hen Fakult�at der Universit�at Salzburg

eingerei
ht von

Alexander S
hneider

Salzburg, 14. Juni 2002

A
knowledgements

First of all I want to thank my advisor Martin Held for his support during

the development of the Core-based version of FIST. Furthermore, his
om-

ments helped to improve the te
hni
al aspe
ts of this thesis as well as its

presentation. I want to thank the developer team of the Core-library, es-

pe
ially Chee Yap and Zilin Du who provided us with the newest versions

of the Core-library and tried to solve the problems we had with the library.

Thanks also go to Wolfram Stering, who gave me a

ess to the Insure++

memory debugger and who was helpful whenever I had trouble with the li-

ense server. I also want to thank my brother Peter S
hneider for his o�er

to use his
omputer hardware, whi
h is mu
h faster than my
urrent system,

as the test platform for all the programs presented in this thesis. Last but

not least I want to thank my parents who always supported me during my

studies in
omputer s
ien
e.

Salzburg, June 2002 Alexander S
hneider

Contents

1 Prefa
e 1

1.1 Stru
ture of this Thesis . 2

1.2 Platform Spe
i�
ations . 2

2 Floating-Point Arithmeti
 4

2.1 Basi
s of Number Representation 4

2.1.1 Fixed-Point Representation 5

2.1.2 Signi�
ant Digits . 7

2.1.3 Floating-Point Representation 8

2.2 Sour
es of Errors . 11

2.2.1 Representation Problems 12

2.2.2 Data Un
ertainty . 12

2.2.3 Roundo� Errors . 12

2.2.4 Over
ows and Under
ows 13

2.2.5 Problems Due to Floating-Point Errors 13

2.3 A Few Words on Error Analysis 16

2.3.1 Introdu
tion to Error Analysis 16

2.3.2 Forward Error Analysis 17

2.3.3 Ba
kward Error Analysis 18

2.4 The IEEE-754 Standard . 19

2.4.1 Storage Format . 20

2.4.2 Operations . 22

3 Non-robustness and the Problems That Arise in Geometri

Algorithms 25

3.1 Introdu
tion . 25

3.1.1 Why are Geometri
 Algorithms so DiÆ
ult to Implement 26

3.1.2 Predi
ates and Constru
tors 28

3.2 Non-robustness due to Floating-Point

Arithmeti
 . 29

3.2.1 Epsilon Tweaking . 29

3.2.2 Interval Arithmeti
 . 31

i

3.2.3 Careful Programming 32

3.2.4 Designing Robust Geometri
 Primitives 32

3.2.5 The Topology-Oriented Approa
h 33

3.3 Exa
t Arithmeti
 . 37

3.3.1 Big Number Pa
kages 37

3.3.2 Exa
t Arithmeti
 in Geometri
 Algorithms 38

3.4 Degenera
ies . 40

3.4.1 Handling Degenera
y Manually 41

3.4.2 A General Method for Handling Degenera
y 41

4 Exa
t Geometri
 Computation 44

4.1 What is Exa
t Geometri
 Computation 44

4.2 Basi
 Con
epts of EGC . 45

4.2.1 Root Separation Bounds and the Sign Determination

Pro
ess . 46

4.2.2 Expressions . 47

4.2.3 BigFloat as an Example for an Approximate Represen-

tation of Numeri
al Values 48

4.3 A

elerating EGC . 49

4.3.1 Floating-Point Filter 49

4.3.2 Lazy Evaluation . 50

4.3.3 The Pre
ision-Driven Approa
h 51

4.4 EGC Libraries . 52

4.4.1 Computational Geometry Algorithms Library { CGAL 53

4.4.2 Library of EÆ
ient Data Types and Algorithms { LEDA 56

4.4.3 Core-Library . 58

5 Core-Library 60

5.1 Introdu
tion to the Core-Library 60

5.2 Internals of the Core-Library 62

5.2.1 Supported Data Types 62

5.2.2 Promotion and Demotion of Data Types 63

5.2.3 Classes Provided by the Core-Library 64

5.2.4 How Level II Works . 67

5.2.5 How Level III Works 67

5.2.6 Sour
es of Overhead and Optimization 68

5.3 Using The Core-Library . 69

5.3.1 Building Programs That Use the Core-Library 69

5.3.2 Converting Existing Programs 70

5.3.3 An Example of a Simple Core-Based Program 72

ii

6 Linking FIST with the Core-Library 74

6.1 A Survey of FIST . 74

6.1.1 The Ear Clipping Algorithm 74

6.1.2 Extending the Basi
 Ear Clipping Algorithm 76

6.1.3 Ensuring Robustness 76

6.2 Making FIST Compliant with the Core-Library 80

6.2.1 Adapting the I/O-Routines of FIST 81

6.2.2 Dynami
 Memory Allo
ation 83

6.2.3 Constant Literals . 86

6.2.4 Setting all Epsilons to Zero 87

6.2.5 Mis
ellaneous Adaptions 87

6.3 Experimental Results . 88

6.3.1 Two-Dimensional Test Data 89

6.3.2 Three-Dimensional Test Data 94

6.4 Con
lusion . 95

A Sample Polygons for the Four Input Classes 98

iii

Chapter 1

Prefa
e

Computational Geometry is
on
erned with the study of geometri
 algo-

rithms { geometri
 problems are analyzed, algorithms to solve these prob-

lems are designed and their
omplexities are determined. While resear
hers

on
entrated on the theoreti
al foundations of geometri
 algorithms, i.e., on

�nding an algorithm for a geometri
 problem and analyzing its
omplex-

ity, the robust implementation of those theoreti
ally
orre
t algorithms has

gained more and more attention only in re
ent years. It turned out that, in

general, the straightforward implementation of a geometri
 algorithm is not

feasible. Although the algorithm is
orre
t in theory, it may fail in pra
ti
e.

The reason for this is twofold:

� In theory a geometri
 algorithm is
onstru
ted assuming real numbers

in the mathemati
al sense.

� In order to avoid unne
essary
omplexity in the algorithm des
ription,

spe
ial
ases are ex
luded, i.e., only input instan
es in a so-
alled "gen-

eral position" are
onsidered.

Unfortunately, neither of these assumptions hold in pra
ti
e. In general,

geometri
 algorithms are implemented using
oating-point arithmeti
. Thus,

the majority of numeri
al quantities
annot be represented exa
tly and are

therefor only approximations. Furthermore, spe
ial
ases are sure to o

ur

in real world data. As a
onsequen
e, a straightforward implementation of

a theoreti
ally
orre
t algorithm yields a
omputer program that
rashes or,

even worse,
omputes in
orre
t results.

The goal of this thesis is to evaluate the Core-library { a library for

exa
t geometri

omputation. Exa
t geometri

omputation is an approa
h

to over
ome robustness problems in geometri
 algorithms and is based on

exa
t arithmeti
. Up till now, exa
t arithmeti
 is not widely a

epted by

pra
titioners in the �eld of
omputational geometry. The reason for this

1

is that there is no suitable infrastru
ture for exa
t arithmeti
, i.e., tools

and libraries that support the development of algorithms based on exa
t

arithmeti
. Furthermore, the la
k of eÆ
ien
y is another argument against

it. The developers of the Core-library
laim that their library is easy to

use and reasonably fast to be an alternative to
oating-point arithmeti
.

We want to evaluate those
laims. Thus, we linked the Core-library with

FIST [21℄ { a triangulation algorithm by Martin Held whi
h is based on

oating-point arithmeti
, thoroughly tested and in
orporated into several

industrial graphi
s pa
kages, su
h as an implementation for Java 3D by Sun

Mi
rosystems. It has to be mentioned, though, that exa
t arithmeti
 does not

solve any problems that arise due to the assumption of a "general position".

Even with exa
t arithmeti
 the software developer has to handle spe
ial

ases or, alternatively, use a general approa
h based on perturbation theory

to eliminate degenera
y.

1.1 Stru
ture of this Thesis

In Chapter 2 we dis
uss number representation on
omputer systems. We

fo
us on the
oating-point representation whi
h is
ommonly used in pra
-

ti
e and is the reason for the majority of robustness problems in the �eld of

omputational geometry. Robustness problems in geometri
 algorithms and

approa
hes to avoid them are the topi
 of Chapter 3. The exa
t geometri

omputation approa
h and libraries that implement exa
t geometri

ompu-

tation te
hniques are dis
ussed in Chapter 4. The Core-library is the topi

of Chapter 5. We dis
uss basi

on
epts of the library and provide instru
-

tions on how to use the library in own software proje
ts. Finally, Chapter

6 provides a survey of the triangulation algorithm FIST and des
ribes the

hanges we made to FIST in order to make it
ompliant with the Core-library.

Experimental results are also presented in this
hapter.

1.2 Platform Spe
i�
ations

The spe
i�
ations of the platform we used for all the tests in thesis are as

follows:

CPU: AMD Athlon, 1400 MHz,

RAM: 256MB DDR-RAM,

Operating System: SuSE Linux 7.3,

Compiler: g++ 2.95.3,

2

Debugger: gdb 5.0

Memory Debugger: Parasoft Insure++ 6.0

3

Chapter 2

Floating-Point Arithmeti

In this
hapter we take a
loser look at the way numbers
an be represented

on a
omputer system. In the next se
tion we mention basi
s of �xed-point

and
oating-point representation of real numbers. Furthermore, we explain

important
on
epts related to these two number representations. The fo
us

of this
hapter will lie on the
oating-point representation sin
e it is more

exible and therefor unavoidable if we want to implement geometri
 algo-

rithms. An important step towards appli
ability of
oating-point numbers

on
omputer systems was its standardization by the IEEE. This standard is

the topi
 of Se
tion 2.4 and
on
ludes this
hapter. Sour
es of errors in nu-

meri
al
omputations due to the use of
oating-point arithmeti
 and a short

introdu
tion to error analysis are the topi
s of Se
tion 2.2 and 2.3

2.1 Basi
s of Number Representation

Using
omputer systems for numeri
al
omputations makes it ne
essary to

�nd a way to represent numbers. For
omplex
omputations the use of inte-

ger arithmeti
 does not suÆ
e. This is espe
ially true for many appli
ations

in the �eld of
omputational geometry. Therefor, a way to represent real

numbers is essential. The major problem is that it is impossible to repre-

sent in�nitely many real numbers with a
omputer system that only o�ers

a �nite number of bits for number representation. The fa
t that we
an

only represent a subset of real numbers introdu
es errors due to rounding

and trun
ation in numeri
al
omputations. While those errors may be in-

no
uous in some appli
ations they may be harmful in other appli
ations and

even
ause those appli
ations to fail. Geometri
 algorithms are sus
eptible

to numeri
al errors and software developers have to undertake great e�orts

to ensure robustness of their appli
ations. As mentioned above there are

two important ways real numbers
an be represented on a
omputer sys-

4

tem { �xed-point representation and
oating-point representation. We will

now look at the �xed-point representation in some detail and then fo
us on

the
oating-point representation due to its importan
e for today's
omputer

systems.

2.1.1 Fixed-Point Representation

Suppose we have n bits to represent a real number and we de
ide to pla
e

the radix point in a way su
h that we use m bits for the fra
tional part and

n�m for the integer part of the number. Sin
e the radix point is �xed in this

position

1

we speak of a �xed-point number representation. This means that

every number we deal with has to be represented a

ording to this
onvention

even if there is no fra
tional part. As an example, let us assume that we have

8 bits to represent our number. We de
ide that we use 3 bits for the fra
tional

part and 5 bits for the integer part of the number. The number we want to

represent is 2 in de
imal notation. The binary �xed-point representation

would be 00010:000. In order to get the de
imal value of a binary number in

�xed-point representation we multiply ea
h digit of the integer part with a

power of 2 a

ording to its position (in
reasing from the right to the left) and

sum up the results. The fra
tional part is
omputed by multiplying ea
h digit

to the right of the radix point with a negative power of 2 again a

ording to

its position (de
reasing from the left to the right) and subsequent addition

of the results. Re
all our example from above. We have 8 bits to represent

a real number. We
hoose to take 3 bits for the fra
tional part so we have

5 bits left for the integer part of the number. With d

i

2 f0; 1g, the de
imal

value of the number d

4

d

3

d

2

d

1

d

0

:d

�1

d

�2

d

�3

would be

d

4

� 2

4

+ d

3

� 2

3

+ d

2

� 2

2

+ d

1

� 2

1

+ d

0

� 2

0

+ d

�1

� 2

�1

+ d

�2

� 2

�2

+ d

�3

� 2

�3

:

One
hara
teristi
 of �xed-point numbers is that they are equally distributed

over the representable range. This means that the absolute distan
e between

two adja
ent numbers,
alled the resolution

2

, is
onstant. The resolution

depends on the number of bits used for the fra
tional part of a real number.

A

ording to [38℄, the resolution r is given by

r = 2

�m

,

where m is the number of bits used for the fra
tional part of the number

represented. The range of representable �xed-point numbers using n bits for

1

The position of the radix point is arbitrary and depends on the range and pre
ision

we want to a
hieve.

2

The resolution of a �xed-point number distribution is often de�ned as the smallest

non-zero representable magnitude [50℄.

5

number representation and m bits for the fra
tional part is, a

ording to [38℄,

given by

[0; 2

n�m

� r),

where r is the resolution of the number distribution. There is an interest-

ing
onne
tion between the representable range of numbers and the resolu-

tion. If no bits are used for the fra
tional part, meaning m = 0, then the

representable range has rea
hed its maximum, while the resolution r = 1

and is therefor very
oarse. As m grows the range of representable num-

bers de
reases while the resolution r in
reases. An advantage of �xed-point

numbers is that the basi
 arithmeti
 operations
an be
arried out using in-

teger arithmeti
. Sin
e �xed-point
al
ulations were signi�
antly faster than

oating-point
al
ulations on older
omputer systems this number represen-

tation played an important role in
omputer graphi
s espe
ially for inter-

a
tive graphi
s on low-
ost
omputer systems, e.g.,
onsoles for
omputer

games. This situation has
hanged dramati
ally in re
ent years. Nowa-

days even
onventional personal
omputers have high-performan
e hardware

oating-point units and modern graphi
s hardware supports the CPU in a

lot of
al
ulations. Therefor, �xed-point arithmeti
 has lost its importan
e

in modern graphi
s appli
ations. There is also a major drawba
k in the use

of �xed-point arithmeti
. Sin
e the radix point is �xed, problems will arise

if the numbers we intend to represent vary a lot in their magnitude. As an

example let us use the �xed-point representation from above. The three bits

we use for the fra
tional part are not enough to represent the de
imal number

1

16

. The binary representation of

1

16

equals

0.0001,

so we need an additional bit for the fra
tional part of the number. In our 5:3

�xed-point number representation we would represent

1

16

as

00000.000,

whi
h is
learly wrong. The same is true for large numbers. The maximum

number we
an represent with �ve bits is 31. So we run into similar problems

if we wish to represent the number 32. As we
an see from these examples we

need some information on the bounds of the numbers we expe
t to represent

and then de
ide how many bits to use for the number representation. Finally,

a de
ision on how to divide those bits for the integer and the fra
tional

part has to be made. If we do not take this de
ision
arefully we would

su�er from heavy trun
ation errors. This ends our insight on �xed number

representation. The reader is referred to [38, 50, 25℄ for more information

on the �xed-point representation, for details on how the basi
 arithmeti

operations are
arried out, and on the representation of negative numbers

using the one's and two's
ompliment.

6

2.1.2 Signi�
ant Digits

Before we get to the
oating-point representation of real numbers we want

to explain the notion of signi�
ant digits. As we saw in Subse
tion 2.1.1, we

have only a �nite number of bits to represent numbers on a
omputer system.

As a
onsequen
e we may be for
ed to throw away digits if the number we

want to represent has more digits than we
an store. Consider the number

1351245 that has seven digits in de
imal notation. Assuming we
an only

use �ve digits per number whi
h digits should we throw away? First of all we

have to remember that the original number had seven digits instead of just

�ve. In other words the original number is hundred times bigger in magnitude

than the number we represent using only �ve digits. So we need to multiply

the �ve digit number by one hundred

3

if we want to re
onstru
t the original

number. Furthermore, it should be noted that this re
onstru
tion a
tually

leads to an approximation of the original number sin
e we are not able to

re
onstru
t the two digits that have been lost. Clearly this approximation

should be as
lose as possible to the original number. Therefor, we
hoose

to drop the last two digits of 1351245 and store the number

4

13512. As a

se
ond example
onsider the number 0023478. Trying to store this number

using �ve digits leads to 23478. No information is lost sin
e the two leading

zeros are redundant. Apparently the leading zeros are not signi�
ant. All in

all we have four rules for determining the signi�
ant digits of a given number,

see also [32℄:

1. Non-zero digits are always signi�
ant,

2. The digit zero is signi�
ant if it lies between other signi�
ant digits,

3. The digit zero is signi�
ant if it follows an embedded radix point and

other signi�
ant digits,

4. Zeros that pre
ede all other non-zero digits are not signi�
ant.

Zero digits that follow an embedded radix point and other signi�
ant digits

are signi�
ant as stated in Rule 3 be
ause they tell us something about

the a

ura
y of the number [32℄, e.g., the number 6:20 tells us that it was

measured to the nearest hundredth. On
e we have determined the signi�
ant

digits a

ording to these rules, we are able to de�ne the terms most signi�
ant

digit and least signi�
ant digit. The signi�
an
e of a digit
orresponds to

the way we write down numbers on a pie
e of paper: the left most digit of

the signi�
ant digits determined is
alled the most signi�
ant digit and the

3

This
orresponds to the exponent of a
oating-point number.

4

Remember that we also need to store the multipli
ation fa
tor 100 to re
onstru
t an

approximation to the original number.

7

other digits follow in des
ending order of signi�
an
e from left to right. The

rightmost digit is therefor
alled the least signi�
ant digit.

2.1.3 Floating-Point Representation

A major drawba
k in the use of �xed-point arithmeti
 is its la
k of
exibility

if the numbers we need to represent vary a lot in their magnitude. Remember

the problems we had before when we tried to represent the de
imal number

32 with our 5:3 binary �xed-point representation. The result was 00000:000,

sin
e we did not have enough bits to represent the integer part of the number.

On the other hand there are three bits for the fra
tional part of the �xed-

point number that are not needed to represent the integer 32. While a

fra
tional part may be needed for the representation of other numbers it is

useless in the
ase of the integer 32 and the bits used for the fra
tional part

are wasted. Problems like these
an be softened but, as we will see later,

not
ompletely avoided using the
oating-point representation. Nevertheless

there is no doubt that the
oating-point representation is more
exible than

the �xed-point representation in the sense that the radix point is not �xed

in one position but is
oating around depending on the magnitude of the

number represented. A
oating-point number x is of the form:

x = �m� �

e

, where

m is
alled the signi�
and

5

and represents the signi�
ant digits of the real

number we want to represent. The signi�
and has a
ertain number of

digits p,
alled the pre
ision.

� is the base

6

and depends on the number system we use. Commonly used

bases are 2 (dual system), 10 (de
imal system), 8 (o
tal system) and

16 (hexade
imal system).

e is
alled the exponent and
orresponds to the power to whi
h the base is to

be raised prior to multiplying with the signi�
and. The exponent pin-

points the radix point in its
orre
t position and, therefor,
orresponds

to the number of digits the radix point has to be shifted to the left or

to the right. The value of the exponent ranges from its minimum e

min

to its maximum e

max

:

Floating-point numbers are not unique. Consider the de
imal fra
tion 0:5.

We
an represent 0:5 as 5:0 � 10

�1

or 0:05 � 10

1

. Another possibility is

5

The term signi�
and repla
ed the older term mantissa [20℄.

6

The base is sometimes
alled radix.

8

SN NEF

normalized signi�
and 5:0 0:5

unique
oating-point representation 5:0� 10

�1

0:5� 10

0

Table 2.1: Unique representation of the fra
tion 0:5 in s
ienti�
 notation

(SN) and normalized exponential form (NEF).

0:000005�10

5

, and there are many more. In order to over
ome this ambigu-

ity the signi�
and of a
oating-point number is normalized. There are two

ommon ways to normalize the signi�
and [32℄:

1. S
ienti�
 notation (SN): In s
ienti�
 notation the radix point is as-

sumed to be lo
ated to the right of the most signi�
ant digit.

2. Normalized exponential form (NEF): If the normalized exponential

form is used, then the radix point is pla
ed to the left of the most

signi�
ant digit.

Sti
king to one of these
onventions we get a unique
oating-point repre-

sentation. The unique representations for 0:5 in s
ienti�
 and normalized

exponential form are illustrated in Table 2.1.

Floating-point numbers are a subset of the reals. Their range depends

on the minimum and maximum values of the exponent while their a

ura
y

depends on the pre
ision of the signi�
and. As a
onsequen
e we
an only

approximate a given real number with a number of the
hosen
oating-point

number system. Due to the fa
t that the radix point is
oating around,

a
oating-point number system is more
exible than a �xed-point number

system. Nevertheless there are similar representation problems as in �xed-

point systems if we want to represent numbers that are out of the
oating-

point number system's range, i.e., e

min

is too large or e

max

is too small.

Now that we know what a
oating-point number is, let us take a look on

how to represent them on a
omputer system

7

. Basi
ally three
omponents

are stored per
oating-point number:

The sign: In general, one sign bit is used to determine the sign of the

oating-point number. Generally, if the sign bit equals 0 then the

orresponding number is positive. A sign bit set to 1 means that we

deal with a negative number.

The exponent: A
ertain number of bits is used to store the exponent. The

more bits we use for the exponent, the wider the range of representable

7

The natural base � used for
omputers is 2.

9

�4

000

�3

001

�2

010

�1

011

0

100

1

101

2

110

3

111

Figure 2.1: Sorted exponents using a three bit biased form.

numbers will be. Sin
e the exponent
an be negative, it is stored using

either the two's
ompliment

8

or a biased form. The advantage of the

biased form over the two's
ompliment is that the exponents are sorted

from the smallest to the biggest value, see Figure 2.1. Assuming that

the
oating-point number is stored the usual way with the sign �rst

followed by the exponent and the signi�
and, all the bits of the
oating-

point format
an be treated as a single number that
an be sorted

without determining its true value. This makes the biased form the

representation of
hoi
e for exponents in most
ases and we will therefor

take a
loser look at it. For more information on the two's
ompliment

see [50, 38℄. Storing the exponent e in biased form using m bits means

that a so-
alled
hara
teristi

 is stored instead of e. As outlined in

[32℄, the
hara
teristi
 is
omputed by adding a bias b to the exponent:

 = e+ b; (2.1)

with

b = 2

m�1

: (2.2)

Given the
hara
teristi
 of an exponent e one has to subtra
t the bias

from the
hara
teristi
 to re
onstru
t the original exponent.

The signi�
and: The third
omponent that has to be stored is the normal-

ized signi�
and

9

, i.e., the signi�
ant digits. The more bits we use for

the signi�
and, the higher the pre
ision of the
oating-point number

will be. Higher pre
ision results in a better approximation of the de-

sired real number. There is a tri
k
alled hidden bit to gain an extra

bit of pre
ision for the signi�
and without a
tually storing it if base

two is used. Sin
e the �rst signi�
ant digit in binary form is always

8

The two's
ompliment represents negative de
imal values with a bigger binary number

than positive de
imal values.

9

Note that the radix point is not stored but implied at
ertain position depending on

the normalization.

10

N bits

sign exponent signi�
and

1 bit m bits N �m� 1 bits

Table 2.2: Floating-point representation on a
omputer system.

a 1 we
an imply the leading 1 and do not have to store it. E.g., if

we want to store the signi�
and 110010101 we a
tually store 10010101.

When the stored signi�
and is read ba
k, we know that we did not

store the leading 1 and therefor prepend it to get the original signi�-

and 110010101. Unfortunately, we are not able to represent 0 using

the hidden bit be
ause we always imply a hidden 1. In order to solve

this problem a spe
ial value to represent 0 has to be de�ned.

Assuming that we have N bits to represent a single
oating-point number

and use one bit for the sign and m bits for the exponent that leaves us

N�m�1 bits for the signi�
and, see Table 2.2. It is easy to see that there is

a trade-o� of bits between the exponent and the signi�
and. The more bits

we use for the exponent the larger the range of representable
oating-point

numbers and the poorer the pre
ision will be, and vi
e versa. Unlike �xed-

point numbers,
oating-point numbers are not distributed equally over their

representable range. In fa
t the density of binary
oating-point numbers

halves at ea
h power of two as we move farther away from zero, see [32, 23℄ .

2.2 Sour
es of Errors

We have seen in the previous se
tion that
oating-point representations have

some advantages over �xed-point representations. These advantages and

the fa
t that every modern
omputer system has a hardware
oating-point

unit, has lead to a widespread use of
oating-point numbers to represent real

numbers on a
omputer system. However, there are some drawba
ks as men-

tioned above that may lead to irritating results of
oating-point
al
ulations

in some
ases. As we will see in the next
hapter, this is espe
ially true if

we want to implement geometri
 algorithms. A software developer should

therefor be aware of these problems to be able to deal with errors introdu
ed

by
oating-point
al
ulations. This subse
tion provides an overview on this

subje
t. Ex
ellent resour
es on this topi
 are [11, 20℄.

11

2.2.1 Representation Problems

As a matter of prin
iple, the problems start at the moment a program reads

its input data

10

. Although there are ex
eptions almost every
omputer sys-

tem uses base two to represent
oating-point numbers. Unfortunately, hu-

mans are used to the de
imal system. Consequently, real numbers that are

fed to algorithms as input are in de
imal notation and have to be
on-

verted. This
onversion introdu
es trun
ation errors sin
e there are a lot

of de
imal real numbers that have no �nite dual representation but an in-

�nite periodi
al representation. Examples in
lude 0:1 whi
h is represented

as 0:00011001100110011 : : : or 0:4. Similar problems o

ur if we wish to

ompute quantities that have no �nite representation and have to be approx-

imated. Depending on the a

ura
y we wish to a
hieve, we have to stop this

approximation at one point introdu
ing trun
ation errors again.

2.2.2 Data Un
ertainty

Depending on the origin of the data we use as input there exist data un
er-

tainties for di�erent reasons. If the input data we use was measured, i.e, if

we use physi
al quantities as input, errors o

ur due to measuring. Another

possibility is to use input data that was generated by another
omputer pro-

gram. Needless to say,
omputer-generated data su�ers from all the possible

error sour
es dis
ussed in this se
tion.

2.2.3 Roundo� Errors

In Subse
tion 2.1.3 we already mentioned that
oating-point numbers
over

only a �nite subset of the reals. Consequently, results of arithmeti
 operations

have to be rounded to the nearest
oating-point number whi
h introdu
es

so-
alled roundo� errors. Let us take a look at an example that illustrates

an roundo� error. To keep things simple we only
onsider positive numbers,

hoose base � = 10 and pre
ision p = 1. We set the minimum exponent e

min

to zero and the maximum exponent e

max

to one. The numbers representable

in this system are illustrated in Table 2.3. Let us see what happens if we

al
ulate the sum 6+8. The returned answer would be 10 and not 14 as one

might expe
t. The reason for this is simple. Without a doubt, the
orre
t

result of the sum 6+8 is 14. Unfortunately, we have no way for representing

the number 14 in our
oating-point number system. Therefor, the result is

rounded to the next representable value whi
h is 10. Similar problems arise

if we want input the numbers 12 and 24 and want to
ompute their sum.

10

Assuming that the input are real numbers.

12

Exponent Representable Numbers

e = 0 1 2 3 4 5 6 7 8 9

e = 1 10 20 30 40 50 60 70 80 90

Table 2.3: Representable
oating-point numbers using � = 10, p = 1, e

min

=

0 and e

max

= 1.

Sin
e we
annot represent the numbers 12 and 24, they are rounded to 10

and 20, respe
tively. Their sum yields 30 instead of the expe
ted value 36.

2.2.4 Over
ows and Under
ows

Over
ows o

ur if the exponent of a quantity
omputed grows too large.

Referring to the
oating-point number system illustrated in Table 2.3, the

omputation of 50 + 50 yields an over
ow error. The exa
t result of 50 + 50

is 100 whi
h
an be rewritten as

100 = 1� 10

2

.

Sin
e e

max

= 1 in the
orresponding
oating-point number system and the

exponent required to represent the quantity 100 is 2, an over
ow o

urs.

While over
ows o

ur if the exponent of a quantity
omputed grows too

large, we get an under
ow error if the exponent of a quantity is too small.

The division

1

2

yields 0:5 on a pie
e of paper. Performing the same
al
ulation

in the
oating-point number system of Table 2.3 yields an under
ow error

be
ause

0:5 = 5� 10

�1

and the smallest allowable exponent e

min

= 0. In general, under
ows are
on-

sidered to be more harmful than over
ows be
ause they are mapped to zero

in some
oating-point implementations. This behavior
ould
ause divisions

by zero.

2.2.5 Problems Due to Floating-Point Errors

There are a number of problems that arise whenever
oating-point arith-

meti
 is used. These problems are the subje
t of this subse
tion. For more

information on this topi
 see [11, 20, 23℄.

13

Insigni�
ant Digits

The following C program is based on the FORTRAN
ode in [11℄ and demon-

strates the phenomenon of insigni�
ant digits.

#in
lude <stdio.h>

int main()

f

oat x = 1000:2;

oat y = 1000:0;

oat z;

z = x� y;

printf("%f � %f = %fnn",x, y, z);

return 0;

g

What we intended to do with this program was to
ompute the di�eren
e

between the two real numbers 1000:2 and 1000:0. Clearly, the
orre
t result

is 0:2. When exe
uted the program produ
es the following output:

1000:200012� 1000:000000 = 0:200012.

If we would have printed the result only, we would have been rather surprised

to see 0:200012 instead of the expe
ted 0:2. But sin
e the print statement

prints the two operands as well as the result, we get an insight of what

really happened. The real number 1000:2
annot be represented exa
tly

and is rounded to the
losest representable
oating-point number whi
h is

1000:200012. On the other hand the se
ond operand 1000:0 is represented

exa
tly and therefor the result of the subtra
tion is 0:200012. It is easy to

see in this example that the
orre
t result is 0:20 and that the remaining

digits are insigni�
ant but if the
al
ulations get more
omplex it might not

ne
essarily be so obvious.

Ina

ura
y Due to Conversions

Ina

ura
ies may also o

ur if a
oating-point number is
onverted into an

integer value. The following C
ode is again based on a FORTRAN program

from [11℄ and demonstrates this
onversion error.

#in
lude <stdio.h>

int main()

14

f

oat x = 21:22;

int z;

z = x � 100:0;

printf("z = %dnn", z);

return 0;

g

The real number 21:22 has no exa
t representation and is represented as

21:2199 : : :. Multiplying 21:2199 : : : with 100:0 yields 2121:99 : : : and is trun-

ated to 2121 before it is assigned to the integer variable z. The program

therefor prints the value 2121 instead of the expe
ted value 2122.

Ina

ura
ies in Repeated Cal
ulations

If a quantity that
annot be represented is involved in repeated
al
ulations

the error
an grow and the result might not be the one expe
ted. Take the

real number 0:1 as an example. Adding 0:1 ten times yields 1:0. Unfortu-

nately, there is no
oating-point number
orresponding to the real value 0:1,

so it has to be rounded to the
losest representable
oating-point number.

Consequently, adding this approximate value ten times does not result in 1:0.

The error is illustrated by the following program.

#in
lude <stdio.h>

int main()

f

double x = 0:0;

int
ounter;

for(
ounter = 0;
ounter < 10;
ounter ++)

x = x+ 0:1;

if (x == 1:0)

printf("x == 1:0nn");

else

printf("x! = 1:0nn");

return 0;

g

When exe
uted the program outputs

15

x! = 1:0

sin
e 1:0 is represented exa
tly while 0:1 is not. The
ombinatorial part of

geometri
 algorithms is often
onstru
ted based on
omparisons of
omputed

numeri
al quantities. Ina

ura
ies like these lead to errors in the
ombina-

torial stru
ture and are a major problem for software developers.

Can
ellation

Catastrophi

an
ellation o

urs whenever we subtra
t two quantities of sim-

ilar magnitude or alternatively add su
h quantities having opposite signs.

Suppose we are given two quantities with pre
ision p

11

of similar magnitude

and wish to subtra
t them. What happens is that the majority of signi�
ant

digits
an
el themselves leaving some of the less signi�
ant digits that may

already have su�ered from rounding errors. In the worst
ase this leaves us

with a result where not a single digit is
orre
t and the error is of the magni-

tude of the quantity itself, if it was exa
tly
omputed. While the arithmeti

operation, i.e., the subtra
tion is not the problem

12

in this
ase, it un
ov-

ers errors that have already o

urred. The phenomenon des
ribed above is

known as
atastrophi

an
ellation and
an lead to very ina

urate results.

Nevertheless there are also other forms of
an
ellation that are benign or

that
an even be bene�
ial whenever they
an
el errors that o

urred in pre-

vious
al
ulations. For more details on
atastrophi
, benign and bene�
ial

an
ellation see [20, 23℄.

2.3 A Few Words on Error Analysis

We saw in the previous se
tions that there is no way to avoid errors using

standard
oating-point arithmeti
. This leaves us with the question how

a

urate the results
omputed really are? The �eld of numeri
al analysis

is
on
erned with this question and has developed a number of methods to

analyze and quantify errors. Sin
e a thorough study of error analysis is far

out of the s
ope of this thesis, this se
tion just provides a survey on this

topi
. More information
an be found in [23℄ and the papers
ited therein.

2.3.1 Introdu
tion to Error Analysis

Sin
e the intension of this subse
tion is to take a glimpse at error analysis we

will look at two
ommon methods of error analysis and keep things as simple

11

That is, we have p signi�
ant digits.

12

In fa
t this operation
ould even be exa
t.

16

'

&

$

%

Input Spa
e

'

&

$

%

Output Spa
e

Exa
t Computation y = f(x)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Approximate Computation

?

6

t

x

t

y

t

~y

Forward Error

Figure 2.2: Forward error.

as possible. Before we start, let us assume that we
ompute an approximate

value, ~y, for the exa
t value y. The exa
t value y is
omputed by a fun
tion

f(x), see [23℄. Summarizing we have:

y = f(x), where

x is the input value; the input value is a real number and is a member of the

so-
alled input spa
e;

y is the result of the fun
tion f(x); the value y is a real number and is a

member of the output spa
e;

f(x) is an arbitrary fun
tion that
omputes exa
t answers.

If we were able to perform exa
t arithmeti
 operations we would take a real

number from the input spa
e and
al
ulate the exa
t result whi
h is a real

number again. Operating with
oating-point arithmeti
 the operation is per-

formed with
oating-point numbers. Therefor, errors
an o

ur in the input

spa
e { re
all Subse
tion 2.2.1 { as well as in the output spa
e. Consequently,

we have two ways of looking at an error whi
h is re
e
ted in two di�erent

methods of error analysis
alled forward and ba
kward error analysis.

2.3.2 Forward Error Analysis

The method of forward error analysis, illustrated in Figure 2.2, tries to quan-

tify the error in output spa
e. That is, the exa
t result y of the fun
tion f(x)

17

'

&

$

%

Input Spa
e

'

&

$

%

Output Spa
e

Exa
t Computation y = f(x

1

)

Exa
t Computation ~y = f(x

2

)

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Approximate Computation

?

6

t

x

1

t

y

t

x

2

t

~y

Ba
kward Error

Figure 2.3: Ba
kward error.

is
ompared to the result ~y
omputed in the
oating-point number system.

Two
ommon ways are used to
al
ulate the forward error. The absolute

error FE

abs

(~y) is
al
ulated using the following formula

FE

abs

(~y) = jy � ~yj: (2.3)

One drawba
k of absolute errors is that they
hange if y and ~y are s
aled.

S
aling y and ~y by a fa
tor of � yields an absolute error s
aled by � itself.

This behavior
an be avoided by
al
ulating the relative error FE

rel

(~y) whi
h

we get by dividing the absolute error FE

abs

(~y) by jyj as shown in equation

2.4:

FE

rel

(~y) =

jy � ~yj

jyj

: (2.4)

S
aling y and ~y does not have any e�e
t on the relative error whi
h is the

reason why relative errors are preferred; they make it easy to
ompare errors

of
omputed quantities that vary a lot in their magnitude.

2.3.3 Ba
kward Error Analysis

Another way of quantifying the error is to
he
k what input data
orresponds

to the approximated result if the
al
ulation was exa
t using the fun
tion

f(x). Re
all that ~y is an approximation to y = f(x

1

). What we are looking

for is some value x

2

of the input spa
e su
h that

~y = f(x

2

).

18

Similar to the forward error, the ba
kward error
an be expressed in absolute

terms as the absolute value of the di�eren
e between x

1

and x

2

BE

abs

(~y) = jx

1

� x

2

j; (2.5)

or in relative terms dividing the absolute error by the absolute value of x

1

as

expressed by the following equation

BE

rel

(~y) =

jx

1

� x

2

j

jx

1

j

: (2.6)

The ba
kward error, whi
h is illustrated in Figure 2.3, is interesting be
ause

errors are interpreted as perturbations in the input data. In general, input

data is un
ertain due to errors in measuring, storing or previous
omputa-

tions. If the ba
kward error is smaller than the un
ertainties in the input

data, the
omputed result is a

urate enough. Ba
kward errors are also
on-

ne
ted to perturbation theory whi
h is dis
ussed in the next
hapter.

2.4 The IEEE-754 Standard

Before the standardization of
oating-point formats, the porting of programs

from one
omputer system to another was very
umbersome. Di�eren
es

between the format of
oating-point numbers and their
orresponding op-

erations yielded di�erent results on di�erent ar
hite
tures. When errors o
-

urred in numeri
al results, it was not
lear if the error was due to round-

ing and trun
ation or due to a di�erent implementation of
oating-point

numbers and their
orresponding operations. The IEEE standard de�nes

the representation of
oating-point numbers as well as the basi
 operations,

making it easy to port programs from one IEEE ma
hine to another. The

IEEE standard does not solve the problem of trun
ation and rounding er-

rors but, at least, they are the same on every ar
hite
ture that implements

the standard. Last but not least the standard simpli�es proofs
on
erning

oating-point numbers sin
e one has a referen
e implementation and does

not have to bother with di�eren
es in
oating-point representations. The

IEEE has de�ned two
oating-point representation standards. The IEEE-

754 standard [4℄ de�nes the representation of
oating-point numbers with

base � = 2. The majority of
oating-point implementations on
omputer

systems use this standard. A se
ond
oating-point standard that was pro-

posed by the IEEE is
alled IEEE-854 and requires either � = 2 or � = 10.

We will fo
us on the IEEE-754 standard. For more information on IEEE-854,

see [20℄.

19

32 bits

sign exponent signi�
and

bit 31 bits 30 : : : 23 bits 22 : : : 0

Table 2.4: IEEE-754 single pre
ision
oating-point number.

2.4.1 Storage Format

Four di�erent pre
isions are proposed in the IEEE-754 standard:

1. Single Pre
ision,

2. Double Pre
ision,

3. Single Extended Pre
ision, and

4. Double Extended Pre
ision.

The normalized exponential form is used to normalize IEEE-754
oating-

point numbers, so the radix point is assumed to be left of the �rst signi�
ant

digit. Furthermore, the exponent is stored in a biased form, re
all Page 10.

Single Pre
ision

Single pre
ision
oating-point numbers o

upy 32 bits. One bit is used to

indi
ate the sign of the
oating-point number. The exponent is stored using

8 bits, leaving 23 bits for the signi�
and. Sin
e IEEE-754 requires � = 2

the
on
ept of the hidden bit is used to a
hieve 24 bits of pre
ision. The

exa
t format of a IEEE single pre
ision
oating-point number is shown in

Table 2.4. The IEEE-754 standard de�nes several spe
ial values for a single

pre
ision
oating-point number, with exponent in biased form:

Zero: If all the bits of the exponent as well as all the bits of the signi�
and

are set to zero, then the value of the
oating-point number is de�ned

to be 0

13

. Note that there are a
tually two representations for zero (+0

and �0) depending on the value of the sign bit.

In�nity: If all the bits of the exponent are set to one and all the bits of the

signi�
and are set to zero then the value of the
oating-point number

is in�nite. Depending on the sign bit +infinity and �infinity is

represented.

13

Remember that a spe
ial representation for zero is needed sin
e the IEEE-754 numbers

use the hidden bit.

20

64 bits

sign exponent signi�
and

bit 63 bits 62 : : : 52 bits 51 : : : 0

Table 2.5: IEEE-754 double pre
ision
oating-point number.

NaN (Not a Number): NaN is represented setting all the exponent's bits

to one and not all the bits of the signi�
and to zero. That is, the

de
imal value of the exponent �eld is 255 and the de
imal value of the

signi�
and is non-zero.

Denormalized Number: A value is denormalized if the exponent is zero

but the signi�
and is not. The leading one is no longer assumed in

this situation. A single pre
ision denormalized
oating-point number

is therefor represented as �0:m� 2

e

.

Double Pre
ision

The standard requires to en
ode double pre
ision
oating-point numbers us-

ing 64 bits. Similar to single pre
ision, one bit is used for the sign. The

exponent is en
oded using 11 bits. The �nal 52 bits are o

upied by the

signi�
and that a
tually has 53 bits of pre
ision due to the hidden bit. The

exa
t format of double pre
ision IEEE-754
oating-point numbers is shown

in Table 2.5.

The spe
ial values for double pre
ision
oating-point numbers are de�ned

as follows:

Zero: The value 0 is represented by setting all of the exponent's bits as well

as all the signi�
and's bits to 0, i.e., the de
imal value of the exponent

and the signi�
and is 0. Depending on the sign bit either +0 or �0 is

represented.

In�nity: Positive or negative in�nity is represented setting the sign bit to 0

or 1, respe
tively. The exponent �eld has the de
imal value 2047 and

therefor all the bits set to 1 while the signi�
and's bits are all set to 0.

NaN (Not a Number): If all the bits of the exponent are set and the

de
imal value of the signi�
and is non-zero then the value of the
or-

responding
oating-point number is NaN.

Denormalized Number: Similar to single pre
ision a value is denormal-

ized if the exponent is zero but the signi�
and is not. Sin
e the leading

21

one is no longer assumed the value represented by a double pre
ision

denormalized
oating-point number is �0:m� 2

e

.

Single Extended and Double Extended Pre
ision

Single extended and double extended pre
ision is used whenever there is a

need for higher pre
ision. This is espe
ially true for intermediate results.

Potential problems due to intermediate over
ow and under
ow or
an
el-

lation
an be softened if the results are in single or double pre
ision while

intermediate results are
al
ulated using extended pre
ision. Nevertheless

a phenomenon
alled double rounding might o

ur if extended pre
ision is

used for intermediate results. Double rounding is permitted in the IEEE-754

standard and means that a result of an operation is �rst rounded to extended

pre
ision with subsequent rounding to the target format, i.e., single or double

pre
ision. Sin
e it depends on the IEEE implementation if results are double

rounded or rounded dire
tly to the target format, di�erent implementations

might yield slightly di�erent results. The size of the single extended and

double extended format is not spe
i�ed exa
tly but there are lower bounds.

Table 2.6 summerizes the four pre
isions de�ned in the IEEE-754 standard.

2.4.2 Operations

The results of additions, subtra
tions, multipli
ations, divisions and square

roots are well de�ned in the IEEE-754 standard. Floating-point implemen-

tations have to guarantee these results to be
ompliant with the standard.

IEEE requires operations to be
arried out as if they were
omputed to

in�nite-pre
ision and then by default rounded to the next representable

oating-point number. Rounding to � in�nity is also supported whi
h fa-

ilitates interval arithmeti
. Every operation yields a de�ned result, ex
ep-

tional operations like divisions by zero or over
ows raise signals. Operations

involving in�nity are de�ned a

ording to the well known mathemati
al
on-

ventions:

� 1+1 =1,

� (�1)�1 = �1,

�

x

1

= 0, with x being a �nite representable
oating-point number.

A NaN is generated for invalid operations su
h as:

22

� 0=0,

�

p

x for x < 0,

� 0�1,

�

1

1

,

� 1�1.

Operations that involve a NaN result in NaN. NaN
an also be used to

indi
ate that a variable has not been initialized yet. Under
ows are not

ushed to zero but treated as denormalized numbers. The advantage of this

behavior
alled gradual under
ow is that divisions by zero due to under
ows

are prevented. As mentioned before there are two di�erent representations

of zero depending on the sign bit. Nevertheless it is reasonable to treat them

as a single value in arithmeti
 operations. Therefor, �0 = +0 is required by

the standard.

23

Single Pre
. Double Pre
. Single Ext. Pre
. Double Ext. Pre
.

Format size in bits 32 64 � 43 � 79

Size of sign in bits 1 1 1 1

Size of exponent �eld in bits 8 bit 11 bit � 11 bit � 15 bit

Size of signi�
and �eld in bits 24 bit 53 bit � 32 � 64

Hidden bit yes yes no no

Bias +127 +1023 unspe
i�ed unspe
i�ed

e

min

�126 �1022 � �1022 � �16382

e

max

+127 +1023 � +1023 � +16383

Table 2.6: Summary of the IEEE-754 standard.

2
4

Chapter 3

Non-robustness and the

Problems That Arise in

Geometri
 Algorithms

This
hapter is
on
erned with robustness issues in the �eld of
omputational

geometry. In Se
tion 3.1 we will dis
uss the phenomenon of non-robustness

in geometri
 algorithms. Se
tion 3.2 fo
uses on robustness problems in
on-

ne
tion with
oating-point arithmeti
. A possible solution to robustness

problems due to
oating-point arithmeti
 is provided by the exa
t geometri

omputation paradigm, whi
h is dis
ussed in Se
tion 3.3. Con
luding this

hapter, Se
tion 3.4 is dedi
ated to the topi
 of degenera
ies.

3.1 Introdu
tion

The �eld of
omputational geometry and with it the resear
h on geometri

algorithms is relatively young, see the book "Computational Geometry - An

Introdu
tion" by Preparata and Shamos [37℄ for a good introdu
tion. In the

beginning resear
hers
on
entrated on the theory of geometri
 algorithms.

As resear
h evolved, the need for robust implementations of the ex
ogitated,

theoreti
ally
orre
t algorithms grew. It turned out that the robust imple-

mentation of an algorithm that is
orre
t in theory is not su
h an easy task.

Robustness be
ame a major issue in the last few years and resear
hers all

over the world are taking great e�orts to solve the robustness problem. The

reason for the gap between theory and pra
ti
e is twofold.

1. Theory requires a so-
alled real RAM. That is, algorithms are devel-

oped to run on a
on
eptional ma
hine that operates with real numbers.

A single operation is
arried out in
onstant time.

25

2. Furthermore, a so-
alled "general position" assumption is made, ex-

luding all degenerate
ases.

It is easy to see that both assumptions do not hold in pra
ti
e. Pra
ti
al

implementations often use
oating-point numbers to represent real numbers,

sin
e they are usually supported by the
omputer system's hardware and

are therefor very fast. We already saw in Chapter 2 that there are a lot of

potential problems
onne
ted with
oating-point arithmeti
.

The assumption of a "general position" is
onvenient to keep
orre
tness

proofs simple. One
an
on
entrate on the general solution of a geometri

problem and does not have to handle every spe
ial
ase. Appli
ations, on

the other hand, have to deal with real-world data,
omputer-generated data

or intera
tive input. Degenerated input is sure to o

ur from time to time.

Take the interse
tion of two line segments as an example. "General position"

redu
es this problem to two di�erent
ases:

1. The two line segments do not interse
t, or

2. the two line segments interse
t in one point interior to both segments.

Clearly there might be spe
ial
ases where the segments interse
t at their

endpoints or partly overlap, yielding an interse
tion interval. A software

developer has to handle every possible spe
ial
ase to implement a robust

algorithm. Needless to say, this is a diÆ
ult task, espe
ially if the geometri

obje
ts involved get more
omplex or one moves to higher dimensions.

3.1.1 Why are Geometri
 Algorithms so DiÆ
ult to

Implement

Without a doubt, robustness and errors due to
oating-point arithmeti
 are

an issue no matter what kind of algorithm a software developer wants to

implement. Nevertheless there are a lot of areas in
omputer s
ien
e where

oating-point arithmeti
 suÆ
es and thus the implementation of algorithms

is straightforward. On the other hand, it seems that the implementation

of geometri
 algorithms is very diÆ
ult even if the given geometri
 prob-

lem is quite simple. The reason for this is that geometri
 obje
ts
onsist of

both
ombinatorial and numeri
al data. Combinatorial data like fa
e and

boundary des
riptions or adja
en
ies is based on numeri
al data like vertex

oordinates and plane equations. Due to the inexa
tness of
oating-point

arithmeti
 the numeri
al data is only approximate, whi
h may lead to
on-

tradi
tions with the
ombinatorial data. A possible situation is illustrated

in Figure 3.1. The
ombinatorial data requires the three line segments to

26

�

�

�

�

�

�

�

�

�

�

�

�

�

�

t

(a)

�

�

�

�

�

�

�

�

�

�

�

�

t

t t

(b)

Figure 3.1: The interse
tion of three line segments. The information we get

from the
ombinatorial data is illustrated in (a), while the situation from the

numeri
al data's point of view is illustrated in (b).

meet in a single point
ontradi
ting the information we get from the nu-

meri
al data, that spe
i�es three nearby points instead of just a single one.

Sin
e
oating-point arithmeti
 is ina

urate, the information we get from the

numeri
al data is in
omplete. Thus, there is an un
ertainty inherent to all

de
isions that are based upon numeri
al data, whi
h might lead to
ombi-

natorial in
onsisten
y. Redundant de
isions made by the algorithm might

ontradi
t ea
h other and therefor have to be avoided, see Subse
tion 3.2.5.

The problem gets even worse in
as
aded
omputations where the output

from one algorithm is used as input for a se
ond one. The se
ond algorithm

is likely to
rash if the output produ
ed by the �rst algorithm is
orrupt.

Besides the problems des
ribed above, the
omplexity of solutions of even

simple geometri
 problems is another issue. As already mentioned above,

even the interse
tion of two line segments has a number of spe
ial
ases that

have to be dealt with. It is up to the software developer to handle every single

spe
ial
ase that
an arise during the program's exe
ution. This is quite a

hallenging task for
omplex geometri
 problems or higher dimensions and

not even exa
t arithmeti

an help with that.

In the following se
tions we will survey some of the te
hniques developed

to
ope with the robustness problem in geometri
 algorithms. We start with

the di�erent types of geometri
 primitives. Ex
ellent introdu
tions on the

robustness topi
 are [41, 17, 24, 27, 40℄.

27

P1

P2

P3 P4

P1

P2
P3

(b)(a)

Figure 3.2: The 2D orientation test (a): Is P

3

lo
ated on the left, on the

right or on the oriented line through P

1

and P

2

? And the 2D in
ir
le test

(b): Is P

4

inside, outside or on the
ir
le through P

1

, P

2

and P

3

?

3.1.2 Predi
ates and Constru
tors

A basi
 operation in a geometri
 algorithm is
alled a geometri
 primitive.

There are two di�erent types of geometri
 primitives [18℄ involved in geomet-

ri
 algorithms. The �rst type is
alled a predi
ate. Predi
ates are used to

make de
isions in order to determine the
ombinatorial stru
ture of a geo-

metri
 output. Examples of predi
ates are orientation tests and the in
ir
le

test, see Figure 3.2. De
isions made with predi
ates are usually based on the

sign of some arithmeti
 expression like the determinant of a matrix. If the

magnitude of the expression
omputed is smaller than the rounding error,

the sign evaluation might be in
orre
t. Sin
e the given input data is likely to

be inexa
t itself, for reasons mentioned in Chapter 2, the
omputed sign is

orre
t for some perturbation of the input data for a single predi
ate. Prob-

lems arise if predi
ates are repeatedly in
orre
t be
ause there might not be

a global perturbation that satis�es all the in
orre
t results, thus leading to

a
orruption of the
ombinatorial stru
ture. There are some geometri
 al-

gorithms in
luding the
omputation of
onvex hulls and triangulations that

solely rely on predi
ates. Those algorithms
an be made robust if one
an

guarantee that the signs of the predi
ates
omputed are
orre
t, or, at the

very least
onsistent.

The se
ond type of
al
ulation involved in geometri
 algorithms is
alled

a
onstru
tor be
ause it is used to
onstru
t new geometri
 obje
ts. Con-

stru
tors
ompute the numeri
al part of a geometri
 output. An example is

28

the
al
ulation of an interse
tion point of two line segments. Guaranteeing

robustness of geometri
 algorithms that use both predi
ates and
onstru
-

tors, e.g., in the
ase of
omputing Voronoi diagrams, is a mu
h harder task

than for algorithms that rely on predi
ates only.

3.2 Non-robustness due to Floating-Point

Arithmeti

If a software developer de
ides to implement an algorithm based on
oating-

point arithmeti
, his/her de
ision was probably guided by the need for fast

arithmeti
 operations. Without a doubt there is no faster way to perform

the basi
 arithmeti
 operations than with the hardware
oating-point unit of

the target platform. The drawba
k of this de
ision is that he/she has to live

with all the error-prone
al
ulations that o

ur in the world of
oating-point

arithmeti
. Espe
ially if the implemented algorithm relies on
onstru
tors

as well as on predi
ates, exa
t results
annot be expe
ted. Nevertheless a

reasonable result has to be
omputed for
orre
t input data. Algorithms that

do not
ompute the exa
t result, but a result that is reasonably
lose to the

exa
t result are
alled robust algorithms, see [16℄ and [41℄.

Ensuring robustness using
oating-point arithmeti
 is a very diÆ
ult task.

Up till now, no general te
hnique has been introdu
ed to solve this problem.

Nevertheless there is a
olle
tion of te
hniques and guidelines that has been

developed by resear
hers in re
ent years. Sin
e there is no general rule and

sin
e the e�e
tiveness of these te
hniques depends on the type of algorithm

one wants to implement, the main
hallenge is to pi
k the right te
hnique

and adopt it appropriately for the spe
i�
 needs.

3.2.1 Epsilon Tweaking

One of the most
ommon methods used to in
rease robustness of an algorithm

is referred to as epsilon tweaking. Following the
onvention in [40℄ we will

assume that the
omparison of numeri
al values in predi
ates is a
omparison

of the value of some arithmeti
 expression with zero. Whenever a
oating-

point value is used for a
omparison there is an un
ertainty asso
iated with

it. Therefor, it is
ommon pra
ti
e to
ode an algorithm a

ording to the

rule [40℄:

If some numeri
al value is
lose to zero it is
onsidered to be zero.

Predi
ates that are implemented this way do not
ompare a value
omputed

to zero but to a small
onstant � instead. A value x is
onsidered to be zero

if

29

P1

P2

P3

Figure 3.3: Epsilon tweaking in orientation tests.

jxj � �, with � > 0.

One possible
hoi
e for � is the so-
alled ma
hine pre
ision, whi
h is the

smallest number Æ su
h that (1 + Æ) > Æ evaluates to true on the ma
hine's

parti
ular
oating-point unit. Nevertheless there is no general rule on how

to
hoose an appropriate �. One single � might be used for all predi
ates

in a geometri
 algorithm or several �'s are de�ned for di�erent predi
ates.

The value of � is arbitrary but should be fairly small and greater than zero.

Depending on the appli
ation and the input data tested a software developer

normally adjusts an appropriate value for � by trial and error.

In [22℄, Held uses an approa
h whi
h he
alled relaxation of epsilon thresh-

olds: The user is asked to spe
ify an upper bound on �. The lower bound is

given by the ma
hine pre
ision whi
h is used as the initial value for �. If the

omputation fails, e.g., be
ause some "sanity
he
k" is not passed, then the

value for � is in
reased and the
omputation is restarted. If, for some reason,

the upper bound on � is rea
hed, then a soundness
he
k of the input data

is performed.

Epsilon tweaking is justi�ed by the already mentioned fa
t that the input

data is not exa
t and we are
omputing an answer for a perturbed instan
e

of the input data. Consequently a small perturbation of the input suÆ
es

for an expression to evaluate to zero. The geometri
 interpretation is that

the obje
ts we are dealing with are fattened due to epsilon tweaking. Figure

3.3 shows the geometri
 interpretation of epsilon tweaking in an orientation

test.

There are some drawba
ks if epsilon tweaking is used. First of all we

have already mentioned that there is no general rule on how to pi
k the

value for �. Finding an appropriate value
an be a time-
onsuming task.

30

Sin
e this value is found by trial and error based on the algorithm and the

input data tested, there is no guarantee that the algorithm is
orre
t for

every input instan
e it is applied to. Furthermore, the equality relation

looses its transitivity property, and the same is true for
ollinearity, see [40℄.

From a geometri
 point of view we have left the Eu
lidean geometry as

soon as we use epsilon geometry and resort to some yet to be determined

geometry. Guibas et al. [28℄ introdu
ed an approa
h whi
h they
alled

epsilon geometry. They de�ned some basi
 properties of fattened geometri

obje
ts in the plane and
onstru
ted some basi
 geometri
 predi
ates like the

2D
ollinearity and orientation test, the
oin
iden
e test for two points in

the plane and point in
lusion tests for triangles and
onvex polygons. They

alled these predi
ates epsilon predi
ates. It appears that this approa
h

has not been taken any further and so only a small set of predi
ates have

been de�ned this way. Besides there has not been a generalization to three

dimensions.

3.2.2 Interval Arithmeti

Another approa
h to in
rease robustness of geometri
 algorithms in the �nite-

pre
ision world is
alled interval arithmeti
 [27, 7℄. Using interval arithmeti
,

ea
h number x is stored as an interval [x

l

; x

u

℄

1

ontaining x and bounded by

the
oating-point numbers x

l

and x

u

. Arithmeti
 operations are de�ned

on the intervals of the
orresponding numbers. In [7℄ the basi
 arithmeti

operations of two numbers [x℄ and [y℄ are de�ned as follows:

[x℄ + [y℄ = [x

l

+ y

l

; x

u

+ y

u

℄,

[x℄� [y℄ = [x

l

� y

u

; x

u

� y

l

℄,

[x℄ � [y℄ =

[minfx

l

� y

l

; x

l

� y

u

; x

u

� y

l

; x

u

� y

u

g;

maxfx

l

� y

l

; x

l

� y

u

; x

u

� y

l

; x

u

� y

u

g℄;

[x℄

[y℄

=

(

[x℄ � [

1

y

u

;

1

y

l

℄ if 0 =2 [y℄;

℄�1;+1[otherwise;

q

[x℄ =

(

[

p

x

l

;

p

x

u

℄ if 0 =2 [x℄;

℄�1;+1[otherwise:

A drawba
k of interval arithmeti
 is that the resulting intervals
an grow

very large in the
ourse of
omputation. Furthermore,
orre
t rounding of

the interval bounds is ne
essary in order to ensure that the �nal interval still

ontains the
orre
t answer. For more information on interval arithmeti
 see

[27, 7℄ and the papers
ited therein.

1

We denote a number x stored as an interval by [x℄.

31

3.2.3 Careful Programming

No matter whi
h geometri
 algorithm a software developer intends to imple-

ment, he/she has to do this very
arefully. There are some basi
 guidelines

[35℄ one has to keep in mind in order to implement a robust algorithm:

� The sequen
e of numeri
al
al
ulations does have an impa
t on the

magnitude of the error. If two di�erent sequen
es of operations are

used to
ompute a single value, the results might di�er, although they

should be mathemati
ally equal. Furthermore, it is often possible to

ompute a single quantity using di�erent
on
eptional methods or for-

mulas. Although logi
ally and mathemati
ally equal, the results might

be di�erent. It is therefor essential to always
ompute a numeri
al

quantity the same way, i.e., with the same formula.

� Computed or derived quantities have already su�ered from roundo� er-

rors, so do use the original input data instead, wherever this is possible.

� Inter
hanging the input values in a formula may yield di�erent results.

Assigning ea
h input quantity a unique index and using them in the

same order, e.g., in
reasing order, ea
h time the formula is used will

eliminate this problem.

� Handle
ases that might
ause problems during
omputation as spe
ial

ases. E.g., if the interse
tion of a verti
al line and an oblique one has

to be
omputed, assign the abs
issa with the verti
al line and do not

ompute it.

Held designed a triangulation algorithm [21℄ based on some of the te
hniques

des
ribed above. In addition, he implemented a so-
alled multilevel-re
overy

system, whi
h we will dis
uss in a subsequent
hapter. The algorithm is fast

and to our knowledge has not
rashed yet.

3.2.4 Designing Robust Geometri
 Primitives

One important prerequisite for implementing robust geometri
 algorithms is

the robust implementation of the underlying geometri
 primitives. Spending

some time thinking of tri
ks to in
rease the robustness of geometri
 primitives

is unavoidable. As an example we will now take a
loser look at the bene�ts

of translating geometri
 entities.

As we already know from Chapter 2, pre
ision de
reases if the magnitude

of the input quantities grows larger, be
ause more bits of the signi�
and are

used for the integer part of the quantity. In [41℄ Shew
huk points out that,

in general,

32

1. the absolute
oordinates, i.e., the distan
e to the origin of a geometri

entity are mu
h bigger than their relative
oordinates, i.e., the distan
es

of the geometri
 entity's de�ning elements from ea
h other, and

2. that the result of many geometri

al
ulations is independent of the

geometri
 entity's position in the
oordinate system. That is, the result

is translation-invariant.

Together, both observations
an be used to gain some extra pre
ision for nu-

meri
al
al
ulations. If a
al
ulation satis�es the observations stated above,

then a

ura
y
an be in
reased by translating the geometri
 primitive su
h

that one of its de�ning elements is lo
ated at the origin. Shew
huk illustrates

this with the well known formula for the area of a polygon. Assuming that we

are given a polygon with n points

2

p

1

: : : p

n

in the plane, where p

i

= (x

i

; y

i

),

the standard formula

1

2

�

�

�

�

�

n

X

i=1

(x

i

y

i+1

� y

i

x

i+1

)

�

�

�

�

�

(3.1)

an yield quite ina

urate results if the dimension of the polygon is small

ompared to its distan
e from the origin. Translating p

n

to the origin by

repla
ing ea
h p

i

with p

i

� p

n

results in the improved formula

1

2

�

�

�

�

�

n

X

i=1

[(x

i

� x

n

)(y

i+1

� y

n

)� (y

i

� y

n

)(x

i+1

� x

n

)℄

�

�

�

�

�

: (3.2)

In general, robustness does not
ome for free. There is always a trade-o�

between robustness and speed. The loss of speed is not that dramati
 in the

example above, nevertheless, it is apparent that the
al
ulation of Formula

3.2 requires more
oating-point operations than the
al
ulation of Formula

3.1. One has to keep in mind that the translation of a geometri
 entity to the

origin might also introdu
e roundo� errors. Furthermore, there are geometri

al
ulations that are not translation-invariant. For more information see [41℄.

3.2.5 The Topology-Oriented Approa
h

A
ommon problem that
auses a
orrupt
ombinatorial stru
ture is in
onsis-

ten
y of the predi
ates used. Even if errors in numeri
al
al
ulations o

ur

that may lead to in
orre
t judgments, the algorithm
ould still produ
e a

reasonable output. As stated before this output may not be the exa
t solu-

tion but should be
lose to it. So it is not a matter of
orre
t or in
orre
t

judgments. The important thing is that the judgments are
onsistent. Pred-

i
ates that
ontradi
t ea
h other are likely to fail to produ
e a reasonable

2

All indi
es taken modulo n.

33

output. If, on the other hand, both of them take the same de
ision, the

algorithm's output should still be
onsistent. One way to a
hieve this goal

is to emphasize the
ombinatorial data of geometri
 entities and use the nu-

meri
al data as se
ondary information only. This te
hnique is
alled the

topology-oriented approa
h and was introdu
ed by Sugihara and Iri [43℄ in

1988. The advantage of the topology-oriented approa
h is that in
onsisten-

ies in the geometri
 output are prevented, degenera
ies do not have to be

treated expli
itly and that the solution
omputed
onverges

3

to the exa
t

solution if the pre
ision of the numeri
al operations is in
reased. Thus, the

topology-oriented approa
h seems to be very su

essful in designing robust

algorithms espe
ially if it is
ombined with
areful implemented geometri

primitives. Sin
e its introdu
tion, the topology-oriented approa
h has been

applied to a number of geometri
 problems like the three-dimensional De-

launay triangulation [12, 42℄ and Voronoi diagrams [44℄. Held designed an

algorithm for
omputing the Voronoi diagram [22℄ of a set of points and line

segments in the plane based on [44℄.

We will now take a
loser look on how to design topology-oriented al-

gorithms. The intension of the topology-oriented approa
h is to design an

algorithm that has the following properties:

Robust: The algorithm should never end in an endless loop, terminate ab-

normally or
rash. Furthermore, it should always
ompute an output.

Consistent: The topologi
al part of the output should satisfy some pre-

de�ned topologi
al properties. Note that this does not mean that the

produ
ed output is equal to the exa
t solution. If the pre
ision of the

arithmeti
 operations is in
reased, the output
omputed
onverges to

the exa
t solution for non-degenerate input.

Easy to design: The design of the algorithm should be "easy" in the sense

that the design is independent from error analysis, i.e., error bounds,

thus separating the topologi
al
onsisten
y issue from the numeri
al

error issue.

Easy to implement: There is no need to handle degenera
ies in a spe
ial

way.

The topology-oriented approa
h is based on the following assumptions, see

[45℄:

1. Logi
al and
ombinatorial
omputations
an be done
orre
tly.

2. Numeri
al
omputations are, in general, erroneous.

3

Assuming that the input is not degenerate.

34

3. No a-priori error bound is available.

Assumption 1 ensures the
orre
tness of the implementation of a topologi
al

algorithm. Assumptions 2 and 3 allow an algorithm design that is indepen-

dent from error analysis and free from handling any degenerate situation.

Based on these assumptions a topology-oriented algorithm
an be designed

in three steps, see [45℄.

Step 1: Identify a set of purely
ombinatorial properties that should be

satis�ed by the solutions of the geometri
 problem. Make sure that

these properties
an be
he
ked eÆ
iently.

It is important to stress that this step is
ru
ial for the
orre
tness of the

algorithm. In a subsequent step the so-
alled topologi
al skeleton is designed

in a way su
h that the topologi
al properties spe
i�ed in Step 1 are guaran-

teed in the algorithm's output. If, however, these
ombinatorial properties

are not
hosen
arefully, the algorithm might not
ompute a reasonable so-

lution to the geometri
 problem. Furthermore, it should be noted that the

set of
ombinatorial properties is, in general, only a ne
essary
ondition to

insure topologi
al
onsisten
y. Sin
e a purely topologi
al
hara
terization

is not known for every set of solutions to a geometri
 problem, a suÆ
ient

ondition is often hard to �nd. Another limitation is the
omputational
ost.

Note that Step 1 requires the
ombinatorial properties to be
he
ked eÆ-

iently. Thus, it is not possible to take a topologi
al property into a

ount,

if it
annot be
he
ked with a

eptable
omputational
ost. On
e the set of

topologi
al properties is
hosen, the a
tual algorithm
an be designed:

Step 2: Constru
t the topologi
al skeleton by des
ribing the basi
 part of

the algorithm in purely
ombinatorial and topologi
al terms su
h that

the
ombinatorial properties
hosen in Step 1 are guaranteed.

Note that there is no need to handle degenera
y, sin
e the design of the

topologi
al skeleton is not based on any numeri
al operation. A

ording

to Assumption 2, numeri
al
omputations are ina

urate anyway, thus we

annot even dete
t reliably whether a degenera
y o

urs. The topologi
al

skeleton spe
i�es every possible behavior of the algorithm, regardless of the

pre
ision that is used for numeri
al operations. The algorithm is therefor

robust in the sense that it always terminates and produ
es an output. A

arefully
hosen set of
ombinatorial properties and Assumption 1 ensure

topologi
al
onsisten
y of the output
omputed. Unfortunately, there are

non-deterministi
 bran
hes in the topologi
al skeleton, see also [45℄. This

situation is shown in Figure 3.4. The tree stru
ture des
ribes all the possible

bran
hes of the topologi
al algorithm. The algorithm starts at the root and

takes a non-deterministi
 bran
h at every node until it ends up in one of the

35

correct solution

Figure 3.4: Tree stru
ture illustrating the non-deterministi
 bran
hes of a

topologi
al algorithm.

leaves. The
ombinatorial properties
hosen in Step 1 are guaranteed at ea
h

node of the tree but only one path
orresponds to the true solution of the

geometri
 problem we wish to solve. In order to �nd the desired path, the

�nal step in the design of a topology-oriented algorithm relies on numeri
al

omputations:

Step 3: Perform numeri
al
omputations at ea
h node of the tree to
hoose

the bran
h that will likely lead to the
orre
t solution of the geometri

problem.

This last step ensures that the designed algorithm is deterministi
. If all

the judgments based on numeri
al
omputations are
orre
t and there is

no degenera
y, the algorithm
omputes the exa
t answer to the geometri

problem. Without degenera
y the solution
omputed
onverges to the exa
t

solution with in
reasing pre
ision of the numeri
al operations. For degenerate

input, the algorithm
omputes an output that
onverges to an in�nitesimally

perturbed version of the
orre
t answer.

We have already mentioned that robustness does not
ome for free. Gen-

erally, there is a trade-o� between robustness and speed. Sin
e the pre
ision

of numeri
al operations does not a�e
t the robustness

4

of topology-oriented

4

The pre
ision of numeri
al operations does, of
ourse, a�e
t the quality of the output

omputed.

36

algorithms they
an be implemented using standard
oating-point arith-

meti
. Nevertheless there is a slow-down due to
he
king the
ombinatorial

properties. Degenerate input data often introdu
e
ompli
ated mi
rostru
-

tures, see [45℄, thus there might be additional
omputational
ost. It seems

though, that
arefully designed topologi
al algorithms, espe
ially if they are

ombined with tuned primitive operations are both reliable and fast and yield

good results in pra
ti
e, see [22℄.

3.3 Exa
t Arithmeti

As we saw in the previous se
tion there are a
ouple of drawba
ks and pit-

falls if one de
ides to implement a geometri
 algorithm using
oating-point

arithmeti
 or any other �nite-pre
ision arithmeti
. We have dis
ussed meth-

ods to
ope with these drawba
ks and guidelines on how to implement a

robust algorithm. Unfortunately, we also saw that there is no general rule to

a
hieve robustness. Di�erent geometri
 problems require di�erent methods

and it is diÆ
ult to
hoose and implement the right te
hniques for a spe
i�

algorithm. These problems motivated resear
hers to look for an alternative

number representation that would allow a straightforward implementation

of the theoreti
ally developed algorithms. In order to a
hieve this goal it

is ne
essary to mimi
 the real RAM model. The arithmeti
 model where

every numeri
al quantity is
omputed exa
tly and that is
losest to the real

RAM model is
alled exa
t arithmeti
. It has to be noted, though, that

exa
t arithmeti
 is de�ned on a subset of the reals, e.g., integers or rationals

only. Furthermore, it is based on the assumption that the input data
an be

represented exa
tly.

Using exa
t arithmeti
, it is possible to
ompute every numeri
al quantity

to arbitrary pre
ision. Naturally, there is a trade-o� between pre
ision and

speed. Higher pre
ision results in higher
omputational
ost. Thus, there is

a signi�
ant slow-down
ompared to �nite-pre
ision arithmeti
.

3.3.1 Big Number Pa
kages

A prerequisite to exa
t arithmeti
 is an arbitrary pre
ision representation of

numeri
al quantities. Usually multi-pre
ision integers, implemented in so-

alled big number pa
kages, are used a
hieve this goal. Over
ows in integer

operations are prevented if big number pa
kages are used, sin
e they support

the representation of arbitrary integers. Due to the fa
t that the numerator

and denominator of rationals as well as the signi�
and and the exponent of

oating-point numbers are integers, it is easy to extend multi-pre
ision inte-

gers to multi-pre
ision rationals and multi-pre
ision
oating-point numbers.

37

Multi-pre
ision integers are represented by a sequen
e of �xed-size integers

and
an be implemented using one of the following data stru
tures:

Linked Lists: Implementing multi-pre
ision integers as linked lists is very

exible but imposes additional overhead due to pointer management.

Sin
e linked lists
an be extended at will, the only restri
tion on the

size of the represented integers is the available memory of the
omputer

system. Due to the trade-o� between pre
ision and
omputational
ost,

the slow-down
an be signi�
ant for operations involving very large

numeri
al quantities.

Arrays: Big number pa
kages that are implemented using arrays usually

impose a restri
tion on the size of the representable integers. The

advantage of this method is that it is usually faster than the previous

method be
ause the size of the representable numbers is limited and

there is no overhead due to use of pointers.

A variety of big number pa
kages are available, see [49℄. Ea
h of them
an

be used as a basis for exa
t arithmeti
. The
hoi
e is up to the user.

3.3.2 Exa
t Arithmeti
 in Geometri
 Algorithms

The notion of exa
t arithmeti
 usually implies that every numeri
al quantity

is
omputed exa
tly. This may be ne
essary in some �elds of
omputer s
ien
e

like
omputer algebra, but
an be relaxed in other �elds like
omputational

geometry. Thus, problems like the high
omputational
ost of exa
t arith-

meti

an be softened if
ertain properties of algorithms in
omputational

geometry are exploited. Exa
t arithmeti
 in the
ontext of
omputational

geometry therefor implies that a representation is found that guarantees a

ertain a

ura
y.

There is also no uniform de�nition what an exa
t representation of a real

number really is. While S
hirra [40℄ suggests to
all the representation of

a real number x exa
t if an arbitrary approximation of whatever pre
ision

to x
an be
omputed, Yap [46℄
alls the representation of a subset of real

numbers exa
t if exa
t
omparisons between any two numbers of this subset

are guaranteed.

Depending on the type of algorithm one wants to implement, di�erent

requirements arise on exa
t arithmeti
. We have already mentioned that

orre
t
omparisons imply the
orre
tness of the
ombinatorial stru
ture of

an geometri
 output if the algorithm relies on predi
ates only. Thus, if

omparisons are
omputed exa
tly, i.e., the
ontrol
ow of the implemented

algorithm is identi
al to the theoreti
al one, the
orre
t
ombinatorial stru
-

ture is guaranteed. Yap's de�nition of an exa
t representation re
e
ts this

38

��

��

+

!

!

!

!

!

!

!

!

a

a

a

a

a

a

a

a

��

��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

��

��

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

3

x

4

y

5

z

+

*

* *

Figure 3.5: The impli
it representation of the expression 3 � x+ 4 � y + 5 � z

with an expression dag.

requirement of exa
t arithmeti
. It should also be noted that the output of

an algorithm, that uses exa
t arithmeti
 is the
orre
t result for the spe
i�ed

input data and not just for some perturbation of it. S
hirra's de�nition of

exa
t arithmeti
 re
e
ts the requirements of geometri
 algorithms that also

depend on
onstru
tors and thus have to
reate new geometri
 obje
ts. There

are a number of di�erent representation s
hemes for exa
t numbers like:

Rationals: One possibility to represent exa
t values is to use rationals of

the form

numerator

denominator

, where the numerator as well as the denominator

are integers of arbitrary pre
ision, see Chapter 4.

Symboli
 Representation: Combinatorial relationships are stored rather

than numeri
al values. E.g., if two line segments interse
t we do not

store the interse
tion point but the two line segments that interse
t.

Impli
it Representation: Numeri
al quantities
an be stored by remem-

bering their
omputation history. This
an be done by storing a so-

alled expression dag

5

. An expression dag is an a
y
li
 dire
ted graph

that stores the basi
 arithmeti
 operations in its interior nodes and the

5

Dag is used as a short form for dire
ted a
y
li
 graph.

39

original operands, i.e., the original input data in its leaves, see Figure

3.5.

Despite the fa
t that there are ways to represent numeri
al data exa
tly it

is still an open problem how to round them ba
k into a �nite representation

without introdu
ing errors in the
ombinatorial stru
ture again. Further-

more, problems arise in
as
aded
omputations be
ause the algorithms that

use the output of an algorithm that has been run previously need to operate

with the same representation as the previous algorithm. The growth of the

operands and the high
omputational
ost are further problems. Thus, an

algorithm that depends on exa
t arithmeti
 tends to be signi�
antly slower

than an algorithm that is based on
oating-point arithmeti
.

This ends our insight on exa
t arithmeti
 in the �eld of
omputational

geometry for now. More information
an be found in Chapter 4, whi
h is

dedi
ated to this topi
.

3.4 Degenera
ies

We have already mentioned that theoreti
al algorithms are developed as-

suming general position thereby ex
luding all possible spe
ial
ases. This

assumption makes it easier to present an algorithm and prove its
orre
t-

ness. A "general position"
annot be assumed if an algorithm is implemented

be
ause spe
ial
ases are sure to arise in real-world data for several reasons:

� Degenera
ies might be introdu
ed due to �nite-pre
ision arithmeti
.

E.g., if
oating-point arithmeti
 is used, two nearby but distin
t in-

put points might have the same
oating-point representation and are

therefor mapped to a single point.

� What is
alled degenera
y by an algorithm designer
an be
orre
t in

the real world. E.g., a CAD designer might need to position four points

su
h that they are
o
ir
ular. Degenera
y in the input data is therefor

meant to be that way.

The issues of pre
ision and degenera
y are
losely related. Degenera
y might

be introdu
ed be
ause the pre
ision for representing numeri
al quantities is

not suÆ
ient. On the other hand degenera
ies might be removed for the same

reason. Degenera
ies
ause pre
ision problems and robustness problems. We

already saw that bran
hing in geometri
 algorithms is done by evaluating a

predi
ate. In general, evaluating a predi
ate means that the sign of some

polynomial is determined. Depending on whether the sign is positive or

negative a
orresponding bran
h is
hosen. If two geometri
 obje
ts are

positioned very
lose to ea
h other, a predi
ate might evaluate to zero, thus

40

making the de
ision whi
h bran
h to take un
lear. There are two di�erent

ways of dealing with degenerate data whi
h we will dis
uss in the following

subse
tions.

3.4.1 Handling Degenera
y Manually

One
ommon method for
oping with degenera
y is to treat a degenerate

ase manually as a spe
ial
ase. Whenever a predi
ate evaluates to zero a

ode fragment is a
tivated that dete
ts the type of degenera
y and handles it

appropriately. Although the treatment of degenerate
ases as spe
ial
ases is

ommon pra
ti
e there are some drawba
ks inherent to this method. First of

all, a software developer has to
onsider every possible degenerate
ase that

may arise in his appli
ation. There are a number of spe
ial
ases for even

simple geometri
 input like point sets, e.g., two points
oin
ide, three points

ollinear or four points
o
ir
ular. The number of spe
ial
ases in
reases

tremendously if more
omplex geometri
 obje
ts or higher dimensions need

to be
onsidered. Dete
ting the type of degenera
y is not su
h an easy task

either. And even if all possible degenera
ies
an be dete
ted there might

be no straightforward method to handle them. Needless to say, that the

resulting
ode grows larger and is harder to maintain.

3.4.2 A General Method for Handling Degenera
y

Perturbation methods
an be used to eliminate degenera
y as a whole. If

a perturbation method is used a software developer
an implement an algo-

rithm assuming "general position" and thus does not have to worry about

degenera
y at all. This makes the implementation easier and more stable.

The basi
 idea behind perturbation is to manipulate the input data su
h

that degenerate
ases vanish. In general, it is important that the perturba-

tion is small su
h that the relative position of non-degenerate obje
ts is not

hanged.

A
ommonly known perturbation method is
alled Simulation of Simpli
-

ity [13℄, or SoS for short. SoS perturbs the
oordinates of geometri
 obje
ts

symboli
ally, i.e., every
oordinate is repla
ed by a polynomial in � with �

suÆ
iently small. The polynomial is
hosen su
h that the perturbed set of

obje
ts
onverges towards the original set as � goes to zero. Furthermore,

the polynomials should satisfy the following requirements:

1. The resulting perturbed set of obje
ts has to be non-degenerate if � > 0

is suÆ
iently small.

2. The resulting perturbed set of obje
ts has to retain all non-degenerate

properties of the original set.

41

3. The
omputational overhead
aused by the simulation should be small.

Assuming we are given a set of n geometri
 obje
ts O = fO

0

; O

1

; : : : ; O

n�1

g.

Ea
h obje
t has d
oordinates:

O

i

= f�

i;1

; �

i;2

; : : : ; �

i;d

g for 0 � i � n� 1.

As already mentioned above, the set O is perturbed by repla
ing ea
h
oor-

dinate �

i;j

, 0 � i � n � 1 and 1 � j � d, with a polynomial in �. In [13℄

the perturbed set O(�) is
alled the �-expansion of the original set O and is

de�ned as follows:

O(�) = fO

i

(�) = (�

i;1

+ �(i; 1); �

i;2

+ �(i; 2); : : : ; �

i;d

+ �(i; d)) j 0 � i � n�1g,

Assuming that ea
h geometri
 obje
t O

i

has a unique index between 0 and

n � 1, the polynomials �(i; j) are
hosen in di�erent orders of magnitude

orresponding to the index pairs (i; j). E.g., in [13℄, �(i; j) is
hosen su
h

that

�(i; j) = �

2

i�Æ�j

for 0 � i � n� 1, 1 � j � d, 0 < � < 1 and Æ � d.

Thus, an expression involving several fa
tors of the form �(i; j)
an be
om-

pared solely on the basis of the index pairs (i; j) involved. Sin
e the per-

turbation in SoS is not dire
tly
omputed but
arried out symboli
ally by

repla
ing ea
h
oordinate by a symboli
 expression instead, geometri
 predi-

ates based on adapted operations that operate on symboli
 expressions have

to be implemented. As an example, the fun
tion Smaller [13℄ whi
h is passed

two
oordinates as its arguments and returns true if the �rst argument is

smaller than the se
ond one and returns false otherwise,
an implemented

with the following pseudo
ode fragment:

boolean Smaller(�

i;j

, �

k;l

)

f

if (�

i;j

6= �

k;l

)

return (�

i;j

< �

k;l

);

else if (i 6= k)

return (i > k);

else

return (j < l);

g

If �

i;j

6= �

k;l

then we have a non-degenerate situation and the
oordinates

an be
ompared dire
tly, else the index pairs (i; j) and (k; l) are used to

determine if �

i;j

is smaller than �

k;l

.

42

A limitation of SoS is that the polynomials in � used as a repla
ement

for the a
tual
oordinates
an be
ome very
ompli
ated if deep algebrai

omputations are involved. Furthermore, SoS
annot be used if square root

operations are involved in the
omputation. It is also important to note that

the solution
omputed by an algorithm that utilizes a perturbation method is

the solution of a perturbed version of the input instan
e. If the result for the

original input instan
e is needed, some form of post pro
essing is ne
essary,

whi
h might also be non-trivial. The
omputational
ost of algorithms that

depend on a perturbation te
hnique is generally higher be
ause perturbation

te
hniques usually resort to exa
t arithmeti
 for spe
i�
 tasks. SoS, for

example, relies on exa
t arithmeti
 to dete
t degenerate
ases. As a last

remark, it is also important to note that a perturbation method removes

every degenera
y, even if it was intensional. This ends our dis
ussion of

symboli
 perturbation, for more information see [13℄.

43

Chapter 4

Exa
t Geometri
 Computation

This
hapter is
on
erned with Exa
t Geometri
 Computation (EGC), a

variant of exa
t arithmeti
 that exploits properties of geometri
 algorithms

in order to improve their eÆ
ien
y. Following an introdu
tion to EGC, we

provide an overview of basi
 EGC
on
epts followed by a survey of te
hniques

that
an be used to a

elerate EGC. A dis
ussion of geometri
 libraries that

implement or utilize EGC te
hniques
on
ludes this
hapter.

4.1 What is Exa
t Geometri
 Computation

As we saw in the previous
hapter, exa
t arithmeti

an be used to avoid

numeri
al ina
urra
y. Exa
t arithmeti
 in
onjun
tion with a perturbation

method simulates the real RAM model. Algorithms
an therefor be imple-

mented in a straightforward manner. A major drawba
k of exa
t arithmeti

is its high
omputational
ost. EGC relaxes the requirement to
ompute

every single numeri
al quantity exa
tly. EGC requires exa
t
omparisons

only to ensure the
orre
tness of the
ombinatorial stru
ture of an geometri

output. A

ording to [29℄, this approa
h has the following advantages over

naive exa
t arithmeti
:

1. No exa
t values are
omputed where they are not feasible. Sin
e full

numeri
al a

ura
y is not always needed it is a waste of CPU time to

ompute every numeri
al quantity exa
tly.

2. The solution to a geometri
 problem is
omputed with the pre
ision

that is a
tually needed. This is
alled the pre
ision-driven approa
h and

fa
ilitates the use of te
hniques like lazy evaluation, adaptive
omputa-

tion or
oating-point �lters to a
hieve an additional speed-up. Further-

more, the pre
ision-driven approa
h allows user
ontrol of the pre
ision

needed for a geometri
 output.

44

Assuming that the input is numeri
ally a

urate and
onsistent with the

ombinatorial stru
ture, EGC ensures the
orre
tness of a geometri
 algo-

rithm that solely relies on predi
ates. For algorithms that also depend on

onstru
tors, a numeri
al output that is
onsistent with its
ombinatorial

output to some absolute or relative pre
ision requirements
an be
omputed.

It has to be noted, though, that the numeri
al data of an geometri
 output

an grow very large whi
h might
ause problems in
as
aded
omputations.

Rounding numeri
al quantities ba
k to a �nite-pre
ision representation in-

trodu
es problems similar to those in standard
oating-point
omputations

and is still an open problem.

As we have mentioned before, the goal of the EGC approa
h is to
om-

pute numeri
al quantities suÆ
iently high su
h that exa
t
omparisons are

guaranteed. The problem of
omputing exa
t
omparisons
an be redu
ed

to the problem of determining the
orre
t sign of an arithmeti
 expression.

In EGC the
lass of radi
al expressions is
onsidered. These are expressions

involving the basi
 arithmeti
 operations (+;�; �; =) and

k

p

. Expressions

with trans
endental fun
tions or � are still an open problem [29℄. In order

to guarantee
orre
t
omparisons, an expression

1

is
omputed to a pre
ision

where the sign
an be determined exa
tly while root separation bounds are

used to test whether the expression evaluates to zero.

4.2 Basi
 Con
epts of EGC

Let us re
all that exa
t
omputation in the
ontext of EGC does not imply

to
ompute every numeri
al quantity exa
tly. Instead, it suÆ
es to insure

orre
t
omparisons. There are three basi
 building blo
ks that EGC relies

on:

Root separation bounds: Root separation bounds are used to determine

if an expression evaluates to zero. Thus, they are a justi�
ation for the

use of approximate numbers in EGC.

Expressions: Expressions are used to represent a numeri
al quantity ex-

a
tly. This is a
hieved by remembering its whole
omputational his-

tory.

Big number pa
kage: Some big number pa
kage is used to represent nu-

meri
al quantities dire
tly. This is ne
essary in the
ase of input data

1

We will use the term expression as a synonym to radi
al expression throughout the

rest of this thesis, sin
e radi
al expressions are the type of expressions that are
ommonly

used in EGC.

45

as well as for evaluated expressions. Due to the existen
e of root sep-

aration bounds some form of approximate representation based on a

big number pa
kage suÆ
es to determine the sign of an expression
or-

re
tly.

We will now take a
loser look on these basi
 building blo
ks of EGC and

sket
h the sign determination pro
ess. Con
epts to a

elerate EGC and

software libraries that implement EGC te
hniques will be dis
ussed in the

subsequent se
tions.

4.2.1 Root Separation Bounds and the Sign Determi-

nation Pro
ess

Root separation bounds are used to determine whether an expression eval-

uates to zero or not. Without the theory of root separation bounds there

would be no way to determine the
orre
t sign of an expression using ap-

proximate values. Therefor, root separation bounds are the justi�
ation for

EGC. In [29℄ a positive number b is
alled a root separation bound of an

algebrai
 expression E if the following holds:

if E 6= 0 then jEj � b.

There are a number of di�erent root separation bounds with di�erent prop-

erties. In the
ontext of EGC, it is important that the bound is reasonably

tight and easy to
ompute. It has to be mentioned, though, that there is

not a single bound that is always better than all the other known bounds.

Therefor, it is important to �nd a bound that is best suited for those
lasses

of expressions that frequently o

ur in geometri
 algorithms. The
omputa-

tion of root separation bounds is out of the s
ope of this thesis; see [29, 31, 9℄

for more information on this topi
.

We will now sket
h the sign determination pro
ess and presume that we

have already found a suitable root separation bound b. In order to deter-

mine the
orre
t sign of an expression it is ne
essary to
he
k whether the

expression evaluates to zero or not. The sign determination of an algebrai

expression
an then be exe
uted in two steps, see [29, 31℄.

Step 1: Compute an numeri
al approximation

~

E to the algebrai
 expression

E progressively until

~

E satis�es either

jE �

~

Ej <

b

2

or j

~

Ej > jE �

~

Ej.

Step 2: If j

~

Ej > jE�

~

Ej is rea
hed �rst, then the sign of the approximation

~

E is the same as the sign of E. Thus, no root separation bound is

46

needed to determine the sign safely. Note, that this
ondition is usually

rea
hed �rst if jEj is large. If the
ondition jE �

~

Ej <

b

2

is rea
hed

�rst, then the root separation bound is ne
essary and the sign of E is

determined a

ording to the following rule:

sign(E) =

(

sign(

~

E) if j

~

Ej �

b

2

0 otherwise.

The approximation

~

E
an be
omputed using double pre
ision
oating-point

arithmeti
 in a �rst step. If this is not suÆ
ient, the pre
ision is doubled and

the approximation is
omputed again. A

ording to this pro
edure, pre
ision

is in
reased until one of the
onditions in Step 1 is rea
hed. This ends our dis-

ussion of this topi
; see [29, 10℄ for more information and implementational

details.

4.2.2 Expressions

The use of expressions in EGC is motivated by the observation that arith-

meti
 operations do not o

ur arbitrarily and unpredi
tably in geometri

algorithms [49℄. Furthermore, they do not
hange dynami
ally [19℄. An-

alyzing geometri
 problems, one
an observe that there is a known set of

primitive operations that
an be used to solve su
h problems. Determinant

evaluation is an example of su
h a primitive operation that suÆ
es to solve

a variety of problems in
omputational geometry, su
h as triangulations or

onvex hulls.

As already outlined in Chapter 3, an expression is represented as a labeled

dire
ted a
y
li
 graph (dag). The root as well as all the internal nodes of

the expression dag are labeled by an operator. The number of su

essors

of a non-leaf node
orresponds to the number of operands of the arithmeti

operation that is represented by that parti
ular node. E.g., if a node is labeled

by a binary operation, it has two su

essors. While the root represents the

value of the whole expression, ea
h internal node represents the value of a

subexpression. Finally, the leaves are labeled by numeri
al variables that

represent the input values. If the expression is instantiated with some input

data, the expression is evaluated bottom-up by simply propagating values

to all the internal nodes until the root of the dag is rea
hed. As already

mentioned, the
lass of expressions
onsidered in EGC is generally the
lass

of radi
al expressions involving the basi
 arithmeti
 operations +, �, �, = and

the

k

p

. A new operation is simply inserted into the expression dag. Thus, an

arithmeti
 operation takes
onstant time. Besides the exa
t representation of

numeri
al values, expressions have the additional advantage of having a lot

of room for optimizations, see [19, 46, 29, 49, 19℄. Similar to a
ompiler that

47

parses and optimizes the
ode of a programming language, the expression

an be
ompiled and optimized prior to their evaluation. As an example,

Yap suggests in [46℄ to exploit the asso
iativity property of the addition

operation. If the signs of the operands
an be estimated at
ompile-time,

then the operands
an be grouped into positive and negative values whi
h

are added among themselves �rst. This approa
h helps to avoid unne
essary

pre
ision.

4.2.3 BigFloat as an Example for an Approximate Rep-

resentation of Numeri
al Values

We have already mentioned that the EGC approa
h is a relaxation of the

standard exa
t arithmeti
. Therefor, EGC is based on exa
t arithmeti
 whi
h

implies that a big number pa
kage is ne
essary to implement EGC te
hniques.

As we outlined in the previous
hapter, several di�erent big number pa
kages

are available. It has to be noted though, that the majority of big number

pa
kages have been developed for
omputer algebra. While the pre
ision

needed in
omputer algebra programs is usually unpredi
table, the pre
ision

needed in geometri
 algorithms usually is, see [46℄. Thus, there is room for

optimizations if su
h a pa
kage is redesigned to address the needs in
omputa-

tional geometry. For optimization reasons mentioned above the Core-library

2

uses a big number pa
kage
alled BigFloat [48, 46, 49, 29℄. We will now take a

loser look at it. Remember that in the
ontext of EGC, exa
tness is de�ned

by guaranteeing error-free de
isions. Therefor, there is no need to
ompute

every numeri
al quantity exa
tly. The existen
e of root separation bounds,

see Subse
tion 4.2.1, justi�es the use of approximate numbers in EGC. Thus,

a proper representation for approximate numbers is needed. Furthermore,

this representation should satisfy the following requirements:

1. In
ontrast to �xed-pre
ision arithmeti
, where every numeri
al quan-

tity is
omputed with the same pre
ision, a more
exible approa
h that

fa
ilitates the spe
i�
ation of di�erent pre
isions for di�erent variables

is needed. The pre
ision spe
i�ed should be arbitrarily large.

2. The number representation should de
ouple the magnitude of a num-

ber from its pre
ision. Similar to the pre
ision, the magnitude of the

number should be arbitrarily large.

3. Ea
h approximate number should
arry an error bound that is auto-

mati
ally
omputed.

2

The Core-library is an EGC library that is implemented in C++. We will dis
uss it

in the next
hapter.

48

The designers of the Core-library opted for a
oating-point representation.

Sin
e the exponent determines the size of the number and the signi�
and

spe
i�es its pre
ision,
oating-point numbers are best suited to de
ouple

pre
ision from magnitude. By representing both the exponent as well as

the signi�
and with big integers, the size and pre
ision
an be arbitrary

large. In order to satisfy requirement Number 3, an error bound is asso
iated

with every
oating-point number. An arbitrary BigFloat number x is of the

following form:

x = (m� Æ)� �

e

, where

� > 1 is the base, m and e are the signi�
and and the exponent, both

represented by big integers and Æ is an error bound that is automati
ally

omputed for ea
h arithmeti
 operation. If Æ = 0, the represented number

is exa
t. Sin
e a BigFloat number is a
tually an interval,
are has to be

taken that the interval, i.e. Æ, does not grow too large. Thus, a BigFloat

number is normalized after ea
h arithmeti
 operation. The reader is referred

to [36, 49, 48℄ for more information on how the arithmeti
 operations are

arried out, and for the details of the normalization pro
ess.

4.3 A

elerating EGC

The utilization of expression dags in EGC fa
ilitates the use of te
hniques

like lazy evaluation [6℄ and the pre
ision-driven approa
h [48, 49℄ to tune

the pro
ess of sign determination. Another te
hnique to a

elerate EGC is a

oating-point �lter. We will now take a look at these
on
epts.

4.3.1 Floating-Point Filter

A
ommon method to a

elerate the exa
t
omputation of an expression is

to use a so-
alled
oating-point �lter [19, 7℄. The purpose of a
oating-

point �lter is to �lter out those
omputations that yield a
orre
t result with

standard
oating-point arithmeti
, and to use exa
t arithmeti
 only in the

remaining
ases. In a �rst step, the expression E is evaluated using standard

oating-point arithmeti
 yielding an approximation

~

E. Depending on the

type of �lter, an upper bound � on the error of

~

E is
omputed before or

during runtime. If

j

~

Ej > �,

then the sign is known safely [7℄, otherwise exa
t arithmeti
 is used to deter-

mine the sign
orre
tly. There are three types of
oating-point �lter:

49

Fully stati
 �lter: A fully stati
 �lter
an be used with expressions that are

built from the basi
 arithmeti
 operations (+;�; �; =) and

p

. First,

an upper bound on the error of all the
oeÆ
ients of the expression E

is
omputed. Then, based on these upper bounds, an upper bound �

whi
h is valid for all possible input instan
es is
omputed. Therefor,

the upper bound � is
omputed before runtime.

Semi-stati
 �lter: If it is not possible to �nd an upper bound on the error

of the
oeÆ
ients of an expression E, a semi-stati
 �lter
an be used

assuming that it is possible to �nd a formula similar to E that yields

an upper bound for a parti
ular input instan
e. The upper bound

� is
omputed a

ording to this formula at runtime but prior to the

evaluation of the expression E.

Dynami
 �lter: A dynami
 �lter
omputes � at runtime during the eval-

uation of E. For ea
h operation in E, an error bound is
omputed

resulting in the upper bound � at the root of the expression.

In general,
oating-point �lter yield a signi�
ant speed-up in geometri
 algo-

rithms sin
e the use of exa
t arithmeti

an be redu
ed signi�
antly in the

majority of input instan
es.

4.3.2 Lazy Evaluation

Lazy evaluation [6℄ utilizes interval arithmeti
, see Page 31, and is based on

the following paradigm:

Why should a numeri
al quantity be
omputed exa
tly if it is not

involved in
on
i
ting issues in subsequent
omputations.

The basi
 idea of lazy evaluation is to store enough information to
ompute

the exa
t value of a numeri
al quantity if this is ne
essary. Therefor, a

lazy number is basi
ally an interval that
ontains the exa
t value of the

represented number. The interval is bounded by two
oating-point numbers.

Su
h an interval is automati
ally assigned to ea
h input quantity. The input

values form the leaves of an expression dag. As already mentioned above

an operation
an be performed in
onstant time using expression dags. If

ne
essary, the intervals of a node
an be re�ned or the expression is evaluated

using exa
t arithmeti
. There are only three di�erent
ases [6℄ where this is

ne
essary:

1. The numeri
al quantity represented by an expression dag is
ompared

to another numeri
al quantity and their intervals interse
t.

50

2. The re
ipro
al of a numeri
al quantity is required and its interval in-

ludes zero.

3. The evaluation of an prede
essor in the expression dag is required.

The evaluation pro
ess is
arried out in a bottom-up fashion. Starting with

the leaves of the expression dag, tighter intervals are propagated to the in-

ternal nodes until, �nally, the root is rea
hed. This pro
edure is
arried out

until the interval at the root is tight enough to make a
orre
t de
ision. If

this is not possible, the expression is evaluated with exa
t arithmeti
.

The bene�t of the lazy approa
h is that the evaluation of an expression

is delayed as long as possible. Furthermore, it is only ne
essary to reevaluate

an expression in the
ases mentioned above. Thus, there
an be a signi�
ant

speed-up
ompared to the naive use of exa
t arithmeti
.

4.3.3 The Pre
ision-Driven Approa
h

Another te
hnique to a

elerate EGC is the pre
ision-driven approa
h of

Yap and Dub�e [48, 49℄. Similar to the lazy approa
h, an expression dag

is used to represent numeri
al quantities. The main di�eren
e between the

lazy approa
h and the pre
ision-driven approa
h is the evaluation pro
ess

of an expression. The lazy approa
h spe
i�es a pre
ision at the leaves of

the expression dag. This pre
ision is in
reased until the pre
ision at the

root is a

eptable. In the pre
ision-driven approa
h, on the other hand, the

pre
ision we want at the root is spe
i�ed �rst. This pre
ision is propagated

in a top-down fashion. At the leaves, a suÆ
ient approximation is
omputed

su
h that the pre
ision spe
i�ed at the root holds. Finally, starting from the

leaves, the expression is evaluated bottom-up, similar to the lazy approa
h.

Yap and Dub�e introdu
e a
omposite pre
ision bound to spe
ify the re-

quired pre
ision at the root of an expression dag. In [48, 49℄ they de�ne the

approximation ~x of a real number x to a
omposite pre
ision [a; r℄, written

~x

�

=

x[a; r℄, as follows:

jx� ~xj � maxf2

�a

; 2

�r

jxjg,

where a is the absolute pre
ision and r the relative pre
ision. Thus, the

user
an de
ide if he wants to spe
ify the pre
ision in relative terms only by

spe
ifying [1; r℄, in absolute terms only by spe
ifying [a;1℄ or in relative

and absolute terms by spe
ifying [a; r℄ at the root.

The pre
ision-driven approa
h is a more a
tive approa
h than lazy eval-

uation. By propagating the pre
ision spe
i�ed at the root of the expression

dag downwards, an approximation that satis�es this pre
ision bound
an be

omputed at the leaves thus avoiding unne
essary iterations in the evaluation

pro
ess.

51

4.4 EGC Libraries

A number of di�erent libraries that implement EGC te
hniques have been

developed sin
e the �rst proposal of EGC:

LEDA: LEDA [34, 33, 3℄, whi
h is distributed under a
ommer
ial li
ense,

provides low-level data types, predi
ates and algorithms for EGC. More

information on the availability of LEDA and the LEDA a
ademi
 pro-

gram
an be found on the LEDA homepage [3℄.

CGAL: CGAL [14, 15℄ provides a set of data stru
tures and algorithms. It

uses the standard ma
hine data types or low-level data types provided

by other libraries. CGAL li
enses are available free of
harge for a
a-

demi
 use; see the CGAL homepage [1℄ for more information on the

li
ense model.

Core-library: The Core-library [26℄ provides low-level number types for

EGC and the
orresponding operations. It is available free of
harge

and
an be downloaded at [2℄.

There are a number of design goals [39, 14℄ that have to be
onsidered by

the developers of a geometri
 library su
h as:

Robustness and Corre
tness: Sin
e the goal of geometri
 libraries is to

fa
ilitate the development of robust geometri
 algorithms, it is ne
es-

sary that the implementation of the library itself is robust and
orre
t.

If the library provides geometri
 predi
ates and algorithms in addi-

tion to some low-level data types and operations,
are has to be taken

that those algorithms and predi
ates are
orre
t. As pointed out in

[39, 14℄, an algorithm or predi
ate is
orre
t if it behaves a

ording to

its spe
i�
ation. For example, an algorithm that is restri
ted to input

in "general position" only is
orre
t if it
omputes the
orre
t answer

for the spe
i�ed input instan
es.

EÆ
ien
y: Another important requirement for a geometri
 library is eÆ-

ien
y. The pra
ti
al value of a geometri
 library is questionable if the

omputational
ost is too high. Industrial-strength algorithms have to

ope with large input data sets and sin
e "time is money", a
orre
t

output has to be produ
ed qui
kly.

Ease of use: Implementing an algorithm based on a library with a
om-

pli
ated interfa
e
an be very time-
onsuming. Furthermore, it is an

additional sour
e of errors. It is therefor essential to hide implemen-

tational details from the user and provide him with a simple interfa
e

52

instead. Ease of use is an important property for a library to be
ome

widely a

epted.

Generality, Modularity and Openness: The algorithms developed in
om-

putational geometry have many potential appli
ations in other areas

of
omputer s
ien
e like
omputer graphi
s, virtual reality,
omputer

aided design (CAD),
omputer vision, solid modeling, roboti
s or geo-

graphi
al information systems (GIS). Di�erent needs may arise in these

areas. A geometri
 library should therefor be designed in a rather

general way in order to provide a sound basis for all kinds of appli-

ations that arise in
omputer s
ien
e. Besides generality, modularity

and openness are ne
essary to fa
ilitate the adaption and extension of

the library a

ording to a user's needs.

The su

ess and the a

eptan
e of a library in
omputational geometry de-

pends heavily on the
onsideration of the design goals mentioned above. In

the following, we will survey the most important libraries for
omputational

geometry { LEDA, CGAL and the Core-library.

4.4.1 Computational Geometry Algorithms Library {

CGAL

CGAL [14, 15℄, the short form for Computational Geometry Algorithms Li-

brary, is the result of a
ooperation between eight European institutions:

Utre
ht University (Netherlands), ETH Z�uri
h (Switzerland), Free Univer-

sity Berlin (Germany), Martin-Luther University Halle (Germany), INRIA

Sophia-Antipolis (Fran
e), Max-Plan
k Institute of Computer S
ien
e and

University Saarbr�u
ken (Germany), RISC Linz (Austria), and �nally, Tel-

Aviv University (Israel). The goal of the CGAL proje
t is to bring the

variety of eÆ
ient data stru
tures and algorithms that have been developed

in the �eld of
omputational geometry to pra
ti
e and make them available

for industrial appli
ation. The CGAL library is implemented in C++, sin
e

C++ is widely a

epted and it
an easily be interfa
ed with existing C and

FORTRAN programs. Furthermore, it fa
ilitates library design and imple-

mentation and the resulting
ode is usually faster than, for example, Java

ode.

In order to a
hieve a maximum of
exibility and modularity, the CGAL-

library design is based on a lot of C++
on
epts. Virtual base
lasses with

virtual fun
tions are used to provide a uniform interfa
e to the CGAL fun
-

tionality. Based on a virtual
lass, di�erent
lasses
an be derived, providing

the same fun
tionality but with di�erent implementations. For example,

geometri
 obje
ts
an be represented using standard Cartesian
oordinates

53

or alternatively homogeneous
oordinates, a line
an be represented by the

oeÆ
ients of its equation or by its two endpoints, and so on. Another ap-

pli
ation of this
on
ept is to provide algorithms with di�erent fun
tionality,

e.g., an algorithm that
an
ope with degenerate input and is naturally slower

or, alternatively, an algorithm that is faster but does not handle degenerate

input. Depending on his/her needs, the user is free to
hoose the fun
tion-

ality and representation he/she desires. It has to be mentioned, though,

that virtual
lasses and virtual fun
tions impose additional overhead due to

the virtual fun
tion table pointer that has to be stored in ea
h obje
t that

is derived from a virtual base
lass and the indire
tion through the virtual

fun
tion table. Furthermore, templates are used to implement, for example,

ontainer
lasses like lists and trees for di�erent data types. Finally, so-
alled

ir
ulators, a
on
ept
losely related to the
on
ept of iterators used in the

C++ Standard Template Library (STL), are introdu
ed to iterate through

ir
ular data stru
tures whi
h frequently arise in geometri
 algorithms. In

the following, we will fo
us on the stru
ture and fun
tionality of CGAL. For

more information on implementational details, see [15℄.

Core library

Geometri
 kernel

Basi
 library

'

&

$

%

on�guration

'

&

$

%

assertions

'

&

$

%

ir
ulators

'

&

$

%

. . .

'

&

$

%

two-dimensional

module

'

&

$

%

three-dimensional

module

'

&

$

%

d-dimensional

module

'

&

$

%

polygon

'

&

$

%

onvex hull

'

&

$

%

triangulation

'

&

$

%

. . .

Figure 4.1: The three CGAL layers.

As illustrated in Figure 4.1, CGAL is
omprised of three di�erent layers

54

built on top of ea
h other. The two lowest layers, the
ore library

3

and the

geometri
 kernel form the so-
alled CGAL kernel. In addition to the the three

layers of CGAL there is a support library that stands apart from the rest

and provides additional fun
tionality like visualization of geometri
 obje
ts.

We will now des
ribe the fun
tionality provided by ea
h layer:

Core library: The
ore library is the lowest CGAL layer and provides fun
-

tionality that is needed by the upper layers but is not purely geometri
.

It o�ers support for
ir
ulators, dealing with assertions,
ompatibility

issues of di�erent C++
ompilers, and random numbers.

Geometri
 kernel: The geometri
 kernel provides simple geometri
 obje
ts

like points, lines, line segments, triangles, and tetrahedra, plus geo-

metri
 predi
ates, basi
 operations like interse
tion and distan
e, and

transformations on these obje
ts. In order to utilize
ertain proper-

ties of di�erent dimensions, the geometri
 kernel is divided into three

parts for two-dimensional, three-dimensional and general-dimensional

obje
ts. Furthermore, Cartesian and homogeneous representations are

supported in every dimension. It is interesting to note that no basi

number type for the representation of numeri
al quantities is provided

by CGAL itself. Due to the use of templates, the data stru
tures for the

basi
 geometri
 obje
ts are parameterized. Thus, the user is free to pi
k

the number type that suits his/her needs. If, for example, speed is more

important than robustness, standard ma
hine data types like float or

double
an be
hosen. If, on the other hand, robustness is more im-

portant than
omputational
ost, then a data type like leda real from

LEDA or Expr provided by the Core-library (NYU)
an be
hosen to

support EGC. Sin
e divisions
an be prevented using homogeneous
o-

ordinates, it is an other interesting possibility to use arbitrary pre
ision

integer arithmeti
 in
onjun
tion with the homogeneous representation

of geometri
 obje
ts.

Basi
 library: The basi
 library provides high-level data stru
tures and

algorithms. Examples in
lude polygons, polyhedrons, triangulations,

kd-trees and algorithms for
omputing
onvex hulls, the smallest en-

losing
ir
le, and triangulations. Care is taken that all the fun
tional-

ity provided by the basi
 library is independent from ea
h other. Thus,

hanges made in one
omponent do not a�e
t the other
omponents.

Furthermore, this makes it easier to test the
omponents independently.

The
ommuni
ation between
omponents in a layer and between dif-

ferent layers is
arried out using well-de�ned interfa
es, see [15℄.

3

Core library in the
ontext of CGAL refers to the lowest layer of CGAL and must not

be
onfused with the Core-library developed at NYU.

55

We have already mentioned above that there is a so-
alled support library

that is not part of a layer but stands apart from the rest of the library.

The support library adds fun
tionality that is not vital for the rest of the

library but is quite useful for developing a geometri
 appli
ation. This in-

ludes support for visualization of CGAL obje
ts by providing interfa
es to

languages like VRML and PostS
ript, or to programs like GeomView and

LEDA windows.

Summarizing, CGAL is a high-level geometri
 library that provides a set

of geometri
 data stru
tures and geometri
 algorithms. The library itself is

divided into three layers whi
h
ommuni
ate through a well-de�ned interfa
e.

Components within a layer are designed to be independent from ea
h other.

Communi
ation between those
omponents is again established through a

well-de�ned interfa
e. CGAL does not provide a data type that supports

EGC. Instead, all geometri
 data stru
tures are parameterized su
h that a

number type to represent numeri
al quantities
an be
hosen at will. If

robustness is the major issue then data types like leda real or Expr
an

be used to a
hieve EGC fun
tionality. For ease of use, CGAL provides a

uniform interfa
e with a fun
tionality that is
losely related to the interfa
e

provided by the C++ STL. For more information on CGAL see [15, 14, 1℄.

4.4.2 Library of EÆ
ient Data Types and Algorithms

{ LEDA

The LEDA proje
t [34, 33, 3℄ started 1989 prior to CGAL but with similar

intentions. Just like CGAL, the main goal of LEDA is to transfer te
hnology

from theory to pra
ti
e. Advan
ed knowledge gained in the �eld of
ompu-

tational geometry and
ombinatorial
omputing should be provided to the

user. Thus another similarity of LEDA and CGAL is that both are high-level

libraries that provide a
olle
tion of data stru
tures and algorithms that op-

erate on these data stru
tures. LEDA is written in C++ for reasons similar

to CGAL. Therefor, all high-level data stru
tures are parameterized using

templates. The user de
ides whi
h data type he wants to use to represent

numeri
al quantities. Unlike CGAL, LEDA provides a number of low-level

data types for this task. Among the supported data types are the standard

ma
hine data types like int, float and double as well as arbitrary pre
ision

versions
alled Int and Float. Int is an arbitrary pre
ision integer type in

the mathemati
al sense and Float is a
oating-point data type with arbi-

trary pre
ision signi�
and and exponent. The data type leda real [8, 10℄ is

used to support EGC.

We will now survey the features of LEDA and take a
loser look on the

data type leda real be
ause it has a lot of similarities to the type Expr

56

provided by the Core-library. LEDA is organized into six logi
al units, see

[34℄:

Basi
 data types: The basi
 data types are strings, lists, queues, sta
ks,

arrays, partitions and trees. All of them are parameterized su
h that

any of the supported low-level number types
an be
hosen to represent

numeri
al quantities.

Numbers, ve
tors and matri
es: The supported low-level number types

are the ma
hine data types int, float, and double. In addition the

multi-pre
ision versions Int and Float are implemented to support

exa
t
omputation. EGC is provided by the type leda real. Ve
tors

and matri
es are available for all these data types.

Di
tionaries and priority queues: Di
tionaries, priority queues, di
tio-

nary and hashing arrays, sorted sequen
es and persistent di
tionaries

are provided by this logi
al unit of LEDA.

Graphs: The graph unit of LEDA implements data stru
tures for dire
ted,

undire
ted and planar graphs like arrays indexed by nodes and edges,

priority queues on nodes and node partitions. Algorithms that oper-

ate on graphs like shortest paths, bi
onne
ted and strongly
onne
ted

omponents, transitive
losure, topologi
al sorting, unweighted and

weighted bipartite mat
hing, network
ow, planarity testing, planar

embedding, et
. are also provided by this unit.

Windows and panels: This LEDA unit provides an X11 interfa
e and sup-

ports the output of geometri
 obje
ts and intera
tive mouse input.

Geometry: Finally, the geometry unit provides points, lines and line seg-

ments plus some higher-level data stru
tures on these obje
ts like pla-

nar subdivisions, range trees, segment trees, and interval trees. Al-

gorithms like line-segment interse
tion, Voronoi diagrams, Delaunay

triangulations and
onvex hulls are also implemented in this unit.

The algorithms in LEDA are robust in the sense that exa
t rational arith-

meti

an be used for geometri
 obje
ts. Furthermore, the algorithms are

designed to
ope with degenera
ies. If the user prefers to use EGC te
hniques

instead of exa
t arithmeti
 he
an resort to the LEDA data type leda real.

We therefor take a
loser look at it below. For
exibility and performan
e

reasons, di�erent implementations of data stru
tures and algorithms are pro-

vided and if
omputational speed is more important than robustness one
an

use the ma
hine types int, float and double to represent numeri
al quan-

tities.

57

There seems to have been a
ooperation between the CGAL and the

LEDA proje
t. Some of the developers are even
ontributing to both proje
ts.

Thus, there are a lot of similarities in both LEDA and CGAL { both pro-

vide high-level data stru
tures and algorithms for geometri

omputing. The

high-level data stru
tures are parameterized in both libraries, thus providing

support for di�erent low-level data types to represent and operate on nu-

meri
al quantities. While CGAL does not implement any arbitrary pre
ision

number types, LEDA implements the data type leda real, that supports

EGC and that is also used by CGAL as well as arbitrary pre
ision integer

and
oating-point arithmeti
.

The data type leda real is basi
ally a C++
lass implemented within

the LEDA framework. It it is
losed under the basi
 operations +;�; �; =

and the

k

p

operation. Comparisons of numeri
al quantities are redu
ed to

sign determinations, see Subse
tion 4.2.1, and
an be done exa
tly. Thus,

leda real provides EGC fun
tionality. Similar to the Core-library, see Chap-

ter 5, leda real represents a numeri
al quantity by remembering its whole

omputational history in an expression dag. The nodes of the expression dag

are labeled by arithmeti
 operations. As already mentioned in Subse
tion

4.2.2, there is a
orresponden
e between the operands of an operation in a

node and its su

essors. The leaves hold the input values whi
h are arbi-

trary length integers. If an arithmeti
 operation o

urs, it is inserted into

the expression dag and an initial approximate value using standard double

pre
ision
oating-point arithmeti
 is
omputed. Thus, an arithmeti
 oper-

ation takes
onstant time. Both leda real and the Core-library use the

pre
ision-driven approa
h from Subse
tion 4.3.3 to evaluate expressions but

with di�erent pre
ision bounds. For more information and implementational

details, see [8, 10℄.

4.4.3 Core-Library

The Core-library is an EGC library that has been developed at the Depart-

ment of Computer S
ien
e at New York University. In
ontrast to LEDA and

CGAL, the Core-library does not provide any high-level geometri
 data types

and algorithms, ex
ept for the data stru
tures and
orresponding operations

provided by so-
alled Core-extensions. Instead, it provides an expression

data type together with the supported operations (+;�; �; =;

p

) that al-

lows error-free
omparisons and the
omputation of numeri
al quantities to

arbitrary pre
ision. The Core-library is based on the Real/Expr-library [36℄

and implements the EGC te
hniques outlined in [48℄ and [49℄. Being a low-

level library, Core is very
exible in the sense that the user has to implement

the whole geometri
 algorithm by himself based on the expression data type

and assuming exa
t arithmeti
. Furthermore, the Core-library is easy to

58

use be
ause of the promotion of data types. While the Core-library itself

is based on a small number
ore, additional fun
tionality
an be added by

Core-extensions. For more information on the Core-library see the following

hapter.

59

Chapter 5

Core-Library

This
hapter is dedi
ated to the Core-library. After a short introdu
tion,

we dis
uss basi

on
epts and implementational issues of the library in Se
-

tion 5.2. Then, we dis
uss how to use the Core-library in existing C/C++

programs in Se
tion 5.3. Finally, we present the Core-based version of the

program from Page 15. It is important to note that some of the
on
epts we

mention in this
hapter, e.g., Level II, Level IV and the optimizing
ompiler

are not available in the
urrent version 1.4 of the Core-library. Neverthe-

less we do not ex
lude these
on
epts from our dis
ussion in order to take a

glimpse at future improvements.

5.1 Introdu
tion to the Core-Library

The Core-library [47, 26, 30℄ is a C++ library that implements EGC te
h-

niques. Besides stability, two major issues for EGC-libraries are ease of use

and eÆ
ien
y. The developers of the Core-library tried to address both is-

sues. A simple interfa
e is provided through the overloading of existing data

types. This te
hnique should support software developers to use the library

in existing programs as well as in new ones. Compiler optimizations

1

and

the use of the newest knowledge of EGC te
hniques should ensure reasonable

performan
e. The Core-library provides four di�erent a

ura
y levels:

Level I - Ma
hine A

ura
y: This level represents the
onventional IEEE

standard, see Se
tion 2.4. Thus, Level I is fast but does not provide

any EGC fun
tionality, i.e., there are no gains in robustness
ompared

to programs using standard
oating-point arithmeti
.

Level II - Arbitrary A

ura
y: Level II provides the fun
tionality of big

number pa
kages. The user is allowed to
hoose an a

ura
y that suits

1

The
ompiler is still under development.

60

his/her needs. Spe
ifying 100 bits of a

ura
y means that there will

be no over
ows or under
ows in the numeri
al operation until 100

bits are ex
eeded. Thus, numeri
al quantities
an be
omputed to an

arbitrary, user-spe
i�ed pre
ision. Level II is useful if the user is aware

of the pre
ision needed in his/her appli
ation in advan
e. Naturally,

there is a trade-o� between pre
ision and performan
e. The higher the

pre
ision, the poorer the performan
e will be. Therefor, it is important

to �nd a balan
e between these two fa
tors in order to a
hieve an

robust algorithm with reasonable performan
e. Level II is not fully

implemented yet.

Level III - Guaranteed A

ura
y: Finally, Level III provides EGC fun
-

tionality and is therefor the key innovation of the Core-library. It is

slower than Level II but guarantees the
orre
t results up to the spe
i-

�ed number of bits. If 100 bits are spe
i�ed, then the user is guaranteed

that 100 bits of a quantity
omputed are
orre
t. In Level III, numeri-

al quantities are represented using expression dags, see Page 47. The

pre
ision-driven approa
h, des
ribed on Page 51, is implemented to

evaluate expressions. Error-free
omparisons are guaranteed in this

level only. In order to assure the
orre
t sign of a numeri
al quantity,

it is suÆ
ient to spe
ify one bit of a

ura
y.

Level IV - Mixed A

ura
y: This level is intended for �ner a

ura
y
on-

trol sin
e the levels are intermixed and lo
alized to individual variables.

Unfortunately, this feature has not been implemented in Version 1.4 of

the Core-library yet.

Sin
e only Level I and Level III are fully supported by the
urrent release of

the Core-library, we mean Level III fun
tionality whenever we speak of the

Core-library unless we expli
itly refer to a spe
i�
 level.

The basi
 operations for EGC
omputations are provided by a small nu-

meri
al
ore of the library whi
h
urrently supports the mathemati
al op-

erations +, �, �, = and

p

. High-level data stru
tures and algorithms

or fun
tionality for spe
i�
 appli
ations is provided through so-
alled Core-

extensions. In the
urrent release, two Core-extensions are available:

LinearAlgebra: The linear algebra Core-extension provides the
lass Ma-

trix for general n � m matri
es and the
lass Ve
tor for general n-

dimensional ve
tors. The
lasses also implement basi
 operations for

matri
es and ve
tors, e.g., the Gaussian elimination algorithm.

Geometry: The geometry Core-extension is
omprised of a 2D pa
kage

alled geometry2D and a 3D pa
kage
alled geometry3D. Geometry2D

61

provides basi
 two-dimensional obje
ts like points and lines. Geom-

etry3D o�ers points, lines and planes in the three-dimensional spa
e.

Both pa
kages depend on the LinearAlgebra Core-extension.

The fun
tionality of both Core-extensions mentioned above is very rudimen-

tary in the
urrent release. Nevertheless a software developer is free to im-

plement new Core-extensions or
ustomize the existing ones to suit his/her

needs. Sin
e a separate Core-extension
an be built for every a

ura
y level,

high-level data stru
tures and algorithms
an be provided for di�erent re-

quirements regarding robustness and
omputational
ost.

In the next se
tion we des
ribe the internals of the Core-library. Se
tion

3 will explain how to use the library in own programs and what has to be

onsidered when using the Core-library in existing programs.

5.2 Internals of the Core-Library

This se
tion provides an overview of the promotion and demotion me
hanism

whi
h makes it easy to use the Core-library in existing C/C++ programs.

Furthermore, we will provide an overview of the
lasses that implement the

fun
tionality of the numeri
al
ore and the data types provided by the Core-

library. Subse
tion 5.2.4 and Subse
tion 5.2.5 explain how Level II and Level

III work. A drawba
k in the use of C++ te
hniques like virtual fun
tions and

parameterization is that there is additional overhead due to virtual fun
tion

tables and runtime type
he
king. These sour
es of overhead and ways to

avoid them in future releases of the library are dis
ussed in Subse
tion 5.2.6.

5.2.1 Supported Data Types

In the Core-library every a

ura
y level, ex
ept of Level IV, operates on its

own set of data types. Level I uses the ma
hine data types int, long, float

and double. Level II implements its own data types
alled Real, BigFloat,

BigInt and BigRat. These are all big number data types whi
h are based

on a
ustom big number pa
kage

2

. The data type Real is not a parti
ular

representation of numbers but a super
lass of all the Level I and Level II

data types and provides a uniform interfa
e to a

ess them. The data type

Expr o�ers EGC fun
tionality and is only available in Level III. Level IV

does not need an own data type sin
e it is used to intermix the previous

three a

ura
y levels in order to provide �ner a

ura
y
ontrol.

2

Version 1.4 of the Core-library uses the big number pa
kage gmp.

62

5.2.2 Promotion and Demotion of Data Types

There is a natural partial ordering between the Level II data types whi
h is

de�ned as follows:

float < double < BigFloat < BigRat,

int < long < BigInt < BigRat < Real.

Promotion and demotion of data types is
arried out automati
ally when

ertain operations are performed or when the a

ura
y level is
hanged. If, for

example, a BigFloat value is assigned to an int variable, then the BigFloat

value has to be demoted to an int before it is assigned. Similarly, whenever

the a

ura
y level is
hanged from Level I to Level III, then the data types

double and long promote to the Level III data type Expr, while int and

float remain un
hanged. Even in Level III it is desirable to have Level I data

types for eÆ
ien
y reasons, e.g., for values that do not need to be
omputed

exa
tly. The reason why int and float are not promoted is that they are

low-pre
ision data types. If int and float are used in a program then high

pre
ision, over
ows and under
ows do not seem to be an issue, otherwise the

software developer would have used long and double instead. Therefor, it

is reasonable to let int and float un
hanged, even if the a

ura
y level is

hanged from Level I to Level III. The Level III data type Expr is demoted

to Real if the a

ura
y level
hanges from Level III to Level II

3

. A

ording

to [26℄, the general prin
iples for promotion and demotion are:

1. A program is
alled a Level l (l = 1,2,3) program if it expli
itly de
lares

data types of Level l but no data types of a level above l.

2. The fun
tionality of lower levels is also available at higher levels.

3. Variables and features are demoted if a program
hanges from a higher

level to a lower level.

4. In Level IV promotions and demotions are only performed whenever

assignments are
arried out.

The
on
ept of promotion and demotion makes it easy to use the Core-

library in existing C/C++ programs as well as in new ones. A software

developer does not have to use the data types provided by the Core-library

expli
tly. Instead, the well-known standard C/C++ data types
an be used.

If a software developer wants EGC fun
tionality, he/she simply has to set

the a

ura
y level, in
lude the Core-library's header �le and has to link the

3

Sin
e Level II is not fully implemented, this is
urrently of no relevan
e in pra
ti
al

appli
ations.

63

program with the Core-library. This is espe
ially true if the program was

designed to use the Core-library from the beginning. In existing programs,

however, there are a number of additional issues that have to be
onsidered.

We will dis
uss them in Subse
tion 5.3.2 and in the next
hapter.

5.2.3 Classes Provided by the Core-Library

The basi
 fun
tionality of the Core-library is provided by �ve
lasses whi
h

we des
ribe brie
y in this se
tion.

The
lass Real: The
lass Real is the super
lass of all Level II data types.

It de�nes
ommon operations for the derived
lasses and manages ini-

tialization.

The
lass BigFloat: The
lass BigFloat depends on the
lass BigInt,

sin
e the signi�
and is a big integer. It is used to approximate val-

ues of the type Expr. A BigFloat number has three
omponents:

1. A signi�
and m whi
h is of type BigInt.

2. An error Æ 2 f0; : : : ; B � 1g, where B is the base of the
oating-

point number. The type of the error value is unsigned long.

3. The exponent e whi
h is of type long.

As we already mentioned in the previous
hapter, instan
es of the

lass BigFloat
arry an error bound Æ that is automati
ally
omputed.

Therefor, a BigFloat number a
tually represents an interval:

[(m� Æ) �B

e

; (m+ Æ) �B

e

℄.

The error bound is automati
ally adapted using interval arithmeti

when operations are performed. Due to interval arithmeti
 the error

an grow very qui
kly, see [26, 48, 49℄, and thus the interval might grow

too large. Sin
e arbitrarily large intervals are not desirable, e�orts are

made to ensure an interval that is as tight as possible. Thus, the error

is normalized su
h that:

0 � Æ � B � 1.

For a detailed des
ription on how the supported arithmeti
 operations

are implemented; see [36, 29℄.

64

The
lass Expr: EGC fun
tionality is provided by the
lass Expr. Thus, in

Level III, numeri
al quantities are represented using expression dags.

The leaves hold the operands and the inner nodes represent the opera-

tions. Assuming that the values at the leaves are error-free, expression

dags represent the exa
t value of numeri
al operations. The
lass Expr

en
apsulates three basi

omponents:

1. an expression dag T ,

2. a pre
ision p,

3. a number

~

E of the data type Real

4

.

The Real value

~

E is used to approximate the value E of the expression

represented by T to the pre
ision p. Internally, operations and operands

are represented using the
lass ExprRep. Therefor, the expression dag

is built from instan
es of the
lass ExprRep while an instan
e of the

lass Expr points to the root of the expression dag. This situation is

illustrated in Figure 5.1.

The
lass ExprRep: As mentioned above, instan
es of the
lass ExprRep

hold unary operators, binary operators or an operand if they
orrespond

to a leaf of the expression dag. Currently, operands in an expression

are always BigFloat values. Instan
es of the
lass ExprRep hold two

pointers if they represent a binary operator, one pointer if they repre-

sent a unary operator, or no pointer if they hold an operand to other

ExprRep instan
es. Level III expressions are modeled as hierar
hies of

ExprRep instan
es, see Figure 5.1.

The
lass extLong: The
lass extLong is a wrapper for the standard data

type long with three additional values:

1. CORE negInfty,

2. CORE posInfty and

3. CORE NaN.

The value CORE negInfty and CORE posInfty represent negative and

positive in�nity respe
tively, while CORE NaN is the value for not a num-

ber and indi
ates an illegal operation. The
lass extLong is designed in

a way that no over
ows and under
ows
an o

ur; its main purpose is

to set the pre
ision variable defInputDigits, whi
h
ontrols the a

ura
y

of the input data.

4

Re
all that Real is only a super
lass of all Level II data types. Thus,

~

E is a
tually of

the type BigFloat.

65

Expr

ExprRep

ExprRep

ExprRep ExprRep

ExprRep

ExprRep

unary operator

binary operator

binary operator

operand operandoperand

Figure 5.1: Internally, the expression dag is
onstru
ted from instan
es of

the
lass ExprRep. The whole Expression is represented by an instan
e of

the
lass Expr, whi
h points to the root of the expression dag.

66

Now that we know how an expression is represented internally, we are going

to see what happens to the variables used in a program when Level II or

Level III of the Core-library are used.

5.2.4 How Level II Works

Level II works just like a big number pa
kage. Variables of the data types

long and double are promoted to Real. A
tually, long is
onverted to

BigInt and double is
onverted to BigFloat internally, sin
e Real is just a

super
lass of all the Level I and Level II data types. Variables of the type

int and float remain un
hanged for reasons mentioned in Se
tion 5.2.2. In

order to a
hieve a maximum of eÆ
ien
y, the Core-library tries to leave long

and double variables un
hanged as long as possible and
onverts them only

if over
ows or under
ows o

ur. Therefor, Level II has a built-in me
hanism

to
he
k for over
ows and under
ows at runtime. To illustrate this pro
ess

let us take a look at the following example:

double w, x, y, z;

int i;

x = y � i;

w = x=z;

If this
ode fragment is pro
essed in Level II, the variables w, x, y, or z are

promoted to BigFloat as soon as an over
ow or under
ow o

urs involving

that parti
ular variable. The integer i is un
hanged during the exe
ution of

the program.

5.2.5 How Level III Works

Variables of the data types long and double are
onverted to the data

type Expr if Level III is used. Again, int and float variables remain un-

hanged. Whenever a program is exe
uted in Level III, expression dags are

built that remember the dependen
y of values from other values. Following

the pre
ision-driven approa
h from Page 51, a
ertain pre
ision is spe
i�ed at

the root of an expression dag, and is propagated downwards to the leaves. At

the leaves an error bound is
omputed by the system and propagated upwards

to the root. This pro
ess is iterated until the error is smaller than or equal

to the requested pre
ision. E.g., if E is an expression,

~

E an approximation

to E and [r; a℄ is a
omposite pre
ision bound then an error

Err

~

E

� maxfjEj � 2

�r

; 2

�a

g

67

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

y

i

z

�

w

�

x

��

��

=

��

��

�

Figure 5.2: The expression dag that is
onstru
ted if the sample
ode from

Subse
tion 5.2.4 is exe
uted in Level III.

is guaranteed by the system. The expression tree
onstru
ted for the example

in Subse
tion 5.2.4 is illustrated in Figure 5.2. The dependen
e of w from

x is remembered in a natural way due to the
onstru
tion of the expression

dag.

5.2.6 Sour
es of Overhead and Optimization

The pra
ti
al value of a library for EGC depends primarily on its perfor-

man
e. Besides the use of fast algorithms and their
areful implementation,

optimizations at the
ompiler level may help to gain additional performan
e.

The developers of the Core-library are therefor working on an optimizing

ompiler that analyzes the expressions used in a program and tries to op-

timize them. Furthermore, additional overhead introdu
ed by the obje
t-

oriented programming style is redu
ed. A

ording to [26℄, Level III evalua-

tion is su�ering from the following sour
es of overhead that are not present

if Level I is used:

Fun
tion Call Overhead: Overhead is introdu
ed through dynami
 dis-

pat
hing and binding due to the use of virtual fun
tions.

Memory Management Overhead: Obje
t hierar
hies are
reated to im-

68

plement Level III expression dags. This introdu
es
a
he line fragmen-

tation and poor spatial lo
ality { a general problem that
omes with

the use of pointers for dynami
 memory allo
ation and deallo
ation.

Operation Overhead: Several iterations of the downward propagation of

pre
ision bounds and upward propagation of error bounds may be ne
-

essary to evaluate an expression in Level III. For reasons of en
apsu-

lation these steps are performed at the granularity of individual ex-

pression nodes (operations). Redu
tion of overhead by exploiting the

global stru
ture of an expression is possible. E.g., similar operations

like +
ould be grouped in one node in order to redu
e the depth of

the expression dag.

General Overhead: General overhead is introdu
ed by the obje
t-oriented

programming style. E.g., global obje
ts are
onstru
ted using smaller

omponent obje
ts.

A
ompiler that optimizes memory management and brakes some of the

limitations imposed by the obje
t-oriented programming style might yield

a signi�
ant speed-up. The developers of the Core-library therefor plan to

implement su
h an optimizing
ompiler. Some of the optimization ideas and

the results a
hieved are outlined in [26℄.

5.3 Using The Core-Library

We will now see how to use the Core-library in own software proje
ts. First,

we take a look at the statements ne
essary to prepare,
ompile and link a

program with the Core-library. Then we mention basi
 guidelines whi
h are

ne
essary to make a program
ompliant with the Core-library. Finally, we

present the Core-based version of the program from Page 15. We assume the

GNU g++
ompiler throughout this se
tion.

5.3.1 Building Programs That Use the Core-Library

Besides performan
e the developers of the Core-library also emphasized ease

of use. Thanks to the promotion and demotion me
hanism that substitutes

the standard data types with the Core data types and vi
e versa, and operator

overloading, only minimal
hanges are required to
onvert existing C/C++

programs.

In the simplest
ase the software developer just has to do the following:

Set the a

ura
y level: The a

ura
y level is set by inserting the following

#de�ne statement before the
ode starts:

69

#de�ne <Level number>,

where Level number = 1,2,3 or 4. Sin
e Level I and Level III are the

only levels that are fully implemented in Version 1.4 of the Core-library,

Level II and Level IV
annot be used at present.

In
lude the header �le: To in
lude the header �le for the Core-library one

has to pla
e the

#in
lude <CORE.h>

statement after all the standard #in
lude statements but before the

ode starts.

Build the program: In order to build Core-based programs, the in
lude

path and the library path need to be spe
i�ed appropriately with the

-I and -L
ompiler
ags. Then the program is linked with the Core-

library and the big number pa
kage gmp by spe
ifying the -l
ore and

-lgmp
ags. Assuming one wants to link the Core-library with the

program foo.
, the
ommand for building foo.
 has to look like this:

g++ -I$(CORE PATH)/in
 foo.
 -o foo -L$(CORE PATH)/lib -l
ore

-lgmp -lm,

where $(CORE PATH) is the dire
tory where the Core-library is in-

stalled.

Unfortunately, the situation is not so simple in pra
ti
e. There are a number

of additional issues, see [30℄, that have to be
onsidered if one wants to link

the Core-library with existing programs. We will des
ribe these issues in the

next subse
tion.

5.3.2 Converting Existing Programs

We have already mentioned that in the simplest
ase it is suÆ
ient to set

the a

ura
y level and in
lude the Core-library's header �le appropriately.

In general, this is only true for very simple programs. Thus, there are some

basi
 guidelines that have to be
onsidered if an existing program is linked

with the Core-library. Furthermore, a new program has to be implemented

a

ording to these prin
iples in order to be
ompliant with the Core-library.

We take a look at these guidelines in this subse
tion.

70

Assume error-free results and
omparisons: Sin
e existing programs of-

ten take pre
autions to prevent in
onsisten
y and non-robustness due

to numeri
al errors this fundamental rule is violated and
an
ause

problems. A possible solution to solve problems with the
ommonly

used �-tweaking te
hnique is to set � = 0.

Preventing promotion: All the variables of the ma
hine data types long

and double that o

ur after the preamble are promoted to Expr

5

in

Level III. If one still wants to use the ma
hine data types instead, one

has to resort to the data types ma
hine long and ma
hine double as

a repla
ement of long and double.

Initialization: All the obje
ts that are expli
itly de
lared to be of type Expr

or automati
ally promoted to Expr have to be initialized. For dynam-

i
ally allo
ated Expr obje
ts,
orre
t initialization is only performed if

the new operator is used. That is, mallo
 does not work in
onjun
tion

with Level III obje
ts.

Using library operations: The ma
hine data types int and float are

never promoted to Expr. This means that the normal sqrt operation

of math.h is used in the following example:

int i = 2;

double x = sqrt(2);

double y = sqrt(i);

Sin
e i is of type int, y is
omputed using the standard sqrt opera-

tion. The situation for x is similar. A possible solution is given in the

following
ode fragment:

int i = 2;

double z = i;

double x = sqrt(Expr(2));

double y = sqrt(z);

Sin
e z is of type double it is promoted to Expr and y is
omputed with

the sqrt fun
tion of the Core-library. The variable x is also
omputed

exa
tly be
ause of the expli
it promotion of the
onstant 2.

Literals and
onstant arithmeti
 expressions: Literals and
onstant arith-

meti
 expressions are not promoted. E.g.:

5

A similar promotion o

urs in Level II.

71

double x = 2/3;

double y = 2.0/3;

double z = 1.3;

In this example the value of x is 0 be
ause the standard integer division

operator is used here. The value of y is an approximation to 2.0/3

sin
e the standard division operator for
oating-point numbers is used

to
ompute this fra
tion. A possible solution would be:

double x = Rational(2/3);

double y = Rational(2/3);

double z = \1.3";

In general,
onstant literals have to be pla
ed in quotation marks and

the global variable defInputDigits needs to be set to 1 in order to

represent numeri
al values exa
tly.

5.3.3 An Example of a Simple Core-Based Program

We will now present the Core-based version of the program from Page 15.

The program is shown in Figure 5.3. Note, that the Core-based version looks

almost similar to the original program. The only di�eren
es are:

1. The inserted preamble (a

ura
y level and header �le), and

2. the
onstant literals that have to be pla
ed in quotation marks in or-

der to enable exa
t
omparisons. Furthermore, we use the fun
tion

setDefaultInputDigits to set the global variable defInputDigits to

in�nity

6

.

Sin
e no Core obje
ts are written, the standard output fun
tion printf
an

still be used here. Fortunately, there is a major di�eren
e to the
oating-

point version of the program in the result
omputed. Due to the use of exa
t

arithmeti
, the program prints

x == 1.0

whi
h is the
orre
t result while the
oating-point version of the program

prints

x != 1.0.

6

If defInputDigits is not set to in�nity then this Core-based version shows the same

in
orre
t behavior as its
oating-point sibling: it also outputs the string "x != 1.0"!

72

#de�ne Level 3

#in
lude <stdio.h>

#in
lude <CORE.h>

int main()

f

setDefaultInputDigits(CORE posInfty);

double x = "0:0";

int
ounter;

for(
ounter = 0;
ounter < 10;
ounter ++)

x = x + "0:1";

if (x == "1:0")

printf("x == 1:0nn");

else

printf("x ! = 1:0nn");

return 0;

g

Figure 5.3: The Core-based version of the program from Page 15.

This ends our dis
ussion of the Core-library. For more information on how

to use the library in own proje
ts, see the Core-library tutorial [30℄ whi
h

is part of the full distribution of the Core-library and
an be downloaded

together with the library from [2℄.

73

Chapter 6

Linking FIST with the

Core-Library

This
hapter provides an introdu
tion to the triangulation algorithm FIST

in Se
tion 6.1. Steps for making FIST
ompliant with the Core-library are

presented in Se
tion 6.2. Se
tion 6.3 presents experimental results. We

on
lude in Se
tion 6.4.

6.1 A Survey of FIST

FIST [21℄, an a
ronym for fast industrial-strength triangulation, is a triangu-

lation algorithm for polygons in
luding polygons with islands and polyhedral

fa
es based on ear
lipping. FIST uses standard
oating-point arithmeti

and was designed not to
rash or loop. Furthermore, FIST also handles

degenerate input data. Thus, FIST always produ
es a topologi
ally valid

triangulation of a polygon P , i.e., the verti
es of P form the verti
es of the

triangulation, every edge of every triangle is shared with one other triangle

or is on the border of P , and every edge of P belongs to exa
tly one triangle.

We explain the basi
s of the ear
lipping algorithm and dis
uss the heuristi
s

needed to guarantee the robustness of FIST in this se
tion.

6.1.1 The Ear Clipping Algorithm

We now explain the ear
lipping algorithm used in FIST. Similar to [21℄, in

this dis
ussion we assume that the polygon P is simple and oriented
oun-

ter
lo
kwise (CCW). With FIST a polygon is triangulated by
lipping ears.

Three verti
es v

i�1

, v

i

and v

i+1

form an ear of the polygon P if v

i

is a
onvex

vertex and the line segment [v

i�1

; v

i+1

℄ is a diagonal of P , i.e., the open line

segment (v

i�1

; v

i+1

) is
ompletely
ontained in the interior of P , see Figure

74

�

�

�

�

�

�

�

�

�

�

�

�

L

L

L

L

L

L

L

L

L

L

L

L

L

L

LL

h

h

h

h

h

h

h

h

h

h

�

�

�

�

�

�

�

�

�

�

�

�

�

�

X

X

X

X

X

X

X

X

X

t

v

4

t

v

5

t

v

3

t

v

6

t

v

7

t

v

8

t

v

1

t

v

2

Figure 6.1: The verti
es v

3

, v

4

and v

5

form an ear of the polygon.

6.1. By
lipping an ear formed by v

i�1

, v

i

and v

i+1

, the ear is repla
ed by

the line segment [v

i�1

; v

i+1

℄. Thus, the number of verti
es of P is redu
ed

by one every time an ear is
lipped. This pro
ess is terminated when the

polygon is redu
ed to a single triangle, whi
h forms the last triangle of the

triangulation.

The implementation of the ear
lipping algorithm in FIST is exe
uted in

�ve steps:

Step 1: First, in a prepro
essing step, the verti
es of the polygon are sorted

lexi
ographi
ally a

ording to their x and y-
oordinates. Then every

vertex is assigned a unique index a

ording to its position in the sorted

array. Verti
es with identi
al
oordinates have identi
al indi
es. Due

to those unique indi
es,
omparisons of verti
es are redu
ed to
om-

paring their
orresponding indi
es whi
h are integers. In this sense,

omparisons between verti
es
an be done error-free

1

on
e the verti
es

have been sorted.

Step 2: Determine the orientation of all polygonal loops. In
ase of multiply-

onne
ted polygonal areas, also determine the outer
ontour.

1

Of
ourse, misjudgments
an be made in the
ourse of the sorting pro
ess sin
e

oating-point values are
ompared. Nevertheless these misjudgments are used
onsistently

throughout the program.

75

Step 3: In Step 3 all the verti
es of the polygon P are
lassi�ed as
onvex

or re
ex.

Step 4: In the fourth step, every
onse
utive triple of verti
es is
he
ked for

earity, i.e., if they form an ear. Dete
ted ears are marked and stored.

Step 5: In the �nal step one of the previously stored ears is
lipped and

stored in the triangulation. As already mentioned above,
lipping an

ear of a polygon with n verti
es yields a polygon with n � 1 verti
es.

Furthermore, every previously dete
ted ear is still valid ex
ept for up

to two ears that involve the
lipped vertex. Thus, if the ear v

i�1

, v

i

,

v

i+1

is
lipped, the ears involving the vertex v

i

are not valid any more.

Instead, the vertex triples v

i�2

, v

i�1

, v

i+1

and v

i�1

, v

i+1

, v

i+2

have to

be
he
ked for earity. Step 5 is
arried out until the original polygon

has been transformed into a triangle.

In [21℄ Held formulates two di�erent sets of
onditions that are ne
essary

and suÆ
ient to dete
t an ear. Ear dete
tion is
arried out a

ording to

both sets, whi
h yield two di�erent worst-
ase time
omplexities. One of

those sets yields an ear dete
tion pro
ess that is sensitive to the shape of the

polygon: for a polygon with r re
ex verti
es its worst-
ase time
omplexity

is O(n � (r + 1)). The worst-
ase
omplexity of the ear dete
tion pro
ess

a

ording to the se
ond set depends on the verti
es of the polygon only,

whi
h results in O(n

2

) for a polygon with n verti
es. For details on the ear

dete
tion pro
ess and the
ondition sets mentioned above see [21℄.

6.1.2 Extending the Basi
 Ear Clipping Algorithm

The basi
 ear
lipping algorithm is extended to handle multiply-
onne
ted

polygonal areas. This is a
hieved by linking the inner loops with the outer

ontour by so-
alled
ontour bridges. Basi
ally, a
ontour bridge is a doubled

diagonal whi
h links two di�erent boundary loops. Contour bridges are found

by determining the left-most vertex of ea
h polygonal loop. Next, the inner

loops are sorted a

ording to their left-most vertex. Re
all that this
an be

done error-free, sin
e it is suÆ
ient to
ompare the indi
es of the verti
es {

see Step 1 of the ear
lipping algorithm. Finally, starting from the left-most

inner loop, all inner loops are
onne
ted to the outer boundary. For details

on this pro
ess see [21℄.

6.1.3 Ensuring Robustness

A number of heuristi
s are implemented to support the basi
 ear
lipping

algorithm. There are heuristi
s to soften the problems that arise whenever

76

oating-point arithmeti
 is used. Furthermore, heuristi
s are needed to
ope

with degenera
ies. In order to handle degenerate input data, the ear
lipping

pro
ess has to be adopted appropriately. E.g., an ear v

i�1

, v

i

, v

i+1

where v

i

oin
ides either with v

i�1

or v

i+1

is still
onsidered a valid ear. In general,

degenerate ears are
lipped �rst. Thus, for input that exhibits only little

degenera
ies, the algorithm eliminates those degenera
ies qui
kly and
on-

tinues with the standard ear
lipping pro
ess. Of
ourse, there are a number

of additional degenera
ies that have to be treated as spe
ial
ases. We will

omit a thorough dis
ussion at this point and
on
entrate on general
on
epts

implemented in FIST in order to improve robustness of the triangulation al-

gorithm. The reader is referred to [21℄ for more information on the treatment

of spe
ial
ases.

Consistent Primitive Operation

As pointed out in [21℄, FIST is based on a single predi
ate namely the orien-

tation test, whi
h is evaluated by
omputing the sign of a 3� 3 determinant.

As we have pointed out on Page 32 the sequen
e of the input values passed

to the determinant evaluation fun
tion does matter, i.e., inter
hanging the

order of operands might yield di�erent results. Sin
e all the verti
es are

assigned a unique index in Step 1 of the ear
lipping algorithm, the determi-

nant is evaluated by ensuring that the index of the �rst argument is smaller

then the index of the se
ond argument whi
h is again smaller then the index

of the third argument, i.e., if the verti
es v

i

, v

j

and v

k

are passed to the

determinant evaluation fun
tion,
are is taken that i < j < k holds. This

reordering of the verti
es might
hange their
y
li
 order. If so, the sign of

the determinant
omputed is inverted. Furthermore, epsilon tweaking is used

to in
rease robustness of the determinant evaluation fun
tion.

Determining the Orientation and the Outer Boundary of Polygonal

Loops

Sin
e real-world data is likely to have all kinds of de�
ien
ies in
luding in
or-

re
tly spe
i�ed orientations, FIST does not rely on the orientation spe
i�ed

in the input �le. Instead, the orientation of a polygon is determined by
om-

puting its signed area, denoted by A(P). The signed area is
omputed by

determining the signed areas of ea
h triangle �(v

0

; v

i

; v

i+1

) and subsequent

summation of the results. There are three possibilities:

A(P) < 0 : The polygon is oriented
lo
kwise (CW),

A(P) = 0 : The polygon is twisted or
ollapsed to a
hain and a random

orientation is
hosen,

77

A(P) > 0 : The polygon is oriented
ounter
lo
kwise (CCW).

In
ase of multiply-
onne
ted polygonal areas, the outer
ontour has to be

determined. A

ording to [21℄ this is a
hieved with the following heuristi
:

The polygonal loop, whi
h has the biggest absolute area is
onsidered the

outer
ontour. After the outer
ontour is determined it is oriented CCW,

while all the inner loops are oriented
lo
kwise.

Classifying Internal Angles

The
lassi�
ation of internal angles formed by v

i�1

, v

i

, and v

i+1

is again

redu
ed to the orientation test, i.e., the evaluation of the sign of a 3 � 3

determinant. Depending on the sign
omputed there are three di�erent
ases:

Positive Sign: If the sign
omputed is positive, then the internal angle at

v

i

is
onvex.

Negative Sign: A negative sign indi
ates that the internal angle at v

i

is

re
ex.

Determinant equals zero: If the determinant equals zero, then the inter-

nal angle is either 0

Æ

, 180

Æ

or 360

Æ

. The angle is 180

Æ

if the dot produ
t

of the ve
tors determined by v

i

v

i�1

and v

i

v

i�1

is less than zero. The

remaining
ases
annot be determined lo
ally. Thus, one has to move

away from v

i

in both CW and CCW dire
tion until two non-overlapping

segments are found. The angle at v

i

is then determined by a lengthy

ase study.

As usual the determinant is evaluated by passing it the verti
es in in
reasing

order of their indi
es as arguments.

The Multi-Level Re
overy Pro
ess

Despite all the e�orts taken to �nd a valid ear, there are self-interse
ting

polygons, where the algorithm runs out of ears before the polygon is
om-

pletely triangulated. A multi-level re
overy pro
ess together with a so-
alled

desperate mode is implemented to handle su
h situations. Simply speaking,

the triangulation pro
ess is restarted but with more aggressive methods for

the ear �nding pro
ess. There are four di�erent levels:

1. In the �rst level, there is a re
lassi�
ation of ears. Sin
e some of the re-

ex verti
es may already have disappeared due to previous ear
lipping,

this may reveal new valid ears that have not been valid before.

78

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

t

v

2

t

v

4

t

v

3

t

v

1

Figure 6.2: A self-interse
ting polygon.

2. In the se
ond level FIST
he
ks the polygon for self-interse
tions. E.g.,

the open line segments of two edges (v

i�1

; v

i

) and (v

i+1

; v

i+2

) interse
t.

If so, then the triangles �(v

i

; v

i+1

; v

i+2

) and �(v

i�1

; v

i

; v

i+2

) are
lipped.

For the example polygon in Figure 6.2, the triangles �(v

2

; v

3

; v

4

) and

�(v

1

; v

2

; v

4

) are
lipped. As pointed out in [21℄,
omputing the point

of interse
tion of the line segment [v

1

; v

3

℄ with the line segment [v

2

; v

4

℄

would result in a gap for 3D polyhedral input. Thus,
lipping the

triangles as des
ribed above is a reasonable solution to this problem.

3. In the third level, the polygon is split into sub-polygons by inserting

a diagonal. Then, the resulting polygons are triangulated. It has to

be noted, though, that not every valid diagonal helps to improve the

situation. Thus,
are has to be taken to
hoose a suitable one, see [21℄

for more information.

4. If all of the above levels fail to �nd new ears, then FIST enters a so-

alled desperate mode. In desperate mode, a random
onvex vertex

or, alternatively, if no
onvex vertex exists, a random re
ex vertex is

hosen and the
orresponding ear is
lipped.

It is important to stress that FIST tries to resume the standard triangulation

pro
ess as soon as possible, e.g., if new ears are found in Level 1, then they

79

are
lipped and the
ode resumes the standard ear
lipping algorithm and

does not remain any of the subsequent levels. Similarly, FIST tries to leave

desperate mode as soon as possible.

Speeding Things Up

Depending on the ear dete
tion pro
ess, see Page 76, used for the triangula-

tion, the worst-
ase time
omplexity for FIST is O(n

2

) or O(n�(r+1)), where

n is the number of verti
es and r is the number of re
ex verti
es of the in-

put polygon. Therefor, the pra
ti
al CPU time
onsumption would in
rease

tremendously with in
reasing number of verti
es if no
ountermeasures are

taken.

FIST uses geometri
 hashing to over
ome this de�
ien
y. In [21℄, Held

evaluates bv-trees and grids to improve the pra
ti
al running time. Experi-

ments showed that grids are faster than bv-trees and yield a slightly super-

linear time
onsumption in pra
ti
e. For more information on geometri

hashing in FIST and experimental results see [21℄.

6.2 Making FIST Compliant with the Core-

Library

The goal of our work is to modify FIST in a way su
h that it is able to

work with exa
t arithmeti
 provided by the Core-library. Furthermore, we

wanted to evaluate if the Core-library is easy to use in existing programs and

reasonably fast as
laimed by the developers of the library. Thus, we tried

to

1. make as minimal
hanges to FIST as possible, and

2. to a
hieve maximal speed.

Besides the evaluation of ease of use, the motivation for Design Goal 1 is to

keep FIST
onsistent, i.e., a user should be able to build both the
oating-

point and the exa
t version of FIST. Thus, we used the C prepro
essor and

in
luded all the Core-related
hanges in the following prepro
essor statement:

#ifdef LIB CORE

.

.

.

#endif

80

Furthermore it is important not to introdu
e any errors by the
hanges ne
-

essary to use the Core-library. In order to a
hieve Design Goal 2, we tried

to use the Core-library in those parts of FIST only where it is ne
essary. Of

ourse, there were situations where a trade-o� between Design Goal 1 and

Design Goal 2 was ne
essary.

The developers of the Core-library
laim that is easy to use in both new

and existing programs and fast enough to be a reasonable alternative to

oating-point arithmeti
. As stated above, we wanted to evaluate those

laims. As we have already mentioned in the previous
hapter, one require-

ment for Core-based appli
ations is to design them assuming exa
t arithmeti

and error-free de
isions. Clearly, this is not the
ase with the standard ver-

sion of FIST sin
e it was designed to
ope with all kinds of problems that

arise in
oating-point arithmeti
. Thus, it is interesting to see if the mea-

sures that ensure robustness in the
oating-point version of FIST
ause any

problems in the exa
t version of FIST.

In the following subse
tion we explain the
hanges we made in order to

reate a Core-based version of FIST. Sin
e we use the Core-library in Level

3 only, all double and long variables are promoted to the Core data type

Expr.

6.2.1 Adapting the I/O-Routines of FIST

Sin
e the standard C input and output routines
annot be used with Core

obje
ts, they have to be adapted appropriately. Clearly, all the input values

need to be represented by Core obje
ts. On the other hand there was no

need to produ
e an exa
t output sin
e the graphi
al output is based on

integer
oordinates and sin
e FIST does not
reate new geometri
 obje
ts.

In addition, rounding exa
t values ba
k to a �nite representation without

produ
ing errors similar to
oating-point arithmeti
 is still an open problem.

Thus, we de
ided to use the Expr
lass member doubleValue

2

to extra
t

the ma
hine double value from an exa
t Expr value and used the standard

output routines. As we have mentioned above, the situation is di�erent in

the
ase of input values. All the input values need to be represented by Core

obje
ts in order to guarantee exa
t
omparisons. Basi
ally, there are two

possible solutions to this problem:

1. One way to solve this problem is to rewrite every input routine from

the s
rat
h using the C++ input stream
in.

2. A se
ond possibility is to use the fa
t that Core obje
ts
an be ini-

tialized using string literals. Thus, all input values
an be read in as

2

Note that the use of the member doubleValue
an
ause silent over
ows and under-

ows.

81

void ReadPolygon(. . .)

f

har Str x
1[STR LENGTH℄;

har Str y
1[STR LENGTH℄;

har Str x
2[STR LENGTH℄;

har Str y
2[STR LENGTH℄;

double x
1, y
1, x
2, y
2;

.

.

.

if (EOF == fs
anf(inputfile, "%s %s %s %s", Str x
1, Str y
1, Str x
2; Str y
2))

/* print an error message */

else

f

x
1 = Str x
1;

y
1 = Str y
1;

x
2 = Str x
2;

y
2 = Str y
2;

g

.

.

.

g

Figure 6.3: An example of an input fun
tion in the Core-based version of

FIST.

strings using the standard input routines.

We opted for the se
ond possibility sin
e this allowed us to read the exa
t

input values without rewriting every input routine. The
ode fragment in

Figure 6.3 demonstrates this approa
h. Re
all, that the double variables

x
1, y
1, x
2 and y
2 are promoted to Expr when the Core-library is used.

Instead of reading double values, we read strings whi
h are assigned to the

orresponding Expr obje
ts in a subsequent step. Thus, the Expr obje
ts are

properly initialized and hold the exa
t values of the input data if the global

variable defInputDigits is set to in�nity.

82

Allo
ation method
oating-point arithmeti
 exa
t arithmeti

STL Ve
tor 12 ms 294 ms

Copy (mem
py) 24 ms segmentation fault

Copy (for loop) 36 ms 1401 ms

Table 6.1: Dynami
 memory allo
ation for 65000 elements using blo
k size

8125.

6.2.2 Dynami
 Memory Allo
ation

Another major issue is dynami
 memory allo
ation. Core obje
ts have to

be allo
ated using the C++ operator new in order to be initialized properly.

The data stru
tures of the
oating-point version of FIST are built on top

of arrays whi
h are allo
ated by
alling the fun
tion Reallo
ateArray. If

Reallo
ateArray is
alled for the �rst time, a memory blo
k is allo
ated

using the C fun
tion
allo
. If ne
essary the memory blo
k is extended using

the C fun
tion reallo
 in subsequent
alls to Reallo
ateArray. Again, we

had two possibilities to adapt dynami
 memory allo
ation:

1. The STL data type ve
tor
ould be used instead of arrays. Basi
ally,

the data type ve
tor implements a dynami
 array. It supports ran-

dom a

ess, new elements
an be inserted, and old elements
an be

deleted eÆ
iently at the end of the ve
tor. Memory is automati
ally

reallo
ated if this is ne
essary.

2. An alternative method is to allo
ate a new and bigger array. Then, the

elements of the old array are
opied to the new array and the old array

is deleted.

The se
ond method
an be implemented using the C fun
tion mem
py or,

alternatively, by iterating through the old array with a for loop. In order to

dete
t any performan
e di�eren
es between these methods, we implemented

a test program that allo
ates memory for 65000 elements with di�erent blo
k

sizes a

ording to the methods des
ribed above and measured the CPU time

onsumption. The results for the blo
k sizes 8125, 16250 and 32500 are

summarized in Table 6.1, Table 6.2, and Table 6.3 respe
tively. Note that the

CPU time
onsumption for the solution with the STL ve
tor data stru
ture

is independent from the blo
k size used for memory allo
ation, sin
e the

allo
ation pro
ess is managed automati
ally.

It turned out that using the STL ve
tor data stru
ture for memory allo-

ation is the fastest method. However, it does not �t well into the framework

of FIST. Thus, there are some major
hanges that have to be made to the

83

Allo
ation method
oating-point arithmeti
 exa
t arithmeti

STL ve
tor 12 ms 294 ms

Copy (mem
py) 12 ms segmentation fault

Copy (for loop) 13 ms 837 ms

Table 6.2: Dynami
 memory allo
ation for 65000 elements using blo
k size

16250.

Allo
ation method
oating-point arithmeti
 exa
t arithmeti

STL ve
tor 12 ms 294 ms

Copy (mem
py) 8 ms 540 ms

Copy (for loop) 6 ms 544 ms

Table 6.3: Dynami
 memory allo
ation for 65000 elements using blo
k size

32500.

ode in order to use the STL ve
tor data stru
ture. Furthermore, the per-

forman
e di�eren
e is not that dramati
 for large blo
k sizes. We therefor

opted for the se
ond method and
hose to
opy array elements in a for loop,

sin
e the variant with mem
py su�ered from o

asional segmentation faults,

see Table 6.1 and Table 6.2.

There is another interesting fa
t that has to be mentioned. Looking at

Table 6.1, Table 6.2 and Table 6.3 one noti
es a dramati
 slow-down in the

memory allo
ation of Expr obje
ts
ompared to the allo
ation of double val-

ues in the
oating-point version of FIST. Therefor, we
an expe
t a signi�
ant

slow-down in the overall running time when the Core-library is used.

In order to implement a generi
 fun
tion for memory allo
ation, we uti-

lized C++ templates. Therefor, we were able to implement a single fun
tion

alled Reallo
ateArray Copy whi
h
an be used in the
oating-point version

as well as in the Core-based version of FIST. Thus, a performan
e
ompar-

ison
an be done using the same type of memory allo
ation. Summarizing,

the
ode for the fun
tion Reallo
ateArray Copy is shown in Figure 6.4.

Of
ourse, we need an additional fun
tion as a repla
ement for the fun
-

tion
alled FreeMemory whi
h is used in the
oating-point version of FIST

to free the memory that was previously allo
ated using Reallo
ateArray.

Therefor, we implemented another generi
 fun
tion
alled FreeMemory Copy

whi
h uses the C++ operator delete, see Figure 6.5.

It is important to stress that for performan
e reasons we use the fun
tion

Reallo
ateArray Copy only where it is ne
essary, i.e., whenever memory is

allo
ated for Core obje
ts.

84

template <
lass DATATYPE>

DATATYPE* Reallo
ateArray Copy

(DATATYPE *old mem, int old size, int new size, size t size,
har var name[℄)

f

DATATYPE *new mem = NULL;

if (old mem! = NULL)

f

new mem = new DATATYPE[new size℄;

if (new mem != NULL)

f

for (int i = 0; i < old size; i ++)

new mem[i℄ = old mem[i℄;

delete [℄old mem;

g

else

f

/* Print an error message */

exit(1);

g

g

else

f

new mem = new DATATYPE[new size℄;

if (new mem == NULL)

f

/* Print an error message */

exit(1);

g

g

return new mem;

g

Figure 6.4: The fun
tion Reallo
ateArray Copy is used for dynami
 mem-

ory allo
ation in the Core-based version of FIST.

85

template <
lass DATATYPE>

voidFreeMemory Copy(DATATYPE** ptr)

f

if (*ptr == NULL) return;

delete [℄*ptr;

*ptr = NULL;

g

Figure 6.5: The fun
tion FreeMemory Copy is used to free dynami
ally allo-

ated memory in the Core-based version of FIST.

6.2.3 Constant Literals

Constant literals are not promoted. If, for example, the statement

double x = 0:1;

is used to assign the value 0:1 to the variable x, then x holds only an approx-

imation of the assigned value. This
an be
hanged by using the statement

double x = "0:1";

instead. Therefor, we had to
hange all
onstant literals in FIST appropri-

ately. Note, that en
losing every
onstant literal in quotation marks would

not be a feasible solution, sin
e this prevents the su

essful
ompilation of the

oating-point version of FIST. We therefor labeled all the
onstant literals

that involved Core obje
ts and pla
ed them in a header �le as follows:

#ifdef LIB CORE

#de�ne C 0 0 "0.0"

#de�ne C 0 01 "0.01"

#de�ne C 0 1 "0.1"

.

.

.

#else

#de�ne C 0 0 0.0

#de�ne C 0 01 0.01

#de�ne C 0 1 0.1

.

.

.

#endif

86

Depending on whether the Core-library is used or not, the labels are repla
ed

by the
orresponding exa
t or approximate values. Furthermore, the fun
tion

setDefaultInputDigits is used to set the global variable defInputDigits to

in�nity.

6.2.4 Setting all Epsilons to Zero

One requirement for a program to be
ompliant with the Core-library is that

it is implemented assuming exa
t arithmeti
. This requirement
on
i
ts with

the epsilon tweaking te
hnique used to in
rease robustness in the
oating-

point version of FIST. Therefor, all epsilons have to be set to zero while
are

has to be taken that this measure does not
ause divisions by zero. Similar

to the solution used for
onstant literals, we set all epsilons to zero if the

ompiler option THRESHOLD is not spe
i�ed. Thus, the
ompilation of

the Core-based version of FIST requires the
ompiler
ags LIB CORE and

MEM COPY while it is ne
essary to spe
ify the
ompiler
ag THRESHOLD

for the
oating-point version of FIST in order to enable epsilon tweaking.

Note that setting all epsilons to zero would
hange the semanti
s of the

program if the
omparison of a numeri
al value x with epsilon is performed

su
h that

jxj < �.

Thus,
are has to be taken that all the epsilon-related
omparisons are
arried

out with � instead of <, i.e,

jxj � �.

6.2.5 Mis
ellaneous Adaptions

There are a number of minor
hanges that had to be made in order to make

FIST
ompliant with the Core-library. First of all there are some variables

of the types double and long that should not be promoted be
ause they

are only used to model
oating-point heuristi
s that do not a�e
t the
or-

re
tness of the program. In order to prevent their promotion, we repla
ed

them with the Core-library's data types ma
hine long and ma
hine double

whi
h represent the
orresponding ma
hine data types. The prepro
essor

statements

#ifndef LIB CORE

#de�ne ma
hine double double

#de�ne ma
hine long long

#endif

87

make sure that this adaption is still
ompatible with the
oating-point version

of FIST. Furthermore, statements like

i = (int) x;

where i is an integer variable and x is a double variable had to be repla
ed

by

i = x.intValue();

where intValue is a member fun
tion of the Core data type Expr that returns

the integer value of the Expr variable. As we have already mentioned before,

the use of the Expr member fun
tions intValue, longValue, floatValue

and doubleValue might
ause silent over
ows and under
ows and have to

be used with
are as stated in the Core-library tutorial [30℄. Nevertheless

there were situations where we had to use them. If, for example, the output

omputed needs to be displayed on the s
reen, it has to be
onverted to an

integer and there are many other situations where we
annot get around this

problem.

Finally, the statements

#de�ne Level 3

#in
lude <CORE.h>

had to be in
luded after the in
lude statements of the standard header �les

in every sour
e �le that
alls fun
tions of the Core-library. We in
luded these

statements in a separate in
lude �le whi
h is then in
luded in the FIST sour
e

�les. Thus, there is one
entral �le where we
an
hange the behavior of the

Core-library, e.g.,
hange the a

ura
y level.

6.3 Experimental Results

We now present experimental results. Basi
ally, we tested di�erent versions

of FIST with di�erent
lasses of input data and measured the CPU time

onsumption. Unfortunately, the Core-based version of FIST misbehaved

badly

3

on some of our input data. Therefor, we tried to get to the bottom of

this and used a standard and a memory debugger to see what
auses these

problems. Based on the results from those debuggers, we expe
ted memory

problems within the Core-library, whi
h we reported to the developers. We

then got an improved version of the library whi
h did not solve all the prob-

lems. Thus, we repeatedly sent bug reports, got new versions of the library,

and �nally provided the sour
e
ode of our Core-based version of FIST to

3

We explain the details in the following subse
tions.

88

Input
lass Range of segments

"random" 8 { 32768

"smooth" 16 { 32768

"smoother" 64 { 32768

"thinned" 8 { 8192

Table 6.4: Segment ranges for the four di�erent input
lasses.

the Core-library developers to see if we made any obvious mistakes. Despite

all the e�orts made by the developers of the Core-library and on our end, we

were not able to solve all the problems with the Core-based version of FIST.

In the following we report the CPU time
onsumptions for the data sets that

ould be pro
essed
orre
tly and the problems we had in the remaining
ases.

6.3.1 Two-Dimensional Test Data

We set up our experiment similar to [21℄. That is, we have four di�erent

lasses of input data whi
h were generated by the RANDOM POLYGON

GENERATOR (RPG), see [5℄ for more information on RPG. The �rst
lass

of our input data is
alled "random" and is generated by RPG by distributing

points uniformly in the unit sphere. The se
ond
lass,
alled "smooth", is

generated by applying the Smooth algorithm of RPG twi
e to the polygons

of the "random"
lass. The Smooth algorithm doubles the input polygon's

number of verti
es by repla
ing ea
h vertex v

i

with two new verti
es

v

i�1

+3v

i

4

and

v

i+1

+3v

i

4

. The third
lass of our test data,
alled "smoother", is generated

by applying RPG's Smooth algorithm four times to the polygons of the "ran-

dom"
lass. Finally, the fourth
lass whi
h is
alled "thinned" is
omputed by

randomly
lipping three quarters of the ears of the polygons in the "random"

lass. For ea
h
lass, one sample polygon with 64 verti
es (together with the

triangulation
omputed by FIST) is shown in Appendix A. As pointed out in

[21℄, the
hara
teristi
s of the four
lasses are as follows: While the verti
es

of the "random" polygons are uniformly distributed, this is not true for the

"smooth", "smoother" and "thinned" polygons. In addition, the "smoother"

polygons tend to have very short edges and a number of long diagonals. The

"thinned" polygons, on the other hand,
over, in general, less spa
e than the

polygons in the "random"
lass.

The "random" input
lass
onsists of polygons with the number of verti
es

ranging from 8 to 32768 and there are ten di�erent polygons for ea
h number

of verti
es. Thus, we get the segment ranges shown in Table 6.4 for the

di�erent input
lasses. We tested all four input
lasses with four di�erent

versions of FIST and measured the CPU time
onsumption. The four versions

89

of FIST are as follows:

FIST fp std: This is the standard
oating-point version of FIST.

FIST fp mod: Same as FIST fp std but modi�ed to use the same memory

management routines as the Core-based version of FIST.

FIST exa
t def: This is the Core-based version of FIST with the default

value of the global variable defInputDigits whi
h is 16.

FIST exa
t infty: Same as FIST exa
t def but with the global variable

defInputDigits set to in�nity.

As we pointed out in Subse
tion 6.2.2, we had to adopt the memory man-

agement routines in order to link FIST with the Core-library. As
an be

seen in Table 6.1 { Table 6.3, the new routines are slower than the ones used

in the original version of FIST. Thus, for reasons of fairness, we wanted to

ompare the original
oating-point version and the modi�ed
oating-point

version of FIST to the exa
t version of FIST. The reason why we used two

di�erent exa
t versions of FIST is that we had some trouble, whi
h we dis-

uss later, running our test data with FIST exa
t infty, i.e., when the global

variable defInputDigits is set to in�nity. Thus, we also
ondu
ted tests with

FIST exa
t def, where the default value of defInputDigits is used. It is im-

portant to stress that only FIST exa
t infty represents all input data exa
tly

while input data is represented with a maximum absolute error of 10

�16

if

FIST exa
t def is used.

Test Results for FIST exa
t def

The tests for FIST exa
t def went quite smoothly. We measured the CPU

time
onsumption t

fp std

for FIST fp std , t

fp mod

for FIST fp mod and t

exa
t def

for FIST exa
t def in millise
onds, and
omputed the fa
tors

F

std

=

t

exa
t def

t

fp std

and F

mod

=

t

exa
t def

t

fp mod

.

The results for the di�erent input
lasses are shown in Table 6.5 { Table

6.8. Sin
e the CPU time
onsumption of the
oating-point versions of FIST

is less than 10 ms for polygons with 8 to 1024 segments and we measure

the CPU time
onsumption a

urate to 10 ms, we only present results for

polygons with at least 2048 segments. Finally, Table 6.9 shows the CPU time

onsumption for FIST exa
t def for all input
lasses.

As expe
ted, the di�eren
e between the CPU time
onsumption of the

standard and the modi�ed
oating-point version of FIST is negligible and

within the ina

ura
y in measurement, be
ause the blo
k sizes used in FIST

90

D

D

D

D

D

�

�

�

�

�

�

t

t

t

tt

v

1

v

2

v

3

v

4

v

5

(a)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

D

D

D

D

D

�

�

�

�

�

�

t t

t

tt

v

1

v

2

v

3

v

4

v

5

(b)

�

�

�

�

�

�

�

�

�

�D

D

D

D

DD

�

�

�

�

��

t t

t

tt

v

1

v

2

v

3

v

4

v

5

(
)

Figure 6.6: The input polygon (a); the triangulation
omputed with the

oating-point version of FIST (b) and the triangulation
omputed with the

exa
t version of FIST (
).

are large enough su
h that there is no need to reallo
ate memory repeatedly.

Looking at Table 6.5 { Table 6.8, one
an observe a slightly super-linear CPU

time
onsumption for the
oating-point version of FIST; see also [21℄. The

exa
t version of FIST, on the other hand, exhibits an almost linear running

time. A possible explanation for this behavior is that FIST uses prepro-

essing that involves sorting, thus yielding a worst-
ase time
omplexity of

O(n logn) for prepro
essing. Due to geometri
 hashing, a linear average-

ase time
omplexity
an be expe
ted for the ear
lipping pro
ess. Sin
e the

majority of exa
t
al
ulations is exe
uted in the
ourse of the ear
lipping

pro
ess, most of the CPU time of the exa
t version of FIST is spent there and

the time
onsumption for prepro
essing is negligible. Thus, the CPU time

onsumption for the exa
t version of FIST is dominated by the ear
lipping

pro
ess and sin
e it is growing almost linear, the ear
lipping pro
ess seems

to have linear time
onsumption in pra
ti
e.

Finally, we wanted to see if there is a di�eren
e in the triangulations

omputed by the
oating-point version and the exa
t version of FIST. We

used a
onvex polygon with 5 verti
es whi
h was
reated by Martin Held

and is depi
ted in Figure 6.6 (a). The x-
oordinate of vertex v

3

is
hosen

su
h that the verti
es v

2

, v

3

and v

4

are
onsidered
ollinear by the
oating-

point version of FIST. For
larity, we shifted v

3

to the right in Figure 6.6.

The triangulations
omputed by FIST fp std and FIST exa
t def are shown

in Figure 6.6 (b) and Figure 6.6 (
) respe
tively. While the
oating-point

version of FIST
annot distinguish the x-
oordinates of the verti
es v

2

, v

3

and v

4

and
onsiders them as
ollinear, the exa
t version of FIST is able

91

Number of segments t

fp std

F

std

t

fp mod

F

mod

2048 8 321 10 257

4096 17 302 19 271

8192 45 231 46 226

16384 119 178 118 180

32768 274 156 272 157

Table 6.5: Random: CPU time
onsumption in millise
onds of FIST fp std

and FIST fp mod and the
orresponding rounded fa
tors F

std

and F

mod

.

Number of segments t

fp std

F

std

t

fp mod

F

mod

2048 10 302 12 252

4096 22 277 20 304

8192 53 232 54 227

16384 136 182 135 183

32768 316 159 306 164

Table 6.6: Smooth: CPU time
onsumption in millise
onds of FIST fp std

and FIST fp mod and the
orresponding rounded fa
tors F

std

and F

mod

.

to distinguish the x-
oordinates of v

2

and v

4

from v

3

and therefor
lips the

triangle �(v

2

; v

3

; v

4

).

Test Results for FIST exa
t infty

As already mentioned above, we experien
ed some major problems when

we tried to pro
ess 2D data sets if the Core-library represents numeri
al

values exa
tly, i.e., if the global variable defInputDigits is set to in�nity.

We observed that FIST has to resort to its multi-level re
overy pro
ess and

Number of segments t

fp std

F

std

t

fp mod

F

mod

2048 11 309 11 309

4096 22 315 23 302

8192 53 269 56 254

16384 138 208 138 208

32768 330 176 331 175

Table 6.7: Smoother: CPU time
onsumption in millise
onds of FIST fp std

and FIST fp mod and the
orresponding rounded fa
tors F

std

and F

mod

.

92

Number of segments t

fp std

F

std

t

fp mod

F

mod

2048 7 363 8 318

4096 18 285 18 285

8192 41 253 40 259

Table 6.8: Thinned: CPU time
onsumption in millise
onds of FIST fp std

and FIST fp mod and the
orresponding rounded fa
tors F

std

and F

mod

.

Number of segments random smooth smoother thinned

8 26 { { 9

16 19 63 { 19

32 37 72 { 39

64 73 88 93 76

128 152 177 213 148

256 312 365 402 308

512 619 730 821 623

1024 1286 1482 1667 1253

2048 2567 3021 3396 2542

4096 5140 6084 6939 5125

8192 10412 12284 14239 10376

16384 21219 24720 28692 {

32768 42649 50159 57951 {

Table 6.9: The CPU time
onsumption in millise
onds of FIST exa
t def for

all input
lasses.

93

x y

-588.00000000000000 -576.02699999999999820

-1.3000000000000000 -1.122000000000000000

-26.875000000000000 11.799545454545454545

-30.625000000000000 0.0000000000000000000

-30.625000000000000 -23.599090909090909091

-48.966666666666675 -37.190561224489783065

-49.966666666666675 -41.067602040816311862

Table 6.10: Some values for x and y for whi
h the
omparison x > y goes

wrong.

even enters desperate mode although the polygons are simple. Furthermore,

the triangulations
omputed are in
orre
t. Finally, we found some test data

where FIST terminates abnormally sin
e an assertion fails. We tried to

understand the
ause of these failures and found out that FIST enters an if

statement of the form

if (x > y),

where x is a value of the original input data and y is a value
omputed, that it

should not have. We printed the numeri
al values for x and y and found out

that the
omparison x > y goes wrong. This
ould be observed for a variety

of di�erent values like the ones in Table 6.10. It has to be mentioned, though,

that not every
omparison involving a negative number goes wrong. Thus,

the Core-library does not simply ignore negative signs as it might appear at

�rst glan
e.

6.3.2 Three-Dimensional Test Data

Unfortunately, we were not able to pro
ess any but the simplest 3D data sets

with any of the Core-based versions of FIST. We tried some of the small 3D

test samples with about 8 { 50 verti
es and FIST did not terminate although

we ran some of the tests over night.

Looking at the problem with a debugger, we found out that FIST does

not return from a qsort
all. This is a really strange phenomenon sin
e

qsort worked perfe
tly for the 2D data sets. Furthermore, the pro
essing

of 3D data is redu
ed to the 2D
ase by proje
ting and triangulating ea
h

fa
e of a polyhedron. Thus, the only di�eren
e between the 2D and the

3D
ase is an additional for loop for iterating through all the fa
es of the

polyhedron and the proje
tion of ea
h fa
e in order to get 2D
oordinates.

We also wrote the proje
ted points to a �le, whi
h we used as input for a

94

stand-alone program whi
h sorted the data without any problem. Then we

repla
ed qsort with a self-
oded bubble sort algorithm. Unfortunately, it

did not make a di�eren
e, sin
e the bubble sort did not terminate. We used

a debugger again and stepped through the program. The debugger �nally

stopped at a sour
e �le of the Core-library. Thus, we were not able to solve

the problem.

6.4 Con
lusion

We wanted to evaluate the pra
ti
al value of exa
t arithmeti
 in
omputa-

tional geometry by linking the Core-library with the triangulation algorithm

FIST. We have had some trouble with the Core-library from the beginning.

Thus, we sent several bug reports to the developers of the Core-library and

re
eived a number of new releases of the library. We ended up with Ver-

sion 1.4, release date 15.03.2002. The experien
e with this release of the

Core-library
an be summarized as follows:

� We did not manage to
ompile the Core-library and the example pro-

grams on Sun workstations with the g++ or SunPro

ompiler. Pre-

vious versions of the Core-library
ould be su

essfully
ompiled on Sun

workstations. Building the library on Linux boxes works but there are

a lot of warnings.

� Operating with in�nite pre
ision, the exa
t version of FIST
omputes

in
orre
t triangulations, resorts to the multi-level re
overy pro
ess and

desperate mode although the polygons are simple, and does not pass an

assertion due to the
omparison bug des
ribed on Page 94 for several

2D input data sets.

� 2D data sets seem to be pro
essed
orre
tly if we use the exa
t version

of FIST with default pre
ision.

� As des
ribed in Subse
tion 6.3.2, the exa
t version of FIST hangs when-

ever 3D data sets have to be pro
essed with both default and in�nite

pre
ision.

We spent a long time debugging FIST in order to �nd any bugs on our

end but without su

ess. The
oating-point version of FIST works perfe
tly

even if we use the modi�ed memory management routines whi
h are also

used in the exa
t version of FIST. As a last resort, we
he
ked the
oating-

point versions of FIST as well as the exa
t versions of FIST with a memory

debugger. While the memory debugger did not report any problems for both

95

oating-point versions, it reported tons of errors, e.g., wild pointers and

memory leaks within the Core-library for the exa
t versions of FIST.

Based on this experien
e and the problems we observed with 3D and

2D data, espe
ially the
omparison bug mentioned above, we assume that

there are memory problems within the Core-library. Sin
e we experien
ed

problems whenever values
omputed are involved, e.g., the problem with

qsort whenever original input values are proje
ted, and the
omparison of

an input value with a value
omputed, while everything seems to be �ne if

input values are used, it seems that something goes wrong when arithmeti

operations are performed.

Due to all the problems we have
ome a
ross using the Core-library it is

diÆ
ult to rate ease of use, performan
e or the pra
ti
al value of the library.

Nevertheless we assume that the bugs we expe
t within the Core-library will

be removed some day, and thus we also want to say a few words on our

experien
e regarding ease of use and performan
e. From our point of view,

the Core-library is easy to use. Of
ourse, it is a substantial amount of work

to link an existing program with the Core-library, espe
ially if it is written

in C. For C++ programs, there is no need to
hange memory management

and the I/O-routines whi
h were two major issues in our work to link FIST

with the Core-library. Due to the promotion and demotion me
hanism, a

software developer is free to use the standard C/C++ data types he is used

to. Therefor, it is easy to implement a new Core-based program from s
rat
h

if it is implemented a

ording to the guidelines des
ribed in Se
tion 6.2.

Regarding the performan
e, we
an only present results for the Core-based

version of FIST with default pre
ision due to the problems with in�nite pre-

ision des
ribed above. Naturally, there is a pri
e to pay if the
al
ulations

in a program are exe
uted with exa
t arithmeti
. Thus, the exa
t version of

FIST is 150 { 320 times slower than the
oating-point version of FIST for our

input data sets; see Table 6.5 { Table 6.8. Furthermore, an additional slow-

down
an be expe
ted if a Core-based version of FIST with in�nite pre
ision

is used. Thus, the pra
ti
al value for industrial-strength appli
ations is ques-

tionable at present. Nevertheless, faster
omputer systems, better algorithms

or even hardware support for exa
t
al
ulations might improve the situation

in the future and exa
t arithmeti
 might be an alternative to
oating-point

arithmeti
 in future appli
ations. Until that day, a software developer still

has to struggle with all the limitations of
oating-point arithmeti
 if he/she

wants to develop industrial-strength appli
ations.

Originally we also wanted to link the Core-library with VRONI [22℄: an

algorithm for
omputing the Voronoi diagram of a sets of points and line-

segments designed by Martin Held. Sin
e the
omputation of a Voronoi dia-

gram is based on predi
ates and
onstru
tors, rounding the results
omputed

96

ba
k to a �nite representation without introdu
ing errors is an additional

issue with VRONI that does not have to be
onsidered with FIST. Unfortu-

nately, we were for
ed to abandon those plans be
ause of the problems we

experien
ed with the Core-based version of FIST.

97

Appendix A

Sample Polygons for the Four

Input Classes

The polygons shown in Figure A.1 { Figure A.4 depi
t samples of the poly-

gons of our four input
lasses of test polygons. The �gures were provided by

Martin Held.

98

Figure A.1: Sample 64-gon for the "random"
lass.

99

Figure A.2: Sample 64-gon for the "smooth"
lass.

Figure A.3: Sample 64-gon for the "smoother"
lass.

100

Figure A.4: Sample 64-gon for the "thinned"
lass.

101

Bibliography

[1℄ Homepage of the CGAL proje
t. http://www.
gal.org.

[2℄ Homepage of the Core-library. http://www.
s.nyu.edu/exa
t/
ore.

[3℄ Homepage of the LEDA proje
t. http://www.algorithmi
-solutions.
om.

[4℄ IEEE 1997. IEEE Standard 754-1985 for Binary Floating-Point Arith-

meti
. SIGPLAN Noti
es, 2(22):9 { 25, 1987.

[5℄ T. Auer and M. Held. Heuristi
s for the Generation of Random Poly-

gons. In Pro
. 8th Canadian Conferen
e on Computational Geometry,

pages 38 { 44, Ottawa, Canada, 1996.

[6℄ M. O. Benouramer, P. Jaillon, D. Mi
helu

i, and J. M. Moreau. A

"Lazy" Solution to Impre
ision in Computational Geometry. In Pro
.

5th Canadian Conferen
e on Computational Geometry, pages 73 { 78,

Waterloo, Canada, 1993.

[7℄ H. Bronnimann, C. Burnikel, and S. Pion. Interval Arithmeti
 Yields

EÆ
ient Dynami
 Filters for Computational Geometry. In Pro
. 14th

Annual ACM Symposium on Computational Geometry, pages 165{174,

1998.

[8℄ C. Burnikel, R. Fleis
her, K. Mehlhorn, and S. S
hirra. EÆ
ient Exa
t

Geometri
 Computation Made Easy. In Pro
. 15th ACM Symposium on

Computational Geometry, pages 341 { 450, Miami Bea
h, Florida, 1999.

[9℄ C. Burnikel, R. Fleis
her, K. Mehlhorn, and S. S
hirra. A Strong and

Easily Computable Seperation Bound for Arithmeti
 Expressions In-

volving Radi
als. Algorithmi
a, 27:87 { 99, 2000.

[10℄ C. Burnikel, K. Mehlhorn, and S. S
hirra. The LEDA Class Real Num-

ber. Te
hni
al Report MPI-I-96-1-001, Max-Plan
k Institute for Com-

puter S
ien
e, 1996.

102

[11℄ B. M. Bush. The Perils of Floating-Point. Lahey Computer Systems

In
., In
line Village, NV 89450, USA.

http://www.lahey.
om/
oat.htm.

[12℄ T. K. Dey, K. Sugihara, and C. L. Bajaj. Delaunay Triangulations in

Three Dimensions with Finite Pre
ision Arithmeti
. Computer Aided

Design, 9:457 { 470, 1992.

[13℄ H. Edelsbrunner and E. P. M�u
ke. Simulation of Simpli
ity: A Te
h-

nique to Cope with Degenerate Cases in Geometri
 Algorithms. ACM

Trans. Graph., 9(1):66{104, 1990.

[14℄ A. Fabri, G.-J. Giezeman, L. Kettner, S. S
hirra, and S. S
h�onherr. The

CGAL Kernel: A Basis for Geometri
 Computation. In Pro
eedings

Workshop on Applied Computational Geometry, Philadelphia, Pennsyl-

vania, May 1996.

[15℄ A. Fabri, G.-J. Giezeman, L. Kettner, S. S
hirra, and S. S
h�onherr. On

the Design of CGAL, the Computational Geometry Algorithms Library.

Te
hni
al Report MPI-I-98-1-007, Max-Plan
k Institute for Computer

S
ien
e, 1998.

[16℄ S. Fortune. Stable Maintenan
e of Point Set Triangulations in Two

Dimensions. In Pro
. 30th Annual IEEE Symposium on Foundations of

Computer S
ien
e, pages 494 { 505, 1989.

[17℄ S. Fortune. Robustness Issues in Geometri
 Algorithms. In Pro
. 1st

ACM Workshop on Applied Computational Geometry, pages 20 { 23,

Philadelphia, PA, USA, 1996.

[18℄ S. Fortune. Introdu
tion. Algorithmi
a, 27:1 { 4, 2000.

[19℄ S. Fortune and C. J. Van Wyk. EÆ
ient Exa
t Arithmeti
 for Compu-

tational Geometry. In Pro
. 9th Annual ACM Symposium on Computa-

tional Geometry, pages 163{172, May 1993.

[20℄ D. Goldberg. What Every Computer S
ientist Should Know About

Floating-Point Arithmeti
. ACM Computing Surveys, 23(1):5 { 48, 1991.

[21℄ M. Held. FIST: Fast Industrial-Strength Triangulation of Polygons.

Algorithmi
a, 30(4):563 { 596, 2001.

[22℄ M. Held. VRONI: An Engineering Approa
h to the Reliable and EÆ-

ient Computation of Voronoi Diagrams of Points and Line Segments.

Comput. Geom. Theory Appl., 18:95{123, 2001.

103

[23℄ N. J. Highham. A

ura
y and Stability of Numeri
al Algorithms. SIAM,

1996. ISBN 0-89871-335-2.

[24℄ C. M. Ho�mann. The Problems of A

ura
y and Robustness in Geo-

metri
 Computation. IEEE Computer, 22(3):31 { 41, 1989.

[25℄ O. Hommes. MathFP: The Basi
s.

http://home.ro
hester.rr.
om/ohommes/MathFP/mathfp bg.html.

[26℄ V. Karam
heti, C. Li, I. Pe
ht
hanski, and C. K. Yap. A Core Library

for Robust Numeri
 and Geometri
 Computation. In Pro
. 15th Annual

Symposium on Computational Geometry, volume 15, 1999.

[27℄ J. Keyser. Robustness Issues in Computational Geometry. Comp

234 Final Paper, A&M University, Texas, USA, Spring 1997.

http://
iteseer.nj.ne
.
om/247595.html.

[28℄ D. Salesin L. Guibas and J. Stol�. Epsilon Geometry: Building Robust

Algorithms from Impre
ise Computations. In Pro
. 5th ACM Confer-

en
e on Computational Geometry, pages 208 { 217, 1989.

[29℄ C. Li. Exa
t Geometri
 Computation: Theory and Appli
ations. PhD

thesis, Dept. Comp. S
i, NYU, NYU, New York, NY 10012, USA, Jan-

uary 2001.

[30℄ C. Li and C. K. Yap. Core Library Tutorial. NYU, New York, NY

10012, USA, January 1999. This tutorial is
ontained in the Core-library

distribution version 1.4.

[31℄ C. Li and C. K. Yap. A New Constru
tive Root Bound for Algebrai

Expressions. In Pro
. 12th Annual ACM-SIAM Symposium on Dis
rete

Algorithms (SODA '01), pages 496{505, 2001.

[32℄ J. C. Lowery. CSC 110 { Computer Mathemati
s. Mississippi College,

Clinton, Mississippi, USA.

http://sandbox.m
.edu/

~

bennet/
s110/textbook.

[33℄ K. Mehlhorn and S. N�aher. Algorithm Design and Software Libraries:

Re
ent Developments in the LEDA Proje
t. In Algorithms, Software,

Ar
hite
tures, Information Pro
essing 92, volume 1, pages 493{505, Am-

sterdam, 1992. Elsevier S
ien
e Publishers B.V. North-Holland.

[34℄ K. Mehlhorn and S. N�aher. LEDA: A Platform for Combinatorial and

Geometri
 Computing. Commun. ACM, 38(1):96{102, 1995.

104

[35℄ D. Mi
helu

i. The Robustness Issue.

Internal report, Laboratoire d'Image de Synth�ese de St. Etienne, Fran
e.

http://www.emse.fr/

~

mi
helu
/english/mi
helu

i.html.

[36℄ K. Ou
hi. Real/Expr: Implementation of an Exa
t Computation Pa
k-

age. Master's thesis, Dept. Comp. S
i, NYU, NYU, New York, NY

10012, USA, 1997.

[37℄ F. P. Preparata and M. I. Shamos. Computational Geometry - An In-

trodu
tion. Springer-Verlag, 1990. ISBN 3-540-96131-3.

[38℄ W. S
hi�mann and R. S
hmitz. Te
hnis
he Informatik 2: Grundlagen

der Computerte
hnik. Springer-Verlag, 1994. ISBN 3-540-57432-8.

[39℄ S. S
hirra. Designing a Computational Geometry Algorithms Library. In

Le
ture Notes for Advan
ed S
hool on Algorithmi
 Foundations of Geo-

graphi
 Information Systems, pages 1 { 9. CISM, Udine, Italy, Septem-

ber 1996.

[40℄ S. S
hirra. Robustness and Pre
ision Issues in Geometri
 Computation.

In Handbook of Computational Geometry,
hapter 14, pages 597{632.

Elsevier S
ien
e Publishers B.V. North-Holland, Amsterdam, 2000.

[41℄ J. R. Shew
huk. Le
ture Notes on Geometri
 Robustness. University of

California, Berkeley, USA.

http://www.
s.berkeley.edu/

~

jrs/meshpapers/robnotes.ps.gz.

[42℄ K. Sugihara and H. Inagaki. Why is the 3D Delaunay Triangulation

DiÆ
ult to Constru
t? Information Pro
essing Letters, 54:275 { 280,

1995.

[43℄ K. Sugihara and M. Iri. Geometri
 Algorithms in Finite-Pre
ision Arith-

meti
. Te
hni
al Report 88-10, Math. Eng. and Physi
s Dept, U. of

Tokyo, Japan, Sept 1988.

[44℄ K. Sugihara and M. Iri. Constru
tion of the Voronoi Diagram for "One

Million" Generators in Single-Pre
ision Arithmeti
. Pro
eedings of the

IEEE, 80(9):1471 { 1484, 1992.

[45℄ K. Sugihara, M. Iri, H. Inagaki, and T. Imai. Topology-Oriented Imple-

mentation - An Approa
h to Robust Geometri
 Algorithms. Algorith-

mi
a, 27:5 { 20, 2000.

[46℄ C. K. Yap. Towards Exa
t Geometri
 Computation. In Fifth Canadian

Conferen
e on Computational Geometry, pages 405 { 419, August 1993.

105

[47℄ C. K. Yap. A New Number Core for Robust Numeri
al and Geometri

Libraries, O
tober 1998. Abstra
t of Invited Talk at 3rd CGCWorkshop

on Computational Geometry, Brown University, O
tober 11-12, 1998.

[48℄ C. K. Yap and T. Dub�e. A Basis for Implementing Exa
t Geometri

Algorithms, September 1993. Extended Abstra
t.

[49℄ C. K. Yap and T. Dub�e. The Exa
t Computation Paradigm. In Com-

puting in Eu
lidean Geometry. World S
ienti�
 Press, 1994.

[50℄ C. R. Yates. Fixed-Point Arithmeti
: An Introdu
tion.

http://personal.mia.bellsouth.net/lig/y/a/yates
/fp.pdf.

106

