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Abstract

Consider the problem of computing isotopic approximatiohsamsingular curves
and surfaces that are implicitly represented by equatidrtheoform f(X,Y) = 0
andf(X,Y, Z) = 0. This fundamental problem has seen much progress alongaseve
fronts, but we will focus on domain subdivision algorithm$wo algorithms in this
area are from Snyder (1992) and Plantinga & Vegter (2004)intveduce a family of
new algorithms that combines the advantages of these tvooithigns: like Snyder, we
use the parameterizability criterion for subdivision, dikd Plantinga and Vegter, we
exploit nonlocal isotopy.

We first apply our approach to curves, resulting in a moreiefftcalgorithm. We
then extend our approach to surfaces. The extension is byaamsnroutine, as the
correctness arguments and case analysis are more subse, dAhew phenomenon
arises in which local rules for constructing surfaces arnger sufficient.

We further extend our algorithms in two important and piadtdirections: first,
we allow subdivision cells to be non squares or non cubes, avhbitrary but bounded
aspectratios: i D, we allow boxes to be split into 2 or 4 children; andif, we allow
boxes to be split into 2, 4 or 8 children. Second, we allow tiput region-of-interest
(ROI) to have arbitrary geometry represented by an quadir@etree, as long as the
curves or surfaces has no singularities in the ROI and ie¢tsshe boundary of ROI
transversally.

Our algorithm is numerical because our primitives are basethterval arithmetic
and exact BigFloat numbers. It is practical, easy to impldnegactly (compared to
algebraic approaches) and does not suffer from implementgaps (compared to ge-

ometric approaches). We report some very encouraging iexpetal results, showing



that our algorithms can be much more efficient than the dlyos of Plantinga and

Vegter D and3D) and SnyderZD only).
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Overview of Thesis

This thesis is about the problem of constructing isotopisimes for curves and sur-
faces. We provide a new approach, and a family of correspgndew meshing al-
gorithms, that combines the relative advantages of prevadgorithms of Snyder and
Plantinga & Vegter.

In chapter 1, we give an overview of the meshing problem, amaesof the recent
progress in this field. We categorize meshing algorithms tintee approaches, namely
algebraic, geometric and numeric. Our approach falls utieenumeric algorithms.

In chapter 2, we give an introduction of Subdivision Algbnits. In particular, we
describe a generic framework for meshing algorithms basetbmain subdivision and
review some algorithms in this framework: namely, March@gbe Algorithm, Sny-
der’s Algorithm and Plantinga & Vegter’'s Algorithm.

In chapters 3 and 4, we introduce our approackzfoicurve meshing anglD surface
meshing. We describe our algorithms for both problems. \We ptovide complete
proofs for the correctness of our algorithms, as well as eraging experimental results.

In chapter 5, we give the conclusion and future work.

Acknowledgements: The results in this thesis are joint weitk my advisor Pro-
fessor Chee K. Yap. TheD work has appeared in [23]. | would also like to thank Jihun

Yu for his help with rendering the figures.



Chapter 1

What is Meshing?

Approximation of curves and surfaces is a basic problem inyrareas such as
simulation, computer graphics and geometric modeling. djyaroximate surface is
often a triangulated surface, also known as a mesh. See ¢katrbook [8] for an
algorithmic perspective on meshing problems; chapter Sairtiqular is a survey of
meshing algorithms.

By the 3D (resp.2D) meshing problem, we mean the problem of meshing surfaces
(resp. curves). It is interesting to identify thé meshing with the problem of real
root isolation for a real functiorf(X). Formally, themesh generation problem(or
“meshing problem” for short) is this: given a regidty C R? (typically, d = 2, 3) of
interest, an error bound > 0, a smooth curve/surface implicitly represented by an
equationf(X,Y) = 0/f(X,Y,Z) = 0, to find a piecewise linear-approximation
of S N Ry. For2D curve meshing, the mesh is just a (planar) straight linelgézagor

PSLG, see [33]); foBD surface meshing, the meséhis a triangulated surface.



1.1 Correctness Criteria

The correctness criteria féf has two partstopological correctnessandgeometric
accuracy. Geometric accuracy is typically taken to mean that the HaxiEdistance

betweenz andS N R, is at most (this is also known as-closeness):

dy (S, G)(mod Ry) = max{sup inf d(z,y),sup inf d(x,y)} < e
zes YEG yEG €S

In recent years, the topological correctness is undersésothat the approximaté

should be isotopic t& N Ry, denotedG ~ S N Ry. For instance, Figure 1.1(c) is
produced by our algorithm with only topological correcth@s stopping criterion. For
some applications, this is sufficient. But if one desires getoimaccuracy as well, this

can be further refined as in Figure 1.1(a), where the errontbaar = 0.25.

(a) nyz (b) PV (c) Cxyz (d) Rect-2

Figure 1.1: Approximation of a tangled culfér, y, z) = 2* — 5% + y* — 5y + 2* —
522 = —10.

Recall that a functioryf : S — S’ between two topological spacés and7s is a
homeomorphism iff is a continuous bijection with a continuous inverse. We next

introduce the definition of isotopy.

DEFINITION 1. Two surfacess and S’ is called ambient isotopic to each other if there



exists a continuous mapping

v:R*x [0,1] — R?

which, for any fixed C [0, 1], is a homeomorphism(-, ¢) fromR? onto itself, and which

continuously deform§ into the mestt’ whereS’ = (S, 1).

DEFINITION 2. Two surfacess and S’ is called isotopic to each other if there exists a
continuous mapping

v:8x[0,1] — R?

which, for any fixed C [0, 1], is a homeomorphism(-, ¢) from S onto its image, and

which continuously deform$ into the mesty’ whereS” = ~(S, 1).

Formally, isotopy is weaker than ambient isotopy, howef@rour purposes, there
is no difference between isotopy and ambient isotopy: tbeopy extension lemma
ensures that an isotopy between two smooth surfaces (sf€laembedded ifk* can
always be extended to an ambient isotopy (see [19], TheorgmfLhapter 8, p.180).
This does not directly apply to a piecewise linear surfacem$é, but it is easy to show
that a piecewise linear surface is ambient isotopic to ameqpating smooth surface,
to which the theorem applies (see [3]).

A tubular neighborhood S of a surfaceS is a thickening of the surface such that
within the volume ofS, the projection of a point to the nearest pointgs(x) on S is
well-defined. The points which have the same nearest neighbgfz) = p form aline
segment through normal to the surface. These segments are called fibers tflibkar

neighborhood, and they form a partition $f

LEMMA 1. (see [37], Theorem 4.1). L&t be a compact closed surface of clas$in



R3 with a tubular neighborhood. Let S’ be a closed surface (not necessarily smooth)
contained inS such that every fiber intersec$éin exactly one point. Thens : S’ — S

induces an ambient isotopy that magiso S.

The above definitions are similar in tB® case, i.e. for curves. See [3] for further
discussion of isotopy. Correspondingly, the meshing prabéan be solved in two
stages: first we produce an outrﬁtthat is isotopic toS N Ry. Subsequently, we
refine G into a graphG with the requisite geometric accuracy. We may call these the
isolation andrefinement stages, following a terminology used for th® analogue of
root approximation. The isolation stage is more challeggind usually draws most of

the attention in algorithms literature. Most of our emphlasilso on the isolation stage.

1.2 Classification of Meshing Algorithms

It is helpful to begin with a classification of the meshingaithms. There are three
general approaches to meshing problems: algebraic, ggormaetumeric. In practice,
some algorithms are best viewed as hybrids of these apprsadtl three approaches
are exemplified in the survey [3].

Algebraic approachesare based on polynomial operations and algebraic number
manipulation. Most algebraic algorithms can be reducetiégbwerful tool of cylin-
drical algebraic decomposition (CAD) [2]. One example istfriMourrain and Ecourt
[29]. Usually, algebraic approaches work for curves anthses with self-intersections,
fold lines, or other singularities, but such methods aranefficient, even on the plane.
The construction of efficient specialized algorithms reama challenge. This has led
to much interest in numerical algebraic methods (e.qg.,)[2iit for special cases such

as quadric surfaces [39] or cubic curves [16], efficient big& algorithms have been



devised.

Geometric approachesexploit geometric properties such as Morse theory [45, 4]
or Delaunay triangulations [5, 6, 13, 1, 14]. These geomgroperties are encoded
into the primitives used by the algorithm. Typical primés/include the orientation
predicates or ray shooting operations. Usually, geometfsjgroaches only work for
smooth curves and surfaces. However, by introducing caingsron the input, some
algorithms also work for non-smooth curves and surfaces. ekample, with a new
sampling condition, Boissonnat and Oudot’s algorithm aledka for some non-smooth
surfaces provided that the normal deviation is not too lafgeéne singular points (see
[7,3]).

Numeric approachesfocus on approximation and numerical primitives such as
function evaluation [25, 32, 44, 23, 24, 46, 47]. Such piivei& are usually embed-
ded in simple global iterative schemes such as bisectiorererlis considerable work
along this line in the interval arithmetic community (e Blartin et al [26]). These al-
gorithms are often called “curve tracing algorithms”. Se¢sBlaek and Rokne [35] for
references to curve tracing papers. Until recently, nuenapproaches were shunned
by computational geometers as lacking exactness or cortpkaxalysis. This is un-
fortunate as practitioners overwhelmingly favor numemppr@aches for three simple
reasons(i) Efficient and easy to implement; (i) Complexity is morajaiilve; (iif) Can
restrict to some region of interesQur overall goal is to address the above shortcomings
of numeric approaches while retaining their advantages.

As suggested above, geometric algorithms are usuallyidesidn an abstract com-
putational model that postulates certain geometric prast(i.e., operations or pred-
icates). These primitives may be implemented either by mizaeor algebraic tech-

niques; the algorithm itself is somewhat indifferent tostichoice. For the meshing



problem, a popular approach is based on sampling pointspan surface [13, 5,1, 14].
The geometric primitive here is ray-shooting; it returns tinst point (if it exists) that
the ray intersects on the input surface. For algebraic sesfathis primitive reduces
to a special case of real root isolation (namely, finding thalkest positive real root).
The sampled points have algebraic number coordinates diti@u the algorithms typ-
ically maintain a Delaunay triangulation of the sampledng®i and thus would need
orientation predicates on algebraic points. But exact implatation of these primi-
tives requires expensive and nontrivial algebraic numbemipulations. This does not
seem justified in meshing applications. On the other handgiluse approximations
for sample points, they may no longer lie on the surface. ghss rise to the well-
known “implementation gap” concerns of computational getrgn[51]: nonrobustness,
degeneracies, approximation, etc. In contrast, the sidiolivmethods studied in this
thesis suffers no such implementation gaps. As subdivisiethods are important to
large communities of practitioners in numerical scientiftecnputation, it behooves us

to develop such methods into exact and quantifiable toolsdareric algorithms.

1.3 Recent Progress in Subdivision Algorithms

In this thesis, we focus on algorithms based on doﬂ‘nai:bdivision methods. We
view subdivision algorithms as falling under the numeripraaches (see below for the
numerical computational model). The simplest form of domsibdivision uses only
axes-parallel boxes (e.qg., in bisection searches and May&ubes [25]). According to
a taxonomy of meshing algorithms in [3], this form is calledibe-based scaffolding”.

Newman and Yi gave a survey of the development of Marching €éygorithm and

1 We use the term “domain subdivision” to refer to the subdtivif the underlying spadg? or R? in
which the curve or surface lives. Subdivision can also td&eein parameter space, as in Bezier surfaces.



its extensions in [30]. The scaffolding provides a globabkdstructure, but the imple-
mentation of the primitives must still be reduced to algebos numerical operations.
E.g., Seidel and Wolpert [40] used algebraic primitiveshwitthis scaffolding. Our

algorithms will focus on numerical primitives. Note thatmerical primitives are not

necessarily immune to implementation gaps. For instaheeMorse theory approach
to surface meshing in [45] reveals such gaps.

There have been many attempts to extend Marching Cubes [@%] tiniform to
adaptive grids such as octrees. One example is from Shekhhbr[42], but it requires
crack patching efforts. Some dual approaches are usedtmatie patching problem.
Two examples are Dual Contouring [21] and Dual Marching CuB8k [42] and [21]
use bottom up “simplification” of the regular grid to form aatee. In contrast, [38]
uses a more advantageous top down subdivision scheme ttruatirthe octree. But
all of them do not have any topological guarantees. Varadtal. [49] introduced
an algorithm for constructing a homeomorphic mesh, but tygproach is not clear if
inputs are functions, and has implementation gaps.

Since numerical methods traditionally do not offer topatag guarantees, the key
challenge is to devise methods that offer such guarantdesdifect precursors for our
work are the subdivision algorithms of Plantinga & Vegte2,[31] and Snyder [44, 43].
Both algorithms are based on interval arithmetic [28] andathiéty to evaluate the ex-
act sign of a function at bigfloat values. For a large clasain€fions, not necessarily
algebraic, these primitives can be easily implementedtixasing a bigfloat number
package. Snyder’s algorithm is applicable in all dimensi@ut it has termination prob-
lems as noted below). Currently, the Plantinga & Vegter megtte@nly known in 2 and
3 dimensions. Ben Galehouse [17] has a subdivision algoritirmeshing surfaces

in any dimension, but like Snyder, he requires recursivehingsof the boundary. Both



Plantinga & Vegter and Ben Galehouse use surface normalatiomgrprimitives in their
algorithms. All these algorithms are also related to the SB®¥kid algorithm for curve
tracing by Ratschek and Rokne [35].

The problem of approximating curves defined by a bivariatgrmonial is the2-
dimensional version of the general problem of approxingatire hypersurface defined
by ad-variate polynomial. The casé= 3 is clearly very important in practice. When
d = 1, this is the classic root approximation problem. Computipgaiisotopy in this
case is known as the root isolation problem. Recent progregss 1D problem can
be found in [11, 10, 36, 22]. For a nice survey of work on the dae®s-Bernstein
methods, including the so-called bit-stream algorithneg, [45]; for results related to
the continued fraction method, see [41].

Both Plantinga & Vegter and Snyder assume the input curvesarigces are non-
singular. Recently, numerical subdivision algorithms tea work with singularities
and degeneracies have appeared: [52] gave a Bezier curveeictien algorithm that
is correct even in the presence of tangential intersect®mbdivision techniques for
approximating curves with isolated singularities wereegivn [9]. The paper also ex-
tended the algorithm of Plantinga & Vegter to domains witiegular geometry. [11]
introduced thd D versions of the Plantinga & Vegter algorithm, and extendéaltreat
singularities (i.e., multiple zeros). Another key attrantof subdivision algorithms is
their adaptive complexity. [10] introduced continuous algkbraic amortization tech-

niques, resulting in one of the first adaptive analysis oflsasion algorithms.



Chapter 2

Overview of Subdivision Algorithms

To provide intuition for our algorithm, we will recall the wioof Snyder and Plantinga

& Vegter in2D case. In most of our discussion, we fix a real curve

S:=f0)={peR*: f(p) =0}. (2.1)

which is specified by & function f(X,Y) : R? — R. We assume interval arithmetic
and interval versions of functions such aand its partial derivativeg,, f,.

A 2D boxis given byB = I, x I, C R* wherel,, I, are real intervals. Let(1,)
andw(I,) denote the midpoint and width df. For a boxB = I, x I, letw,(B) :=
w(l,), my(B) = m(!,); similarly for w,(B), m,(B). Then the midpoint, width and
diameter ofB are (resp.)m(B) := (my(B), my(B)), w(B) := min {w,(B),w,(B)}
andd(B) := max {w,(B),w,(B)}. We name the fouedgesof a boxB by their relative
positions (left, right, top, bottom). See Figure |2.1 fougiration of this terminology.
The fourcorners are (resp.) topleft, topright, bottomleft and bottomrigfthe sign
of a cornerc refers to the sign of (¢). By making an infinitesimal perturbation g¢f

(which will be discussed later), we may assume that evergererhas a positive or a

10



negative sign (never the zero sign). An edgs@ochromatic if the sign at both of its
corners are the same. A boxnsonochromatic if the sign at all of its corners are the
same. Since there are only two signs, the negation of moaowtic isbichromatic.

A full-split of B is to subdivideB into four equal subboxes; l@alf-split subdivides
B into two equal subboxes. There are two kinds of half-sphtsizontal and vertical.
These subboxes are called ttaldren of B. If the children of the full split ofB are
denotedB, ..., B, (with B; in theith quadrant relative te:( B3)), then the children in a
horizontal (resp., vertical) half-split aie,, B34 (resp.,B4, Bag), WwhereB,; = B;UB;.
We use the edge/corner terminology for boxes, but reseeartyvertex terminology
for the approximation straightline grapbs

y top

left right

bottom

Figure 2.1: Convention and terminology for the edges 2babox

1. Our Computational Model To see why our algorithms are free of implemen-
tation gaps, we take a closer look at the computational megeheed. Bigfloats or
dyadic numbers is the s&t= Z[1/2] = {m2" : m,n € Z}. All numerical computa-
tions in our algorithms will be reduced to exact ring openasi (-, x) and comparisons
on bigfloat numbers. Bigfloat number packages are efficientadely available (e.g.,
GMP, LEDA or Core Library). More generally§ can be replaced by any “computa-
tional ring” [54, 53] satisfying some basic axioms to supi@xact real approximation.

Moreover, machine arithmetic can also be used in place of IB&i§, as long as no

11



overflow or underflow occurs; in most of our examples, thisésdase. Even when high
precision is needed, machine arithmetic can be exploitdites.

We also use interval arithmetic [28]. The main tool is inamsfunctions ([34]).
An inclusion function forf(X,Y) is a functiond f(1,, ,) = 0f(B) that takes input
intervals and returns an interval that satisfies the inclugiroperty: f(B) C 0f(B)
wheref(B) = {f(x,y) : (z,y) € B}. We calld f abox function for f if, in addition,
itis point convergent i.e., for any strictly decreasing sequerige> B; D - - - of boxes
that converges to a poipt we havel f(B;) — f(p) asi — oo. For our computational
model, it is assumed that the input arguments faare dyadic boxes, and it returns a
dyadic interval. We also need box versions of the derivatiyg f,.

As in [9], we call f aPV function if f : R? — R is C*!, and there exist computable
box functionsl f,0 f,,,0 f, and the sign of at dyadic pointg € F? is computable. It will
be clear that the algorithms of this thesis can be easy tosimght with no numerical
errors when the inpuf is a PV function, and all numerical inputs are dyadic. Thenmef
nonrobustness issues are moot. See [9, 34] for additioftahiation.

In contrast to our computational model, the standard motlaumerical analysis
only supports inexact arithmetic (up to unit round-off €yroThis leads to the im-
plementation gap issues mentioned in the introduction.h@umodel is assumed by
Ratschek and Rokne, and even though they have the similard@gsicach as ours, they
had to discuss rounding errors [32.5]. Moreover, in their model, computing the sign

of f(X,Y) ata pointp = (x¢, yo) is problematic.

92. Generic Subdivision Algorithm The subdivision algorithms in this thesis have
a simple global structure. Each algorithm has a small nurabsteps callegphases

Each phase takes an input quépand returns some output data structdpé,Note that

12



@' need not be a queue, bijtis always a queue of boxes. Each phase is a while-loop
that extracts a boX from @, processed3, and possibly re-insert children &f back
into Q. The phase ends when is empty. IfQ)’ is a queue of boxes, it could be used
as input for the next phase. We next describe a generic #igowith three phases:
Subdivision, Refinement and Construction.

For the Subdivision Phase, the ingt, and output?,,; are both queues holding
boxes. The idea is to keep subdividing boxes until they fyatisrtain predicates. The
subdivision depends on two box predicates: exalusion predicateC,;(B) and an
inclusion predicate C;,(B). For each boxB extracted from@);,, we first check if
Cout(B) holds. If so,B is discarded. Otherwise,(f;, (B) holds, then inserB into Q..
Otherwise, we full-splitB and insert the children back int;,,. Next, the Refinement
Phase takes the output queue from the Subdivision Phasduehdr subdivides the
boxes to satisfy additional criteria — these refined boxegat in an output queug,. ;.
Finally, the Construction Phase tak@s ; as its input and produces an output structure
G = (V, E) representing a planar straight line graph. As we proceds leacB in the

input queue, we insert vertices and arcs ivitand I/, respectively.

GENERIC SUBDIVISION ALGORITHM
Input:  CurveS given by f(X,Y) = 0, box By C R? ande > 0
Output: GraphG = (V, E) as an isotopie-approximation ofS N By.
0. LetQ;, — {Bo} be aqueue of boxes.
1. Qou — SUBDIVIDE(Q;,)
2. Quef — REFINE(Qou)
3

G — CONSTRUCT(Qyey)

13



93. Example: Crude Marching Cubes Let us instantiate the generic algorithm just
described, to produce a crude but still useful algorithm“éwrve tracing” (cf. [26]).
For the Subdivision Phase, we must specify two box predicdet theC,,; predicate
be instantiated as

Co(B): 0 £0f(B) (2.2)

If Co(B) holds, clearly the curvé does not pass through, and B may be discarded.
Let C;,, predicate be instantiated 6y (B) which states that the edgesBfave lengths
less than some > 0. Thus, all the boxes in outp@,.; have width< . The current
Refinement Phase does nothing Qs = Q,.:). For the Construction Phase, we must
specify how to process each béke @,.;. The goal is to create vertices to be inserted
into V, and create arcs (which are straightline segments joingg pf vertices) to be

inserted intoF. The output is a straightline grajgh= (V, E).

Corner:® [©)
Vertex: @

Figure 2.2: Components Types: (A) corner, (B) cut, (C) incursi®imple Connection
Rules: (a,b) corner and cut arc; (c,d) double corner arcs.

We constructy as follows: for eaclB € Q,.r, we evaluate the sign gf at each of
the four corners oB. If the endpoints of an edge &f have different signs, we introduce

avertexv € V at the the mid-point of the edge. Of coursey thas already been created
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while processing a neighboring box 8f we do not duplicate. Clearly, B has0, 2 or

4 vertices on its edges. B has two vertices, we introduce an arc to connected them
(see 2.2(a),(b)). These arcs represent two types of catheomponents of N B: cor-

ner andcut components(respectively) as illustrated in Figure 2.2(i),(ii). A tHitype

of connected component is arcursion (or B-incursion) (Figure 2.2(iii)) is not repre-
sented, but omission can be justified by isotopy (the redndtep in Figure 3!1(i,ii)).

If B has4 vertices, we introduce two pairs of non-intersecting aaccsdnnect them
(see Figure 2/2(c,d)); there are two ways to do this, but ve®sh either one arbitrarily.

In general, the corners db may have a zero sign. But henceforth, we give them an
arbitrary sign (say, positive). This can be justified by agyt as [32].

This completes our description of a crude Marching Cubesrigfgo. Other subdi-
vision algorithms to be discussed will be seen as refinenaritsis crude algorithm.
The output grapliz = (V, ) is an approximation t&'N By, up to “c resolution”. Ife is
screen resolution, this is adequate for the purposes ohgalmlisplay. Martin et al [26]
gave a comparative study of various numerical implementatof the box predicates
Cout, Cin-

Our crude Marching Cubes makes no claims on topological coress. Until re-
cently, no numerical subdivision algorithms can promisemibetter. In particular, the
ability to handle singularities is regarded as an open praldbr numerical methods [3,
p. 182]. But many papers assume manifolds in order to avogltanity. In this thesis,
we only assume thdhe curveS has no singularities in the regioR, of interest More
precisely,f? + f2 + f; does not vanish at any point i,. Our main issue is to ensure
isotopy in such a situation. In domain subdivision, two tedbapproaches have been

introduced by Snyder [44] and Plantinga & Vegter [32].
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4. Snyder's Parametrizability Approach In Snyder’s approach, the predicatg,
is chosen to be

Cuy(B) : Co(B) V Cy(B) (2.3)

whereC, (B) is the predicat® ¢ 0 f,(B), and similarly forC, (B) with respect tof,. A
curvesS is said to bgparametrizable in the x-direction (or, z-parametrizable) in a box
B if each vertical line intersectS N B at most once. Clearly,',(B) implies thatS is
x-parametrizable irB; this is illustrated in Figure 2/3. During the ConstructidmaBe,
we isolate the intersections of with the boundaryp5 of each boxB € @,.; (this
amounts to root isolation). With sufficient root refinememg would be able to cor-
rectly construct the isotopy type 6fn B. Note that this isotopy type can be arbitrarily

complex, as seen in Figure 2.3.

Figure 2.3: The box components og-box

95. Plantinga & Vegter's Small Normal Variation Approach Unfortunately, Sny-
der’s algorithm (assuming that the method is recursivelgliag to the boundary of
B) may not terminateif the curve intersect® B tangentially [3, p. 195] (e.g.f =
r?+y?—1,andB, := [(—2, —2), (2, 2)]; Snyder’s algorithm would keep subdividing in
boxes containing the poirit, 0)). In view of this, the credit for the first complete subdi-

vision algorithm to achieve isotopic approximation of niogsilar curves and surfaces

1 In meshing curves, one can handle this problem by some rolatisn method that handle multiple
roots, but the problem is more serious in meshing surfaces.
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belongs to Plantinga & Vegter [32]. In place@f,(B), the Plantinga & Vegter (or PV)

algorithm uses a stronger predicate that we denoté;ly3):

Ci(B): 0 ¢ 0f:(B))" + O, (B))" (2.4)

It is important that the operatiofu, b)?> of squaring an intervala,b] = 0f;(B) (i €
{z,y})in (2.4) is defined aBnin{a?, ab, b*}, max{a?, ab, b*}] and not a0, max{a?, v*}].
This predicate is called the “small normal variation” cdratfi in [3]. To see that’;(B)

impliesC,,,(B), we can follow [32] by rewriting (2.4) as

0¢ OVf(B).0VF(B))

whereVf(p) = (f.(p), f,(p)) denotes the gradient at a point andOV f(B) =
(0f+(B),0f,(B)), and(,-) is just the scalar product of two vectors. This shows that if
p,q € B,then(Vf(p),Vf(q)) > 0. Suppose some € B has a vertical gradient (there
are two choices, up or down). Then poc B can have a horizontal gradient (there
are two choices, left or right). We conclude that' (0) N B is parametrizable in the
x-direction. There is a symmetric argument in which the ralesorizontal and verti-

cal directions are inter-changed. The PV algorithm has arkaiblenonlocal isotopy

property:

It does not guarantee isotopy of the approximatiomith the curveS within each boxs.
(2.5)

We view this property favorably because local isotopy inheBds seen as an artifact

of the subdivision scheme, and could greatly increase th&eu of subdivisions. The

non-termination of Snyder’s algorithm is precisely beeaiisnsists on local isotopy.
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The processing of';-boxes is extremely simple as compared to Snyder’s apprdach
fact, it is a slight extension of the connection rules in awrde Marching Cubes above
(see Figure 3.4). This advantage shows up even mai®jrwhere Snyder’s algorithm
must recursively solve theD isotopy problem on the boundary efchsubdivision
box. On the negative sid€;;(B) is a stronger predicate thar,,(B) and may cause
more subdivisions tha@’,,(B). In view of these tradeoffs, it is not immediately clear

which approach is more efficient.

96. MC-like The conceptual question iszhat kind of stopping and refinement crite-
ria do we need in order to ensure that the Construction Phasestfigient information
to construct an isotopic approximatiad? This question is ill-formed unless we con-
strain the Construction Phase. Marching Cubes [25] gives lueafor each box3, the
Marching Cubes algorithm computes a small surface patghc B basedonly on the
signs off at the corners of3. This isO(1) work per box, and~ is defined to be union
of all these patche&'z. Such a Construction Phase is said toM@-like or “March-
ing Cubes like” ([49] uses the same terminology for Marchind€algorithm and its
variants). The achievement of Plantinga & Vegter (PV) [32hat, by using the “small
normal variation” predicate, they could ensure corredbigp with a MC-like construc-
tior@. In contrast, the construction phase in Snyder’s algorigvihis not MC-like, but

requires highly nontrivial processing (e.g., root isaa)i

q7. Other MC-like Approaches Most MC-like approaches can be formulated using
our Generic Subdivision Algorithm. Schaefer and Warrerj {8 quadratic error func-
tions (developed in [18]) and some user defined toleraras’;,, predicate. This dual

approach produces a crack free, adaptive approximatiomeo$urface that reproduces

2 The simplicity of the PV algorithm makes it a textbook caselgt alongside the Marching Cubes.
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sharp features, but it does not have any topological gueeainother example is from
Varadhan et al. [49]. They use two criteria as €jg predicate: a complex cell criterion
and a star-shaped criterion. Similar to Snyder’s algorjttitay require the mesh to be
homeomorphic to the original surface within each box. Theyed that the mesh pro-
duced by their approach is homeomorphic to the originabserfand provided the detall
for the case that the input is a triangulated model. But if thgut is a function, their
approach is not so clear (e.g., kernel computation), andhtmeguire time consuming
computation (the first criterion requires computation effax-Norm Distance [48] for
each corner, edge and face of each box by solving equatitensgs This approach has

implementation gaps in many places, and also requires patcking efforts.

98. Quadtrees Instead of queues, we prefer to work with a slightly more etate
structure: ajuadtreeis a rooted tre&” whose nodes are associated with boxés, and

if « is an internal node then it either has four or two children séhassociated boxes
are obtained by full- or half-splitting oB,. Two nodesu,v are said to beadjacent

(or neighbory) if the interiors of B, and B, are disjoint, but their boundary overlap.
Overlapping mean®, N B, is a line segment, not just a point or empty. In order for
T to represent regions of fairly complex geometry, we assumaedach leaf of" is
tagged with a Boolean flag, “on” or “off”. The associated boaes calledon-boxesor
off-boxes The quadtred” represents aegion denotedR(7') C R? which is just the
union of all the on-boxes. Following [9], we call(T") anice region A nice region is

a closed subset &2, but it need not be connected. Intuitively, we can substitbe
gueues with quadtreés in our generic subdivision algorithm. Each phase accepts an
input quadtred’, extend it, and outputs an quadtrEe(except in the last phase, when

the output is the combinatorial representation of the sedfa
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In the subdivision phase, thé,,; predicate is always the predicatg above; it
ensures that out-boxes can safely be omitted in our appedgamof the curves. This
exclusion predicate is more or less universal among sufidivimethods, so we only
focus on(;,. Different subdivision methods are distinguished by tlaaproach to
inclusion predicates. Snyder’s inclusion predicate igibyC,,(B), and Plantinga &
Vegter uses a stronger inclusion predicat{¢B).

We repeatedly extend an quadtfEddy splitting its on-boxes. The on-boxes Bf

are classified into three mutually exclusive categories:
e Discarded Boxesthese are on-boxes that satisfy the exclusion prediCate

e Candidate Boxes these on-boxes do not satisfy the exclusion predi€atg but

satisfyC},.
e Inconclusive boxesthese on-boxes do not satisty,,; or C;,.

No further processing is done on the discarded boxes (sorédregin as leaves df
from now on). In the subdivision phase, we only split the imdasive boxes until
every on-box is either discarded or candidate. For the mefeme phase, no Inconclusive
boxes remain. So we only split candidate boxes. A subtletoises: we would like to

assume that

the children of candidate boxes are either candidate oratided. (2.6)

Property/(2.6) would hold if the notion of ar€’},, box” is hereditary, meaning that the
children of aC}, box will remain C;,. Unfortunately, this is not guaranteed because
our definition ofC;, predicates are based on box functions, which is implementat

dependent. If the box functianf is “isotonic”, the hereditary is automatic. To fix this,
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we redefine the concept of a candidate b@xit does not satisfy’,.;, and (ii) either its
parent is a candidate box or it satisfi€s,.

A refinementof T is obtained by a sequence of refinement steps. Note tatisf
arefinement of’, thenR(7") C R(T'). We are interested in two properties of quadtrees

T, each obtained by successive refinements:

e REGULARIZE(T) returns aegularized quadtree, i.e., any two adjacent can-

didate boxes have the same depth. Thus,

REGULARIZE(T) = SPLIT,,,(T)

whereC,.,(B) = all candidate boxes adjacentfthave width> w(B). Note that
we must not replace the condition “width w(B)” by “width = w(B)” because
this can cause the smallest square to split and possiblydeash-termination. In
contrast to Plantinga & Vegter’s notion of regularity whigguires all the leaves
to have the same depth, ours allow the leaves of differemeced components

of R(T) to have different depths.
e BALANCE(T) returns abalanced quadtreg i.e., one where the depths of any
two adjacent candidate boxes differ by at most one. Thus,

BALANCE(T) = SPLIT,, (T)

whereC,,,(B) = all candidate boxes adjacentBhave width> sw(B).

A useful terminology is the notion of “segments” of a quadffe Roughly speaking,
segmentsare the units into which an edge of a box is subdivided. Therdveo types

of segments: doundary segmente is an edge of an candidate box ‘Bfsuch that
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e € OR(T); otherwise, it is annternal segment An internal segment has the form
e = BN B’ whereB, B’ are adjacent candidate boxes/ofThus each edge of a box in
T is divided into one or more segments.Tlfis a regularized quadtree, then each edge
of an candidate box df is also a segment; if is a balanced quadtree, then each edge
of an candidate box df' is composed of either one or two segmentdbdundary box
is a candidate box that contains a boundary segment.

For now, assume the above subroutines use only full-sgiiesgeneral case where

we also allow half-splits is treated in our Rectangular Aitons.

99. Perturbation The correctness statements of geometric algorithms camite g
involved in the presence of degeneracy. To avoid such ceatmins, and in the spirit of
exploiting nonlocal isotopy, we exploit perturbationsfaffor more details for treatment
of geometric degeneracies, see [50]). We dall R2 — R a nice perturbation of
f :R? — R relative to T if
) /71(0) N Interior(R(T)) ~ f~2(0) N R(T).
i) Ve > 0, 3f. : R* — R such that (a)f(q) — f.(q)] < € for Vg € R?, and (b)
f(p)f.(p) > 0, for any cornep of 7.

An intuitive way to get a nice perturbation ¢fis to slightly shift theS = f~1(0) so

that the resulting curve does not pass any of the corneredidkes irnl".

LEMMA 2. For any givenf and T, there exists an nice perturbatiohof f relative to

T.

We do not need an explicit (which depends off’ which is being expanded during
the algorithm). Instead, each time we evaluétat a cornep of a subdivision box, if
f(p) = 0 then we simply declare the sign to be positive. We justifg thy saying that

we are really using a nice perturbatigrinstead off. Of course, we could givé any
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non-zero sign at eagh as long as the sign is treated consistently for @adrhis use of
f incurs no additional cost or complexity for our algorithnorFotational simplicity,

we simply refer to the some nice perturbatipas f.
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Chapter 3

Isotopic Meshing of Curves

In this chapter, we will describe three increasingly softased subdivision algo-
rithms for curves. They all based on thg, predicate and will be known as the Regular-
ized Cxy, Balanced Cxy and Rectangular Cxy Algorithms. For thetfirs algorithms,

we only perform full-splits of boxes. We now present the fofsthese three algorithms.

3.1 Regularized Cxy Algorithm

Our initial goal is to replace th€'; -predicate in the PV Algorithm by the parametriz-
ability condition of Snyder. As in Plantinga & Vegter [32]gviirst consider a simplified
version in which we regularize the quadtree, i.e., redukcadghcent candidate boxes to

the same depth. This is oRegularized Cxy Algorithpwhich has this form:
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Regularized Cxy Algorithm:

Input:  Nice region given by a quadtrég and curveS = f~1(0)
Output: Isotopic approximatiods for S N R(7Ty)

0. Ty« BOUNDARY (Tp)

1. Ty« SUBDIVIDEg,, (T1)

2. T3 — REGULARIZE(T)
3

G — CONSTRUCT(Ts)

Note that there are four phases (Phases 0 to 3) and only Phaseains to be
clarified. Suppose we ignore Phase O (treating the oper&@©@& N DARY (1) as a
no-op). Then the algorithm is just an elaboration of the Critdaching Cubes, in
which we replace its (empty) Refinement Phase by a RegulanizBtiase, and replace
the predicateC. by C,,. The Construction Phase here is simpler than in the Crude
Marching Cubes because we never hawertices on the edges of an candidate box in
view of conditionC.,,(B). Thus, the only connection rules we need are Figure 2.2(a,b)
(i.e., Figure 2.2(c,d) are excluded).

The naive correctness statement is thisr1 R(7}) is isotopic toG”. But this naive
statement may fail because of “incursions” or “excursioasboundary boxes. More
precisely, supposB is a boundary box and letC 0R(T;) be a boundary segment Bt
We sayS makes arincursion (resp.excursion) ate if SN B (resp.,SN(R?*\ R(Ty))) has
a connected componeat with both end points ire (Figure 2.2(iii) shows an example
of incursion). Thus(C' enters and exit$3 (resp., exits and re-entef) at e. Such
incursions/excursions are not captured by our output gaplso a non-trivial Phase
0 is necessary to fix this problem. There is an important sdnavhere boundary
processing requires no effort at all: wheris fully contained inR(7}). Note that this

was the assumption in Plantinga & Vegter’s algorithm.
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910. Boundary Processing The role of Phase 0 is to “secure” the original boundary
of R(Tp). This basically amounts to isolating all the intersectiohss with 0R (7).
In principle, we could invoke any exact root isolation aigfan for this purpose. How-
ever, we prefer to apply the same subdivision method, adipgatied recursively to one
dimension lower. In general, for @dimensional subdivision algorithm, we want to
recursively use thé&d — 1)-dimensional analogue for processing its boundary. IFor
this algorithm is essentially the EVAL algorithm for reabtasolation [27, 11, 10].

The basic idea is to keep splitting any boundary box that hmential incursion or
excursion. Initially place all the boundary boxesTgfinto a queu&),, and whileQ),
is non-empty, we remove a boundary bBxand “tests” each of its boundary segment
(there may be one to four such segmentsy. fiils the test,B is split and its boundary
children is put back int@),. If each boundary segment Bfpasses the “test”, we discard
B (i.e., it does not have to be split). But this amounts to doiotpimg.

Let us now clarify the “test” on a boundary segmenfhe 1D analogue of’; and

C,, predicates are (respectively)

Cole) : 0 ¢0f(e),  Cpyle) : 0 €0fi(e)

wherei = z if e is horizontal, and = y if e is vertical. IfC{(e) holds, the curve does
not intersect. If C”, (e) holds then there can be no incursion/excursion curve @e
say thate fails the test if eitheCy(e) or C7, (e) does not hold. Whery, is empty, we
terminate Phaseé The output from this Phase is a quadtigehat refines the boundary
boxes of7}, so that the curvé intersects each boundary segmeni¢f’ ) at most once.
In this case, we sa§ intersects the boundary &f(77) cleanly.

There are still problems: if the curve intersects the bound& R(7;) tangentially,
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this method does not terminate. This problem was addressfd],husing a weakened
correctness statement and a more elaborate algorithm, ifflse curve has an end point
in the interior of R(7}), our algorithm might not terminate as well. For this thegis,
shall be contented with the above simple method of boundaggssing, but we need to
make two strong requirements: (1) the input cutviatersects the boundary of R(7;)
generically, i.e., any intersection of with the boundary of?(7}) is transversal;and
(2) SN R(Ty) is compact, and any end point 81 R(7}) lies on the boundary R(T5).

By definition, transversal intersection does not allow theveuo just touching a corner
of R(Ty) without entering the interior oR(7,). From now on, we assume the above

two requirements always hold.

911. Correctness It is perhaps surprising that this simple algorithm, onlynaaf
extension of Crude Marching Cubes, already produces theatascgopy. Because it is

easy to implement, it may have credible practicality.

THEOREM 3 (Correctness of Regularized Cxy Algorithmlhe algorithm terminates
provided thatS intersect) R(1,) generically andf is nonsingular inside?(7;). More-

over, the output graply is isotopic toS N R(7Ty).

The proof will be spread over several steps. We first provaiteation. Only the
boundary and subdivision phases have the potential fott@anination. The following

lemma provides the condition to guarantee their terminatio

LEMMA 4.
(i) If S = f~1(0) intersects the boundary &(T;) generically, then the Boundary Phase
will terminate.

(i) If f has no singularities im?(7y) then the Subdivision Phase will terminate.
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Proof. (i) If the Boundary Phase does not terminate, then there isfamte decreas-
ing sequence of edges; D e; O ---, such that eacliy(e;) andC;, (e;) fail. Wlog,
let e, be horizontal and; — p asi — oo. ThenC, (e;) failing means) € 0f,(e;).
Sincedf.(e;) — f.(p), we conclude thaf,(p) = 0. Similarly, C{(e;) failing implies
f(p) = 0. This shows thaf ~!(0) intersects:, tangentially.

(i1) If the Subdivision Phase does not terminate, then tiesn infinite decreasing

sequence of boxe8, D By D - -- such that eachy(B;) andC,,(B;) fail. Thus:
0 € Of(B;) NOfe(B;) NOfy(Bi)). (3.1)

The boxesB; must conver&to some poinp € R(7,) asi — oo. Sincel f is a box
function for f, we conclude that f(B;) — f(p). Then|3.1) implie) = f(p) =
f2(p) = f,(p). Thus,f is singular inR (7). Q.E.D.

3.2 Partial Correctness of Regularized Cxy Algorithm

The basic partial correctness technique in Plantinga & &f€@?] is to apply iso-
topies which remove any excursion of the cusrze= f~1(0) from a boxB to its neigh-
boring boxB’. Such isotopies are not “local” to any single box, but it isentheless
still fairly local, being restricted to a unioB U B’ of two adjacent boxes. But in our
algorithm, an excursion fron can pass through a sequence of boxes, so we need a
more global view of how to apply such isotopies.

We next prove partial correctness: if the algorithm terrresathe outpu@ is iso-

topic to S N R(T,). The key idea in the proof is to use isotopy to transform theeu

1 The existence of depends only on the existence of a bourah the maximum aspect ratio — so this
proof applies in the more general setting of Rectangular Algprithm later.
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SN R(Ty) = SN R(T3) repeatedly, until we finally obtain a cun# that we can show
is isotopic toG. Each transformation step removes a pair of intersectietwsdens and
the boundary of boxes, as illustrated in Figure 3.1(i,ije pair(a’, ') is eliminated via
the isotopic transformation from (i) to (ii). We say that tbeir (a’, v') is reducible. We

will make this precise.

B B B B
2 ?
2 o I
\q dl Y
= N B
/! i
¢ a'mb' Reduce £ ¢ I . +
P (l/ b/
v
B B B
. _
/'a 0\ /N .
B/I
c @ € ¢!

/ a b\ / a b\ / a b e

0] (i) (iii) (iv)

Figure 3.1: Reduction step witla’, ') < (a,b)

912. Partial Ordering of Convergent Pairs To give a structure for our induction,
we need a partial ordering on pairs of intersection poinishsas(a, b) or (a’,b') in
Figure 3.1(i,ii). Ifa = (a,, a,),b = (b, b,) are points, it is convenient to write “<,, b”
to mean that,, < b,. Similarly,a <, b meansz, < b,. Also,a <, b meansy, < b,.

Let e be a segment, so = B N B’ for some candidate boxds and B’ (see Fig-
ure[3.1(i)). Assume&’,, holds atB and B’. By symmetry, assume is a horizontal
segment (the following definitions can be modified i vertical).

Consider the set N e. By nice perturbation, we can assume thdtas no vertical
or horizontal components overlapped with edges of eachidatebox (i.e.SNeis a

finite set). In general§y can intersect at points with multiplicity greater thah then, as
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in [12], we can viewS Ne as a multiset where each pojnt S N e has multiplicity1 or
2, according a$' intersects: with odd or even multiplicity. However, we can avoid this
complication by simple perturbation arguments (this wélrmoted in the proof below).
Therefore, we assume thétintersects: transversally. Leb Ne = {py, ..., pn} Where
the points are sorted so that <, p2 <, -+ <, pm. A pair of the form(p;, p;+1)
is called aconsecutive pairof e. Clearly, e contains a consecutive pair ifh > 2.
Moreover, ifm > 2 andC,, (B) holds, thenS must bez-parametrizable iB.

A consecutive paifa, b) of a horizontal segmentis said to baipward convergent
if the two portions of the curvé, neara and neab (respectively), are moving closer to
each other as the respective curve portions move upwardscrohis is equivalent to
saying that the slope of the cungeis positive atu and negative ai. This is illustrated
in Figure 3.1(i) and (ii).

We have three other related definitions{df b) is a consecutive pair of segment
we say(a, b) is downward convergentif ¢ is a horizontal segment and the slopefait
a is negative, and dtis positive. Ife is a vertical segment, we similarly defifeft or

right convergent. A key property is:

LEMMA 5. Lete = BNB' be asegment. IB and B’ satisfiex”,, then every consecutive

pair of e is convergent (upward, downward, left or right).

Proof. Wlog, let e be horizontal anda,b) be a consecutive pair of. We must
show that is either upward or downward convergent. Sidtg(B) holds, the fact that
f7(0) intersects in two distinct pointsz, b means that, in fact,(B) holds. Wilog,
assumef,(B) > 0. There are two possibilitiesf:((a + b)/2) > 0 or f((a + b)/2) < 0.

In the former case, we havg(a) > 0 andf,(b) < 0 and so the slope of !(0) ata is
negative, and the slope @ats positive. This meang, b) is downward convergent. The

latter case will imply(a, b) is upward convergent. Q.E.D.
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By symmetry, we mainly focus on upward convergent gairb) of a horizontal
segment = BNB'. Because of the presence(afb), the curveS is z-parametrizable in
B andB’; soC, must hold atB and atB’. Wlog, we henceforth assume thgtB) > 0
andf,(B’) > 0.

Let P = P(f) be the set of all upward convergent pairs of segments in thdtoee
Ts. Note that none of these pairs lies on a boundary segmentgecd the Boundary
Processingq10). LetX, be the connected component/®f.S that containg; similarly
for X,. Leta’ be the other endpoint of,; similarly for ¢'. In caseX, = X, we have
a’ = bandt = a and X, is a B-incursion. Hence we calle, b) anincursion pair
(see Figure 3.1(ii)). But supposg, # X3, thenX, and X, are cut components (see
Figure 3.1(i)) satisfying

a<,a <, b <,0b

because&’, holds inB. This is illustrated in Figure 3/1(i).
Also, it is easy to see thdt (a') < 0 andf,(b') > 0. ClearlyS intersects the relative
interior of the line segmerijt’, '] an even number of times. If there ate > 0 such

intersections, then we can fikdt 1 convergent pairs ofa/, ']. Suppose these pairs are

(Cl(), b0)7 (CL17 bl)a sy (aka bk)

whereay, = o’ andb, = b'. Then we define

(ai, bz) =< (CL, b) (32)

for eachi = 0, ..., k. Let < denote the reflexive, transitive closure of the set of binary

relations defined as in (3.2). It is easy to see thas a partial order or®. For regu-
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larized quadtrees, the minimal elements of this partiakpate thoséa, b) for which
X, = X, are incursion components or boundary pairs; for balancedltgees (next

section), this is no longer true.

13. Compatibility ~So far, our box predicates,, C';, C,, and Phases such as
CONSTRUCT(T) are implicitly based on some PV functigh In order to explic-
itly indicate their dependence gf)y we put f in the superscript as i(f({, C{, C;fy and
CONSTRUCT!(T).

Let T be a quadtree anfl ¢ be PV functions. If for all corners of each candidate
box, we havef(u)g(u) > 0, then we sayf andg arecompatibleonT'.

Let us review the process of the Regularized Cxy Algorithm. fdie of theOth
Phase is to construct a quadtfEsuch that for each boundary segmenf 7', the curve
S intersects: at most once (of intersect)R(T') cleanly). Thelst Phase is to make
the curver- or y-parametrizable inside each box©f Recall thaC ON ST RUCT/(T)
produces a straightline gragh= (V, ') where, for each segmeabf 7', we introduce
avertexv € V iff f has opposite signs at the endpoints,adnd for each candidate box

with two verticesu, v on its boundary, we introduce an drc v) € E.

LEMMA 6. Let f be a PV function, and’ be the quadtree after the Regularization phase
in our algorithm (i.e.,T’ = T3). If S = f~1(0) intersects the boundary @t(7") cleanly
and generically, then the graphl := CONSTRUCT/(T) is isotopic toS N R(T).

Proof. We will inductively define a sequendsg, f1, fa, . .., f. of C! functions such
that f, := f and each pair;_i, f; is compatible ovefl’ (: = 1,...,n) andS; ~ S;_;
whereS; := £, (0).

We may assume that eadh intersects the segments ©@fonly transversally, and

avoids the corners of candidate boxes. Hence, we can deéngattial orderingP?;, =
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P(f;) of upward convergent pairs (relative to the segments of mead’). The trans-
formation fromsS; to S,_; is illustrated by the “reduction step” of Figure 3.1(i,ignd
amounts to the removal of an upward convergent pair whichimsmal in the partial
order P,. No other convergent pairs @f,_; are affected by this transformation. It is
then clear that5; ~ S;_;. Thus, we have the further property thdt C P, ; with
|Pi| = |P—1| — 1 = | Py| — i. We stop aften = || transformations, whejP, | = 0.

We can similarly remove all the downward, left and right cengent pairs, by re-
peating the preceding process three more times. We finallyeat a functionf such
that there are no consecutive pairs on any segment. Acgptdibemma 5, this means
the curveS = f 71(0) intersects each segment at most once. Moreover, the cfirves
andS = f~1(0) are isotopic.

It remains to show that N R(T) ~ G whereG = CONSTRUCT!(T). Let
B be any candidate box @f. SinceC/, (B) holds, our construction af ensures that
|GNAB| € {0,2}. Note that has a vertex at a segmeriff [SMe| = 1. Since we may
assume tha$ does not intersect the corners®fit follows that|G N 9B| = |S N dB).

In other words(G' N OB is isotopic toS N dB. Moreover, this can be extended into an
isotopy for the entire candidate bo%:N B is isotopic toS N B.
Q.E.D.

The transformation of the functiofy_; into f; can be made explicit if desired. Sup-
pose the transformation removes tReminimal upward convergent pait, b) on seg-
mente. Lete = B N B’ where B, B' are candidate boxes arfl lies top ofe. We
emphasize that this transformation is localoJ B’. Let X,; denote the connected
component ofS;_; N B whose endpoints are, b. Let B,, denote the smallest rect-
angle that contains(,,. SupposeB,, = [z1,x2] X [y1,y2]. FOre > 0, let B, =

[21—€, a4€] X [y1—€, y2+¢]. Choose sufficiently small so thaBy ,N.S;_; is comprised
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of a unique component, denotéd ,. Now definef; : [z1—e¢, vo+e] X [y1—€, yot+e] — R
so thatf; is the identity on the boundary ©f; — €, z5 + €] X [y1 — €, y2 + €], but other-
wise f;(z,y) = fi_1(x, g(x,y)) where the functiory(z, y) has the property that(x, -)
is a piecewise linear shear. Explicit formulas focan be given if desired. Moreover,
fi(z,y) = 0impliesy < y;. In other wordsf; 1 (0) N [z1 — €, 20 +¢] X [y1 — €, 92 +¢] =
fiH0) N [ — €,22 + €] X [y1 — €,91]. Thus the componenX?, has moved out of

B into B’. Finally, let extend the functiorf; to all of the Euclidean plane by defining

filz,y) = fic1(z,y) forall (x,y) & [x1 — €, 29 + €] X [y1 — €,y + €].

COROLLARY 7. Let T be a regularized quadtree. If ()¢ are compatible or¥’; (ii)
Sy = f71(0) and S, = ¢g~*(0) intersectoR(T) cleanly and generically; and (iii) each

box of T satisfiesC’/, andCY,,

thenf=1(0) N R(T) =~ g~(0) N R(T).

Proof. Note that compatibility off and g implies thatCONSTRUCT/(T) =
CONSTRUCTY(T). By the previous lemma, we also hafe' (0) N R(T) ~
CONSTRUCT/(T) andg='(0) N R(T) ~ CONSTRUCT?(T). Q.E.D.

Conclusion of the Proof of Theorem 3.Proof. Termination follows from Lemma 4.
We note how each phase of the Regularized Cxy Algorithm prewige necessary prop-
erties for correctness: Phase 0 convéptso 77 which satisfies the boundary condition
such thatS = f~1(0) intersect®)R(T;) cleanly. Phase 1 converfs to T, which satis-
fies the box condition for parametrizability betweBnand f (the boundary condition is
preserved in this transformation). Phase 2 convEristo a regularized quadtree, again
preserving the boundary condition. Note tifat (0) N R(Ty) = f~1(0) N R(T3), since
the out-boxes introduced by each of these phases séatisf8y Lemma 6, the outpu®
from Phase 3 is isotopic t6~1(0) N R(T3). Q.E.D.
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3.3 Balanced Cxy Algorithm

The Regularized Cxy Algorithm is non-adaptive because ofleegation. ThePV
Algorithm is similar to the Regularized Cxy Algorithm, except that theplace the
Regularization Phase by a Balancing Phase, and’ug®edicate instead af’,,. The
connection rules in the Construction Phase will become oligytsy more elaborate

(see below and [9, 32)).

@ R,

KEY:
@ positive corner

O negative corner

@ vertex

Figure 3.2: (a) Input “flat” hyperbola. (b) Output graph witinong isotopy type.

q14. Issue of Ambiguous Boxes We now explore the possibility of using ti,,
predicate in the PV Algorithm. To indicate the critical isswonsider an horizontally-
stretched hyperbol@Y + X)(cY — X)) = 1 for somec >> 1 as in Figure 3.2(a). We run
the PV algorithm on this input hyperbola It is conceivable Bubdivision Phase ends
up with the squares insidé-7, —1), (7, 1)], as shown in Figure 3.2(b). Moreover, each
of the four larger yellow squares3(, B., By, Bj) satisfy C,., while the pink squares
satisfy C'y, and blue squa£$atisfy00. The output graplG obtained by using the

2 Thanks to Prof. Gert Vegter who pointed out that there isticatipointp in the blue region. So the
subdivision phase will subdivide the blue region to prodagéoxes that include.
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connection rules of Figure 3.4 is the graph shown in FiguB€b3. SinceG forms a
loop, it is clearly wrong. The error occurred in the boxgs(and by symmetry, irB}).

If we had splitB;, we would have discovered that there are two, not one conmene
in SN B;. The boxB; (and B)) is said to be “ambiguous”. In general, a leaf box
B is ambiguousif it (i) satisfiesC,,; (ii) is monochromatic; and (iii) has exactly two
vertices. The ambiguity classification markdor a full-split. A slightly more elaborate

definition can be provided to avoid unnecessary gplits

+ + +
+ + + G- &---- <
- —
B B @---e- ¢o--- <
a + + +
b
+ + + + + ®)
®) v+
—e (full-split) ps
—_e—o +
S
+ + \ * o + / ¢
@) A
_ n )
+ —
/ —\ + + +
+ + + L e .
© - S N

Figure 3.3: Ambiguous box (a) and its resolution (b’,c’,c”)

Figure 3.3(a) shows an ambiguous hBxit satisfiesC,, but notC,). Note that our
definition of ambiguity does not depend on whethes top or bottom edges have been
subdivided. If we full-split boxB, the situation resolves into one of two possibilities,
as in Figure 3.3(b) or 3.3(c). In fact, 3.3(c) has 2 subcadegending on the sign of
the midpoint of the box. In any case, splitting an ambiguowns Will “disambiguate”

it. In case of Figure 3/3(b), this might further cause thétrigeighbor ofB to become

3 .e., we may require an optional condition: (iv)Bf satisfiesC), (resp.,C,) and one of its horizontal
(resp., vertical) edges need not to be subdivided.
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ambiguous. This propagation of ambiguity can be iteratgdramber of times. But
propagation of splitting can be caused also by the need tlaebe boxes. However,
both kinds of propagation will terminate because if a boxtsplit is “caused” by a
neighboring box of smaller sizén our hyperbola example in Figure 3.2(b), the splitting
of B, and B; will cause B, and B/, to become ambiguous and be split. The final output

graph will now be correct.

915. The Algorithm We now present the overall algorithm using our (now famil-
iar) 4 Phases. To propagate and resolve ambiguity, we nekgh#ysmore elaborate

Construction Phase, which we cAlON ST RUCT™ in the following:

Balanced Cxy Algorithm:

Input:  Nice region given by a quadtrdg andS = f~1(0)
Output: Isotopic approximatio for S N R(7p)

0. Ty «— BOUNDARY (Ty)

1. Ty« SUBDIVIDE,, (T})

2. Ty — BALANCE(T)

3. G~ CONSTRUCT*(T3)

The first three phases are now standard. Our goal ItCth&V STRUCT *(T3) is
to do the usual construction of the gragh= (V, ), but also to disambiguate boxes.
As usual, the input quadtréle for CONSTRUCT* provides a queu& of candidate
boxes to be processed. However, the queue is now a prioréyeguThepriority of a
box B is given by the inverse of its width (i.e., smaller width bex®ve higher priority),
and among those boxes with the same width, the ambiguous haxe higher priority.

We may organize this priority queue as a list= (L4, Lo, .. .) of sublists. Each sublist
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L, contains all the candidate boxes of a given width (boxds inas width half of those
in L;;1). In each sublist, the ambiguous boxes appear ahead of th@mbiguous
boxes. Note that some sublists may be empty. It is easy topulate these lists: when
a box is removed froni; to be split, its children goes into subligt, ;. If a box in
L; becomes ambiguous because of insertion of two new verticeme of its edges,
it is moved to the front of its sublist. The top-of-queue is first element in the first
non-empty listZ;.

We need two subroutines called

REBALANCE(B), = PROCESS(B).

To “rebalance”B, we split any neighbor o8 whose width is more than twice that
of B, and recursively rebalance the children of its split ne@bkb These children are

re-inserted into the queue for future processing. Moreipedc

REBALANCE(B):
For each candidate ba®’ that is a neighbor oB
If w(B') > 2w(B),
Full-split B
For each childB” of B’
InsertB” into

REBALANCE(B")

To “process”’B, we add vertices to the edges Bf(if they were not already added)
and connect them according to the following rules: as showthe next sectioni3 has

0,2 or 4 vertices on its boundary. B has2 vertices, we connect them as for the crude
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Marching Cubes Figure 2.2(a,b), but reproduced in Figur@dJ. If B has4 vertices,
it turns out that two of them will lie on one edge 8f we connect these two vertices

to the other two in such a way that the arcs are non-intersginis connection rule is

unique, unlike Figure 2/2(c,d)). These rules are summaiiz&igure 3.4(a—f).

Figure 3.4: Extended Connection Rules: Cases (c—f) treats énteces lying on one
side of a box.

Four new cases arise Figure 3.4(c—f). Case (e) does not artbe ioriginal PV
algorithm. Case (f) does arise in PV but it is ambiguous and ildw eliminated by
our algorithm through its disambiguation process. Thusec§ does ngtarise in our
current algorithm.

It is easy to see that these cases are exhaustive, and thegaanThere is an addi-
tional detail: if we add new vertices, we must also updateptinrity of any candidate

box neighbor ofB that may become ambiguous as a result. More precisely:

4 Note that case (f) may arise if our definition of ambiguitylirees the optional condition (iv).
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PROCESS(B):
For each edge ab,
If it has not been split, and has not yet been processed,
and has a change in sign at its endpoints
Add a vertex
Update the priority of its neighbors (if candidate) acrdss edge
Connect the (at most four) vertices in the edge® of

using the connection rules of Figure 3.4(a-e).

The correctness dPROC ESS(B) depends on the fact that any smaller boxes has

already be processed. MoreovErijtself is terminal (will not be split in the future).

CONSTRUCT™(T3)
AssumeTs has a priority queué) containing all of its candidate boxes
While Q) is non-empty

B — Q.remove() > SoB has the current smallest width
If Bis ambiguous
Split B
For each childB’ of B
PROCESS(B’)
REBALANCE(B')
Else > B is unambiguous

PROCESS(B)

3.4 Correctness of Balanced Cxy Algorithm
The statement is similar to that for the Regularized Cxy Altpon:
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THEOREM8 (Correctness of Balanced Cxy Algorithmphe algorithm terminates pro-
vided S intersectsoR(T,) generically andf is nonsingular inR(7,). Moreover, the

output graphG is isotopic toS N R(T).

Let us first prove termination: the termination of the Bouryd@hase and Subdivi-
sion Phases follows from Lemma 4. But we must also be surétha ST RUCT " (T3)
is terminating because of its splitting of ambiguous boxes @balancing. To see that
this is a finite process, we observe that when a Bag splitin CONSTRUCT™, itis
“triggered” by an adjacent bo®’ of smaller width. Thus, the minimum width of boxes
in the quadtree is invariant. This implies termination.

The Construction Phase assumes the following property:

LEMMA 9. Each candidate box hds 2 or 4 vertices on its edges. If it halsvertices,

then two of them will lie on a common edge.

We omit the proof which amounts to a case analysis. This islaino the PV
Algorithm [32], but we actually have a new possibility: ifiessible to have two vertices
on the right and two vertices on the left edge of the candibaxeas shown Figure 3.4(e).

Next, we must show partial correctness. Let us see why thaf fopthe Regularized
Cxy Algorithm does not work here: in the key lemma there (Len@jave transform
the functionf;_; to f; by a reduction step that removes a convergent (@aif) that is
minimal in the partial ordeP( f;_1). Now, there can be “obstructions” to this reduction:
in Figure 3.1(iii), the pai(«’, t') is an upward convergent ef. But in the Balanced Cxy
Algorithm, the boxB’ might be split. Say’ is thereby split into subsegmentsande;
whered’ € ¢, andb’ € ¢;. Thus,(d’,b’) is no longer a consecutive pair on any segment,
and so(a, b) is now the minimal pair inP(f;_1). There are two possibilities: (1) We

might still be able to reduce the pdit’, '), but we note that the new is no longer
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compatible withf;_; relative toT5. (2) It might also happen thd?’ was split because
the componenk, of S N B’ with endpointa’ and the component’; with endpointd’
are different, so we cannot do reduction.

In view of the above discussion, we say that an upward coewe(g, b) € P(f) is
irreducible if it is minimal in the partial order( f) but it is not an incursion pair (see
Figure 3.1(iii)).The following lemma is critical in the a@ctness proof. It says that if

there exists irreducible minimal pairs, then there existbiguous boxes:

LEMMA 10. LetT be a balanced quadtree in the Construction phase().gfresp.,Q.)
be the set of all minimal upward (downward) convergent pairs.oAssume), U (Q, is
non-empty, and each pair i, U Q)4 is irreducible.

(i) If a segment contains a convergent pair @j,,, thene is the entire bottom edge of
an candidate box.

(i) One of the candidate boxes Bbfis ambiguous.

Proof. Let e be a segment containing a pair,b) € Q, U Q4. WIog, (a,b) is an
irreducible upward convergent pair. Assumkes in the bottom edge of candidate box
B. See Figure 3/1(iii).

(i) First, we show that is the entire bottom edge @. In other words, the bottom
edge ofB is not composed of two segments, one of which iSinceC,, (B) holds and
there are two distinct points, b on the bottom edge aB, it follows that0 ¢ f,(B).
As usual, letX,, X, be the connected components fof' (0) N B with one endpoint
ata,b (resp.). ClearlyX, # X, since(a,b) is irreducible. If the other endpoints of
X, Xy, area’ andt/’ (resp.), them' andb’ lie on the top edge (call &) of B. Moreover,

a <, d <,V <, band, by irreducibility of(a, b), we must have’, v’ lying in different
subsegments ef. Then the subsegmetit containinga’ (resp.b’) would havew(e,) <

w(e)/2. If e is not the entire bottom edge &%, then this contradicts the assumption that
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T is balanced because B) > 2w(e) > 4w(e),).

(Of course, an analogous statement is true:abntains a pair of),: in this case¢
must be the entire top edge of an candidate box.)

(i) We next show thatB must be ambiguous under the additional assumption that
the widthw(e) of e is minimum among all such choices ofi.e., the minimum-width
segment which contains a pair of irreducible convergen) p&ife now know that is
the entire bottom edge dB (Recall the assumption thatlies in the bottom edge of
candidate box3, and the paifa, b) is an irreducible upward convergent pair). We will
use Figure 3/1(iv) to illustrate the following argumentstélthat lies in the right half
of e anda lies in the left half ofe.

First, we show that all the corners 8fhave the same sign undér Wlog, assume
fy(B) >0andf((a+b)/2) < 0. Then we claim that all the corners must be positive.
Suppose the bottomright corner Bfis negative. Thet$ = f~!(0) must intersect

betweerb and the bottomright corner. We may choess thatc is closest td among
all the intersections. We have <, b <, c and(b,c) is a downward convergent pair
(since(a, b) is an upward convergent pair). LEt’, ¢’) be the minimal convergent pair
where(b, ¢) = (b, ") (note that(b”, ¢’) might beb andc themselves). By assumption,
(0", ") is irreducible. Sayd”, ") lies in a segment”. By part (i), we know that”

is the complete top edge of an candidate gk Let X', X” denote the connected
components of N B” with endpoint3”, ¢’ (resp.). By the irreducibility ofv”, ¢’), the
other endpoints of;’ and X! must lie in separate segments. Sihdees in the right
half of e andb <, V" <, ¢ <, c¢. This impliesw(e”) < w(e)/2. This contradicts our
choice ofw(e) to be minimal.

Thus we may assume that the bottomleft and bottomright ceroeB are both

positive. But the assumption that(B) > 0 implies that the topleft and topright corners

43



are also positive. Recall that the top edgédsak ¢’ and it is split into two subsegments.
Thus B is ambiguous iff the midpoint:(¢’) of ¢’ has negative sign. Note that <,
m(e/) <, V. Note that if there are any incursions of the curf/e'(0) into box B
betweern:’ and¥’, then we would have somé such that eithefa’, &) or (¢, ') forms
an upward convergent pair. This would contradict the mititpaf (a, b). But if there
are no incursions betweetandd’, then the sign ofn(¢’) would be negative (same as

f((a+b)/2)). This completes our proof. Q.E.D.

As corollary, if T has no ambiguous boxes, then there can be no convergent pairs

(Qu U Qd = @)
The following is the analogue of Lemma 6 for the Regularized Sigorithm:

LEMMA 11. LetT be a balanced quadtree in the Construction phasé: ¢bntains no
ambiguous boxes, then the graph:= CONSTRUCT/(T) is isotopic tof~1(0) N
R(T).

Proof. This proceed as in the proof of Lemma 6: we can repeatedlyceedach
minimal convergent pair (upward, downward, left or righy) tbansformingf, = f to
f1, fo,.... Let f be the final function when we cannot further reduce any mihjyaa.
According to Lemma 10, this means there are no more convepErs (otherwise,
there would be ambiguous boxes). This means the cﬁrvef_l(o) must intersect
each segment at most once. We conclude that= CONSTRUCTY(T) is isotopic
to S N R(T). Q.E.D.

Conclusion of the Correctness Proof. Proof. The curveS = f~1(0) intersects
OR(T3) cleanly and generically. The quadtrégis balanced and' is parametrizable
in each candidate box dfs5. When we invokeCONSTRUCT*(T3), T is further

transformed by splitting of ambiguous boxes and their r@h@hg. Let7), be the final
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quadtree. It is clear that the output@GONSTRUCT™ on T3 is the same as what the

original CON ST RUC'T would produce on input}:
CONSTRUCT™ (T3) = CONSTRUCT(Ty).

Clearly, S still intersects)R(T}) cleanly and generically.. By Lemmalll, the straight-
line graphG' = CONSTRUCT(T,) is isotopic tof ~'(0) N R(T'). This concludes our
proof. Q.E.D.

3.5 Rectangular Cxy Algorithm

HH 1] 1] 1]
H HH e \ [ | HA e
ERUE s - A 1 1
H [
%
I T
‘ ] ]
(b) PV (c) Snyder
1] [
= /
‘ H } T T } [
NGRS — |
HH =
L 1A
(a) Original Curve T —
(d) Balanced Cxy (e) Rectangular Cxy

Figure 3.5: Approximation off (X,Y) = X?Y? — X +Y — 1 = 0 inside the box
[(—2,—10), (10,2)] using PV, Snyder, Cxy, and Rect.

The recent meshing algorithms [9, 32, 44] all assume fuitssfsubdividing a box
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into four subboxes). We now introduce an Cxy algorithm that da half-splits. The
boxes are no longer squares, and hence the next algorithmoigrkas theRectan-
gular Cxy Algorithm . This algorithm is even more adaptive than the Balanced Cxy
Algorithm, and this can be illustrated with the cut¥€Y? — X +Y = 1 shown in Fig-
ure 3.5. The boxes with yellow color are discarded boxeslamtioxes with pink color
are candidate boxes. The curve has preferred directiorseihdrizontal and vertical
directions. Our algorithm can automatically produce negles that are elongated along
the corresponding directions to adapt to the curve — sea@@b(e). As a result, the
number of subdivisions can be drastically reduced as cozdparalgorithms based on
square boxes. The new algorithm differs from balanced Cxlgrieet major aspects:

First, we need an arbitrary but fixed parametealled theaspect ratio bound For
a box B, let a(B) := w,(B)/w,(B). Then itsaspect ratiois defined ap(B) :=
max {a(B), ﬁ} > 1. We require that all boxes in our quadtree satjsfys) < r.
This ensures the termination of our algorithm.

Second, we modify the Subdivision Phase as follows: For esmchox B in the
gueue, we must decide how to tag it, or how to to split and taghildren. This is
accomplished by a nesplitting procedure, which amounts to checking the following

three lists of conditions (in this order):

L() : C(](B), ny<B)
Low:  Co(Bi2), Co(Bsa), Co(Bira), Co(Bas) (3.3)
Liy : Ozy(Blz), Czy<BS4)7 O:Ey(Bl4)7 Ozy(B23)

We stop at the first verified condition. If a condition iR is verified, we tagB as an
candidate or discarded box, accordingly. If a conditiod.iy; or L, is verified, we do

a half-split of B to produce the child that satisfies that condition. Thatdchsltagged

46



as discarded (if af.,,, condition) or candidate (if afh;, condition). The other child is
pushed back into the queue. Finally, if no condition is vedfiwe do a full-split and
push the four children into the queue.

Actually, this splitting procedure must be slightly modifign order to respect the
aspect ratio bound (this amounts to avoid testing the filétahdhe conditions inL,,,
andL;, if a(B) < 2/r, and to avoid testing the second haltifB) > /2. Note that
there is considerable opportunity for sharing, and thugropation, when implementing
the arithmetic operations to check the 10 conditions of)(4.8

Third, we must track the “splitting depth” of a node in the dtrae by a pair of
natural numbers, called its-depth andy-depth. These count the number of vertical
and (respectively) horizontal splits from the root to theeginode. A full-split counts as
both a vertical as well as a horizontal split. We now say a Bag z-balancedif its top
and bottom neighbors hawvedepth at most away from ther-depth of B; similarly for
y-balancedwith respect to its right and left neighbors. The Balancingg$ehis easily
modified to only doing half-splits in order to achieve thedwmade condition for all boxes.
One strategy is to first achiewebalance for all candidate boxes, then to do the same
for y-balance. Finally, in the Construction Phase, we mo@i§yN ST RUCT " (T3) so
that ambiguity-based priority queue should distinguistwieen any-ambiguity (e.g.,
Figure| 3.3(a)-(c")) that must be resolved by a horizontdit,spr a z-ambiguity that

requires a vertical split.

3.6 Ensuring Geometric Accuracy

So far, we have focused on computing the correct isotopy. Wve consider the

process ofefinementwhose goal is geometric accuracy, i.e., to ensure an appesxi
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tion G that ise-close toS N By. The “small normal variation”; predicate is quite
strong, so that it is quite easy to use for refinement in the Igordhm (this is implicit
in [32, 31]). To see this explicitly, we claim that it sufficesensure that for any candi-
date boxB, if it has at least one arc af = (V, E), then its diameter is /4. Then
any neighborB’ of B has diameter at mos{/2. Thus, each are in B is isotopic to

a curve componenk of S N (B U B’). But the distance between any two points in

BUB'is < £4/(1/2)2 + (3/4)% < . With our C,, predicate, no such bound on ge-
ometric accuracy is possible because our curve could noapesarbitrarily far away
from our constructed approximation via undetected exounssi Below, we develop a
generalization of th€; predicate to capture geometric accuracy bounds for reatang

boxes.

916. Extending the Buffer Lemma of Plantinga & Vegter It is noted in Plantinga
& Vegter that if B is a square box, and; (B) holds, then any “incursion” of the curve
S along an edge oB cannot leaveB. Thus, B acts as a “buffer” area within which
any isotopic variation of the curvé must lie. Their result is still true i3 is “almost

square”, as captured by our next lemma:

LEMMA 12 (Buffer Property).Let (a,b) be a convergent pair relative to ba®. Wlog,
assumea, b) lies on the bottom edgeof B. Let X, and X,, (resp.) be the connected
components of N B with one endpoint at andb (resp.) If condition”, (B) holds and
a(B) > 1/2,thenX, = X,.

Proof. Figure 3.6 illustrates our proof. Léf be the upper halfcircle with diameter
e. Sincea(B) > 1/2, H must lie completely inside the rectange If X, # X, then
the componenk, must leave the interior of the halfcircké at some first poind’ € H;

similarly, X, must leave at some point € H. By the mean value theorem, there is
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Figure 3.6: Half-circle argument.

a pointp (resp.,q) on X, (resp.,X;) whose slope is equal to the slope of the segment
la,d’] (resp.,[b,V]). Let the endpoints of the edgebe u, w and pick any poinb € H
betweern:’ andd’. Clearly, the slope at is more than the slope ¢f, v], and the slope
atq is more negative than the slope[of w]. Thus, the angle between the normalg at
andgq must be greater than the angle between the two normals oégmeentsu, v] and
[v,w]. But the latter angle is exact0” (sinceH is a halfcircle). This contradicts the

fact thatC', (B) holds. Q.E.D.

We further loose the constraint dhfrom “almost square” to a rectangle with arbi-

trary aspect ratio( B). We also need to do some change on@heredicate.

917. GeneralizedC, Predicate We now generalize thé€', predicate of Plantinga &
Vegter so that it guarantees the same buffering effecaifgrrectangle, not just those
with aspect ratio< 2.

For any boxB, define the linear map

Ty :R? >R

whereT’s(z,y) := (z,y/a(B)). Note thatB’ = Tx(B) is a square. Alternatively, the
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inverse ofT'z is Ty ' (z,y) = (v, a(B)y). For any functionf : R? — R, define
fPiRP >R
wherefZ(p) = f(T5*(p)). Itis easy to see that

fP(Ts(p)) = f(T5'(Ts(p)) = f(p)

and hence®(B’) = f(B). Let C; denote the “generalized, predicate” which holds

at a boxB provided
Ci(B):0¢ (0f(B))* + O f(B).

We have the following:

LEmMA 13. Let (a,b) be an upward convergent pair of a segmentwheree is the
bottom edge of a boR. Let X, and X, (resp.) be the connected component§df(0)N
B with one endpoint at andb (resp.) If conditionCy(B) holds, thenX, = X, (i.e.,

X, Is a B-intrusion).

Proof. Note thatC;(B) meansC{(B’) holds whereg = f? (see the superscript
notation forCY(B’) in 913). Let Xr, () and X, be the connected component of
g~1(0) N B’ with one endpoint af’5(a) andTz(b) (resp.). From the previous lemma,
we know thatX 7, ) = X7, = X', andX" is completely included insidB’. Sincel’s
is a bijection that maps’ to B, we can conclude that = 7" (X') = T (X15(0)) =
TB‘l(XTB(b)) is completely included insid8, i.e., X, = Xj,. Q.E.D.
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918. Refinement based on the Generalized; Predicate We introduce the concept
of safety of segments. Intuitively, a segment safe if there can be no incursion or
excursion along.

Let 75 be a quadtree from the Subdivision Phase of our RectangulaAigeyithm.
For each (rectangular) baX in T3, we will classify some of its edges aafe relative

to B:
e If Cy(B) holds, then each of its edges is safe relativ&to

e If C,(B) holds, then its top and bottom edges are safe relative. t&imilarly,

C,(B) holds implies its right and left edges are safe.

More generally, a segmentis safe(not relative to any box) if there exist$ such
thats C s’ ands’ is safe relative to some ba¥'. It is easy to see that we can effectively
know whether a segmentis safe from the information derived in constructing thetre
T;. In particular, when we determine that a box satisfigg we actually know whether
it satisfiesC, or C, (or even both).

The safety of some (but not all) segments can be deduced kinfpat the presence
of vertices along the edges of a box. For instance, in Figut@3f), we have indicated
by thickening those edges that we know to be safe because piréisence of vertices.
Note that we do not have any thick edges for Case (a) even theedinow at least two

of them must be safe. We could, but need not, exploit sucmderttnotions of safety.

919. Exploiting Safe Segments for Refinement

LEMMA 14. Lets be a safe segment.
(i) Then the curves = f~1(0) intersectss at most once, i.e|S N s| < 1.

(i) |S Ns| = 1iff f have different signs at the endpointssof
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Proof. (i) If s is safe, thers C s’ wheres’ is safe relative to some bad®'. If Cy(B’)
holds, then clearlyS N s| = 0. If C,,(B’) holds such thab' is parametrizable in the
direction perpendicular te, then clearly.S N s| < 1.

(i) If f has different signs at the endpointsepthen|S Ne| is odd. By part (i)|SNe| =

1. Conversely, iff have the same sign at the endpoints,dhen|S Ne| is even. By part

OF

Sne|=0. Q.E.D.

Let s be a segment. We say thais soft if it is not safe. Suppos® is a terminal box
(i.e., satisfieg’,,, but notC;) with at least one soft edge. Then the distance from this soft
edge to the opposite edge is called sodt distanceof B. Note that this soft distance
is uniquely defined. B has no soft edge, then the soft distanceé s/ definition. If
the soft distance ig, then any incursion int@ can be removed by modifying the curve
within a Hausdorff distance af.

There are three kinds of curve componéht= B N S in box B as illustrated in
Figure 2.2: incursion, cut or corner components. We comdidands on the dimension
of B in order that our straightline approximationstds within Hausdorff distance/2

from C.

(a) Suppose” is an incursion, i.e., both endpoints ©flie on one edge of3. If B
has soft distance at most2, then as noted,' can be removed by perturbing the

curve by a Hausdorff distance of2.

(b) Suppose&’ is a cut component, i.e., the endpointgofie on opposite edges a@.
If sis aedge ofB containing an endpoint a@f', then we want the length afto be
at moste. This ensures that our linear approximation is within Haudlistance

/2 from an actual curve component within

(c) Suppos€” is a corner component, i.e., the endpoint€’die on adjacent edges of
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B. In this case, we want each edge/®to have length at mosy2</3. Again it
ensures that our straightline approximation is within Hbuw# distance:=/2 from

an actual curve component withi.

We now sketch how to incorporaterefinement into the Rectangular Cxy Algorithm.
The idea is to ensure that each terminal box has dimensiangled as in (a)-(c) above.

It is easiest to assume that the original subdivision phasebleen carried out (so all
boxes are known to satisty, or C,,). We make another pass through the list of can-
didate boxes.Recall that such a bBxs monochromaticif the function f has uniform
signs (either all positive or all negative) at the cornersttma boundary of3; other-
wise it is bichromatic. Note that the approximate curve passes through iff B is

bichromatic. We keep if the following conditions (a’)-(c’) hold:

(@) If B is passive and has at least one soft edge, then we check ¢hgetieralized
predicateC;(B) hold. Under this condition, any undetected entry of the eurv
into B must represent an incursion. We require the soft distande twf be at

moste /2.

(b’) If B is bichromatic and has sign changes on two opposite edgasw require

the lengths of these edges to be at mgat

(c) If B is bichromatic and has sign changes on two adjacent edgeswé require

the lengths of all edges to be at ma&2s/3.

If any of the above conditions fail, we spht and put any child that fails th&, predicate
back into the queue. This completes our description of thdifiea subdivision phase.
Other phases are unchanged. The correctness follows &asilyour discussion.

The above refinement method can also be adapted for the Bdl@xgealgorithm.

If we only have square boxes, it amounts to ensuring that paskive boxB with at
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least one soft edge also has width at mo& and satisfie€’;, and each bichromatic

box B has width at most/2¢/3.

3.7 Summary of Experimental Results

We report on our experimental results. Our code is developédva on the Eclipse
Platform (SDK Version 3.3.0). The hardware is Dell Laptopdimon 6400, with Intel
Core2 Duo Mobile Processor T2500 (2.0Ghz, 667FSB, 2MB sha&€ache) and
2.0Gb of RAM. We use the defaultava heap memory 256MB (some runs result
in OutOfMemoryError (OME)). Note that this implementati® based on machine
arithmetic. But since all arithmetic operations use onlygroperations and divide
by 2, there are no round-off errors except for under/overflowsir €&amples below
do not reach such limits (except for examples in part (7) o gection, where we
useCor e Li brary based implementation to avoid under/overflows for high eegr
curves). The code has been translated @te for distribution with our open source
Core Library. We implemented five algorithms: PV, Snyder, Balanced Cxy, Bal-
anced Cxy with epsilon precision, and Rectangular Cxy. For &ryalgorithm, the
boundary root isolation is carried out using the analogue, namely the EVAL algo-
rithm (see [11, 27, 10]). For brevity, the Balanced Cxy Algamitand Rectangular Cxy
Algorithm will be known asCxy andRect, respectively.

We have not yet implemented two concepts discussed in tegsthBoundary pro-
cessing for arbitrary input geometi(7;) (Section 3) and exploiting safe segments for
geometric accuracy (Section 8). As stated in our introdugtmost of our experiments
are concerned computing the correct isotopy, ignoring ggooaccuracy. But we could

easily and cheaply improve geometric accuracy in our apgraton graphs by using
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interpolation: instead of choosing vertices at midpoirftsegments, we choose some
linearly interpolated point.

We now summarize our main conclusions, based on comparefgaoirithms: Cxy,
Rect, PV and Snyder. We also briefly compare to EXACUS from the-Mlanck Insti-
tute of Computer Science.

(1) Cxy can be significantly faster than PV and Snyé#égure 3.7 is gotten by run-
ning these algorithms on the curyéX, V) = X?(1—X)(1+X)—-Y?2+0.01 = 0 inside
box|[(—1.5,—1.5),(1.5,1.5)]. This example is from [32]. Cxy is twice as fast as PV and
Snyder, and Rect is the fastest: the PV produ®&sboxes in31 milliseconds; Snyder
produced 12 boxes in37 milliseconds; Cxy producelsl 2 boxes in16 milliseconds; and

Rect produces6 boxes in15 milliseconds.

(e e [ R (R e
CEEEE ] NS e
(b) Snyder () PV
(o e ="
CEEE ] HEEEEES
(a) Original Curve e
(d) Balanced Cxy (e) Rectangular Cxy

Figure 3.7: Domain Subdivision Approaches to approxinatime curvef(X,Y) =
X?(1 - X)(1+ X)—Y?+0.01 = 0: comparison of four algorithms.

(2) When we add refinement, the improvement is miniMé.currently use a sim-

plistic approach based on tlig predicate. We believe this part can be sped up, for
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Table 3.1: Rect- Cxy > PV

| #Boxes/Time(ms)| s =15 | s =60 | s=100 |
PV 5686/157| OME OME
Cxy 2878/125| 45790/2750, OME
Rect 288/31 4470/609 13042/4266

Table 3.2: Rect can exploit larger aspect ratio

| #Boxes/Time(ms)| s =15 [ s =60 | s=100 |

r =10 150/16 | 2242/265| 6540/1109
r =20 82/15 | 1134/109| 3282/406
r =40 48/15 | 574/62 1656/172
r = 80 32/0 296/32 842/78

example, by implementing the method from Section 8. The edficurve, with preci-
sione = 0.005, is shown in Figure 3.7(a). PV producgs)9 boxes in219 ms, while
Cxy produces$497 boxes in204 ms.

(3) Rect can be significantly faster than Cxi.g., Let the aspect ratio bound be
r = 5. Running the algorithms on the curyéX,Y) = X(XY — 1) = 0 in the box
B, = [(—s,—9), (s, s)] (Figurel 3.8(b), (c), (d) and (e) show the cases when 4.
Snyder will not terminate when the curve intersects the sdifethe boxes tangen-
tially, so we get Figure 3.8(c) by shifting the initial box i&lé bit). We get Table
3.1 (OME=0OutOfMemoryError):

(4) Increasing the aspect ratio bounds can speed up the perfocenaf RectUsing
the same curve and box as (3), we now look at the performan&ecafangular Cxy
with variable aspect ratio boundsof= 10, 20, 40, 80. Figure 3.9 shows the case when
r = 15. Table3.2 shows a proportional speedup (tim® means time: 1 ms):

(5) Sometimes Snyder is faster than Balanced Gif. now show an example in
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\
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(d) Balanced Cxy (e) Rectangular Cxy

Figure 3.8: Approximation off(X,Y) = X(XY — 1) = 0 inside the box
[(—4,—4),(4,4)]. Figs. (b),(d),(e) is from PV, Cxy, and Rect. Fig. (c) is fromySn
der (inside the bok(—3.9, —3.9), (4.1,4.1)]).

which Cxy is slower than Snyder; in turn, Snyder is slower tRact. When we want
to ensure geometric closeness, it is clear that our new apprs considerably faster
because Snyder is not forced to subdivide the terminal boréktheir diameters are
< e. In Table3.3, we compare PV, Cxy, Rect (with maximum aspect ratie 257) and
Snyder on the curvé(X,Y) = X2+ aY? — 1 = 0 inthe box[(—1.4, —1.4),(1.5,1.5)]
wherea = 10" forn = 4, ..., 7 (Figure 3.10 shows the cases wheg- 2).

The curve here is a thin and long oval. so the size of the setdltex would be very
small. Both Cxy and PV need to do balancing and produce morestibaa Snyder, so
they are more time consuming (note that Cxy is significantly5( times) faster than
PV whenn = 7). Rect produces even fewer boxes than Snyder, and Snydes teeed

root isolation; so it is not surprising that Rect is much fagtean Snyder.

57



Table 3.3: Rect- Snyder> Cxy > PV

| #Boxes/Time(ms) n=4 | n=5 | n=6 | n=7 \
PV 1825/62| 6415/234| 20806/1219| 65926/9219
Snyder 25/16 | 31/16 34/31 40/31
Cxy 175/15 | 769/218 | 694/172 754/172
Rect 17/0 14/0 25/0 29/0

Table 3.4: Rect- Cxy > Snyder> PV

| #Boxes/Time(ms) n=—-1|n=0 |[n=1 |
PV 73/0 | 4417/516] OME
Snyder 10/15 | 1306/125| OME
Cxy 13/0 | 1510/62 | OME
Rect 6/0 13/0 255/31

(6) In general, Cxy and Rect have better performance than Snyderan Snyder
on the curvef(X,Y) = X(XY — 1) = 0. Since Snyder will not terminate when
the curve intersects the edges of the boxes tangentiallyjcamaot run this example
on the boxB; := [(—s,—s),(s,s)]. Instead, we chose the initial box to g, :=
[(—14 x 10", —14 x 10™), (=15 x 10", —15 x 10™)], wheren = (—1,0,1). Figure 3.8
(c) shows the case whéby, := [(—3.9,—3.9), (4.1,4.1)]. We also tested PV, Cxy, and
Rect (with maximum aspect ratio= 257) in these examples. The results are shown in
Table3.4.

(7) Cxy can work with high degree curves and sometimes improve o€HBEA he
EXACUS system has a nice web interface accessible from
http://exacus. npi -i nf. npg. de/ cgi - bi n/ xal ci . cgi . EXACUS is based
on strong algebraic methods and can handle singularitigse féllowing examples
show that our algorithm could be much faster than EXACUS. kheoito avoid un-

der/overflows, we use theé++ code in theCor e Li br ar y which supports exact geo-
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metric computation. The hardware is Apple MacBook Pro, wittell Core2 Duo CPU
2.40 Ghz and 4.0Gb of RAM.

e Approximating the curvef(X,Y) = X190 4+ Y100 1 = (in the boxB, :=
[(—2,—2),(2,2)]: Cxy takes701 milliseconds while EXACUS is timed out.

e Approximating the curveyf(X,Y) = (X? + Y?)* —4X?Y? — (.01 = 0 inside
the boxB, := [(—1,—1), (1,1)]. EXACUS is timed out wherk > 7. Cxy takes
1.589 seconds whemt = 7; 2.312 seconds whei = 8; 2.334 seconds when

k = 9; and3.439 minutes wherk = 10.

(8) Two more examplesMVe had already seen Figure 3.5 for the cuf¥&,Y) =
X?Y?—-X+Y —1 = Oinside the boX(—2, —10), (10, 2)]. PV produceg11 boxes in16
milliseconds, Snyder producé89 boxes in31 milliseconds, Cxy produceks1 boxes
in 15 milliseconds, and Rect producgsboxes in< 1 millisecond. Another example in
Figure 3.11 shows the approximation &fX,Y) = Y2 — X2 + X? + 0.02 = 0 inside
the box[(—1.5,—1.5),(1.5,1.5)]. PV produced 54 boxes in15 milliseconds, Snyder
produced 06 boxes in31 milliseconds, Cxy producel)6 boxes in15 milliseconds, and

Rect produce&4 boxes in15 milliseconds.
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(a) r=10 (b) r=20

(c) r=40 (d) r=80

Figure 3.9: Approximation off(X,Y) = X(XY — 1) = 0 inside the box
[(—15,—15), (15, 15)] using Rect with maximum aspect ratioslof, 20, 40, and80
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(a) Original Curve

(b) PV

(c) Snyder

(d) Balanced Cxy

(e) Rectangular Cxy

Figure 3.10: Approximation off(X,Y) = X? + 100Y? — 1 = 0 in the box

[(—1.4,—-1.4),(1.5,1.5)] using PV, Snyder, Cxy, and Rect.

61



=

JASEEEN
T THTT
TTHHRHTT
A T
(]
HAH |

A=

Q (b) PV (c) Snyder

(a) Original Curve |
O TTTT N T T
INED AN s |
S P
| I -
(d) Balanced Cxy (e) Rectangular Cxy

Figure 3.11: Approximation of (X,Y) = Y? — X2 + X3 + (.02 = 0 inside the box
[(—1.5,—1.5),(1.5,1.5)] using PV, Snyder, Cxy, and Rect.
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Chapter 4

|sotopic Meshing of Surfaces

In this chapter, we will extend owrD meshing algorithm t&D (i.e., meshing of
surfaces). This extension is by no means routine, as theaogss arguments and
case analysis are more subtle. Also, a new phenomenon angeich local rules for
constructing surfaces are no longer sufficient. We will dégcthree subdivision algo-
rithms for surfaces. They will be known as the Regularized CBaanced Cxyz and
Rectangular Cxyz Algorithms.

For our3 D meshing algorithm, we inherit the terminology and notatiased in the
2D algorithm, with some generalization and extension. In esecukssions, we fix a real

surface

S:=fH0) = {p cR?: f(p) = 0}, (4.1)

which is specified by a PV functiorf(X,Y, Z) : R? — R.

By OF we mean the set of all closed intervals with endpoint&.inA 3D box is
givenbyB = I, x I, x I, C R* wherel; € OF (i € {x,y,z}). For a boxB, its
midpoint ism(B) = (m({l,),m({,),m(l,)), and it will have three widths, called

widths: w;(B) = w(l;) for i € {x,y,z}. The width and diameter aB are (resp.)
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w(B) = min{w,(B),w,(B),w,(B)} andd(B) := max{w,(B),w,(B),w,(B)}.
The0-, 1- and2-dimensional features of a box are calleddtsners, edges andfaces

So there ar& corners,12 edges and faces in all. We call the faces that are perpen-
dicular to thei-direction ¢ € {z, vy, z}) thei-faces Thus there are twofaces for each

i. We will name these faces as follows: Thdace with the smaller-coordinate is
called theleft face; the other is called theght face. Likewise,y-face with the smaller
y-coordinate is called thbottom face and the other is thop face The z-face with
the smallerz-coordinate is thdront face and the other is thback face Figure 4.1

illustrates this terminology.

z o
faces of a cube

Figure 4.1: Convention and terminology for the faces of a box.

By making an nice perturbation g¢f, we may assume that every corngnas only
positive or negative sign. AD box is monochromatic if the sign at all of its8 cor-
ners are the same. Otherwise, itishromatic. A full-split of B is the operation of
subdividing B into eight equal sub-boxes;cuarter-split subdividesB into four equal
sub-boxes; and half-split subdividesB into two equal sub-boxes. There are three
kinds of quarter-splitsz-y split (split B by two planes which are perpendicularito
andy directions),y-z split andz-z split; and three kinds of half-splits: split (split B
by a planes which perpendicular todirection),y split, andz split. We use the cor-

ner/edge/face terminology for boxes, but reserve the xfne/triangle terminology for
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the triangulated surfad@ that we shortly introduce to approximate the surféce

By anoctreewe mean a rooted tréE where each node is associated with a box
B,, and each non-leaf has2, 4 or 8 children. Moreover, these children are associated
with the set of boxes arising from a half-, quarter- or fydlisof B,,. Similar to our2D
Algorithm, Each leaf of our octrees is labeled as “on” or “off he union of all these
on-boxes is denotef(7"): thenice region represented byl’, or theregion of interest
(or ROI).

Given an octred’, we canextendit by taking any on-box and performing a half-,
quarter- or full-split. The newly created children Bfwill remain on-boxes, thus the
ROl is preserved by such extensions. Our algorithms amoupeated extensions of
T.

Similar to the Cxy Algorithm, we also need to discuss the bempd R(7") of R(T').

A box B in T is called aboundary box if some face ofB is contained in0R(7T);
such faces are calldzbundary faces To avoid extensive discussion of how to process
the boundary of the ROI to ensure correctness of our algostfsuch as in [9]), we
will make two strong requirements about héWwntersect the boundary d@t(7"): (1) S

intersects the boundary of R(T") generically, which means:

e For each boundary fack, the surfaces intersectst’ transversally, and does not

pass through any corner éf.

e The setSNF is afinite collection of a finite set of closed loops and/orroperves.
By an open curve, we mean one that has two distinct endpoihis.Iobps lie in

the interior of ', and the open curves terminate transversally on the edgés of

(2) SN R(T) is compact, and any end point 81 R(T') lies on the boundarg R (7).

The correctness statement of our algorithm will depend @assumption. From now
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on, we assume the above two requirements always hold.

920. Generic Subdivision Algorithm We review a generic framework of subdivision
algorithms for computing an isotopic approximation to aegisurfaces = f~(0). The

following is taken from our Cxy Algorithm using the octree aton:

GENERIC SUBDIVISION ALGORITHM
Input:  SurfaceS = f~1(0), a nice region represented by an octfgg ands > 0
Output: Triangulated Surfac& = (V, E, T') representing an isotopiapproximatior
of SN R(T)

Phase 1.7, < SUBDIVIDE(T;,)

Phase 2.Ty; « REFINE(Tyy)

Phase 3.G « CONSTRUCT (T,c)

Let us briefly review the subdivision phase: the idea is tqpkaabdividing boxes
until they satisfy certain predicates. Similar to the algorithms, we need two box
predicates, aexclusion predicateC,,,(B) and aninclusion predicate C;,,(B). If a
box satisfies”,,;, it is discarded, and if it satisfigs;,, it is put into the output queue.
Otherwise, it is split and its children are placed back ifte input queue. Thé',,,

predicate is universal:

Co(B): 0 ¢0f(B) (4.2)

Snyder’s inclusion predicate is given by

Cope(B) : Co(B) V Cy(B) v Ci(B) (4.3)

Note that if C;(B) holds thenf would bei-monotone inB (but the converse need

not hold). A surfaces is said to beparametrizable in the = and y directions (or xy-
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parametrizable for short) within a baxif for each pair(x, y), the equatiorf (z, y, z) =

0 has at most one solutionin the boxB. Clearly, if f is z-monotone inB, then the
surfacesS is xy-parametrizable ilB. We also sayB is monotonein the z-direction.
Similar definition holds for the D faces ofB (i.e., the four faces parallel to theaxis
is said to banonotonein the z-direction). The Plantinga & Vegter (or PV) algorithm

usesC (B) as the inclusion predicate:

Ci(B): 0 ¢ 0f:(B))* + 0f,(B))* + OF(B))* (4.4)

4.1 Regularized Cxyz Algorithm

Our basic goal is to replace tldg predicate in the PV Algorithm by the parametriz-
ability condition of Snyder. As in Cxy Algorithm, we first cadsr a simplified version
in which we reduce all adjacent candidate boxes to the samih.d&Ve start with an
octreeT (representing a regioR(7)) and a non-singular surface = f~1(0), where
f: R* — R. We full-split the inconclusive boxes until for each leafxbB we have

Co(B) or Cyy.(B). Here is the summary of oltegularized Cxyz Algorithm

Regularized Cxyz Algorithm:

Input:  OctreeT; and surfaces = f~1(0)
Output: Isotopic approximatiods for S N R(Tp)
1. T\« SUBDIVIDEg,, (Tp)

2. Ty — REGULARIZE(T})

3. G« CONSTRUCT(T»)

This algorithm follows our generic subdivision framewohk the subdivision phase,

we keep subdividing a box until it satisfi€s,, = C, or C;,, = C,,.. Recall that
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candidate boxes are those who do not sat(Sfy, but satisfie”;,, in the hereditary
sense. For a boundary bdxto be candidate, we further require that its boundary faces
satisfy the correspondingD predicate: more precisely, if is a boundanyi-face, then

it must satisfyC;;, where{i, j, k} = {z,y, z}. So at the end of the subdivision phase,
every on-box is either discarded or candidate. In the regel@hase, we subdivide any
candidate box that shares a face with a candidate box ofesmvaltith. The children of
the subdivision will satisfy (by hereditary) ti,,. predicate, but we must test if they
areCy. This algorithm is analogous to the Regularized Cxy Algoriitimm2 D) and the
Regularized Plantinga & Vegter Algorithm (B1D). We next describe the construction

phase.

921. Sign Types on Box Corners There are 14 cases of the signsfadt the corners
of a box B (Figure 4.2, up to rotation, mirroring and change of sigmisTlist is taken
from Plantinga & Vegter's paper [32], but we will use a carahityping schemeSign
type nz (Wheren = 0, 1,2, 3,4 andx = a, b, ¢, etc) refers to the sign configuration with
exactlyn positive corners, and is some additional identifier (if necessary) to uniquely

identify the configuration.

Figure 4.2: 14 Sign Types gf at the corners of a box.
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Of the 14 cases in Figure 4.2, only 9 cases can arise undél, theedicate. The ex-
cluded 5 cases are indicated by a superscript of asterisksirfypes2c, *3c, t4d, *4e
and*4f. Itis easy to check that th€,,. predicate excludes four of these five cases. The
exception is Type4d. We use a plus superscript instead of asterisk to indicage To
summarize, there are a total of 10 sign possibilities urtue€’t, . predicate —as shown

in Figure 4.3.

922. Arc Types on Box Faces From the signs types at box corners, we can introduce
verticesin the middle of those edges whose two end points have ogpsigihs. Each
face of a box can havg 2 or 4 vertices. Within the face, we now connect these vertices
by line segmen@awhich we callarcs. Note that these vertices and arcs form the graph
G(V, E), whereV is the set of vertices andl' is the set of arcs (we do not call them
“edges” because that is reserved for our box terminologyje arcs are uniquely de-
termined except in the case divertices. We call a face with vertices aralternating
face(colored pink) since adjacent corners of such a face mustate in signs. On an
alternating face, we have two distinct ways to introduceiagdarcs. In2D, alternating
faces are excluded by tlte,, predicate. Ir8D, alternating faces can arise even when a
box satisfies th€’,,. predicate (e.g., see the right face of Figure 4.3(2b)).

The two possible arc types on alternating faces represenbiaec (or ambiguity).
This phenomenon was first observed in the Plantinga & Vegteep But in the presence
of the strongerC; predicate, they proved that every choice leads to a coriebial
surface. For our weake¥,,. predicate, the ambiguity can become an issue — making
the wrong choice of arc types can lead to the wrong surface.

By introducing arcs to connect pairs of vertices on each faeedjetermine tharc

1 Calling them "arcs” is appropriate because in the genesa oae may need to introduce non-straight
curves — this will arise when we discuss the balanced algarit
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type for each box. For instance, the Type 2b in Figure 4.2 givestagwo arc types
which we denote as Type 2b(i) and Type 2b(ii) in Figure 4.3llnthe 10 possibl€’,,, .

sign types give rise to 13 arc types as seen in Figure 4.3.

Type 4a

Figure 4.3: The 10 possibl€,,. sign types give rise to 18’,,. arc (hence surface)
types.

923. Surface Types in Box Interiors After connecting vertices with arcs, we need
to construct a triangulated surface in the interior of eack $o that the boundary of
the surface agrees with the arc type on the faces. Fortyn#ted presents no further
choices, so the 13 arc types gives rise taslifface types(colored yellow) as enumer-
ated in Figure 4.3.

A remark about our labeling for these surface types: it refithe typing scheme
from Figure 4.2 by adding (if necessary) subtype indicatiofi(i)” or “(ii)”. Moreover,

we can always use subtype “(i)” to indicate that the surfadbé box has one connected
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component, and “(ii)” to indicate two connected components

924. Global Analysis of Construction Rules By “construction rules” we refer to the
totality of all rules for vertex insertion, arc connectiamdssurface construction. Naively,
we can apply these rules to each box without consideratitvwfthe rules are applied
to the other boxes. This naive rule turns out to be sufficierthe2D Cxy Algorithm
and also th& D Algorithm of Plantinga & Vegter. We now show that in our Regidad

Cxyz Algorithm, this is not enough: the counter example igiby Figure 4.4.

Figure 4.4: Wrong choice of arc types can lead to an impossieection.

In Figure 4.4(a), the two boxes satisfy,, but the triangulated surface determined
by the indicated arc connections will violate the condition. On the other hand, the
triangulated surface determined by the arc connectionsr&ig.4(b) satisfie§’,, and
Figure 4.4(a) is topologically different from Figure 4.%(bn this example, we might
be able to locally ensure that these two boxes are connettetbtal consistency man-
ner. But the next example in Figure 4.5 shows that local ctersiy (i.e., consistency
between adjacent pairs of boxes) is not enough because piémomenon of “blocks”.
In Figure 4.5, we have a block of three boxes in which the gudated surfaces in the
first and second boxes are consistent, and the surfacessed¢bad and third boxes are
also consistent. But the surface in the union of three boxes dot have the correct

topology because it does not respectth@onotonicity off.
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Figure 4.5: Local consistency does not imply the global =stescy.

We now introduce the notion of blocks. Two boxesalternating neighborsif they
share an alternating face. Note that in a Exf an z-face is alternating, then ng or
z-face can be alternating becaus&gf.. A maximal set of boxes that are connected by
this alternative neighbor relation is called alternating block. In particular, if a box
has no alternating face, it forms its own alternating bldbfk. call it atrivial alternating
block (otherwise nontrivial alternating block ). If all the alternating faces of boxes in
an alternating block are normal to thelirection ¢ = z, y, z), then we call it ani-block.
Note thatf is i-monotone in thé-block. We say theé-block ismonotonein i-direction.

Let B be an alternating block, we define the boundarfgo®(UB) = 0(UpepB).
LEMMA 15. Each alternating block is aitblock for someé = z, y, or z.

So in a regularized subdivision case, thelock is just a linear sequence of boxes
stacked along thedirection.
For each alternating face, we will provide global rule fonnecting them: the re-

sulting arcs are parallel to one of the three vectors:

(1,1,0),(1,0,1),(0,1,1),

depending on the orientation of the face. E.g., if an altémgdace is perpendicular to

x axis, we will connect its four vertices with line segmentsttare parallel to the vector
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(0,1,1), as in Type 2b(ii) of Figure 4!3. We refer to this rule for cewting vertices the
Alternating Faces Ruleor AF Rule for short. We will show that this choice ensures
global consistency and preserves isotopy.

We write “2b(x)” to refer to either 2b(i) or 2b(ii). Note thhbxes of Types 2b(x) and
3b(x) in Figure 4.3 have only one alternating face; the batdgpe 4d(x) in Figure 4.3
has two alternating faces that are parallel to each othersi@enhow these types can
be combined in an alternating block: clearly, the block nbegjin and end with Types
2b(x) or 3b(x), and the non-end boxes must be Types 4d(x).

Thus each nontrivial alternating block has one of theseetpedterns:

(2b, 4d+, 2b), (2, 4d*,3b), (3, Adx, 3b)

where4dx means a sequence of zero or more Type 4d(x) boxes.

We call ‘(x)’ the subtype of Type 2b(x). Similarly for Type 4(x) and Type 3(x). So
far, we have not concern ourselves with the subtype of owksloLocally, the way for
connecting case 4d (Figure 4.3 Type 4d(i) and Type 4d(iil)rwit effect the topological
structure. Different ways of connection result in the mgwvai critical point (e.g., from
minimum point to saddle point, or from saddle point to maximpoint, as shown in the
circled boxes in Figure 4.6). The next lemma shows that ghigucial for blockwise

consistency.

LEMMA 16. In any alternating block, there can have at most one Boxhose subtype
is (i). Thus the surface type &fis Type 2b(i), Type 3b(i) or Type 4d(i); all the remaining
boxes must have Type 2b(ii), Type 3b(ii) or 4d(ii).

Proof. If we project ani-block to a plane normal tg, we obtain a square. The

projection of the surface in thisblock will be a connected region as illustrated in Fig-
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2b(ii)-4d(ii) 2b(ii)44d(i)-3b(ii) -4d(ii)-3b(ii)

Figure 4.6: Different ways of connection result in the mayvof critical point.

ure/4.8. The surface represented in Type 2b(i), Type 3b(ilype 4d(i) has only one
connected component inside the box. So the projection oftiaces represented by
Type 2b(i), Type 3b(i) and Type 4d(i) must pass thought thaereof s (as shown in
Figure/ 4.7 Proj 2b(i), Proj 3b(i) and Proj 4d(i)). If thereeawo boxes of Type 2b(i),
Type 3b(i) or Type 4d(i), the projection of the surface mustpthrough the center of
more than once, contradicting to the fact that #adternating block must be monotone
in ¢-direction.

Q.E.D.

We compare the triangulated surfaces within the combinatib(2b, 4d,2b) (as
shown in Figure 4/8 Type 2b (ii)-4d (ii)-2b (i) and Type 2b)id (i)-2b (ii)). The

different ways of connecting the vertices of Type 4d boxesl l® the same topological
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Proj 2b(i) Proj 3b(i) Proj 4d(i)

Figure 4.7: Examples of projections @blocks (2b(i), 3b(i), 4d(i)).

structure, as long as Lemma 16 is satisfied.

Case 4d (ii) can be viewed as a transitional case, which waatldffect the block-
wise topology. For example, we compare the combinatiori8iofid, 2b) with (20, 2b).
One possible mesh is shown in Figure 4.8 (2b (ii)-4d (ii)-Bb &nd (2b (ii)-2b (i)).
The topology for both meshes are the same. If we connectallype 4d boxes with
arc Type 4d (ii), then we only need to consider the three bamiebinations:(2b, 2b),
(2b, 3b) and(3b, 3b) (as shown in Figure 4.8).

For an alternating face, we have two ways to connect thecesrtin the edges pair-
wise. Both possibilities are shown in Figure 4.8. We claint tiwth choices lead to the
same isotopic approximation. E.g., Figure/4.8 Type 2b2fi)i) and Type 2b (i)-2b (ii)
are meshes constructed by two different connecting mettausthey are isotopic to

each other. By applying the AF rule, we have the following lesmm

LEMMA 17. The reconstructed surfac& in a y-block B is the graph of a function
whose domain is the projection of the block onto:theplane. The possible projections
of S” onto thez z-plane are shown in Figure 4.82b-2b (p), 2b-3b (p) and 3b-3bTphus,

S’ N B is a topological disc.

Proof. Since5 is monotone iny direction, the projection af’ to thexz plane (e.g.,

Figure/ 4.82b-2b (p)) has a tubular neighborhood of fiberd, each fiber intersects’
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Figure 4.8: The two different triangulations for each of theee alternating block com-
binations.

in exactly one poirgt So different connecting methods lead to the isotopic sedaWe
could choose either of them, as long as the triangulationalfahe boxes fit together.
From the case analysis above, the possible projectio§$ @fto thexz-plane are Fig-

ure(4.82b-2b (p), 2b-3b (p) and 3b-3b (p). Sao" B is a topological disc. Q.E.D.

2For the surface component ¢ which are parallel to thg direction, we view it in the way that it
has been infinitesimally slanted, such that each verticat filiersectS’ in exactly one point.
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4.2 Correctness of Regularized Cxyz Algorithm

We address the correctness of the Regularized Cxyz Algoriiiina.proof is subtle,
and harder than theD Regularized Cxy Algorithm or th8 D Regularized PV Algo-
rithm. Our previouD proof for Cxy does not seem easy to generaliz8 /gy so we
use a different approach. This proof will form the basis fayying the correctness of
the Balanced Cxyz Algorithm in the next section.

First, we will prove the termination of the subdivision paas

LEMMA 18. If S = f~1(0) intersects the boundary @t(7;) generically, and iff has

no singularities ink(7y), then the subdivision phase will terminate.

Proof.If the subdivision phase does not terminate, then thereiisfienite decreasing

sequence of boxeB, D B; D - -- such that each/y(B;) andC,,.(B;) fail. Thus:
0 € (Of(Bi) NOfa(Bi) NOfy(B;) NOJ(Bi)). (4.5)

The boxesB; must converé%to some poinp € R(Tp) asi — oo. Sincelf is a box
function for f, we conclude that f(B;) — f(p). Then|[(4.5) implie) = f(p) =
f=(p) = fy(p) = f.(p). Thus,f has a singular point if(71;). Q.E.D.

Note that it is possible fof;(p) = 0 (i = x,y, z) wherep lies on the boundary of
a box. Figure 4.9 shows&D example wherg, = 0 on the edge of the boxds, and
By. In this example) € 0f,(B;) and0 € 0 f,(B2), butC,(B;) andC,(B3) might still
hold.

From now on, letl" be the octree at the termination of the Regularized Cxyz Al-

gorithm, andG be the graph constructed by our rules frdm We want to ensure

3 The existence g depends only on the existence of a bourah the maximum aspect ratio — so this
proof applies in the more general setting of Rectangulaz@}gorithm later.
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Figure 4.9:2D example wherg, = 0 on the edge of the box.

that G ~ S (mod R(T)). The outline of our proof is: we first transfor$ so an-
other surfaceS which has some nice properties (e.§.~ S (mod R(T))); then we
show thatG ~ S within each alternating block df’; finally, we can conclude that

G~ S~ S (modR(T))

925. Intuition To understand the proof, it is helpful to be aware of potémgues:
(1) We might gain components: See Figure 4.10 which showsatitamponent” of

S N R(T) might appear as two components @f Note that the figure shows &D
illustration, but one must imagine a thieddimension. This example will not work
in 2D if we assume that candidate boxes satiSfy because the middle square is not
monotone in ther or y-directions. But it could arise i8D, where the middle square
might be monotone in the-direction.

(2) We might lose a component: consider the isotdpat the top of Figure 4.10(b)
that transforms a componefitto a component” lying inside a single box. This com-
ponentC” is “lost” when we reconstruet. One problem with the isotopd is it changes
the sign of the functiorf at the red cornep. One way to prevent this from happening
is to require our isotopies to preserve the sigrf at vertices. In our previous proof for
Cxy Algorithm, we require that the transformed functibrmust remain monotone in
at least one direction in each candidate E&xThis would disallow the isotopy’ (no

loop can arise in a box in whicfiis monotone in at least one direction). This approach
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Figure 4.10: (a) One component is detected as two, (b) Twopsotransformations.

seems hard to extend 8@, so we introduce the notation of “surface monotonicity” in

the next paragraph.

€26. Monotone Surfaces Let.S C R? be a continuous surfac®& C R? be a rectan-
gular box and € {z,y, z}. Ani-line is a straight line that is parallel to theaxis.

We says is i-graph-like in B if |[S N BN L| < 1 for everyi-line L. We sayS is
i-monotonein B if it is i-graph-like and we can assign a plus or negative sign to each
connected component &f \ S so that adjacent components have different signs and for
eachi-line L that is directed in the increasirigdirection, the linel. never pass from a
negative region to a positive region. 2 case, we can similarly definemonotone
on the facest' of B. 2D examples of graph-like and monotone cases are shown in
Figure 4.11. Note that may keep the same sign as it passes thraligh, or it may
change from a positive to a negative region.

Here is an alternative characterization-@honotone:

LEMMA 19. LetB = I, x I, x I,. Thenf is z-monotone inB iff there is a continuous

functiong : I, x1, — I, suchthatthe graphr(¢) = {(z, vy, é(x,y)) : (z,y) € I, X 1}
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(@) (b)

Figure 4.11: (a5 N B is graph-like inB but not monotone, (by N B is monotone.
of ¢ is equal toS in the interior of B, i.e.,
gr(¢) Nint(B) = S Nint(B).

The easy proof is omitted. Note that(if,y) € I, x I, and(x,y, ¢(z,y)) ¢ S then
¢(z,y) must be eithemax I, or min I,. The continuity of the functiom is necessary
to ensure monotonicity.

We simply say “graph-like” or “monotone” if is understood from the context. For
specificity, we usually let = y in illustrations. These definitions also make sens&/in

whereS is a curve and3 is a planar rectangle.

LEMMA 20. Supposes = f~1(0) wheref : R® — R. For any boxB, if %(p) # 0 for

all p € B thenS isi-monotone inB.

This lemma shows the origin of our monotonicity concept, &mal proof of it is
immediate. Next, supposk is the octree produced by our regularized Cxyz algorithm
on the input functiory. Then for each box3 in T' which is intersected by = f~1(0),
there is a directioni = iz € {z,vy, 2z} such thatS is i-monotone inB. Leti : T" —
{z,y, 2z} denote this (canonical) direction. Hence for each candibak B < T', we
have a fixed direction, whereS' is i-monotone inB.

S is monotonein T if S is i-monotone in each bo® in 7" for somei € {x,y, z}.

Let S andS be two surfaces. We say preserves theonotonicity of S in T if for any
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candidate box3 in T, if S is i-monotone inB, thenS is alsoi-monotone onB.

In our proof, we will begin with a surface that is monotonelirifze candidate boxes
in T', and we will repeatedly modify to someS which preserves the monotonicity of
SinT. What is important is that we can basically “forget” about dniginal function f
as we do this modification, and we do not have to produce abxeifavith the property
that f(0) = S.

Relative to a surfacé, an edger is dirty if |[S N E| > 2 or S intersectsF tangen-
tially, and a facel" is dirty if S N F' contains a loop (i.e., closed curve) ®iintersects
F tangentially. The opposite of dirty idean A surfacesS is cleanif every edge and
face of T is clean relative tc.

For the correctne@sof our algorithm, we must modify our algorithm to do special
“boundary processing” so thdt is clean relative toS on the boundary faces. This
processing amounts doing root isolation on the edge8®(Y’), followed by the2D
Cxy algorithm on the boundary @®(7"). Thesel D and2D processing are performed
by splitting boxes in the octree. Boundary processing in thgg@tgorithm is similar to
the Cxy Algorithm. For the following part, we will assume thié surfaces intersects
OR(T) cleanly.

Note that for a box33, S N B might be comprised of several connected components,
but one can prove that (in the Regularized Cxyz algorithm)n&sé components must
belong to the same (global) component%f R(7). Note that each component 5f

can give rise to zero, one, or more componentS of R(T').

4 All our correctness is up to an infinitesimal perturbationfofit means that our algorithms miss
tangential intersections ¢f N R(T"), when these components only occur on the boundady(@f). On
the other hand, tangential intersectionsSof R(T') in the interior of R(T") are excluded by explicit
assumption.
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q27. Partial Order on Pairs We fix the usual octre@ and f that defines the surface
S = f71(0). Let P(S) denote the set of apairs of points{p, ¢} such that there is an
edgeF of T, {p,q} € E NS and the segmerip, ¢| intersectsS in an even number
of points. Note that the definition of pair in Cxyz Algorithm is more gehénan the
definition of convergent pair in Cxy AlgorithmiMe assume thaP(.S) is a finite set.
We also regard the empty s6tas a special element &f(.5); all other pairs are called

non-empty pairs. We sayP(S) is trivial if its only member i0.

p/ q/
Up = Gy Cy =0,
C, =G,
el [
ap Qa3 A4 G5 P p q
(a) (b) (b)

(d)

Figure 4.12: (a) Pairs on edde, (b) {p,q} > {p', ¢}, () {p,q} - O

Example: Figure 4.12(a) shows an edgevith 5 intersection points witty. There

are6 pairs onk' given by

{a1, a2}, {as, a3}, {as, a4}, {aq,as},{a1,as},{as,as}.

In general, an edge withintersection points witls' determine®(n) pairs wherey(0) =
0andforn > 1, p(n) = p(n — 1) + [(n—1)/2]. Sop(1l) = 0,p(2) = 1,p(3) =
2,p(4) =4,p(5) = 6.

We define a relationship between pairsR(fS). For any faceF’ of 7', we consider

the connected curve componentdahS. If ois a pointinSNoF, letC, denote the con-
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nected component df N S that has as one endpoint. Given two paifs, ¢} ,{r’, ¢},

we define the relation

{p.q} = {p',q'} (mod F) (4.6)

if d(p,q) > d(p',q") andF has two opposite edgeB,and £’ such that{p, ¢} C E and
{r',¢'} C E', and the connected componentsSafi F' has this propertyC, = C,, and
C, = Cy. Further define

{p,q} = O(mod F) (4.7)

if {p,q} C OF andC, = C,. Both the relations (4.6) and (4.7) are illustrated in
Figure 4.12(b,c).

For pairsA, B € P(S5), define the relationl >~ B if there exists a facé” such that
A = B(mod F). Let = denote the reflexive transitive closurerof P = Q iff P = Q

or there is a finite sequence of pairs whére- Py - P, = --- = P, = Q.
LEMMA 21. The relation(P(S), >) is a partial ordering onP(.5)

Proof. We check three properties. Lét B,C' € P(S). Reflexivity: A = A (by
definition). Symmetry:A = B andB = A impliesA = B. Thisistrue ifA or B is
equal toO. Otherwise, ifA # B, we see thatl >~ B impliesd(A) > d(B). Similarly,
B = Aimpliesd(B) > d(A), contradiction. Transitivity’A = B > C impliesA > C.

This follows from the definition of-. Q.E.D.

If A > B, we sayB is “smaller” thanA and we are interested in minimal elements
in this partial order.
Intuitively, O is the unique minima ifP(S). Towards proving this result, we need a

useful property of our octreg:

LEMMA 22. Let S be a surface which is monotone’ln and £ be any non-boundary
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edge ofl" such thatS N E| > 2. Assume (wlog) thak is parallel to thez-axis, and the
four faces bounded b¥ are F,, ., F,, and F_,, as in Figure 4.12(d). Then eithet

IS z-monotone orf, U F_,, or S is y-monotone orf, U F_,,.

Proof. Supposes is notz-monotone or¥_,.. Consider the boX lying aboveF',.
SinceS cannot be:-monotone inB (becauséd’ intersectss in more than one point) and
it cannot ber-monotone (sincé is notx-monotone orF'_,), we conclude tha’ must
bey-monotone inB. The same reasoning implies thiamust bey-monotone in the box

B’ below F_,. This concludes that must bey-monotone orF, U F__,,. Q.E.D.

LEMMA 23. The empty s&D € P(.S) is the unique minimal element B 5).

Proof. We must show that for any non-empty péjr, ¢}, there exists another pair
B € P(S) such that{p,q} = B. That is, either there exist®’, ¢'} with {p,q} >
{v'.q'tor{p,q} » O.

Use the notations of the previous lemma, ey € E where E' is an edge ofl’
parallel to thez-axis. Wlog, letS be z-monotone onF_, U F,. LetC,/C, be the
connected component ¢f N (F_, U F,) that passes through/q. If C, = C,, our
lemma is shown, sincgp, ¢} >~ O. Otherwise, define thedistance betweef, andC,
to be the intersection of these curves with the pléne- t}. When{z = ¢} contains
E, clearly thet-distance isi(p, ¢). Ast increases, the-distance increases or decreases
monotonically. This distance cannot be zero siage# C,. Moving in the direction
where the-distance decreases, we eventually reach the &dgé F_,. or F,, where the
t-distance is minimal. 10, N £ = p’ andC, N £’ = ¢/, then we see thdy’, ¢’} is a

pair in P(S) and{p, ¢} = {p', ¢} Q.E.D.
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928. Cleansing Strategy We are going to transforn§ to another surfacé that is
clean relative td". We do this by transforming isotopically toS. A difficult problem
in this transformation is that it is very hard to keep trackloé nice properties of the
original f with respect tal'. For instance, we know that each candidate Bbrf T

must satisfyC/ _(B). We first overview the cleansing processes:

TYZ

1. First, we clean all faces. Here we can exploit the origimaperty off. Becaus¢g
is monotone in some coordinate direction in each Boxhere cannot be loops in
two adjacent faces aB. Moreover, the set of all such loops has a natural nesting

partial order in each coordinate direction.

2. Next, assuming all the faces are clean, we can clean edgésally, we cannot
clean an entire edge at once, but we remove pairs #9151, one pair at a time.
Let S = Sy and we construct a new surfaSg ; from S; by removing one pair.
The fact thatP(S;, ) is a proper subset @?(.S;) allows us to preserve the partial
order that is induced from the origin&(S) = P(Sy). We show that each pair
removal does not introduce any loop. So, at the end of thisga®y we have a

surfaces,, that is clean, and isotopic t®.

We next give details of these cleansing routines.

929. Cleaning Faces Consider the set of loops ¢f in faces of our octre&’. Denote
this set byL(S), and as before, introduce an artificial eleménin £(S). We sayL(5)
is trivial if its only member iS0. We also assume th&{.S) is a finite set.

Let L, L' be two distinct loops of(S), and they lie on the boundary of a common
box B. Let C}, denote the connected componentsafl B that is bounded by.. Wiog,

let f bey-monotone inB. This implies that. andZ’ can only lie ory-faces ofB. These
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two y-faces can be distinct or the same. We wiite- L'(mod B) if C, = C, and the
y-projection of L’ is contained in the interior of theprojection of L (by y-projection,
we mean the projection onto the= 0 plane). Note that eithel - L' or L' > L must
occur becausg is y-monotone inB. This ensures that we have a global partial ordering
on L(.S). This global property is derived from our original functignand is critical for
our proof. We must carry some of this information along initiguction, even after we
have transformed. Also, observe that the partial ordering can be naturalfyitganed
into three subrelationg(S) = L£,(S) U L,(S) U L,(S), corresponding to the three
coordinate directions.

Note that there can be several loap® (i = 1,2,...) such thatl = L. These
L% can lie in the same face dsor in the opposite face. A fundamental property of this

relation is this:
LEMMA 24. For each loopL/, there is at most oné such that, > L.

Proof. Say these loops lie op-faces. IfL >~ L'(mod B), then they-projection of
L' is in the interior of they-projection of L. Moreover, the componerdt, C BN S
projects into the interior oL. If L, > L’ for some loopL,, then we see that;, = C,

andLy = L. Q.E.D.

In the special case where the boundary gfis connected, then we hawe’;, = L.
In this case, we writd, = O(mod B). This produces a partial order on the set of all
loops (treating? as a special loop). Moreove?) is the unique minimum in this partial
order. If L = O(mod B), we callC;, C B acap. Our transformation for loops amounts
to repeated removing caps. Initially, 18§ = .S. We will define a sequence of surfaces,
S1, 54, ... such that the loops,,(S;+1) is a proper subset a,(.S;) for eachi.

LetL > Oin L,(S;) lies in the face” and suppos&’ is another box that is bounded
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by F'. We can easily define @ U B’)-isotopy to transfornb; to S;,, in which L does
not occur inl,(S;41), but all the other loops of,(S;) remains. Of course, if’ > L in
L,(S;), the removal ofL may induce the new relatioll > O in L,(S;+1).

Eventually, £,(S;) becomes trivial and contains only. We can independently

repeat this argument of,(S;) and L. (.S;). All faces are clean whef(S) is empty.

930. Semi-loops and BasesWe now have clean faces. To discuss the cleansing of
edges, we need some additional concepts. Suppasa face and the surface intersects
Fin a number of curves, including loops (i.e., curve compdseith no endpoints). A
non-loop curve component whose two endpoints lie on the same edgef I is called
asemi-loop(E.g.,C on F,; or C" on F,, in Figure 4.13). Ifp, ¢ are the two endpoints
of C, we call the line segmerip, q] C E the baseof the semi-loopC. Supposer” is
another face that is bounded b and /” has another semi-loof” sharing the same
base ag”. Then we sayC andC’ arelinked by this base. Supposg, C’ are linked
semi-loops, there are two possibilities: they could be aoat (Figure 4.13;" andC")

or they may lie on a pair of perpendicular planes (Figure 421andC"). In general,

a base can be shared by updtgemi-loops. The next lemma shows that this will not

happen.

LEMMA 25 (NO FOURSOMES)Let S be a surface which is monotonelh Then at

most 3 semi-loops can be linked together.

Proof. If four semi-loops are linked together (as shown in Figude.sinceC' and
C"" are coplanar linked semi-loops sharing the bdasecan not be;-monotone on both
faces of . andF,_. Let us assume théaf is noty-monotone onF, . This implies
that S must bez-monotone in the two boxes that sharifg, (note thatS can not be

z-monotone within the four boxes that sharib)y So S must bez-monotone on the
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facesF,, and F,_. On the other hand, the fact that, C” are coplanar linked semi-
loops implies thatS can not ber-monotone on both faces @f,, andF, . Thisis a

contradiction. Q.E.D.

REMARK: in subsequent transformation 8f “NO FOURSOMES” property will

be preserved (as we will see).

C
T— (04 ﬁcl F,,

Figure 4.13: Impossibility of 4-linked semi-loops.

LEMMA 26 (NO HOLES).Let S be the surface after the face cleaning process (note
that S is monotone ifl"). LetC,C’" C S be linked semi-loops on the boundary®f
Let P C SN B be a surface patch i®3 (i.e., P is a connected component®i B). If

CuC" CoP,thenoP = C U (. In other words,P is topologically a disc.

Proof. Let B be the box containing’ andC” in Figure 4.13.S must be monotone
in x or y-direction in B. Wlog, let us assume that is monotone iny-direction in B.
SinceP is converging iny+ direction, the projection oP N int(B) onto F,, must lie
within C’. Also, S N B contains no loop on the faces Bf So we can conclude th&t

is a topological disc andP = C U ("', Q.E.D.

In other words, this lemma says th&tcannot contain any holes as illustrated in

Figure 4.14.
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@) ' ()

Figure 4.14: Examples of holes.

From the proof of Lemma 26, and the fact that a connected sobaeai-block can
be viewed as a rectangular box in whi€hs monotone in-direction, it is easy to see

that the following lemma is also correct:

LEMMA 27 (NO HOLES 1).Let B be a connected subset of ablock, andS be
a surface that is monotone il which intersects the faces & < B cleanly. Let
C C SNAJ(UgepB) be a closed curve, an? C S N B be a connected component. If

C C 0P, thenoP = C. In other words,P is topologically a disc.

REMARK: in subsequent transformation 6f this property will also be preserved

(as we will see).

§¥31. Cleaning Edges via Base Removal OperationsLet us retain the notations of
Figure 4.12 relative to an edde containing a pai{p, ¢}. We call a pair{p, ¢} penul-
timate minimum (or {p, ¢} . O) if for any pair P, {p,q} = P impliesP = O. If
{p,q} . O andfor exactly of the faced” € {F,,, F_,, F,,, F'_,}, {p,q} = O(mod F),
then we say{p,q} >=; O. Note that if{p,q} >; O, theni > 1. In other words,
{p,q} »o O is not possible. We call a base= [p, ¢q] apenultimate minimum baseif
{p, q} is a penultimate minimum pair. Clearly, penultimate minimbase is a base of

some semi-loops.
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We will remove one penultimate minimum pair ®(S) each time. LetS = S5, =
f71(0) and suppose we construct a new surfagg from S; by removing one pair
from P(S;). The fact thatP(S;,) is a proper subset dP(.S;) allows us to preserve
the partial order that is induced from the origirfalS) = P(S;). Our removing of
penultimate minimum pairs will not change the partial ordefP(S). In each step
P(S;) = P(Six1) N {{pi»q:}} where{p;,q;} is the penultimate minimum pair which
we remove at step The removing only creates new relations of the fdmmg} >~ O
where{p, ¢} = {p',¢'} in P(S;).

The next lemma shows that if a balse- [p, ¢ is a penultimate minimum base and

{p,q} =2 O, then the two linked semi-loops must lie on a pair of perpeudr planes:

LEMMA 28. Let S be a surface that is monotone Ty and {p, ¢} be a pair of SN T.
Consider two distinct faceg; and F, in Figure'4.12 where{s,v} C {z, —z,y, —y}.
If {p,q} =2 O where{p,q} > O(modF;) and{p,q} = O(modF,), then{s,v} #

{:Cv _:C} and{37 U} 7£ {y, _y}'

Proof.If {p, ¢} = O(mod F,) and> O(mod F_,), and curveg’,, C, C SN (F_, U
F,) are the connected components that passes thrieagtg, thenC,, andC, must be
different components i, U F,. Since{p, ¢} is a penultimate minimum paif can
not bey-monotone inF, U F_,. From Lemma 22, we know thdt is z-monotone in
F, U F_,, which contradicts the fact thg, ¢| is the base of two coplanar linked semi-

loops onF, U F_,. Q.E.D.

SupposeP ~; O whereP is a pair. We already noted that= 0 is not possible.
From Lemma 25, if we can preserve the monotonicitySofluring the surface trans-

formation (which will be proven later), theh = 4 is also impossible. So the only
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possibilities for: is 1,2 and3. Because of Lemma 28, a penultimate minimum base
could have three possibilities, as shown in Figure 4.18()and (I11). Note that ifb is
not a penultimate minimum base, Figure 415(") might arise.

Let b be a penultimate minimum base for some semi-loop. To “refhéovmeans
to simultaneously remove all the semi-loops that share #iselb Since there are only
three possibilities, so there are three distinct base rahaperations. This is shown in
Figure 4.15. In Figure 4.18) — (I’), we push down the part of semi-loop component
to form a “tunnel” below the edgé&. In Figure 4.1511) — (11'), we push the topo-
logical disc component bounded by the two semi-loops in betlandy— directions to
eliminate it. In Figure 4.1%717) — (I11'), we push down the topological disc com-
ponent bounded by the three semi-loops to remove the it. tdate¢hese operations are
well-defined: this depends on the fact that in each Bakat contains a pair of linked
semi-loops” and(”’, the surface patch bounded 6YyJ C’ is a topological disc (i.e., the
"NO HOLES” property in Lemma 26 holds as long as we presereenonotonicity of
the surface during our operations, which will be proven mfibilowing part).

We next describe some properties that our transformatiesepves. Lefl” be an
octree and/r be the set of all corners of the boxeslinLet S, S’ be two surfaces. We
saysS is compatiblewith S’ (respect td) iff there exist an isotopy : R3 x [0, 1] — R?,
s.t. I(-,0) is the identity;I(S, 1) = S" andvt € [0,1], I(S,t) N Vr = @.

LEMMA 29. The face cleaning operations and the base removal opespaserve the

compatibility ofS' in 7.

Proof. The correctness of this lemma is based on the nature of ouatpes: we

never transform the surface “across” any cornerg.in Q.E.D.
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Figure 4.15: Three Base Removal Operations.

LEMMA 30 (Surface Monotonicity PreservatiorBase removal operations preserve the

monotonicity ofS in 7.

Proof. There are three cases to be considered, corresponding tbrédeebase re-
moval operations. We will analyze each case to show that tivetonicity is preserved
within each box. LetS andS’ be the surfaces before and after each operation.
Case(/I1) — (11I'): by symmetry, we only need to consider the monotonicity ef th
surface inB’ (the removal of the topological disc component bounded by linked
semi-loops does not affect the surface monotonicityg)n There are two possibilities:
SN B’ is monotone in the direction orS N B’ is monotone in theg direction. IfSN B’
is monotone iry direction, S’ N B’ is also monotone iy direction iff everyy-line L
intersects withint(C;) does not intersect N B’. Note that. NS N B" > 1iff S inter-

sects thant(C}) with a curveC’. C’ can not be a loop since we have already cleaned
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the faces. S@"” must intersect with¥, which contradicts the fact that we process the
pairs in partial order. I&' N B’ is monotone inc direction, we can see that the operation
transforms the surface patch beldw, to form a “cap”. By carefully transforming the
surface, we can ensure that anline L intersect the “cap” at most once. Note that there
is a curve on the “caps” i3’ N B” such that any-line passes a point on the curve is
tangent taS’, so the above monotonicity preservation depends on théfact can not
be x monotone in botB” and B”. We can transform the curve to be contained in the
box that is notr monotone.

Case(/I) — (II'): by symmetry, we only need to consider the box¢sand B'.
The monotonicity preservation argument in the exs the same as in the ba¥’ in
(III) — (II1"). So we only need to analyze the b8k Again, by symmetry, we can
assume tha$ N B’ is monotone iny direction. LetSN B’ = S; U S,U, ..., US,, where
eachS;(i = 1,...,n) is a connected surface component. Note {ia} — (/') con-
nect two surface patchét andS, to form one surface patch iB’. Let P. be a surface
patch inS” which connectS, andS, (as shown in Figure 4.151) — (II')). We will
show how to construd®.. We pick az-line L; on F'_, such that for allS;(: = 1, ..., n),

if S; does not intersect with',, then the distancéis(S;, F_,) of S; andF_, is larger
thandis(L., F_,). We can similarly pick another-line L, on F_,,. The examples of
L, and L, are shown in Figure 4.16 (including all the points’ and csgiiabels). L,
intersects”; andC, at two points(py, ¢1), and L, intersect”; andCs at two points
(p2,q2). Let they-projections ofp;, ¢, p» andg, onto the bottom face aB’ be P, ,
P,, P, andP,,. Let S, andsS,, be the surface patches boundeddjyandC;,. Then

S., intersects with the rectangle, p:, P,,, P,) in a curvel.,. Similarly, we havel,,.
There exist a surface patch bounded by the lipésq1], [p2, ¢2] and the curveg,,, I.,

s.t., it has the some monotonicity 8sn B’. We defineP. to be such a surface patch.
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Let the y-projection of P. be Pp,. S’ N B’ is also monotone iy direction iff all the
y-line L which intersect withPp, do notintersec6NB’. If LNSN B’ > 1,thenSN B’
must contain a surface patéh) which intersects withZ, which contradicts the fact that
we process the pairs in partial order.

Case(/) — (I’): by symmetry, we only need to analyze the bo¥esnd B’. The
monotonicity preservation argument in the bBxis the same as in the bok’ in
(I1I) — (11I'), and the monotonicity preservation argument in the Bois the same

as inthe boxB’in (11) — (I1I'). Q.E.D.

() ()

Figure 4.16: Construction a?..

The next example shows that if we remove the bases in anpitraer, we might
create holes within the boxes. Udtbe the smallest base in the bBxn Figure 4.17(1).
AssumesS is y-monotone inB, since our operation preserves the monotonicity, we
have the length 083 is less than the length éfl.. If we remove the bases in arbitrary
order, we might removel andb4 beforeb2 andb3, which results in a hole as shown in
Figure 4.17(1).

LEMMA 31. The face cleaning operations do not induce new dirty faced,the base

removal operations do not induce new dirty edges and dicgga
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Figure 4.17: Removing bases in arbitrary order might creakesh

Proof. It is clear that the face cleaning operations do not indueedigy faces, and
the base removal operations do not induce new dirty edgesvillghow that the base
removal operations do not induce new dirty faces. Rdie a base removal operation
which removes a penultimate minimum péaiand induces a new loopon a faceF'.
Then before the operatiohwas a semi-loop with the bage This contradicts the fact

that R removed all the semi-loops that share the same hase Q.E.D.

The above base removal process halts only whéfi) is empty. At this point, all
faces and edges are clean relativ&'td-rom the analysis above, we have the following

theorem:

THEOREM32. LetT be the octree produced by our Regularized Cxyz AlgorithmteThe
39, sit.

(1) S ~ S(mod R(T)).

(2) Sis compatible withS respect tal'.

(3) S intersectsT” cleanly.

(4) S preserves the monotonicity Sfwithin each candidate box df.

Proof.We first clean the faces, then we clean the edges. From Lempha@&®na 30

and Lemma 31, and the fact that each operation is an isot@pisformation, the result-
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ing S satisfies all the properties in this theorem. Q.E.D.

THEOREM33. Let G be the mesh we construct by the Regularized Cxyz Algorithm, the

G ~ S(mod R(T)).

Proof. Based on the construction phase of our algorithm, for eaehnraiting block
B, S N O(UB) “agrees” withG: N &(UB). From Lemma 27, we know that is isotopic
to G within each block. S@ ~ S(mod R(T))). From Theorerh 32, we havg ~ S ~
S(mod R(T)). Q.E.D.

4.3 Balanced Cxyz Algorithm

In the previous section we have shown that the Regularized Blgarithm can be
used to create an isotopic approximation of an implicitacef Now we will describe
that how a balanced octree can be used to create an isotogic fitee subdivision pro-
cess is the same as in the regularized case. After the ssioti\process, we “balance”
the octree. The definition of balance is “edge-balance”,iisdjiven next.

First, note that we regard the boxes of an octree to be clageskts ofR3. For the
purposes of balancing the octree after subdivision, we deifine two boxes3, B’ as
neighborsif the interiors of B and B’ are disjoint, and their boundaries share an open
line segmentd B N 0B’ contains an open line segment. If they only share a correy, th
are not neighbors.

Leti € {z,y,z}. An edge of a box is amredgeif it is parallel to thei-axis. An
octree isi-balancedif for all pairs of candidate boxe®, B’ which are neighbors, if

B N B’ contains a open segment of a&edge of B or B, then thei-widths of B and
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B’ is within a factor of2 of each other. The octreelmlancedif it is i-balanced for all
1=, %.

Recall that the widE]of aboxB is defined asv(B) := min{w,(B), w,(B),w,(B)}.
If all the boxes ini" are cubes, then for any bdx € 7', thei-widths of B are the same
fori € {z,y,z}. For any edge of B, any other box that share part of the interior of
e must have a width at least half the width Bf Also note that ife is not a boundary
edge, then there are betweeand6 other boxes that share part of the interioeof

We will first introduce the Balanced Cxyz Algorithm. We storend@late boxes
from each phase into a priority queue, and pass it into theplease. The comparator

for the priority queues is the width of the boxes:

Balanced Cxy Algorithm:

Input:  Nice region given by an octreg, and surfaces = f~1(0)
Output: Isotopic approximatiowd for S N R(Ty)

1. Ty« SUBDIVIDEg,, (Tp)

2. Ty — BALANCE(T))

3. G« CONSTRUCT(T3)

The subdivision phase has been described already. We wiltescribe the balanc-

ing phase. The balancing phase has three sub-phases:

5 Note that the initial ROI might not be a cube (or cubes). Smef/eve perform full-split for any
box B in T', thei-widths of B might still be different. But the minimumwidth is enough to identify the
depth of BinT.
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BALANCE(T):
2.1. T{ « Split(Ty)
2.2. For each candidate box T, we introduce vertices in the

middle of bichromatic edges.

2.3. Ty «— Disambiguate(TY])

The first sub-phase is based on the definition of balancingreh( B) denotes the
width of the boxB:

Split(Ty):
AssumeT; has an associated priority quefdecontaining all of its candidate boxes
Let @, be an empty priority queue
While (Q is non-empty)
B «— Q.pop()
booleanBalanced Box «+— true
For each candidate ba®’ that is a neighbor oB
If w(B') > 2w(B),
BalancedBox «+— false
Full-split B’
For each candidate ba®” that is a child ofB’
InsertB” into Q
If (BalancedBox)
InsertB into Q4
Else
InsertB into Q

Return the extended octr&é represented b, .
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The third sub-phase is the disambiguation sub-phase. Weluinte three ambiguous

cases, which will be described in the following paragraph.

§32. Disambiguation Phase We indicate the issues that arise if we simply replace
by C,,. in the Balanced Algorithm. Consider an horizontally-strettiyperboloid as
in Figure 4.18 ¢;). We run the Balanced Cxyz Algorithm on this hyperboloid. & th
subdivision phase ends up with the boxeg shown in Figure 4.184). Clearly, both
of the two larger boxesH; and B3) satisfy C,, while the eight smaller boxes satisfy
C.y-. The output grapltz obtained by using the connection rules (in the regularized
algorithm) is the yellow polytope of Figure 4.18,]. SinceG forms a closed surface,
it is clearly wrong. An error occurred in baX; (and alsoBs3) whereS N B; is a tube
while G N By is a planer surface. If we had spht;, we would have discovered this
error. In this case we say,; (resp.,Bs) has ‘3D ambiguity”. A very similar problem is
seen in Figure 4.18() and {»), corresponding to2D ambiguity” in each of the boxes
By, Bs, By, Bs.

From the previous analysis, we can define the first two “andaigicases” (by sym-

metry, we may assume thaf,(5) holds):

1. 3D Ambiguity : The interior of the top or bottom face has four vertices. ig-F

ure 4.18 {,), the boxesB; and B3 are both ambiguous by this criterion.

2. 2D Ambiguity: One or more of its vertical faces is monochromatic, and has

exactly two vertices on the same edge. By(B), this edge is not a vertical

6 In the actual subdivision phase, the boxes after subdivisitl not end up with these 10 boxes. The
reason is that there exists a critical pgitih box By, i.e., f,(p) = f,(p) = f.(p) = 0. So the subdivision
phase will subdivide some children & at least one more time to produ€g boxes that include. A
similar2D example is shown in Figure 3.2. But it is too complicated wisuch an example D, and
Figure 4.18 is enough for us to illustrate the ambiguousxase
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(a2) (52)

e

By

Figure 4.18: Examples of two kinds of ambiguous boxes.

edge. In Figure 4.18¢), the boxesB,, Bs, B, and Bg are all ambiguous by this

criterion.

Unlike the2D case (sed[14), the definition of thedD ambiguity does not require
the box to be monochromatic. Figure 4.19 show an exampleecﬁl[hambiguit& in
a bichromatic box. Also note that our definition of ambigugydesigned to be simple,
but it does not prevent unnecessary splitting (e.g., if bloghtop and bottom faces each
have exactly four vertices in their interiors, then thereeslly no need for splitting).

We now describe the third kind of ambiguity. Its motivationllwe become clearer
in the construction phase below. Let {z,y, z} be the monotone direction of a box
B. We sayB has analternating ambiguity if it properly contains the-face F' of its
neighbor, and thig’ is alternating.

Finally, a boxB is said to beambiguousif it is 2D, 3D or alternating ambiguous.

We split B into eight sub-boxes, and put the candidate boxes amondtlizen back

7 One might be able to develop a more complicated connectierfauconnecting the vertices for the
3D ambiguity in a bichromatic bo®, since we know that th& N B will form a cylinder shaped surface
patch withinB. In our algorithm, we just spliB3 for simplicity.
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Figure 4.19: Example of th&D ambiguity in a bichromatic box.

into the octree.

LEMMA 34. If we split an ambiguous bok into 8 children, none of these children will

be ambiguous.

Proof. Let B’ be a child of an ambiguous bdx. Because its neighboring boxes can
not have smaller width thaB’ (otherwise, the width of the neighboring box is less than
half of the width of B). So it is impossible fo3’ to have two vertices on one edge or
have four vertices on the interior of one face. It is also isgible for B’ to properly

contains any alternating face of its neighbors. Q.E.D.

Note that splitting of ambiguous boxes might induce its edgghbors to become
ambiguous, and also cause the octree to be unbalanced. Seeddmre-balance the
octree. But this re-balance procedure is very local, and viye reeed to propagate the
“modified” boxes. The following is the disambiguation sutepge (sub-phas23 of
BALANCE(TY)).
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Disambiguate(TY):
AssumeT] has an associated priority que@econtaining all of its candidate boxgs
Let @, be an empty priority queue
While (Q is non-empty)
B« Q.pop()
If B is an ambiguous box
Full-split B
For each candidate ba®’ that is a child ofB
Rebalance(B')
InsertB’ into Q4
Else

InsertB into

Return the extended octrde represented by, .

The following is the re-balance routine which is used in tigaohbiguation sub-
phase. Note that this re-balancing procedure relies onattietfiat the octred’ has

already been balanced before.

Rebalance(By):
Priority queue?) is initialized to be{ By}
While @ is non-empty:
B« Q.pop()
For each on-bo3’ that is a neighbor of3
If w(B') > 2w(B)
Full-split B’
For each candidate ba®” that is a child ofB’

InsertB” into Q
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We will next describe the construction phase for the Balari@ed: Algorithm.

933. Construction Phase Let F' be a face of some bok. Our first goal is to connect
the vertices ort” by arcs. LetB’ be a neighbor o3 that shares part af' as a common
face. There are two possibilities: B N B = F, thenB’ has width at least that 8.
This is the case we are interested in: daklictivein this case. Otherwisé; is inactive;
this meang3’ must have width that is half that éf. We are not interested in inactive
because we would have processed the facés beforeB, and in particular, any vertex
in F would have been processed. Henceforth, we will only focuarorconnections for
active faces.

By anarc loop, we mean a closed curve of arcs on the boundary of afoXhe

construction phase also has three sub-phases3(3).

CONSTRUCT(T3):
3.1. InitialConnect(Ts)
3.2. ArcConnect(T5)
3.3. For each candidate b@xin 15, group the arcs o3’s boundary into arc loops.

For each arc loop, form a triangulated surface patch whose bouisdéiey arc loop.

Sub-phase 3.3 is straightforward. In the following, we wl#iscribe how to imple-
ment sub-phase 3.1 and 3.2. In order to introduce our arceation rule for active

faces, we will first analyze the sign types of the active faces

934. Sign Types of Active Faces Note that each edge of an active face can have at
most two vertices. There might be a neightitiof B that shares an edge with an active

F. If B’ has smaller width tham®, then a corner o3’ would be the midpoint of an
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edge ofF'. Therefore, in considering sign typesBf we need to consider signs of such
midpoints. There can be up &signs on the boundary df. The possiblé&ign Types
of such faces are enumerated in Figure 4.20 — there are 13nibemu The sign type

of F will uniquely determine the vertices that are introduceid if" (as illustrated in

Figure 4.20).
’
E(;ai @y o

(4d) (4e) (6a)" (6b): (6¢) (8)

Figure 4.20: Sign Types of active faces. The asterisks ateithe cases that are impos-
sible for the active faces on the boundary of blocks.

935. Arc Types of Active Faces The rule for arc connections of active faces depends
on whether the faces are (known to be) “parametrizable” ar no

Let F' be an active:-face. I’ is said to beparametrizable if 0 ¢ f,.(F) or0 ¢
fy(F). One problem with this notion is that it is not an effectiveeon we may not
know that a face is parametrizable even though it is. One ctatipnally checkable
condition which implies the parametrizability éfis 0 ¢ 0f,(F") or0 ¢ 0 f,(F'). But
for our algorithm, we will define the concept of “known paraneable” faces using the
information that is already obtained from our subdivisitvage. The definition is based
on the fact that each candidate bBxsatisfies”;(B) for somei = {z,y, z}. For every
box B € T, we associate Bnown monotone direction (or monotone direction for

short). Now we define the concept of “known parametrizaldesd LetF be an active

104



face, and supposE bounds two boxe® andB’. SoF = BN B’. We sayF' is known
parametrizable if F'is parallel to the monotone direction &for B’. Otherwise,F’ is
said to benot known parametrizable. Examples of known parametrizable faces and
not known parametrizable faces are shown in Figure|4.21.theeknown monotone
direction of B bey in both Figure 4.21(a) and (b). Then the four vertical face$30
are known parametrizable faces. If the known monotone tiireof B’ is alsoy, then
F'is a not known parametrizable face; otherwisejs a known parametrizable face,
which has the same monotone directiomsClearly, if F' is known monotone in some

direction, then it is monotone in that direction (convessaat true).

=Monotone Direction

3

\
B

(@) (b)

Figure 4.21. Examples of known parametrizable faces and&mmt/n parametrizable
faces.

¥36. Connection Rule AssumeB is a C, box. Then the four faces aB which
are parallel to the-direction are clearly known parametrizable faces. Itde from
our analysis for curves that each of these faces can havesttimertices. SaB can
have at mosti6 vertices on its edges. Indeed, it is easy to see thatertices can

arise. Our connection rules for any known parametrizaldedacan follow the rules
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given in Figure 3.4. For reference, we call them plagametrizable face rule which is
reproduced in Figure 4.20(2a), (2b), (2c), (4b), (4c) ard).(4

It remains to give the connection rule for the case wlere not known parametriz-
able. We knew that in the regularized algorithm, the arc ections onf’ may be
arbitrary, as long as we ensure a certain block-wise carsigt In the Balanced Cxyz
Algorithm, we will need a different approach.

For a boxB, letU Fz denotes the number of faces that have not yet been connected.
There are at least four known parametrizable faces, whiclkivag how to connect.
So we need to connect at most two other faces,lilép < 2. We first introduce the
connection rule for boxes where all but one faces have beeneoted, i.e./ Fz = 1.
We call this rule thematching rule: wlog, let B’s monotone direction bg, and the top
face of B has been arc connected. LEtbe the bottom face oB, andv, vs, ..., va,
be the vertices oi’. For a vertexv € F, if we follow the arcs starting frona on the
vertical and top faces aB, the path must end at another verié>on the bottom face
F. We sayv andv’ arematched It is easy to see that this pairwise relationship forms
a partition of the set of vertices afi. We connect; andv; iff v; andv; are matched.
Figure 4.22(i), (i), (iii) and (iv) show some examples ofngsmatching rule to connect
vertices.

We still need the connection rule for the boxeésvhoselU Fz = 2. We previously
defined the notion of ani*block (i € {z,y, z})” for a regular octree. We have a sim-
ilar definition for the balanced octrée (wlog, let: = y): a y-block B is a sequence
By, ..., B, of candidate boxes @f such that (1) the bottom face &f; is the top face of
Bji i forj=1,...,t—1,; (2) the monotone direction igfor eachB;; and (3) the block
is maximal. Note that this implies that all the boxes in a klbave the same width, as

in the regular case. Theidth of the block is defined as the width of am;. We also
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s >0

V) V) V)

Figure 4.22: Examples of how to use matching rule ((i), (ii)) and (iv)) and propaga-
tion rule ((v)—(v’)—(v")) to connect vertices.

define theend boxesof 5 to be B; and B;, and theend facesof B to be the top face of
B, and bottom face oB,. We also define the boundary Bfto be:0(UB) = 9(UgcsB)
(i.e., the union of its end faces and all the vertical faces).

Every candidate boX3 € T has been assigned a monotone direction. Then this
partitions the set of candidate boxesofinto blocks. LetB be ay-block. We can
view B as a single rectangular bdX". The surfaceS is y-monotone withinB”, so.S
intersects each vertical edge Bf at most once. The top and bottom face$36fare the
end faces of3. For any boxB € B, the connection rule for the vertical faces is uniquely
defined (the parametrizable face rule). So the only not ccdeddaces on the boundary
of B are the two end faces. The following lemma shows that theeaction rule for the

active end faces is also uniquely defined.
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LEMMA 35. If I/ is an end face of a block, and i is active, thenF has at mostl
vertices. The possible sign types férare shown in Figure 4.20(0), (2a), (2b), (4b),

(4c) and (4d), and the connection rule for those cases isugljodefined.

Proof. If F'is an end face of g-block B, then F' is either (1) the intersection &
with another block of larger width (recall that the width bktblock is defined as the
width of any B; in the block), or (2) the intersection & with anotherz- or z-block
of the same width. In the first case, the boxes that share agy eldF' have either
larger or the same width a& (because of the edge-balance). There is at most one
vertex on each edge d@f, so F' has at most vertices. By the definition of alternating
ambiguity, Figure 4.20(4a) is excluded. So the possiblesase Figure 4.20(0), (2a)
and (2b). Their connection rule is uniquely defined. In theose casef’ is a known
parametrizable face. So there are at most four verticeg'.orFrom the analysis in
our Cxy Algorithm, we know that the possible cases are Figue®(@), (2a), (2b),
(4b), (4c) and (4d), and the connection rule for those casedsb uniquely defined
(the parametrizable face rule). Note that Figure 4.20@anpossible in the 2nd case

because it is @D ambiguity. Q.E.D.

From the proof of the above lemma, the motivation of the alieng ambiguity is
now clear. LetB be a box with known monotone directiondiand F' be ani-face of B.
It is easy to see that iB’s neighboring boxB’ that shares part of' has a smaller width
than B andF’ = B’ N B, thenF’ contains at most two vertices. It is also easy to see
that for the end boxeB8 of a block,UFz < 1.

We next describe the connection rule for the bokeshoseU Fz = 2: the prop-
agation rule. Wlog, let B be they-block containingB. We search the boxes -
direction to find the first box3’ such that/ Fiz: = 1. Note thatB’ exists in3 since the

end boxes of a block havé F' < 1. We push each box (from® to B’) into a stackSp.
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The top of the stack i3’, and we can use the matching rule to connect it. After con-
nectingB’ (now U Fz: = 0), we pop it from the stack. Then the top bBX of the stack
hasU Fg» = 1. We keep connecting and popping the boxes until we réacNow we
haveU Fz = 1, we can use the matching rule to connBctFigure 4.22(v)-(v') —(v")
shows an example of using propagation rule to connect estti8imilarly, we can define
the arc connection rule for the boxes with known monotoneations inz or .

Now we are ready to introduce the sub-phadeand3.2in CONSTRUCT (T3) in
933: InitialConnect(Ty) and ArcConnect(Ts).

InitialConnect(T3):
Let @ be a priority queue containing all the candidate box€ek,in
While (Q is non-empty)
B« Q.pop()
UFg «— 2
Connect the four faces which are parallelRs monotone direction
using the parametrizable face rule. For each of the other two faces
If F'is an inactive face
Decreaséd/ F'g by 1
Else if F = BN B’ and B’ has a different monotone direction Bs
ConnectF’ using the parametrizable face rule
Decreasé/ F'z by 1
Else if F' has less than 4 vertices
ConnectF’ using the parametrizable face rule

Decreasé/ 'z by 1

After the InitialConnect(T5) sub-phasel/ Fiz should be equal to 0, 1 or 2 for each

candidate box3 in 7,. We next introduce thelrcConnect(13) sub-phase:
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ArcConnect(T):
Let  be a priority queue containing all the candidate box€kin
While (@ is non-empty)
B« Q.pop()
fUFp=0
B is fully connected, and there is nothing to do
fUFp=1
Use the matching rule to conneBt
If UFg =2

Use the propagation rule to conndgt

4.4 Correctness of Balanced Cxyz Algorithm

Let T be the octree produced by our Balanced Cxyz Algorithm. Sintdathe
correctness proof of the Regularized Cxyz Algorithm, we wiitftransform the input
surfaceS = f~1(0) to another surfacé which has some nice properties.

In the correctness proof of the Regularized Cxyz Algorithm,separately defined
the partial orders for loops and pairs $fin 7. In the Balanced Cxyz Algorithm, we
need to define the partial order for the combination of alpkand pairs. The reason
is that a loop might be “blocked” by pairs (an example is shawiRigure 4.23(1)), and
we need to remove the pairs first in order to remove the looso Ad pair might be
“blocked” by loops ,as shown in Figure 4.23(ll) (we do not @auch problem in the
Regularized Cxyz Algorithm since the loops are removed bgjanes).

We define the new partial order for the set/fS) U £(S), whereP(95) is the set
of all pairs of S N'T, andL(S) is the set of all loops of N T" (seeq27 and929). The

partial order between loops and between pairs are the sathe partial order defined
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(11)

Figure 4.23: Partial order between a loop and a pair.

in the Regularized Cxyz Algorithm: letpC P(S) x P(S) be the partial order defined
for pairs, and<,C L(S) x L(S) be the partial order defined for loops. We need to
define a partial order on the sB{.S) U L(5).

Let B be a box with monotone directian Let L be a loop on the bottom face of
B and{p, ¢} be a pair on the top face @. If the y-projection of{p, ¢} is contained
within the y-projection of L, we say{p, ¢} < L (as shown in Figure 4.23(l)). In order
to removeL, we need to removép, ¢} first. We can similarly define such relationszin
andz directions. Let<p,C P(S) x L(S) be all the relations so defined. Similarly, we
can define<;,pC L(S) x P(S): let{p, ¢} be a pair, ands be a semi-loop whose base is
[p, q]. If there exist a loo which lies in the same boR as K, and thei-projection of
L (for somei € {z,y, z}) lies in the interior of the-projection of X', we sayL < {p, ¢}
(as shown in Figure 4.23(Il)).

In the Regularized Cxyz Algorithm, we removed all loops befoeeremove pairs.
But in the Balanced Cxyz Algorithm, we are forced to intermixrpaimoval with loop
removal because of the relations+p;, and<;p». However, if we look at the relation
<p U < U <pr U <rp, we do not obtain a partial order dR(S) U L(S) (see
Figure/4.24: the green points form pairs, and the arrows gshewnonotone direction

of the boxes. Itis possible that< P, < ... < P; < L, which forms a loop).
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Figure 4.24: Example ofaloop iRp U < U <pp U <pp.

Our solution is to define a partial order based only-og,;:=<p U <, U <pr.

This is clearly a partial order oR(S) U L(S).

LEMMA 36 (DAG). The partial order relationship<, forms a DAGG, where the
pairs and loops are the nodes 6f, and the partial order relations are the (directed)

edges of7,,.

Why is this a solution? As usual, we plan to inductively remel@ments from
P(S) U L(S), which are minimal relative te<p,;. The possible complication arises
when we want to remove a pafp, ¢} wherelL <;p {p,q} for some loopL. It turns
out, we can removép, ¢} without first removingZ provided that we generalize our
previous base removal operation as follows: to remove a{pair}, we will remove

all semi-loopsk whose base i§, g|. There are two possible situations: (A) If there
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Figure 4.25: Universal Base Removal Operations.

isaloopL s.t. L <.p {p,q}, then we know thajp, ¢| is the base of a semi-looff
where thei-projection of L (for some: € {z,y, z}) lies in the interior of K. In this
case, we transform the surfaeso that{p, ¢} is removed froniP(S), and a new loop
K’ appears inz(S). And moreover,L < K' €<;. See Figure 4.2511x) — (IIx)
and(I11x) — (I11«") for the illustration of this operation. Note that there nigje
more than one such loogds (B) If no such loopL exists, then the operation is defined
as in the Regularized Cxyz Algorithm. Similar to the proof ohtma 30, we can prove
that those two generalized operations also preserve tli@csumonotonicity ofS' in

T. Based on the correctness analysis in the Regularized Cxyzi&kigg we have the

following (similar) theorem for the Balanced Cxyz Algorithm:

THEOREM 37. Let T be the octree produced by our Balanced Cxyz Algorithm. There

35, S.t.
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(1) S ~ S(mod R(T)).
(2) S is compatible withS respect tol".
(3) S intersect<T” cleanly.

4) S preserves the monotonicity Sfwithin each candidate box @f.

Proof. The correctness of this theorem follows from the analystb®eface cleaning

and edge cleaning processes. Q.E.D.

In the Regularized Cxyz Algorithm, we proved Lemima 27. We hasiendar result

in the balanced algorithm:

LEMMA 38 (NO HOLES 2).Let S be the surface described in Theorem 37 #hte

a connected subset of arblock. LetC be a closed curve which is the intersection
of S with 0(UBpgep). LetP C S N B be a surface patch i3 (i.e., P is a connected
component of N B). If ¢ C OP, thendP = C. In other words,P is topologically a

disc.

Proof. The correctness of this lemma follows from the facts that 3 is monotone

in B, andS intersects3 cleanly. The proofis similar to the proof of Lemma 2&).E.D.

From Lemma 38, it is easy to see tHan B is a set of topological discs for each

candidate box3.

THEOREM 39. The meslt: constructed by our Balanced Cxyz Algorithm is isotopic to

S within eachi-block B of T'. In other words( ~ S ~ S(mod R(T')).

Proof.From Theorem 37, it is easy to see thdhtersects the boundary 8fcleanly.

Our construction rule guarantees tidan d(UB) “agrees” withS N §(UB). And each
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connected component 6f N B is a topological disc. So based on Lemma 38, we have

GNB~SnNB. Q.E.D.

4.5 Rectangular Cxyz Algorithm

As in the Cxy algorithm, the ability to have partial splits danhighly advantageous.
In 3D, this means a box can be half- or quarter-split. Our subidrwiboxes will now
have various aspect ratios, where #spect ratioof a box is defined to be the ratio of
the length of the longest edge to the length of the shortesbrder to prove that such
an algorithm will halt, it is necessary to assume some pbotndy > 1 on the aspect
ratio of any subdivision box. In particular, we are not alkato do those partial splits
that will produce a child with aspect ratis p. Our method for deciding how to do
partial splits is a straightforward generalization of the case. We will assume some
fixed conventiof for labeling the 8 orthants of the coordinate system.

We modify the subdivision phase as follows: For each on-Bar the queue, we
must decide how to tag it, or how to to split and tag its chitdr&his is accomplished

by a new subdivision phase, which amounts to checking tHewolg three levels of

8 Unlike the 2D case, there seems to be no universally accepted convemticthi§. See, e.g.,
http://godplaysdice.blogspot.com/2007/09/conventmmrguadrantoctantorthant.html.  We will use the
gray code to label successive orthants, starting ftom000,2 = 001,3 = 011,4 = 010,5 = 110,6 =
111,7 = 101, 8 = 100.
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conditions (in this order):

Ly :
Cout : Co(B)
Cin nyz(B)
Ly:
Cout * Co(Bi234), Co(Bsers ), Co(Biars), Co(Baass), Co(Biass ), Co( Baser)
Cin t Cayz(B1234), Cryz(Bsers), Cyz(Biars ), Cryz(B3ass), Coyz(Biass ), Cyz(Baser)
Lo
Cout = Co(Brz), Co(Bsa), Co(Bss ), Co(Brs), Co(Bua), Co(Bas),
Co(Ber), Co(Bss), Co(Bis), Co(Bar), Co(Bss), Co(Bus)
Cin : Cryz(B12), Cuy=(Bs4), Cay:(Bsg), Cuy=(Brs), Cryz(Bia), Cuy-(Bas),
Ciyz(Be7), Cryz(Bss), Cayz(B1s), Cayz(Bar), Cayz(Bss), Cayz(Bas)

(4.83

We stop at the first verified condition. If a condition iR is verified, we tagB as
an candidate or discarded box, accordingly. If a conditiohii (L) is verified, we do
a half-split (quarter-split) of3 to produce the child that satisfies that condition. That
child is tagged as discarded or candidate. The other childre pushed back into the
queue. Finally, if no condition is verified, we do a full-g@nd push the children into
the queue.

The balancing phase of the Rectangular Cxyz algorithm istbfigkfferent from the
Balanced Cxyz algorithm. In the splitting sub-phase, we-d@lance first, then balance

along they- andz-direction accordingly (see the definition®@balance in 4.3):
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Split(Tl ) .
T1.1=Splitx(11)

T1.0=Splity (T 1)

T1’=SplitZ(T1,2)

We definew;(B) to be thei-width of B (i € {x,y, z}), andr,(B) = (max(w,(B),
w,(B)))/w,(B) (similarly for r,(B) andr.(B)). Note thatr;(B)(i = x,y, z) might
exceed the bounding aspect ration the balancing phase. Also note that we only pse
to guarantee the termination of the subdivision phase. &maihation of the balancing
phase is guaranteed by the fact that we never induce a&bakh w;(B)(i = z,y, z)
smaller than the minimumwidth in 7.

After the splitting sub-phase, there are still problemsventing us from adding
vertices correctly: Le#d be a box, and3 be one ofA’s right neighbors. Ifw,(A) =
2 % wy(B) andw,(B) = 2 x w,(A) (as shown in Figure 4.26), and if poipt andps
have different signs, there is no edge to add a vertex atitidpoint. A vertex will be
added ap- - the midpoint of(p;, p3) when we process the bokor D, and the vertex is
at the corner of the bo&'. There is a simple way to resolve this problem: if we find this
kind of situation, we half-spli3 (or A). We have an additional sub-phase for adjusting
such boxes (lef),,, be a priority queue which sorts the boxes by thewidth and then

they-width):

Adjust(Ty):
T| ;=Adjustx (17)

Ty'=Adjustz (T} 5)

WhereAdjust;(i € {x,y, z}) is defined as the following procedure (wlags 7):
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Figure 4.26: Problem of the balancing phase in Rectangulaz @bgorithm.

Adjustz(T7 5):
Qzy is a priority queue containing all the candidate boxe®\in
while @, is non-empty:
B — Quy.remove()
For each candidate ba®’ that is az-neighbor ofB
If wy(B') > wy(B) andwy(B') < wy(B),
x split B’
For each candidate ba®” that is a child ofB’
InsertB” into @y,

Return the extended octr&¢

The adjust sub-phase might introduce new unbalanced cssege need to loop

over the adjust and split sub-phases until there is no fugpid:
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Split& Adjust(Th):
T1=Split(T7)
Do
Ty'=Adjust(I7)
T1=Split(17)

While there are split

g

ReturnTy = T}

The the complexity of the split and adjust sub-phase migitnsaverwhelming. But
in the experimental result, the number of splits reducey fast, and the whole sub-
phase can finish faster than the Balanced Cxyz algorithm. Gar atbrds, the number
of boxes after Split&Adjust sub-phase can be less than tinebeu of boxes after the
split sub-phase in the Balanced Cxyz algorithm.

The disambiguation sub-phase is slightly different frora Balanced Cxyz Algo-
rithm too. We need to ensure that the disambiguation phass dot produce boxes
with smalleri-width than the minimumi-width in the octre€l’. For the2 D ambiguous
box, we do a half split of the box to separate the two vertidesivcause the ambiguity.
For the3D ambiguous boxes, we do a quarterly split of the box whichtsphie face
(whose interior contains four vertices) into four childrefor the alternating ambigu-
ous boxB, let F = B N B’ be the face that causes the ambiguity (wlog,Hebe a
x-face). We splitB to “fit” F (i.e., the children of3 will have the sameg- andz-width
as B’). Note that we might do half- or quarter-split @hin the directions which are
perpendicular ta'.

The construction phase of the Rectangular Cxyz Algorithnmmslar to the Balanced

Cxyz Algorithm, and so does the correctness proof.
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4.6 Implementation and Software

Our algorithms are implemented ihava on the Eclipse Platform. See 3.7 for
the hardware configuration. The code P meshing is available for download at
http://cs. nyu. edu/ exact/ papers/ cxy/, and the code foBD meshing is
available for download dtt t p: / / cs. nyu. edu/ exact / paper s/ cxyz/ .

Note that this implementation is based on machine aritttme@ur implementa-
tion is exact (in particular, there is no numerical roundangpr) as long as there is no
underflow or overflow. This is because the only arithmeticrappens we use are ring
operations and divide b¥. The limitation of machine precision is that, for high degre
polynomials, the code might fail because of under/overflo@sy algorithm has been
transformed taC++ based exact computational libraGpr e Li brary by Shuxing
Lu, and improved by Narayan Kamath. We plan to convert oflaara codes toC++
for distribution with our open sourd@r e Li brary.

We use the defaultava heap memory 256MB (some runs result in OutOfMemo-
ryError (OME)). We implemented four algorithms: PV, Balad€éxyz, Balanced Cxyz
with epsilon precision, and Rectangular Cxyz. These are wiateel as PV, Cxyz,
Cxyze, and Rect- (wheren is the maximum aspect ratio). We did not implement

Snyder’s algorithm ir8D since it is relatively complicated.

4.7 Experimental Results

We report some encouraging experimental results. Fablists 11 examples of our
tests. Tablel.2 compares the number of boxes and the running time among Cxyz, P
and Rects (n = 2,4, 8,16,32). The percentages represents the relative running times,

using Cxyz as 100%. Figure 1.1, Figure 4.28, Figure 4.29,rEigu30, Figure 4.31,
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Figurel 4.32 and Figure 4.33 illustrates the meshes for EgHgt7 in Table 1 respec-
tively, using Cxyze, PV, Cxyz and Regat-wheren is selected in a way that Reatis

the fastest among all Rect algorithms.

Table 4.1: Equations and input boxes of examples

[ # [[ Curvename | Equationf(wz,y,z) =0 [ Original Box
Egl tangle cube z% — 522 + y* — 5y + 2T — 522 + 10 [(—8, —8, —8), (8, 8, 8)]
Eg2 chair (22 4+ y2 + 22 —23.75)%2 — 0.8((z — 5)2 — 22°)((z + 5)° — 2y2) [(—8, —8, —8), (8, 8, 8)]
Eg3 quartic cylinder | y2a@2 + y222 + 0.01z2 + 0.0122 — 0.01 [(—8, -8, —8), (8,8, 8)]
Eg4 quartic cylinder | y2(z — 1)2 + y2(z — 1)2 4+ 0.01(z — 1)2 + 0.01(z — 1)2 — 0.2002 | [(—5,—5, —5),(7,7,7)]
Eg5 quartic cylinder | 32 (z — 1)2 + y2(z — 1)2 + 0.01(z — 1)2 +0.01(z — 1)2 — 1.0002 | [(—12, —12, —12), (14, 14, 14)]
Eg6 shrek —zt — T 2T 4@ + 227 %+ 222 4 27+ aty?)— [(—8,—8,—8),(8,8,8)]
20.7846zyz — 10
Eg7 tritrumpet 822 + 6xy? — 22> + 322 + 3y — 0.9 [(—8, —8,—8), (8, 8, 8)]
Eg8a eclipse zZ +10%y% 4+ 10222 — 1 [(—8, -8, —8), (8,8, 8)]
Eg8h(n) eclipse zZ + 10" y2 + 10722 — 1 (=7, —7,—7), (8,8,8)]

(1) Cxyz is at least as good as PV, and is significantly fastar £V in most exam-
ples. In Eg8b(4), Cxyz i%.5 times faster than PV. In Eg8b(6), Cxyz spenidsseconds
to construct the mesh, compared to PV which spends more thaecbnds, and runs
out of memory. Rect is the fastest in both Eg8b(4) and Eg8IRX6yt-2 spends 141 mil-
liseconds for Eg8b(4), and 172 milliseconds for Eg8b(6)te\tbat the only exception
is Eg8a, Cxyz and PV produce the same number of boxes, and #pperdme amount
of time. In Eg8b(2), we use the same function as Eg8a, butavithasymmetric original
box. Cxyz is twice as fast as PV. Also note that in the Eg3, CxykRM also produce
the same number of boxes, but Cxyz is faster than PV becaus®thgutational cost
for the C; predicate is bigger than tite,,. predicate.

(2) Rect can be significantly faster than Cxyz, but the perfoiceaf Rect is incon-
sistent. In Eg3, Rect-32 taked.8% of Cxyz’s running time; and in Eg8b(6), Rect-2
takes12.8% of Cxyz’'s running time. The input surface for these examples/ary long
and thin, in which Rect algorithm can take advantage of varmspect ratios. The re-
sults also show that although Rect produces less boxes thani@al examples but

Eg8Db(2), the running time of Rect is not always faster thanGkygz (especially when
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the input surface is squarish, like Eg2). This is because Reads to spend more time
to check the criteria before splitting a box, and needs togses each box in three direc-
tions in Rect.

(3) Increasing the maximum aspect raticn Rect does not necessarily improve the
performance of the algorithm. In Eg3, increasing the maxmaspect ratio directly
improves the performance of Rect; but in Eg8b(6), it causespposite effect. This is
because increasing the maximum aspect ratio might caudsottes to “over split” in
one direction, which is also the reason for the inconsistefdrect. Another example
for over-splitting in Rect is Eg2, where Reetspends more time than Cxyz. Figure 4.27
shows the resulting boxes, meshes, and details by running, ®ect-8, and Rect-32 on
Eg2.

(4) Figure 4.34 illustrates an example that our algorithneserve the topology: the
first row of Figure 4.34 shows the approximations of Eg4 uslegt« (n = 2,4, 8, 16, 32)
algorithm. Itis not clear that the topology of the resultmgshes is the same by looking
at the squared area. By zooming in the squared area (see tmelsew of Figure 4.34),

We could see that the topology is preserved in the squaredsfitbe meshes.

Table 4.2: Cxyz vs. PV vs. Reat-

[ Box/Time (ms)/%{ _Cxyz [ PV [ Rect-2 [ Rect-4 [ Rect-8 [ Rect-16 [ Rect-32 ]
Egl 25847391 5104/718/184% 1096/579/148% | 1304/656/168% | 1710/781/200% | 2081/922/236% | 2653/1125/288%
Eg2 26104/4516 106072/15765/349% 13400/7360/163% 19847/10672/236b 25513/13656/302% 30880/16797/372/6 36931/20360/451%
Eg3 35792/3437 35792/3843/112%| 12056/2812/82% | 6264/1625/47% | 3328/953/28% 2000/578/17% 1088/407/12%

Eg4 80662/10282 | OM E g0scc. | 43977/17875/174b 32836/13313/12906 27577/10766/1050b 29143/11797/11506 26700/10594/103%
Eg5 134163/17187| OME>90sec. 64617/35156/20506 37237/14703/86% 30730/12188/71% 27612/11187/65% 26221/10532/61%
Eg6 31144/4046 99436/11985/296% 13688/5421/134% 16348/6922/171% 19332/8422/208% 21698/10328/255/6 23827/11469/283%
Eg7 1686/328 2920/4217128% 796/359/109% 836/390/119% 1028/422/129% | 12441453[138% | 1652/578/176%
Eg8a 400/94 400/94/100% 176/125/133% 200/140/149% 232/156/166% 272/156/166% 320/172/183%
Eg8b(2) 2741125 2164/250/200% 149/109/87% 154/109/87% 197/125/100% 225/140/112% 279/140/112%
Eg8b(4) 12471203 22121/1531/754%| 345/141/69% 418/141/69% 4847156/77% 551/172/85% 656/203/100%
Eg8b(6) 15226/1343 OME~70s0c. | 696/172/13% 733/187/14% 886/203/15% 952/203/15% 1129/219/16%
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(a) Cxyz (b) Rect-8 (c) Rect-32

Figure 4.27: Boxes, meshes, and details of Eg2 using Cxyz, Ractt Rect-32. Note
that the triangles are elongated as the maximum aspecimateEases.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 4.28: Approximation of EgZ' chaji(z,y,2) = (2% + y? + 22 — 23.75)? —
0.8((z —5)? — 22?)((z + 5)* — 2y*) = 0.

A

(a) Cxyze (b) PV ((f) Cxyz (d) Rect-32

Figure 4.29: Approximation of Eg3: quartic cylindé(x,y, 2) = y*z? + y*2% +
0.012%2 4 0.012%2 — 0.01 = 0.
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(a) Cxyz (b) Rect-32

Figure 4.30: Approximation of Eg4: quartic cylinderflr, y, z) = y*(x —1)2 +4*(z —
1)2 4 0.01(x — 1)+ 0.01(z — 1)% — 0.2002 = 0.

> o

(a) Cxyz (b) Rect-32

Figure 4.31: Approximation of Eg5: quartic cylinderf2z, y, z) = y*(z —1)? +y*(z —
1)? 4+ 0.01(x — 1)+ 0.01(z — 1) — 0.1002 = 0.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 4.32: Approximation of Eg6: shreKz,y, z) = —a* —y* — 24 + 4(2? + %22 +
y? + 2%2? + 22 + 2%y?) — 20.7846xyz — 10 = 0.
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A A A

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 4.33: Approximation of Eg7: tritrumpétz, v, z) = 82% + 6xy* — 222 + 322 +
3y% — 0.9 = 0.

S oS e

(a) Rect-2 (b) Rect-4 (c) Rect-8 (d) Rect-16 (e) Rect-32

(a) Rect-2 (b) Rect-4 (c) Rect-8 (d) Rect-16 (e) Rect-32

Figure 4.34: First row(a)-(e): Approximations of a quartidinder 1 f(x,y,z) =

iz — 12 + y*(z — 1) + 0.01(z — 1)* 4+ 0.01(2 — 1) — 0.2002 = 0 using Rect-
n (n = 2,4,8,16,32). Second row(a)-(e): Topology preservation in the squared af
the approximations.
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Chapter 5

Conclusion and Future Works

This thesis introduces a new family of algorithms for isatcggoproximation of im-
plicit curves and surfaces that is provably correct, simeficient, and easy to imple-
ment exactly. The basic idea is to exploit parametrizab(like Snyder) and nonlocal
isotopy (like Plantinga and Vegter). We also extend thesasdo subdivision boxes of
bounded aspect ratio, and mesh construction within iresgggéometries. 12D, our
experimental results which compare four algorithms (P\yd&n, Balanced Cxy, and
Rectangular Cxy) show that our Balanced Cxy Algorithm is fastantSnyder and PV
most of the time, and Rectangular Cxy Algorithm is the best linesits and often ex-
hibits great speedup. D, our experimental results which compare three algorithms
(PV, Balanced Cxyz, and Rectangular Cxyz) show that our Balancgd Sbgorithm
is consistently more efficient than PV and the Rectangular @tgarithm can exhibit
significant speedup. But the precise way to exploit anisgtremains a research prob-
lem.

Future work includes extensions to higher dimensionscede treatment of singu-

larity using numerical methods, more efficient algorithnathieve geometric accuracy
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(by exploiting parametrizability and boundary informatiof each box), complexity
analysis of subdivision algorithms, and convertirgva codes of Cxyz algorithms to

C++ for distribution with our open sourdéor e Li brary.
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