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Preface

The unifying theme of this thesis is geometric algorithms. It contains two parts,

and is based on content from four papers.

Part I is on subdivision algorithms, and has content based on the papers

“Amortized Analysis of Smooth Quadtrees in All Dimensions”, joint with Chee

Yap [BY17]; and “Planar Minimization Diagrams via Subdivision with Applica-

tions to Anisotropic Voronoi Diagrams”, joint with Evanthia Papadopoulou and

Chee Yap [BPY16].

Part II is on lattice algorithms, and has content based on the papers “On

the Lattice Distortion Problem”, joint with Daniel Dadush and Noah Stephens-

Davidowitz [BDS16]; and “Algorithms for Computing Nearly Orthogonal and Well-

Conditioned Lattice Bases” [Ben17].

A note on co-authorship

As with anyone writing a thesis based on already-published, joint work, I was faced

with the question, “To what extent should I rewrite what we’ve already done?”

Throughout, I have tried to make the content cohesive and more detailed when

possible. Moreover, I have made modifications which reflect my own view on the

work.

Nevertheless, the original papers often described our work as best as I know

how, and therefore parts of this thesis are very similar or identical to the writing

in its constituent papers. Therefore, not only the results but also the writing in

chapters corresponding to joint papers should be considered joint work with my

respective co-authors. Of course, all remaining and introduced errors are my own.

I thank all of my co-authors for allowing me to include our joint work in this
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thesis.

A note on open problems

A goal of mine for this thesis is to describe not only what I have done so far,

but what open questions remain. Throughout the thesis I have used the theorem

environment “Open Problem” to indicate open problems explicitly. I hope that

they will serve as a guide both for me and for others wishing to extend the work

described in this thesis in the future.
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Abstract

The unifying theme of this thesis is geometric algorithms, and somewhat more

specifically algorithmic aspects of geometric structures including quadtrees, Voronoi

diagrams, and lattices. It contains two parts, the first of which is on subdivision

algorithms, and the second of which is on lattice algorithms.

Part I of this thesis is on subdivision algorithms. In Chapter 1, we study the

amortized cost of smooth splits in quadtrees and their higher-dimensional analogs.

A quadtree is smooth if any two adjacent leaf boxes differ by at most one in

depth. A basic operation on a quadtree is to expand it by splitting any given leaf.

We analyze quadtrees that restore smoothness after each split operation and also

maintain neighbor pointers. Our main result shows that the smooth split operation

in such quadtrees has an amortized cost of at most 2D · (D + 1)! auxiliary split

operations, which corresponds to amortized constant time in quadtrees of any fixed

dimension D.

In Chapter 2, we present a subdivision-based algorithm for computing iso-

topic ε-approximatations of planar minimization diagrams. Given a family F =

{f1, . . . , fn} of continuous functions with fi : R2 → R, the minimization diagram

of F partitions the plane into regions on which fi is minimal. Minimization di-

agrams generalize many natural Voronoi diagrams, and we show how to use our

framework to compute an anisotropic Voronoi diagram on polygonal sites. We

have implemented a prototype of our algorithm for anisotropic Voronoi diagrams,

and provide experimental results. Our algorithm uses the smooth quadtree studied

in Chapter 1 as its primary underlying data structure. We note that the focus of

Chapter 2 is both more conceptual and more applied than other chapters.

Part II of this thesis is on lattice algorithms. In Chapter 3, we provide back-
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ground material about linear algebra and lattices for the following chapters. In

Section 3.3 we also give a high-level overview of the connections between funda-

mental domains, algorithms for the closest vector problem, and basis reduction

which builds context for notions of basis reduction studied in the remaining two

chapters.

In Chapter 4 we introduce and study the Lattice Distortion Problem (LDP).

LDP asks how “similar” two lattices are, i.e., what the minimum distortion of a

linear bijection between two lattices is. We first show that the distortion between

any two lattices is approximated up to a nO(logn) factor by a simple function of their

successive minima. Our methods are constructive, allowing us to compute low-

distortion mappings with a tradeoff between approximation quality and running

time. Our algorithms rely on a notion of basis reduction introduced by Seysen

(Combinatorica 1993), which we show is intimately related to lattice distortion.

Lastly, we show that LDP is NP-hard to approximate to within any constant factor

(under randomized reductions).

Finally, in Chapter 5 we study how to compute lattices bases that (approxi-

mately) minimize two basis quality measures. Namely, we study the problem of

finding bases B with low orthogonality defect δ(B) and with low Seysen condition

number S(B) (the quality measure used to bound the distortion between two lat-

tices in Chapter 4). Our main results are algorithms for computing bases B of a

lattice which minimize δ(B) and (1 + ε)-approximately minimize S(B), while run-

ning in time only depending only on the rank of the lattice times a polynomial in

the input length. Both algorithms are enumeration-based, and work by breaking

a lattice into pieces according to gaps in its successive minima, a technique which

may be of independent interest.
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Chapter 1

Amortized Analysis of Quadtree

Smoothing

This chapter is based on the publication [BY17] and its preliminary version [BY14],

both of which were joint work with Chee Yap.

1.1 Introduction

Quadtrees [dBCvKO08, FB74, Sam90] are a well-known data structure for rep-

resenting geometric data in two dimensions. In this case there exists a natural

one-to-one correspondence between quadtree nodes v and boxes B in an underly-

ing subdivision of a square; see Figure 1.1. (We therefore abuse notation slightly,

and refer to boxes and nodes interchangeably throughout this chapter.) Here we

consider the extension to a subdivision of a D-dimensional box in which an internal

node is a box containing 2D congruent sub-boxes.1 We refer the reader to Chapter

1We continue to use the term quadtrees for such higher-dimensional extensions, which are also
frequently called octrees for D ≥ 3.
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1 2 3 4

2 1

3 4

Figure 1.1: A quadtree (left) and its corresponding subdivision (right).

14 in [dBCvKO08] whose nomenclature we largely follow.

Two boxes (or nodes in a quadtree) are adjacent if the boxes share a (D − 1)-

dimensional facet, but have disjoint interiors. The neighbors of a box B are those

boxes adjacent to B. We call a quadtree smooth if any two adjacent leaf boxes

differ by at most one in height. Other sources use the term balanced to refer to this

condition, which we avoid in order to avoid conflation with the standard meaning

of balanced trees in computer science.

We study three operations on quadtrees: split, smooth, and neighbor query

as well as the hybrid operation ssplit which combines a split and a smooth.

A basic operation is a split of a leaf box B, written split(B). This divides B

into 2D congruent sub-boxes which become its children (B is no longer a leaf). A

split operation is a useful abstraction of many common operations performed on

quadtrees including point insertion and mesh refinement. A smooth operation per-

forms the unique minimum sequence of splits necessary to restore smoothness. A

smooth split operation ssplit(B) consists of performing a split split(B) followed

by a smooth of the resulting tree; see Figure 1.2.

Let d ∈ {±e1,±e2, . . . ,±eD} identify one of the 2D semi-axis directions (here

ei denotes the ith standard normal vector). If box B′ is a neighbor of B, and the

depth of B′ is maximal subject to depth(B′) ≤ depth(B) over all neighbors of B

3



split(B0) smooth

B0

B1 B1

Figure 1.2: A smooth split operation ssplit(B0). After performing split(B0),
the width of the leaf box B1 is four times the width of the children of B0, which are
its neighbor leaf boxes in the subdivision. (Equivalently, the depth of the children
of B0 is two more than the depth of B1 in the quadtree.) Therefore, the smooth

operation splits B1 as well to restore smoothness to the quadtree.

in direction d, then we call B′ the principal d-neighbor of B. We note that the

principal d neighbor of a box B is unique if it exists (it may not if B is on the

boundary of the subdivision). A neighbor query operation neighbor query(B, d)

returns the principal d-neighbor of B, or NULL if B is on the subdivision boundary

and has no d-neighbors.

In many quadtree applications, such as [WCY13] and Chapter 2, one is inter-

ested in the set of leaf neighbors of a box. The goal is to enumerate these in O(1)

time per leaf neighbor. We can achieve O(1) time neighbor queries by giving each

box a constant number of pointers to its principal neighbors. We can then enumer-

ate all leaf neighbors of a box by performing a neighbor query in each direction,

and enumerating the appropriate children of each neighbor. Without such point-

ers neighbor queries require Θ(h) time in order to traverse to the nearest common

ancestor in a tree of height h. We also motivate our work by showing that a tree

with neighbor pointers must maintain smoothness to ensure O(1) time splits.

This neighbor enumeration functionality makes smooth quadtrees useful in mo-

tion planning [WCY13]. They are also useful in other domains including good mesh

4



generation [dBCvKO08, BEG94].

1.1.1 The Smooth Quadtree Model

In this chapter we present and analyze a quadtree model that we call the smooth

quadtree, which maintains smoothness as an invariant between splits via the smooth

split operation, and maintains principal neighbor pointers. This model has been

proposed before such as in Exercise 14.8 in [dBCvKO08], but to the best of our

knowledge the complexity of smooth splits has never been studied rigorously. To

provide context for our smooth quadtree model, we discuss two options in designing

quadtrees:

1. A quadtree can either maintain or not maintain neighbor pointers. We use

the letters P (Pointer) and N (No Pointer) to denote this.

2. A quadtree can either maintain or not maintain smoothness as an invariant.

It maintains smoothness by replacing the split operation with ssplit. We

use the letters S (Smooth) and U (Unsmooth) to denote this.

If a quadtree maintains neighbor pointers, we assume that the pointers are to

its 2D principal neighbors. Then the neighbor query operation requires worst

case O(1) time. These considerations give rise to four models of quadtrees: PS, PU,

NS, NU, where our smooth quadtree corresponds to the PS quadtree model because

it maintains both pointers and smoothness. We also refer to the NU quadtree model

as the simple quadtree model, which is frequently used as the primary definition

of a quadtree (see, e.g., [dBCvKO08]). Intermediate between these two extreme

models are the PU and NS models. NS quadtrees are similar to PS quadtrees, but

5



Smooth (PS) NS PU Simple (NU)
neighbor query Θ(1) Θ(h) Θ(1) Θ(h)
ssplit/split Amortized Θ(1) Amortized O(h) Amortized Ω(log n) Θ(1)
smooth (Invariant) (Invariant) Ω(n log n) O((h+ 1)n)

Table 1.1: A comparison of the time complexity of operations in four two-
dimensional quadtree models. Here h denotes the height of the tree, and n denotes
the number of nodes in the tree. Costs are worst-case unless otherwise noted.
All four models have Θ(n) space complexity. The PU lower bounds for smoothing
and smooth splits follow from Lemma 1.2.8, and the NU upper bound for smooth-
ing follows from Fact 1.1.3. The PS and NS models maintain smoothness as an
invariant.

lose a factor of h in the cost of neighbor query and ssplit because traversing to

the nearest common ancestor requires Ω(h) time in the worst case.

Table 1.1 compares the cost of our three main operations on these quadtree

models. We use n to denote the number of nodes in a quadtree, and use h to

denote its height.

The smooth (PS) quadtree achieves improvements to the neighbor query and

smooth operations at the cost of split operations requiring amortized rather than

worst-case O(1) time. The O(1) time bounds for the ssplit and split operations

are for the “local operations”, i.e., when the algorithm already has a pointer to the

box it wishes to split and does not need to traverse from the root. This is common

in meshing applications which maintain a collection of boxes to be refined, such as

in [WCY13] and the subdivision-based approach to Voronoi diagrams described in

Chapter 2.

Algorithm 1 shows the simplicity of the algorithm for performing smooth splits:

simply recursively check whether any neighbors of a node need to be split to regain

smoothness. The correctness of this algorithm is also straightforward. Indeed, be-

cause we maintain smoothness as an invariant, the only boxes potentially violating

smoothness after ssplit(B) are the neighbors of B. Nevertheless, the analysis of

6



Algorithm 1: Smooth Split (ssplit)

Input: A smooth quadtree T and a leaf v ∈ T to split.
Output: The minimal smooth refinement T ′ of T such that v is split.
split(v)
foreach v′ ∈ principal neighbors(v) \ siblings(v) do

if depth(v′) < depth(v) then
ssplit(v′)

end

end

the amortized time complexity of smooth splitting is subtle.

1.1.2 Our Results

Let

m(n,D) := max
σ of length n

# of split operations in σ,

where σ ranges over all sequences of smooth splits of length n in an initially trivial

D-dimensional smooth quadtree, and define the asymptotic amortized cost of a

smooth split as

ss(D) := lim sup
n→∞

m(n,D)

n
.

The primary contribution of this chapter is to show that ss(D) is upper bounded

by a constant for any fixed dimension D, and in particular does not depend on n.

Because each split operation requires at most O(D · 2D)-time (to initialize each

of the 2D principal neighbor pointers of a node’s 2D children), this also implies

a constant upper bound on the time complexity of a smooth split operation for

any fixed D. We give a self-contained, simple proof of the 2-dimensional case in

Section 1.2, and prove the result for arbitrary dimensions in Section 1.3. More

formally, we show the following.
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Theorem 1.1.1. Starting from an initially trivial subdivision consisting of one

D-dimensional box B1 the total number of split operations performed in any

sequence of smooth splits ssplit(B1), . . . , ssplit(Bn) is at most 2D · (D+ 1)! · n.

Therefore, ss(D) ≤ 2D · (D + 1)!.

Additionally, we give lower bounds motivating our data structure and analysis.

In Section 1.2.4, we show that without smoothing we cannot achieve an amor-

tized constant cost for both splits and neighbor queries simultaneously even in two

dimensions. In Section 1.4 we prove a lower bound on ss(D), showing that the

exponential dependence on D in Theorem 1.1.1 is unavoidable. More formally, we

show the following.

Theorem 1.1.2. Starting from an initially trivial subdivision consisting of one

D-dimensional box B1 there exists a sequence of n + OD(1) smooth splits2 that

requires n · (D + 1) · 2D splits. Therefore, ss(D) ≥ (D + 1) · 2D.

Combining the bounds in Theorem 1.1.1 and Theorem 1.1.2, we get that

2D · (D + 1) ≤ ss(D) ≤ 2D · (D + 1)! . (1.1)

Besides being of theoretical interest, our smooth quadtree data structure is

useful in applications, such as the work described in Chapter 2 on computing a

general class of Voronoi diagrams using subdivision. We have implemented it as

part of the Core Library [Cor].3

2The notation OD(1) means that O(1) holds for any fixed D.
3The code is also available as a stand-alone package at https://github.com/hbennett/

SmoothQuadtree.
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1.1.3 Monolithic Smoothing

The following theorem is a well-known result, saying that a simple quadtree can

be smoothed using O(n) splits:

Fact 1.1.3 (Theorem 14.4 in [dBCvKO08], Theorem 3 in [Moo95]). Let T be a

simple quadtree with n nodes and of height h. Then the smooth version of T has

O(n) nodes and can be constructed in O((h+ 1) · n) time.

Fact 1.1.3 gives a bound for “monolithic” tree smoothing, the operation that we

call smooth in Table 1.1. It says that given an arbitrary quadtree we can smooth

it all at once in O((h + 1) · n) time using O(n) splits. In this chapter we study

“dynamic” tree smoothing in which we smooth the tree after each split, therefore

maintaining smoothness as an invariant.

Intuitively any single split operation should not “unsmooth” a quadtree much,

so only a few additional splits should be required to “resmooth” a tree after-

ward. To capture this intuition, we define a potential function which measures

how smooth a quadtree, and prove that no splitting operation increases it by more

than a small amount. This leads to Theorem 1.1.1.

Note that the worst-case linear bound in Fact 1.1.3 on the number of additional

smoothing splits required after each split does not suffice to prove Theorem 1.1.1.

1.1.4 Related Work

In recent work Löffler et al. [LSS13] recognize that maintaining smoothness “could

cause a linear ‘cascade’ of cells needing to be split.” This cascading behavior –

what we define formally in terms of forcing chains – is the focus of our analysis

and main result.

9



A natural question asks whether there exists a worst-case O(1) time algorithm

for smooth splitting a box B. The most natural such algorithm would recursively

check whether neighbors of a split box must themselves be split, as in Algorithm 1,

but would only recurse to some fixed depth. However, a forcing chain may be

arbitrarily long in general meaning that this approach does not work in our model.

We may generalize the notion of smoothness as follows: call two neighbors k-

smooth if the boxes differ in height by at most k in the quadtree. In two dimensions

this is equivalent to having at most 2k neighbors in a given direction. We have

used the term “smoothness” to denote 1-smoothness. A natural question asks

whether the relaxed smoothness constraint induced by increasing k would lead to

a worst-case O(1) algorithm. In general, this does not help because a forcing chain

may still be arbitrarily long.

However, Löffler et al. [LSS13] sketch an O(1) worst-case algorithm for perform-

ing smooth splits in a related quadtree model. The most important distinction in

their model comes from defining two types of quadtree nodes – true cells which

would be present in any unsmoothed quadtree, and B -cells which are only present

to ensure smoothness. Different smoothness invariants hold for these two types of

cells – true cells are required to be 1-smooth with respect to their neighbors while

B-cells are only required to be 2-smooth. The splitting operation is defined on

true cells whose children are not true cells. If a true cell A has B-cells as children

then ssplit(A) promotes the children of A to true cells.

The algorithm sketched in the paper omits details and a proof of correctness

for several key points, such as the promotion of B-cells to true cells, however it

appears to be correct. The model differs from ours in that it only allows splits on

“true” nodes, maintains a weaker balance invariant, and requires more complicated

10



algorithms. Our result, although requiring involved analysis, shows that smoothing

is efficient using a simple algorithm and quadtree model.

Moore [Moo92, Moo95] proves that “monolithic” smoothing of arbitrary quadtrees

requires O(n) splits as given in Fact 1.1.3. Although this result seems to have

been known earlier, Moore reproves this result in [Moo95] for basic quadtrees us-

ing a gadget called a “barrier”, and then extends the result to generalizations

of quadtrees including triangular quadtrees, higher degree quadtrees, and higher

dimensional quadtrees.

In [dBRS12], de Berg et al. study refinement of compressed quadtrees. They

consider a refinement T1 of a quadtree T0 to be an extension of T0 in which all

boxes that were in T0 have O(1) neighbors in T1. This is a relaxation of the notion

of smoothing both in terms of the precise number of neighbors that a box may

have (which is simply assumed to be bounded, but not by a particular constant)

and in the sense that boxes in T1 need not be smooth with respect to each other.

The authors prove that a refinement of a compressed quadtree may be performed

in O(n) time, where n is the size of the quadtree. This result has a similar flavor

to the “monolithic” smoothing result described in Fact 1.1.3.

Amortized analysis of quadtree operations has appeared in previous work. Park

and Mount [PM12] introduce the splay quadtree, in which they use amortized anal-

ysis to analyze the cost of a sequence of data accesses in a quadtree whose balance

is dynamically updated using rotations in a similar manner to standard splay

trees. Overmars and van Leeuwen [OvL82] analyze dynamic quadtrees, studying

the amortized (what they call average-case) cost of insertions into quadtrees.

Recently Sheehy [She] proposed extending results in his previous work on op-

timal mesh sizes [She12] to prove the efficient smoothing results presented in this
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chapter. A reviewer of [BY14] proposed a similar proof strategy based on Rup-

pert’s work on local feature size [Rup93]. Future work involves studying these

continuous techniques, and determining whether the approach is both viable and

leads to better bounds than those given by the combinatorial approach used in

this chapter.

1.1.5 Open Questions

The most natural open question related to our work is whether one can improve

our amortized OD(1)-time bound for smooth splitting to a worst-case OD(1)-time

bound.

Because forcing chains can have length Ω(n) after n smooth splits, our algo-

rithm requires Ω(n) splits in the worst case. (See the lower bound construction in

Section 1.4). However, one can imagine making “preemptive splits” to avoid this

problem.

Open Problem 1.1.4. Is there a worst-case OD(1)-time algorithm for smooth

splitting in smooth quadtrees?

Another basic question is whether our bounds on ss(D) can be improved.

Open Problem 1.1.5. Improve the bounds on ss(D) given in Equation (1.1).

Sheehy [She] proposed extending results in his previous work on optimal mesh

sizes [She12] to prove the efficient smoothing results presented in this chapter.

A reviewer of [BY14] proposed a similar proof strategy based on Ruppert’s work

on local feature size [Rup93]. Future work involves studying these continuous

techniques, and determining whether the approach is both viable and leads to

better bounds than those given by the combinatorial approach that we use.
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Open Problem 1.1.6. Does the use of continuous techniques lead to a better

upper bound on ss(D)?

Finally, we ask whether our techniques work for proving amortized smoothing

bounds for the refinement of other types of subdivisions. Moore [Moo95] considers

triangular subdivisions, and Atalay and Mount [AM06] consider the cost of refining

a simplicial mesh.

Open Problem 1.1.7. Can we extend our techniques to prove amortized bounds

on the cost of refining other types of subdivisions?
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1.2 The 2-Dimensional Case

We start by giving a self-contained proof of Theorem 1.1.1 for the special case

of 2-dimensional quadtrees that develops most of the essential ideas for the D-

dimensional case. Namely, we prove the following:
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Theorem 1.2.1 (2-dimensional case of Theorem 1.1.1). Starting from an ini-

tially trivial subdivision consisting of one 2-dimensional box B1, the total cost of

any sequence of smooth splits ssplit(B1), . . . , ssplit(Bn) is O(n). Therefore the

amortized cost of a smooth split is O(1).

1.2.1 Definitions

Suppose that a box B is adjacent to a box B′ and depth(B) > depth(B′). In that

case, we say that B forces B′ or B=⇒B′. The forcing terminology comes from our

main application, the analysis of smoothing: supposeB,B′ belongs to a subdivision

S. If we split B, then we are forced to split B′ and possibly other boxes in order to

smooth the resulting subdivision. More precisely, let depth(B)−depth(B′) = k ≥

1. Then we must split B′ and recursively split exactly k − 1 proper descendants

of B′ in order to maintain smoothness in S. Of course if S was originally smooth,

then no child of B′ needs to be further split. We will mostly deal with the case

where S is originally smooth and in this case we always have k = 1.

A forcing chain B1=⇒B2=⇒· · ·=⇒Bm is a sequence of boxes B1, . . . , Bm such

that Bi=⇒Bi+1 for every i ∈ [m− 1]. 4 Call B1 the head of this chain. A forcing

chain is maximal if it cannot be extended to a longer chain. Let the forcing graph

F (B) be the directed acyclic graph rooted at B, whose maximal paths are all the

maximal chains beginning at B. In other words, the boxes in F (B) are exactly

those that would be split as part of the operation ssplit(B).

We write B
d

=⇒B′ (resp. B′
d

=⇒B′) and say that B′ is d-forced (resp. d-forcing)

if B=⇒B′ and B′ is a d-thern neighbor of B.5 Here a direction d is specified by a

4Recall that the notation [n] denotes the set of integers {1, . . . , n}.
5This last notation derives from the cardinal directions such as “northern”.
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standard normal unit vector ei or its negation −ei.

We write ∗=⇒B if there exists B′ such that B′=⇒B, and similarly write B=⇒∗

if there exists B′ such that B=⇒B′. Lastly, we denote the parent of a box B as

p(B), and the kth ancestor of a box as pk(B).

1.2.2 Reasoning about Forcing Chains

The following sequence of lemmas reasoning about forcing chains leads to the proof

of Theorem 1.2.1.

Lemma 1.2.2. A box B1 heads at most two non-trivial maximal chains.

Proof. We get an immediate upper bound of 2 on the number of chains that can

be headed by a box B1 since a box will never force in the direction of an adjacent

sibling of which every box has two. Furthermore, we show that ∗=⇒Bi implies

that there exists at most one box Bi+1 such that Bi=⇒Bi+1. Since the head B1 of

a splitting chain Bi is the only box in a splitting chain which may not be forced

itself, this will imply that there are at most two splitting chains caused by splitting

a box B1.

Clearly, if ∗ d
=⇒Bi then Bi 6−d=⇒ ∗. There are then 3 other directions Bi may

force in. We consider two cases, as shown in Figure 1.3:

• Case I, p2(Bi−1) = p(Bi): A box in one of the remaining three directions is

a sibling of Bi. A box in another direction, A, must exist and be split to at

least the level of Bi because p(A) is adjacent to Bi−1 (or a sibling of Bi−1 of

the same size). These must both be split to at least the level of Bi, leaving

a single possibility for Bi+1.
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Bi

=⇒
=⇒

=⇒
Bi+1

Bi−1

B′i−1

A

Bi =⇒

=⇒ =⇒ =⇒
Bi+1

B′i−1Bi−1
B′i

Case I Case II

Figure 1.3: Two cases for the forcing relationships between quadtree boxes: Case
I, p2(Bi−1) = p(Bi), and Case II, p2(Bi−1) 6= p(Bi). The arrows denote forcing
relationships between boxes. Principal neighbors of Bi other than p(Bi−1) which
must be split to at least the level of Bi are colored gray.

• Case II, p2(Bi−1) 6= p(Bi): Boxes in two of the possible three remaining

directions are siblings of Bi. These must both be split to at least the level of

Bi, leaving a single possibility for Bi+1.

Lemma 1.2.3. Assume B1, B2 are boxes in a smooth quadtree, and that ∗ d
=⇒B1=⇒B2

for some d. Then ∗ d
=⇒B2.

Proof. We again refer to Figure 1.3, and evaluate each case separately:

• Case I, p2(Bi−1) = p(Bi): Here Bi−1
d

=⇒Bi
d

=⇒Bi+1 so the claim trivially

holds.

• Case II, p2(Bi−1) 6= p(Bi): We have assumed that Bi−1
d

=⇒Bi
d′

=⇒Bi+1 where

d 6= d′. In this case, either Bi−1 or its d′-thern sibling must have B′i as its

d′-thern neighbor. However B′i must be a (−d)-thern neighbor of Bi+1, but

of greater depth. Therefore B′i
d

=⇒Bi+1 and the claim holds.
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By transitivity we conclude:

Corollary 1.2.4. If B1
d

=⇒B2=⇒· · ·=⇒Bn then Bi is d-forced for i ≥ 2.

The following additional corollary says that a forcing chain may go in at most

two directions:

Corollary 1.2.5. Given a forcing chain B1
d1=⇒B2

d2=⇒· · · dn−1
=⇒Bn, we have that

|{di : i ∈ [n− 1]}| ≤ 2.

Proof. Clearly, if ∗ d
=⇒B then B 6−d=⇒ B, and it follows that a box may force in at

most two directions. However, Lemma 1.2.3 shows that ∗ d
=⇒Bi=⇒Bi+1 implies

that ∗ d
=⇒Bi+1, meaning that a box in a forcing chain is always forced in all of the

same directions as its predecessors. Therefore, if Bi is forced in two directions then

for all j > i, Bj is also forced in the same two directions, and cannot force in any

additional directions.

Lemma 1.2.6. If for some boxes B1, B2, B3 we have B1
d

=⇒B2
d

=⇒B3 then B2 has

a split sibling.

Proof. Figure 1.4 shows the idea behind Lemma 1.2.6. Because B2
d

=⇒B3 we have

that B2 is a d-thern child of its parent, meaning that its (−d)-thern neighbor of

the same size is also its sibling.

Furthermore, because B1
d

=⇒B2, we have that B1 is a (−d)-thern neighbor of

B2. Because B1 has side length exactly half that of B2, it follows that p(B1) and

B2 are siblings. Finally, because p(B1) has B1 as a child it is split.
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B1

B2

B3

Figure 1.4: A two-link forcing chain B1
d

=⇒B2
d

=⇒B3 implies that B2 has a split
sibling. In particular, the dotted boxes must exist, and therefore the parent of B1

must be split and a sibling of B2.

B1

B2

B3

B4

B′
3

Figure 1.5: A forcing chain B1
d

=⇒B2
d

=⇒B3
d′

=⇒B4 of four nodes illustrating
Lemma 1.2.7. Note that B1 and B3 have no split siblings, and B4 may also be the
northwest child of its parent, and therefore also may not have any split siblings.
Box B2, on the other hand, satisfies Lemma 1.2.6. Furthermore, B4 is d-forced
although not by B3.
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Lemma 1.2.7 (Main Lemma). At most three nodes in a forcing chain B1
d1=⇒B2

d2=⇒· · · dm−1
=⇒Bm

have no split siblings.

Proof. We combine Corollaries 1.2.4 and 1.2.5 with Lemma 1.2.6 to prove the Main

Lemma. Assume without loss of generality that there exists a minimum index i

such that di 6= d1. We show that each of the boxes B1, Bi, and Bm may not have

a split sibling and that all other boxes in the forcing chain do. (If di = d1 for all

i ∈ [m− 1], then we show that only B1 and Bm may not have a split sibling)

If Bj−1
d

=⇒Bj
d

=⇒Bj+1 then Bj has a split sibling by Lemma 1.2.6. Box B1

need not be forced from any direction, and Bm need not force in any direction,

so Lemma 1.2.6 does not apply. Furthermore, ∗ d1=⇒Bi, but Bi 6d1=⇒ ∗, so again

Lemma 1.2.6 does not apply.

To see that all other boxes must have split siblings we consider two cases:

(i) Case 1 < j < i: We have that Bj−1
d1=⇒Bj

d1=⇒Bj+1 by assumption that dj = d1

for all j < i. Therefore Lemma 1.2.6 applies to Bj.

(ii) Case i < j < m: We have that Bj
dj

=⇒Bj+1 where dj ∈ {d1, di} since by

Corollary 1.2.5 a forcing chain may go in at most two directions. Furthermore,

by Corollary 1.2.4, ∗ d1=⇒Bj and ∗ di=⇒Bj meaning that either ∗ d1=⇒Bj
d1=⇒Bj+1

or ∗ di=⇒Bj
di=⇒Bj+1. In either case Lemma 1.2.6 applies to Bj.

1.2.2.1 Potential Function

Using the characterization of boxes in a forcing chain given in Lemma 1.2.7, we

define the following potential function for a node v ∈ T :
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∆Φ1 = 0 ∆Φ2 = 3 ∆Φ3 = −1

Figure 1.6: Example of the three cases presented in Equation 1.4. We consider the
change each split has on Φ(v), where v corresponds to the outer red box in each
case.

Φ(v) :=

 0 if no children of v have been split,

# of unsplit children of v otherwise.
(1.2)

We also extend this definition to give a potential function for the quadtree:

Φ(T ) :=
∑
v∈T

Φ(v). (1.3)

We note that Φ(v) = 0 if either all or none of the children of v are split.

Furthermore, if v is itself a leaf then Φ(v) = 0 vacuously. It follows that only par-

ents of leaf nodes have non-zero contribution to the potential Φ(T ). Furthermore,

splitting a node changes the potential of at most one node (its parent).

Let T be a quadtree, and T ′ be the quadtree resulting from splitting a leaf v.

Splitting v does not change the potential of v, but changes the potential of the

parent p(v) of v by either 3 if p(v) had no split children or −1 if p(v) had other

split children. A leaf v always has a parent except when v is the root of the tree.

We then get the following:
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∆Φ = Φ(T ′)− Φ(T ) =


0 If v is the root of T ,

3 If v has no split siblings,

−1 If v has a split sibling.

(1.4)

Because the first case only occurs on the first split, in which case only a single

box splits and ∆Φ = 0, it suffices to consider the last two cases for our analysis.

1.2.3 Upper Bound

We now give the proof of Theorem 1.2.1 using the Main Lemma.

Proof of Theorem 1.2.1. We set the cost of a single split operation split(Bj) to

be costj = 1. To prove a constant amortization bound, we need to show that for

each smooth split operation ssplit(Bi) there exists chargei = O(1) such that

chargei ≥
∑

j:Bj∈F (Bi)

(costj +∆Φj),

where ∆Φj denotes the quadtree’s change in potential from executing split(Bj).

By Equation (1.4) we have

costj +∆Φj =

 4 if Bj has no split siblings,

0 if Bj has a split sibling.
(1.5)

By Lemma 1.2.7 at most three boxes per forcing chain have no split sib-

lings. Furthermore, by Lemma 1.2.2 a box B0 heads at most two forcing chains.

Combining these observations with Equation (1.5) shows that it suffices to set

chargei = 4 · 3 · 2 = 24.

We are interested in precise upper and lower bounds on ss(D), especially for
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small D (say, D ≤ 3). We first remark that it suffices to set chargei = 20 rather

than 24 in the preceding proof. This is because we charged separately for the

head of each of the two possible chains, but actually B1 is the head of both. In

Theorem 1.1.2, we give general bounds which imply an asymptotic amortized cost

of at least 12 in the 2-dimensional case. Putting these two bounds together, we

get that 12 ≤ ss(2) ≤ 20. As perhaps the most interesting special case of Open

Problem 1.1.5, we ask what the right value of ss(2) is.

1.2.4 A Lower Bound for PU-Quadtrees

The motivation for studying the quadtree model presented in this chapter comes

from the ineffectiveness of other natural models to support both efficient

neighbor query and split operations. We next analyze what happens if we use

our model but without smoothing.

Suppose that we maintain principal neighbor pointers in an unsmoothed sub-

division, i.e., the PU quadtree model in Table 1.1. The following lemma gives an

amortized Ω(log n) lower bound on the time complexity of a split in this model,

based on the high number of neighbor pointer updates required:

Lemma 1.2.8. Let B1 denote the root box of a 2-dimensional PU quadtree. Then,

in the worst case, a sequence of n splits split(B1), . . . , split(Bn) followed by a

smooth operation requires Ω(n log n) time.

Proof. We refer to the setup shown in Figure 1.7, where the boxes are subdivided

on the left in the first stage, and then subdivided on the right in the second stage.

The boxes on the boundary of the halves are split to depth k + 1 on the left, and

depth k on the right. The splits performed in the second stage are exactly those
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Figure 1.7: A sequence of splits leading to an unsmooth PU subdivision (left) and a
sequence of smoothing splits (right) that requires amortized log n pointer updates
between boxes on opposite sides of the dotted center line per split.

needed to smooth the quadtree after the splits in the first stage.

After an initial split of the rootbox, the first stage requires
∑k

i=1 2i = 2k+1 − 2

additional splits and the second stage requires 2k − 2. The total number of splits

is therefore n = 1 + (2k+1 − 2) + (2k − 2) = Θ(2k).

For the lower bound we consider only updates to the principal neighbor pointers

of boxes on the left half which point to boxes on the right half (across the vertical

center line) in the second splitting phase. We must update 2k−i such pointers for

each of the 2i boxes of depth i that we split in the second phase. We therefore

must update
∑k−1

i=1 2i2k−i−1 = (k − 1) · 2k−1 = Θ(n log n) pointers.

Because the splits performed in the second stage were exactly those required

to smooth the quadtree after the first stage, this proves both the amortized bound

for split operations and the worst-case bound for the smooth operation.
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1.3 The Higher Dimensional Case

We next prove Theorem 1.1.1 in higher dimensions. To do this we will need to

develop some additional notation and concepts. As in the 2-dimensional case,

the idea behind the proof is to analyze what conditions lead to smooth splits

propagating through the data structure, and to show that a suitably defined cost-

potential invariant is only violated a bounded number of times per smooth split.

In Section 1.3.1 we introduce terminology related to our proofs. Next, in Sec-

tion 1.3.2 we prove results reasoning about forcing chains of length two. These

are very similar to those given in Section 1.2.2 for the 2-dimensional case, but

formalized differently. After that, in Section 1.3.3 we introduce the key new idea

for the higher dimensional case. Namely, we show that the number of direction

in which a box is forced increases along any path in F (B), which allows us to

conclude that the number of directions in which it forces decreases. Finally, in

Section 1.3.4 we use the tools we have developed and the same potential function

as in the 2-dimensional case to prove Theorem 1.1.1.

1.3.1 Notation for the higher-dimensional case

We consider a (higher-dimensional) quadtree which forms a subdivision of the D-

dimensional hypercube [−1, 1]D for D ≥ 1. If boxes B and B′ are neighbors, there

is a unique direction such that B′ is adjacent to B in direction d, which we denote

by B
d−→B′. Clearly, B

d−→B′ if and only if B′
−d−→B. We simply write B−→B′ to

indicate that there exists some d such that B
d−→B′.

Let p(B) denote the parent of box B (this is well-defined except when B is the

root), and let pn(B) denote the nth ancestor of B for any n ≥ 0. Additionally, we
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write B ≺ B′ if B is a child of B′.

We define the (co-)projection of a box B = I1 × · · · × ID with respect to index

i ∈ [D] as follows.

• (Projection) Proji(B) :=
∏D

j=1,j 6=i Ij.

• (Co-Projection) Coproji(B) := Ii.

Note that Proji(B) is (D−1)-dimensional, while Coproji(B) is 1-dimensional.

We define the indexed Cartesian product ⊗i so that any box B can be recovered

from its corresponding projection and co-projection:

B = Coproj
i

(B)⊗i Proj
i

(B). (1.6)

As a convention, if d is a direction then we may write Projd(B) (resp. Coprojd(B))

instead of Proji(B) (resp. Coproji(B)). Note that projecting (resp. co-projecting)

the set of boxes in an aligned subdivision induces a new subdivision of dimension

D − 1 (resp. dimension 1).

1.3.1.1 Forcing Chains

Recall that a sequence of forcing relations

C : B0
d1=⇒B1

d2=⇒· · · dk=⇒Bk (1.7)

is called a forcing chain. The set {d1, . . . , dk} are the directions of C; we say C is

monotone if its direction set does not contain any pair of opposite directions.

The following lemma follows from the definition of forcing.
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Lemma 1.3.1. The forcing relationship B
d

=⇒B′ is equivalent to the following two

conditions:

(i) Projd(B) ≺ Projd(B
′),

(ii) Coprojd(B)=⇒ Coprojd(B
′).

Note that conditions (i) and (ii) refer to child and forcing relationships in

dimensions D − 1 and 1, respectively.

1.3.2 Analysis of Two Link Chains

In this part, we consider chains with two links, i.e., chains of the formB
d

=⇒B′ d
′

=⇒B′′.

Our analysis consists of analyzing the cases d = d′ and d 6= d′. The first case al-

ready arises in one dimension.

Lemma 1.3.2 (One Direction). Suppose I=⇒I ′=⇒I ′′ holds for intervals in a

smooth subdivision. Then p2(I) = p(I ′).

We omit the easy proof, which is shown in Figure 1.3, Case I. Note that p2(B) =

p(B′) means that p(B) and B′ are siblings.

We show that this works in higher dimensions as well, but we now need an

additional condition. When D = 1, the fact that I=⇒I ′=⇒I ′′ implies that there

is a direction d such that I
d

=⇒I ′ d
=⇒I ′′. In higher dimensions, we must explicitly

specify this requirement. Figure 1.3, Case I illustrates two cases in D = 2.

Theorem 1.3.3 (One Direction). Suppose B
d

=⇒B′ d
=⇒B′′ holds for boxes in a

smooth subdivision. Then p2(B) = p(B′).
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Proof. Without loss of generality, assume that d = e1. Then

B = I × E, B′ = I ′ × E ′, B′′ = I ′′ × E ′′,

where I=⇒I ′=⇒I ′′ and E ≺ E ′ ≺ E ′′ by Lemma 1.3.1. This implies that p(E) =

E ′ or

p2(E) = p(E ′) = E ′′. (1.8)

By Lemma 1.3.2, we conclude that

p2(I) = p(I ′). (1.9)

But Equations (1.8) and (1.9) together imply that p2(I × E) = p(I ′ × E ′), which

is what our theorem claims.

The second phenomenon arises for D ≥ 2 for forcing chains of the form

B
d

=⇒B′ d
′

=⇒B′′ where d 6= d′.

Lemma 1.3.4 (Two Directions). Let B,B′, B′′ be boxes in a smooth subdivision

of [−1, 1]2, and suppose that B
d

=⇒B′ d
′

=⇒B′′ for some d 6= d′. Then p2(B) 6= p(B′).

We omit the elementary proof, which is illustrated in Figure 1.3, Case II. We

next extend this result to higher dimensions.

Theorem 1.3.5 (Two Directions). Consider boxes in a smooth subdivision of

[−1, 1]D (D ≥ 2). Suppose B
d

=⇒B′ d
′

=⇒B′′ holds where d 6= d′. Then p2(B) 6=

p(B′).
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Proof. We must have that d 6= ±d′, so without loss of generality assume that

d = e1 and d′ = e2. We can then write

B = I × J × E,

B′ = I ′ × J ′ × E ′,

B′′ = I ′′ × J ′′ × E ′′,

for some intervals I, I ′, I ′′, J, J ′, J ′′ and (D−2)-dimensional boxes E,E ′, E ′′. From

the premise B
d

=⇒B′ d
′

=⇒B′′, we conclude that

I
d

=⇒ I ′ ≺ I ′′,

J ≺ J ′
d′

=⇒ J ′′,

E ≺ E ′ ≺ E ′′.

Therefore

(I × J)
d

=⇒ (I ′ × J ′) d′
=⇒ (I ′′ × J ′′),

and therefore Lemma 1.3.4 implies that p2(I × J) 6= p(I ′ × J ′). This implies that

p2(B) 6= p(B′).

The next result is a kind of commutative diagram argument whose proof de-

pends on Theorem 1.3.5. We first give the result in two dimensions (see Figure 1.8).

Lemma 1.3.6 (Commutative Diagram). Let B, B′, and B′′ be boxes in a smooth

subdivision of [−1, 1]2. Suppose B
d

=⇒B′ d
′

=⇒B′′ holds for some d 6= d′. Then there

exists a box A′ such that A′
d

=⇒B′′.
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B

A
B′

B′′

A′

p(A′)

p2(B) p(B′)

J
J ′

J ′′

I
I ′

I ′′

Figure 1.8: A commutative diagram for forcing.

Proof. Let

B = I × J

B′ = I ′ × J ′

B′′ = I ′′ × J ′′,

as illustrated by Figure 1.8. Without loss of generality, let d = (1, 0) and d′ = (0, 1)

so that

I =⇒ I ′ ≺ I ′′,

J ≺ J ′ =⇒ J ′′.

By Lemma 1.3.4, p2(B) 6= p(B′). And since B
d

=⇒B′, B ⊆ p2(B) and B′ ⊆

p(B′), we conclude p2(B)
d−→p(B′). Likewise, B′

d′
=⇒B′′ implies p(B′)

d′−→B′′. Sum-

marizing, we have shown that

p2(B)
d−→p(B′) d′−→B′′. (1.10)
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Since p2(B), p(B′) and B′′ are all at the same depth, Equation (1.10) implies

p2(I) −→ p(I ′) = I ′′,

p2(J) = p(J ′) −→ J ′′.

By an application of Equation (1.6), there is an aligned box p(A′) = p2(I)×J ′′

at the depth of B′′ that completes Equation (1.10) into the following commutative

diagram:

p2(B) p(B′)

p(A′) B′′

d′

d

d

d′ (1.11)

As illustrated in Figure 1.8, the commutative diagram involves four adjacent

boxes at the same depth. From Equation (1.11), we see that there is a box A in the

subdivision with p(A) = p(B) and A
d

=⇒B′, A
d′−→p(A′). This last relationship

would violate smoothness if p(A′) belongs to our subdivision, since depth(p(A′))−

depth(A) = 2. Hence there is a child A′ of A′ such that A
d′

=⇒A′ d
=⇒B′′. Moreover,

A′ must belong to the subdivision because otherwise, if it split, it would have

a child C
d

=⇒B′′, which would violate smoothness. We thus have the following

commutative (forcing) diagram which establishes our lemma:

A B′

A′ B′′

d′

d

d

d′ (1.12)
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The previous lemma is best understood in terms of a commutative diagram as

shown in Figure 1.8. It says that there exists some A where p(A) = p(B) and some

A′ such that A
d

=⇒B′ d
′

=⇒B′′ and A
d′

=⇒A′ d
=⇒B′′. The lemma also holds in higher

dimensions, as stated in the following theorem. Intuitively this is because we can

project the higher dimensional subdivision into the plane spanned by directions

d, d′ and then apply the lemma.

Theorem 1.3.7 (Commutative Diagram). Consider boxes in a smooth subdivision

of [−1, 1]D for D ≥ 2. Suppose B
d

=⇒B′ d
′

=⇒B′′ holds for some d 6= d′. Then there

exists a box A′ in the subdivision such that A′
d

=⇒B′′.

Proof. To construct A′, let us assume without loss of generality that d = e1 and

d′ = e2. We can thus write

B =I × J × E,

B′ =I ′ × J ′ × E ′,

B′′ =I ′′ × J ′′ × E ′′,

where the I’s and J ’s are intervals. From the premise B
1

=⇒B′ 2
=⇒B′′, we conclude

that

I =⇒ I ′ ≺ I ′′,

J ≺ J ′ =⇒ J ′′,

E ≺ E ′ ≺ E ′′.

Therefore,

I × J d
=⇒ I ′ × J ′ d′

=⇒ I ′′ × J ′′,

and by Lemma 1.3.6, there exists Â such that Â
d

=⇒I ′′ × J ′′. Therefore, Â ×
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E ′
d

=⇒I ′′ × J ′′ × E ′′. Our theorem follows by choosing A′ = Â× E ′.

1.3.3 Monotonicity of Forcing Chains

Theorem 1.3.7 motivates the following notions about forcing. Recall that if there

exists A such that A
d

=⇒B then we say B is d-forced, and if there exists A such

that B
d

=⇒A then we say that B is d-forcing.

Let R(B) denote the set of directions d such that B is d-forced, and let r(B) =

|R(B)| be its cardinality. Note that 0 ≤ r(B) ≤ 2D. Similarly, let S(B) denote

the set of directions d in which B is d-forcing, and let s(B) = |S(B)|. Note that

0 ≤ s(B) ≤ D. Furthermore, note that R(B)∩−S(B) = ∅ holds because B
d

=⇒B′

implies that B /−d=⇒ B′.

The following result is a direct consequence of Theorem 1.3.7.

Corollary 1.3.8. For boxes in a smooth subdivision, B=⇒B′ implies R(B) ⊆

R(B′) and hence r(B) ≤ r(B′).

In a general subdivision, we could have non-monotone chains (i.e., a chain

whose directions include both d and −d for some d). However, we show next that

smoothness implies monotone chains.

Lemma 1.3.9. Chains in a smooth subdivision are monotone.

Proof. Consider any chain as in Equation (1.7). It follows from Corollary 1.3.8 that

{d1, . . . , di} ⊆ R(Bi) for each i. It suffices to note that −di+1 /∈ R(Bi) and di+1 ∈

S(Bi). Indeed, because R(B) ∩ −S(B) = ∅, this shows that −di+1 /∈ R(Bi).

If A=⇒B and p2(A) = p(B), then we call p(A) a split adjacent sibling of B.

The next lemma upper bounds s(B) when B has split adjacent siblings.
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Lemma 1.3.10. Let B be a box in a smooth subdivision. Then:

(i) If B has exactly one split adjacent sibling, then s(B) ≤ 1.

(ii) If B has at least two split adjacent siblings, then s(B) = 0.

Proof. We prove each case. Case (i): by assumption there is a direction d and box

A such that A
d

=⇒B and p2(A) = p(B). Assume for contradiction that s(B) ≥

2. Then there is some d′ 6= d and B′ such that A
d

=⇒B d′
=⇒B′. But then by

Theorem 1.3.5, p2(A) 6= p(B), which is a contradiction.

Case (ii): By assumption, there are two directions d 6= d′ and boxes A,A′ such

that A
d

=⇒B and A′
d′

=⇒B, and p2(A) = p2(A′) = p(B). Assume for contradiction

that s(B) > 0. Then there exists B′ such that B
d′′

=⇒B′ for some d′′. So d′′ 6= d

or d′′ 6= d′. Without loss of generality, suppose d′′ 6= d. Since A
d

=⇒B d′′
=⇒B′,

Theorem 1.3.5 implies that p2(A) 6= p(B), contradiction.

The next result shows that r(B) must increase whenever B can force in more

than one direction.

Lemma 1.3.11. Let B=⇒B′ in a smooth subdivision. If s(B) > 1 then r(B′) >

r(B).

Proof. Since s(B) > 1, there are two directions d, d′ such that B
d

=⇒∗ and B
d′

=⇒∗.

Without loss of generality, let B
d

=⇒B′ and B
d′

=⇒A′ for some A′ in the subdivision.

We already know that r(B) ≤ r(B′). Clearly, d ∈ R(B′). So the inequality

r(B) < r(B′) follows if we show that d /∈ R(B). By way of contradiction, assume

d ∈ R(B). So there exists a box A in the subdivision such that A
d

=⇒B d
=⇒B′.

By Theorem 1.3.3, p2(A) = p(B). However, we also have A
d

=⇒B d′
=⇒A′. By

Theorem 1.3.5, p2(A) 6= p(B). This is our contradiction.
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The next lemma shows that high r(B) implies low s(B).

Lemma 1.3.12. For any non-root box B,

s(B) ≤


0 if r(B) > D, (Case (i))

1 if r(B) = D, (Case (ii))

D − r(B) if r(B) < D. (Case (iii))

(1.13)

Proof. Since B is not the root it has D siblings A1, . . . , AD with corresponding,

distinct directions d1, . . . , dD such that Ai
di−→B. Let N(B) = {d1, . . . , dD} and

let −N(B) = {−d1, . . . ,−dD}. Note that S(B) ⊆ N(B) and recall that R(B) ∩

−S(B) = ∅. Note that |R(B) ∩N(B)| indicates the number of split adjacent

siblings of B. We consider each case in Equation (1.13).

(i) r(B) > D. There are two possibilities: if |R(B) ∩N(B)| > 1 then Lemma 1.3.10

implies that s(B) = 0, as desired. Otherwise by Lemma 1.3.10, |R(B) ∩N(B)| =

1. This means that r(B) = D+ 1 and −N(B) ⊆ R(B). In other words, B is

forced by D non-sibling-neighbors. This implies that s(B) = 0.

(ii) r(B) = D. If |R(B) ∩N(B)| ≥ 1, then Lemma 1.3.10 implies that s(B) ≤ 1,

as desired. Otherwise R(B) = −N(B) and s(B) = 0 as in case (i).

(iii) r(B) < D. If |R(B) ∩N(B)| ≥ 1, then Lemma 1.3.10 implies that s(B) ≤ 1

as in case (ii). Otherwise R(B) ∩ N(B) = ∅ so R(B) ⊆ −N(B). Since

S(B) ⊆ (−N(B)) \R(B), we conclude that s(B) ≤ D − r(B), as desired.
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Let B ∈ T . Recall that the forcing graph F (B) of B is the directed acyclic

graph rooted at B, whose maximal paths are all the maximal chains beginning at

B. The smooth split of B amounts to splitting every node in F (B). Each node

B′ in F (B) has s(B′) children, so B′ is a leaf (or sink) if and only if s(B′) = 0. If

s(B′) > 1, we call B′ a branching node. Note that F (B) would be a tree rooted at

B if all the maximal chains are disjoint except at B. However, in general, maximal

chains can merge.

Using Lemmas 1.3.11 and 1.3.12 we get the following about F (B).

Theorem 1.3.13. Let B be a box in a smooth subdivision. There are at most

(D − r(B))! maximal paths in the forcing graph F (B), where we define x! = 1 for

x ≤ 0.

Proof. Write r for r(B). The result holds if there are no branching nodes, which

in particular is true if r ≥ D − 1 by Lemma 1.3.12. In these cases, F (B) consists

of a single path, and (D − r)! = 1.

So assume that r ≤ D − 2 and that there are branching nodes. Then there is

a unique branching node B′ ∈ F (B) of minimum depth, so that B′ has children

A1, . . . , As in F (B), where s = s(B′).

By Lemma 1.3.11, r(Ai) ≥ r(B′) + 1 ≥ r + 1, and therefore by Lemma 1.3.12,

s(Ai) ≤ D − r(Ai) ≤ D − r − 1 for every i ≤ i ≤ s. Therefore by induction we

conclude that there are at most (D − r(B))! maximal paths in F (B).

1.3.4 Amortized Bounds for Smooth Splits

As in the 2-dimensional case, we now show how to use the analysis of forcing chains

to obtain an upper bound on the amortized complexity of smooth splits.
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Let T be a smooth quadtree. Define the potential Φ(T ) of a quadtree T to be

the sum of the potential Φ(B) of all the nodes B ∈ T , which we define to as

Φ(B) :=

 0 if B has no split children,

# of unsplit children of B otherwise.
(1.14)

Note that Φ(B) = 0 if and only if it has no split children or all its children are

split. Otherwise, 1 ≤ Φ(B) ≤ 2D − 1. Intuitively, each unit of potential pays for

the cost of a single split. This naturally generalizes the potential function given in

the 2-dimensional case.

For a leaf B ∈ T let c(B) denote the number of nodes B′ in F (B) such that

Φ(p(B′)) = 0. Φ(p(B′)) = 0 if and only if p(B′) has no split children or all of its

children is split. Since such a B′ is a leaf in T , Φ(p(B′)) = 0 implies that B′ has no

split siblings. Thus, c(B) is counting the number of nodes in F (B) with no split

siblings.

We are now ready to prove our main result.

Proof of Theorem 1.1.1. A smooth split of B amounts to splitting each node in

its forcing graph F (B). Recall that c(B) is the number of nodes B′ ∈ F (B) with

Φ(p(B′)) = 0. We will show that c(B) ≤ (D + 1)!.

By Theorem 1.3.13 we know that there are at most D! maximal paths in F (B).

We then need to show that each maximal chain B = B0
d1=⇒B1

d2=⇒· · · dk=⇒Bk has

at most D+ 1 indices i ∈ [k] such that Φ(p(Bi)) = 0. For such an i, we claim that

di+1 /∈ R(Bi) and di+1 ∈ R(Bi+1), and therefore r(Bi) < r(Bi+1).

Suppose for contradiction that di+1 ∈ R(Bi). Because Bi
di+1
=⇒Bi+1, there is an

adjacent sibling A of Bi such that A
di+1−→Bi. Therefore we must have A′

di+1
=⇒Bi for
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some child A′ of A. But because Φ(p(Bi)) = 0, A has not been split and so A′

cannot exist. Therefore r(Bi+1) > r(Bi).

It follows that if there are ≥ D+ 1 such indices, the (D+ 1)-st index i has the

property that r(Bi+1) ≥ D + 1. Then s(Bi+1) = 0 by Lemma 1.3.12. Hence Bi+1

must be the last node Bk in the chain. It follows that c(B) ≤ (D + 1)!.

The smooth split of B amounts to splitting each box B′ ∈ F (B). There are

two cases to consider for each such B′:

(i) Φ(p(B′)) > 0. Then splitting B′ can be charged to the corresponding unit

decrease in potential Φ(T ), since Φ(p(B′)) decreases by one when B′ is split.

(ii) Φ(p(B′)) = 0. Then splitting of B′ will be charged 2D, corresponding to one

unit for splitting B′ and 2D − 1 units for the increase in Φ(p(B′)).

It follows that the total charge for the smooth split of B is at most 2D · c(B) ≤

2D · (D + 1)!, as claimed.

1.4 A Lower Bound Construction

In this section we show that the exponential dependence on D in Theorem 1.1.1

is unavoidable. Namely, we show the 2-dimensional case of Theorem 1.1.2, which

says that ss(D) ≥ (D + 1) · 2D, and sketch its straightforward extension to higher

dimensions. (We refer the reader to Section 4 of [BY17] for further details on the

higher dimensional case.)

To present our lower bound, we introduce notation for child indicators c ∈

{−1, 1}D. Namely, B.c identifies the child in the (higher-dimensional) quadrant c

of a non-leaf box B. For notational convenience, we define B.cn := (B.cn−1).c for

n ≥ 1, and B.c0 := B.

37



1.4.1 The 2-dimensional case

We now present and analyze the 2-dimensional lower-bound construction.

Lemma 1.4.1 (2-dimensional case of Theorem 1.1.2). There is a sequence of n+

O(1) ssplit operations that causes 12n split operations in a smooth subdivision

of [−1, 1]2.

Proof. Let B := [−1, 1]2 be the initial box in a 2-dimensional subdivision. We

describe our lower bound construction in three stages.

Let c∗ := (1, 1). The first stage of our construction performs three smooth

splits on the following sequence of boxes.

B,B.(−c∗), B.(−c∗).c∗. (1.15)

None of the smooth splits in the first stage triggers additional splits. See Figure 1.9.

Let B′ := B.(−c∗).c∗.

The second stage performs n smooth splits on the following sequence of boxes.

B′.(c∗)1, B′.(c∗)2, . . . , B′.(c∗)n. (1.16)

Each such smooth split triggers four splits, as shown in Figure 1.10.

For each c ∈ {−1, 1}D, the third stage performs a smooth split on the box

B.c.(−c)n−1.c. Unlike the first two stages, the order in which these four boxes

are split is irrelevant. Each of the four smooth split operations in the third stage

triggers 2n− 1 splits. See Figure 1.11.

In total, our construction performed 3 + n + 4 = n + O(1) smooth splits, and

triggered 3 + 4n+ 8n− 4 = 12n−O(1) splits. Letting n go to infinity, we get that
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Figure 1.9: The first stage in the 2-dimensional smooth quadtree lower bound
construction. The boxes B, B.(−c∗), B.(−c∗).c∗ appear in dark gray in the first,
second, and third subdivisions from the left, respectively.

Figure 1.10: The second stage in the 2-dimensional smooth quadtree lower bound
construction. The boxes B′.(c∗)i for i = 1, 2, 3 appear in dark gray, and the boxes
which must be split to restore smoothness appear in light gray.

ss(2) ≥ 12.

We next sketch how to extend our 2-dimensional lower bound construction to

higher dimensions.

Proof sketch of Theorem 1.1.2. We state our construction in three stages, which

are similar to those in the 2-dimensional case. Let D ≥ 1, let B := [−1, 1]D, and

let c∗ := (1, 1, . . . , 1) denote the all ones child indicator.
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Figure 1.11: The third stage in the 2-dimensional smooth quadtree lower bound
construction. The four boxes B.c.(−c)n−1.c with c ∈ {−1, 1}2 appear in dark gray,
and the boxes which must be split to restore smoothness appear in light gray.

First, we perform smooth splits on the following D + 1 boxes.

B,B.(−c∗), B.(−c∗).c∗, B.(−c∗).(c∗)2, . . . , B.(−c∗).(c∗)D−1. (1.17)

Let B′ := B.(−c∗).(c∗)D−1. Next, we perform smooth splits on the following n

boxes.

B′.(c∗)1, B′.(c∗)2, . . . , B′.(c∗)n. (1.18)

Like in the 2-dimensional case shown in Figure 1.10, each smooth split in the

second stage causes a split in each quadrant of [−1, 1]D. Therefore, we perform n

smooth splits and 2Dn splits in the second stage.

For each c ∈ {−1, 1}D, the third stage performs a smooth split on the box

B.c.(−c)n−1.c. Each of the 2D smooth split operations in the third stage triggers

Dn− (D − 1) splits, for a total of 2D · (Dn− (D − 1)) splits total.

In total, our construction performed (D+1)+n+2D = n+OD(1) smooth splits,

and triggered at least (D+1)+2D ·n+2D ·(Dn−(D−1)) = (D+1) ·2D ·n−OD(1)

splits. Letting n go to infinity, we get that ss(D) ≥ (D + 1) · 2D.
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Chapter 2

Planar Minimization Diagrams

via Subdivision with Applications

to Anisotropic Voronoi Diagrams

This chapter is based on the publication [BPY16], which was joint work with

Evanthia Papadopoulou and Chee Yap.

2.1 Introduction

Voronoi diagrams are one of the most important and extensively studied objects

in computational geometry [OBSC00, AKL13]. They appear in a tremendous

number of applications, including nearest neighbor search [Lee82, KS04], motion

planning [ÓY85, TS89], and meshing [LS03] within geometry, as well as in many

areas of computer science and science more broadly.

In the simplest setting, given a set of input points (called sites) in the plane, a
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Voronoi diagram partitions the plane into a collection of polygonal regions each of

which consists of the points closest in Euclidean distance to some input site. These

regions are called Voronoi cells, and the common boundary of two Voronoi cells is

called a Voronoi bisector. The intersection of three or more Voronoi bisectors is a

Voronoi vertex.

Every aspect of this simple setting generalizes: our input may consist of more

complicated sites than points (say, line segments, polygons, or circles), we may

measure distance in a non-Euclidean metric, and the ambient space that we par-

tition may be Rd for some d > 2 or some other manifold. In the most general

setting, Voronoi diagrams specify a scheme for partitioning an ambient space into

a collection of disjoint subsets, where each subset is labeled with a collection of

input sites.

Edelsbrunner and Seidel [ES86] introduced a general way to define many types

of Voronoi diagrams as minimization diagrams. Given a family F = {f1, . . . , fn}

of continuous scalar functions fi : R2 → R, the minimization diagram M(F)

partitions the plane into interior-disjoint sets of points Xi on which function fi

is minimal. There exists a simple representation of nearest-site Voronoi diagrams

as minimization diagrams: simply set the functions fi(x) to be the distance of x

to site Si. In particular, an algorithm for computing minimization diagrams also

works for computing nearest-site Voronoi diagrams.

One issue with arbitrary minimization diagrams is that they may not have the

nice geometric properties that many standard Voronoi diagrams have, and there-

fore in general it is not clear in general how to compute (or approximate) M(F).

Klein [Kle89] gave one solution to this in terms of abstract Voronoi diagrams, which

defines a Voronoi diagram in terms of how its Voronoi bisectors interact. He gives
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several conditions for how bisectors interact, including that they should intersect

in finitely many connected components, and that the Voronoi regions in the un-

derlying diagram should be connected. Unfortunately, the latter condition rules

out a number of interesting diagrams, including the weighted Voronoi diagram (see

Section 2.1.2).

Additionally, the abstract Voronoi diagram framework and many algorithms

for specific, concrete Voronoi diagrams assume a Real RAM model of computation

in which one can perform certain operations on arbitrary real numbers at unit

cost. For example, the abstract Voronoi diagram framework assumes the ability

to determine the exact intersection points of two bisectors. This is possible if the

bisectors are algebraic curves, but is expensive. For non-algebraic curves it is not

even clear that these intersections are computable (see [CCK+06]).

The aforementioned issues with frameworks and computational models lead to

the major motivating question for our work, which also arose in the predecessor

paper [YSL12]:

What does it mean to “compute” a Voronoi Diagram?

In [YSL12], Yap et al. present “Three Views of a Voronoi Diagram,” which include

the “geometric” view of a Voronoi diagram as the set of points closest to two or

more input sites, and the “topological” view of a Voronoi diagram as a cell complex.

2.1.1 Our Contribution

In this chapter, as in [YSL12], we take a hybrid view and consider the task of

computing Voronoi diagrams that have correct topology as well as high geomet-

ric accuracy. Namely, as our main contribution, we present a practical frame-
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work for computing an isotopic ε-approximation of the minimization diagram of

a set of scalar functions which satisfy certain niceness properties. By an isotopic

ε-approximation, we mean that the output is both topologically correct (up to

isotopy), and approximately geometrically correct (off by at most ε in Hausdorff

distance). We do this by using a subdivision-based algorithm and tools from nu-

merical computation related to interval arithmetic, root isolation, and meshing.

Our other main contribution is to introduce the class of anisotropic Voronoi

diagrams on polygonal sites. I.e., we consider a diagram on polygonal input sites,

each of which is equipped with a (possibly different) anisotropic norm. One can

characterize any norm in terms of its unit ball, which must be a centrally symmetric

convex body. Anisotropic norms are those whose unit balls are ellipses. Our

diagrams generalize the anisotropic Voronoi diagrams on point sites introduced by

Labelle and Shewchuk [LS03], which in turn generalize weighted Voronoi diagrams

on point sites.

Finally, we show how to use our framework to compute anisotropic Voronoi

diagrams on polygonal sites, and report on experimental results from our proto-

type implementation of our algorithm, SubVor, which is available as a stand-alone

package on GitHub [BLPY16] and as part of the Core Library [Cor].

2.1.2 A First Example

A weighted Voronoi diagram on input sites S1, . . . , Sn ⊆ R2 is one in which each

site Si is assigned a weight wi > 0, and the separation of a point x from Si is given

by the scaled Euclidean distance SepSi(x) := min{‖x− y‖/wi : y ∈ Si}.3 In other

2If viewed on a computer, these images look much better zoomed in to at least 200%.
3In general we use the term separation instead of distance throughout this chapter to empha-

size that our “distance” functions need not correspond to metrics. For example, our algorithm
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Weights (1, 1, 1). Weights (3, 1, 1).

Weights (4, 1, 1). Weights (4, 1, 1) with high accuracy.

Figure 2.1: Four weighted Voronoi diagrams on polygons, produced by our pro-
gram, SubVor. Input sites are shown in black, the subdivision grid in gray, and the
computed (approximate) Voronoi diagram in red. The triples of numbers (i, j, k)
denote the weights given to the triangle, square, and pentagon, respectively. As
the weight of the triangle increases from 1 to 3 to 4, the topology of the Voronoi
diagram changes. The diagram in the lower right is computed to higher accuracy
(ε is smaller), and shown without the underlying subdivision grid.2

words, a point is “closer” by a factor of wi to Si than its Euclidean distance, and

handles additively weighted Voronoi diagrams, in which separation functions consist of distances
plus a scalar weight.
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sites with larger weights have more close points (i.e. have larger Voronoi regions).

As a first example, we present several weighted Voronoi diagrams on polygons

produced by our prototype program, SubVor, shown in Figure 2.1. The input to

the diagrams is a collection of polygonal input sites (a triangle, a square, and a

pentagon) inside a bounding box B0, each of which is assigned a weight.

The figures show how the topology of the underlying Voronoi diagram changes

as the weight of the triangle increases. In the first figure, the weights are all the

same, and there is a single Voronoi vertex. In the second figure, the triangle has

a weight 3 times higher than the other sites, and there are two Voronoi vertices

within B0. In the third and fourth figures, the triangle has a weight 4 times higher

than the other sites, and there are no Voronoi vertices. The Voronoi diagrams in

the third and fourth figures are isotopic, i.e., one may be smoothly deformed to

the other, but the fourth figure is computed to higher geometric accuracy. That

is, the Hausdorff distance of the diagram shown in the fourth figure to the actual

underlying Voronoi diagram is lower.

2.1.3 Related Work

Two closely related papers to our present work are the predecessor paper [YSL12]

by Yap et al. and [LSVY14] by Lien et al. In [YSL12], Yap et al. discuss issues

related to what it means to “compute” a Voronoi diagram, and give a subdivision-

based algorithm for computing an isotopic ε-approximation of a Euclidean Voronoi

diagram with polygonal input sites. In the present work we extend [YSL12] largely

by using the more powerful numerical techniques described in [LSVY14] for com-

puting an isotopic ε-approximation of an arrangement of two curves. In particular,

we follow their high-level approach of (1) detecting and isolating all of the roots
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(Voronoi vertices), and (2) using the Plantinga-Vegter algorithm to connect the

roots.

In additional closely related work, Emiris et al. [EMM13] present an algorithm

to compute isotopic ε-approximations of minimization diagrams via subdivision,

and present anisotropic Voronoi diagrams on point sites as an example of their

technique. Although the goal of their work and ours is very similar, our work

differs in terms of the techniques we use and is more general. In particular their

work assumes that the underlying curves are algebraic, and uses techniques for

finding roots of polynomial equations described in [MP09].

Much work has gone into finding exact algorithms for Voronoi diagrams (work-

ing in the real RAM model), as well as computing geometric approximations of

Voronoi diagrams. Work on the latter topic has come from both the computational

geometry and geometry processing communities.

In [Har01], Har-Peled studies computing approximate Voronoi diagrams which

have near-linear combinatorial complexity, in contrast to exact Voronoi diagrams

which have combinatorial complexity which is exponential in the dimension. In

follow-up work, Har-Peled and Kumar [HK15] study the problem of computing an

approximate minimization diagram. As one motivating example, they consider a

Voronoi diagram on point sites each of which has an “ellipse norm” (which are

our anisotropic norms). Both papers use compressed quadtrees as the underlying

data structure. Furthermore, a paper by Labelle and Shewchuk [LS03] introduced

anisotropic Voronoi diagrams on point sites in the context of generating high-

quality anisotropic meshes.

However, besides [MP09, YSL12], there has been little focus on numerical algo-

rithms which ensure correct topology. This is a key part of Yap’s research program
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for finding practical (implementable), certifiably correct algorithms using numeri-

cal techniques [Yap09].

2.1.4 Summary and Open Problems

The overall focus of this chapter is both more conceptual and more applied than

other chapters. The idea from a conceptual standpoint is to showcase the power of

subdivision and numerical algorithms. We give a framework, that unlike most algo-

rithms which either work in the (often unrealistic) Real RAM model or only focus

on geometric accuracy, is both mostly numerical and focuses on correct topology.

Our framework includes powerful and interesting techniques which are underused

in computational geometry, and should have further applications.

On the other hand, this chapter is also more applied than other chapters. We

presented a new type of Voronoi diagram (an anisotropic diagram on polygonal

sites), and one of the main contributions of this chapter is to validate our framework

by reporting on experimental results from our prototype implementation.

There are several downsides to our algorithm from a theoretical standpoint.

The first is that, although in principal our algorithm outputs a diagram which is

both topologically and geometrically accurate in a precise sense, we do not prove

this rigorously. We do prove the correctness of parts of our framework (and use

existing proofs of correctness for other parts), but the full algorithm described in

Section 2.3 has many moving parts and lacks a full proof of correctness.

Open Problem 2.1.1. Simplify and provide a full proof of correctness for the

algorithm described in Section 2.3.

The second downside to our algorithm is that it lacks time complexity anal-
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ysis. This is largely because of the components in our predicate Root (given in

Equation (2.8)) for testing whether a box contains an isolated Voronoi vertex.

Open Problem 2.1.2. Analyze how many splits are required to ensure that for

every Voronoi vertex in B0 there exists a subdivision box B containing the vertex

on which Root(B) holds.

One approach to addressing this problem is through the “continuous amortiza-

tion” framework introduced by Burr et al. [BKY09, Bur16] for analyzing the time

complexity of subdivision algorithms.

A final downside is that our algorithm as described does not fully handle input

which is not in general position. (It does handle such input in a more limited sense;

see Section 2.3.6). This is in part because degenerate input is hard for subdivision

algorithms to handle in general. For example, they have difficulty distinguishing

a single root from a pair of very close roots. Nevertheless, an important problem

is to handle such input better.

Open Problem 2.1.3. Modify our algorithm to provide better guarantees for input

that is not in general position.

On the positive side, our framework is very general, and should work for com-

puting minimization diagrams in higher dimensional space and other settings. In

particular, all of the box predicates described in Section 2.2.3 work in higher di-

mensions.

Open Problem 2.1.4. Extend our algorithm to computing minimization diagrams

in R3 and other spaces.
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2.2 Preliminaries

We next present background material about relevant math, box predicates, mini-

mization diagrams, and Voronoi diagrams.

2.2.1 Mathematical Preliminaries

We start by giving definitions related to sets and functions. An implicit curve T

is the zero set of a continuous scalar function f : R2 → R. I.e., T = f−1(0). A

square system of equations F = (f1, . . . , fn) : Rn → Rn is one in which each fi

takes a vector x ∈ Rn as input.

We define a box as B = I1 × · · · × In, where each Ij = [aj, bj] is an interval.

The volume of B is µ(B) :=
∏n

i=1(bj − aj). We define the evaluation of a function

f : Rn → Rm on a set S ⊆ Rn to be f(S) := {f(x) : x ∈ Rn}. Following [PV04],

we define a convergent inclusion interval form �f of a function f : Rn → Rm as a

function that satisfies the following two properties:

1. x ∈ B implies that f(x) ∈ �f(B) (Inclusion),

2. Given a sequence of boxes B1 ⊃ B2 ⊃ · · · with µ(Bi)→ 0 as i→∞, it holds

that µ(f(Bi))→ 0 as i→∞ (Convergence).

The idea is to use convergent inclusion interval forms of functions to avoid exact

computation as much as possible while still ensuring correctness. For example,

given a system of equations F = (f1, . . . , fn), if we know that 0 /∈ �F (B) for some

i then we know that F cannot have a root in B. In fact, to ensure that F does

not have a root in B it suffices to show that 0 /∈ �fi(B) for some i.

Define the gradient ∇f of a function f : Rn → R to be the row vector of partial
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derivatives of f . Namely,

∇f :=
( ∂f
∂x1

, . . . ,
∂f

∂xn

)
.

Define the Jacobian JF of a square system F : Rn → Rn to be the matrix

JF :=


∇f1

...

∇fn

 =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...

∂fn
∂x1

· · · ∂fn
∂xn

 (2.1)

where (JF )i,j = ∂fi
∂xj

denotes the partial derivative of fi with respect to xj.

Following [LSVY14], our definitions of topological and geometric correctness

will be based on isotopy and Hausdorff distance, respectively. Given closed sets

S, T ⊆ R2, we say that S is isotopic to T if there exists a continuous mapping

γ : [0, 1] × R2 → R2 such that for every t ∈ [0, 1], the function γt : R2 → R (with

γt(x) = γ(t,x)) is a homeomorphism, γ0 is the identity map, and γ1(S) = T .

The Euclidean Hausdorff distance between a pair of sets X, Y ⊆ Rn is

dH(X, Y ) := max{sup
x∈X

inf
y∈Y
‖x− y‖, sup

y∈Y
inf
x∈X
‖y − x‖}.

2.2.2 Minimization Diagrams and Voronoi Diagrams

In this section we formally define minimization diagrams, Voronoi diagrams, and

related terminology. We slightly abuse notation and extend terminology for Voronoi

diagrams (including Voronoi regions, bisectors, and vertices) to the more general

setting of minimization diagrams.

Given a collection of continuous functions F = {f1, . . . , fn} with fi : R2 → R,
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we define the clearance of a point x with respect to F as Clr(x) = ClrF(x) :=

mini∈[n] fi(x). Given a collection F ′ ⊆ F of functions, we define the Voronoi

variety of F ′ as

Vvar(F ′) := {x ∈ R2 : ∀f ∈ F ′, f(x) = Clr(x)}. (2.2)

Using this definition, we formalize minimization diagrams as the set of points

x on which (at least) two distinct functions fi, fj achieve the clearance of x.

Definition 2.2.1. The minimization diagram of a collection of continuous func-

tions F = {f1, . . . , fn} with fi : R2 → R is M(F) :=
⋃
i 6=j

Vvar({fi, fj}).

We call sets Vvar({fi}) the Voronoi regions corresponding to fi. We call

each connected component of Vvar({fi}) a Voronoi cell. Similarly, given distinct

fi, fj, fk, we call sets of the form Vvar({fi, fj}) and Vvar({fi, fj, fk}) the Voronoi

bisectors (or simply bisectors) and Voronoi vertices of M(F), respectively. We note

that Voronoi bisectors are intersections of two Voronoi regions, and that Voronoi

vertices are the intersections of three or more Voronoi bisectors. Additionally, we

note that a Voronoi bisector Vvar({fi, fj}) with fi 6= fj is a restriction of the im-

plicit curve (fi − fj)−1(0), which will allow us to use the machinery described in

Section 2.2.3.

We next define Voronoi diagrams as a special case of minimization diagrams.

Consider a collection of sites S = {S1, . . . , Sn} with S1, . . . , Sn ⊆ R2, where each

Si is equipped with a norm ‖·‖Si . Let the separation of a point x ∈ R2 from a site

Si be SepSi(x) := infy∈Si‖x − y‖Si . We then define the Voronoi diagram of S as

the minimization diagram of the separation functions.

Definition 2.2.2. The Voronoi diagram of a collection of sites S1, . . . , Sn ⊆ R2 is
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the minimization diagram of {SepS1
, . . . , SepSn}.

In other words, a Voronoi diagram is the set of points that are “closest” to two

or more input sites.

Finally, we give a formal definition of what it means to be a topologically and

geometrically accuracy approximation of a minimization (Voronoi) diagram.

Definition 2.2.3. Given a family of continuous functions F = {f1, . . . , fn} with

fi : R2 → R, a set M̃(F) ⊆ R2 is an isotopic ε-approximation of a minimization

diagram M(F) if M̃(F) is isotopic to M(F), and dH(M̃(F),M(F)) ≤ ε.

We define the special case of isotopic ε-approximate Voronoi diagrams analo-

gously. Our goal will be to give an algorithm for computing isotopic ε-approximations

of minimization diagrams over functions that satisfy some natural properties. In

particular, we will primarily consider families of functions F that are in general

position. I.e., F is in general position if Vvar(F ′) is empty when F ′ ⊆ F , |F ′| > 3,

when all Voronoi bisectors are 1-dimensional, and when all Voronoi vertices are

0-dimensional.

2.2.3 Box Predicates

One of the key ideas in subdivision algorithms is the use of box predicates as

primitives. These allow us to verify properties of an equation or system of equations

in a local region (often a box B in the subdivision, or the union of several such

adjacent boxes) using interval arithmetic.

Our algorithm for computing minimization diagrams uses several predicates,

three of which we describe below. Namely, we describe the Moore-Kioustelidis

Test [MK80], the Jacobian Test, and the Plantinga-Vegter Test [PV04]. The
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f ≥ 0 f ≤ 0

g ≥ 0

g ≤ 0

f−1(0)

g−1(0)

g−1(0)

f−1(0)

f̂−1(0)

ĝ−1(0)

Figure 2.2: A successful Poincaré-Miranda Theorem on implicit curves f−1(0)
and g−1(0) induced by functions f, g (left). Even when a system of equations
F = (f, g) is linear, an arbitrarily small box containing a root of F may not satisfy
the Poincaré-Miranda Theorem, as shown by the dotted inner box (center). The
Moore-Kioustelidis Test remedies this by preconditioning F in a way that “locally
orthoganilizes” it (right).

Moore-Kioustelidis Test and Jacobian Test put together allow us to isolate a single

root of a system of equations in a box. They have been used together in previous

work by Mantzaflaris et al. [MMT11] and Lien et al. [LSVY14] for root isolation.

The Plantinga-Vegter Test ensures that the curvature of a Voronoi bisector is not

too high in a given box, a property which is essential for our construction algorithm.

We state these tests with respect to a square system of equations F = (f1, . . . , fn)

where fi : Rn → R is continuous and has continuous first derivatives (fi is C1) for

every i.

The Moore-Kioustelidis Test

The Moore-Kioustelidis Test MKF (B) [MK80] asserts that F has at least one

root in B. The Moore-Kioustelidis Test amounts to a preconditioned version of

the Poincaré-Miranda Theorem, which we describe next following the exposition

in [Kul97]. For a box B = [x−1 , x
+
1 ]×· · ·× [x−n , x

+
n ] we denote the ith opposite faces

as
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B−i = {x ∈ B : xi = x−i }, B+
i = {x ∈ B : xi = x+

i },

where xi denotes the ith coordinate of x.

Lemma 2.2.4 (Poincaré-Miranda Theorem). Let F : Rn → Rn, F = (f1, . . . , fn)

be a continuous system of equations for which there exists a permutation π : [n]→

[n] such that for each i ∈ [n], �fi(B
−
π(i)) ⊆ (−∞, 0] and �fi(B

+
π(i)) ⊆ [0,∞), or

vice-versa. Then F has at least one root in B.

The Poincaré-Miranda Theorem says that if each fi is non-negative and non-

positive on a different pair of opposite faces of a box B then F has a root in B (see

the left diagram in Figure 2.2). Unfortunately, the Poincaré-Miranda Theorem is

not complete in the sense that there may be systems of equations with roots which

it fails to detect even when evaluated on arbitrarily small boxes which contain the

root (see the center diagram in Figure 2.2). To fix this, the Moore-Kioustelidis Test

preconditions the system F by multiplying by the inverse of its Jacobian evaluated

at the midpoint of B. This “locally orthogonalizes” F in B, and forms a complete

test [MK80] (see the right diagram in Figure 2.2).

Definition 2.2.5 (The Moore-Kioustelidis Test). The Moore-Kioustelidis Test

evaluated on a box B, MKF (B), holds if and only if the Poincaré-Miranda Theorem

(given in Lemma 2.2.4) holds on F̂ := J−1
F (mB) · F .

Here J−1
F (mB) denotes the inverse of the Jacobian of F evaluated at the mid-

point point mB of B. Note that F̂ has a root in B if and only if F has a root in

B.
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The Jacobian Test

The MK-test gave a condition in which a system of equations has at least one root

in a box. We next give a condition in which such a system has at most one root.

Define the Jacobian Test applied to a system of equations F on a box B as

JCF (B) := 0 /∈ det(�JF (B)). (2.3)

Lemma 2.2.6. If the Jacobian Test JCF (B) is true then F has at most one root

in B.

The Jacobian Test is folklore. The main idea behind its correctness (Lemma 2.2.6)

is to show the contrapositive using the mean value theorem. See, e.g., Theorem

12.1 and its corollary in [Abe07].

The Plantinga-Vegter Test

Last, we introduce the Plantinga-Vegter Test PVf (B) [PV04] which restricts

the amount of curvature of a single function f : R2 → R in a box B.

PVf (B) := 〈�∇f(B),�∇f(B)〉 > 0. (2.4)

As Plantinga and Vegter observe, the success of this test ensures that the direction

of the gradient of f (and hence the direction of f itself) does not change by more

than π/2 radians in B. Moreover, the success of the PV test ensures that at least

one of �∂f
∂x

(B) · �∂f
∂x

(B) and �∂f
∂y

(B) · �∂f
∂y

(B) is strictly positive. This implies

that f is strictly increasing or decreasing in either the x or y direction, and hence

that it is parameterizable in that direction.
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The Plantinga-Vegter Test is hereditary in the sense that if B′ ⊆ B and PV(B)

holds then PV(B′) holds as well. The Jacobian Test is hereditary as well. The

Moore-Kioustelidis Test is not hereditary in the same sense as the other two tests

since B′ may not contain any of the roots of B, but Lemma 6 in [LSVY14] shows

that MK(B′) holds for all sufficiently small boxes B′ containing a root of F . We

will make use of these hereditary properties to continue splitting until multiple box

predicates hold simultaneously.

2.2.4 Tracking Active Functions

Usually only a small subset of all n functions in F affect the minimization diagram

in any subdivision box B. Therefore, one of the crucial things to keep track of

during subdivision is the set of active sites φ(B) for each box B in the subdivision,

which we represent with a quadtree. A function f is active if its separation from

some point in B achieves the clearance of that point:

φ(B) := {f ∈ F : ∃p ∈ B, Clr(p) = f(p)}. (2.5)

Using this definition we also define active bisectors for B to be those corresponding

to a pair of distinct active functions f, g ∈ φ(B). Because φ(B) is difficult to

compute exactly, we use a convergent over-approximation φ̃(B) of φ(B) for which

we need to introduce the concept of Lipschitz constants.

Given a function f : R2 → R, we define the Lipschitz constant of f to be the

minimum constant Kf such that for all p, q ∈ R2,

|f(p)− f(q)| ≤ Kf · ‖p− q‖. (2.6)
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We define the radius of a box B to be the Euclidean distance from its midpoint to

one of its corners.

Lemma 2.2.7. Let B be a box with midpoint mB and radius rB. Let p ∈ B

and f, g ∈ F such that Clr(p) = f(p) and Clr(mB) = g(mB). Then f(mB) ≤

Clr(mB) + (Kf +Kg)rB.

Proof. We have that

f(mB) ≤ f(p) +Kf · ‖p−mB‖

≤ g(p) +Kf · ‖p−mB‖

≤ g(mB) + (Kf +Kg) · ‖p−mB‖

≤ Clr(mB) + (Kf +Kg)rB.

The first and third inequalities follow by Equation (2.6), while the second and

fourth inequalities follow by the assumptions that Clr(p) = f(p) and Clr(mB) =

g(mB), respectively.

Given a collection F ′ ⊆ F of two or more functions, let

K2(F ′) := max{Kf +Kg : f, g ∈ F ′, f 6= g}.

We now define and justify the definition of φ̃(B) as follows. Let φ̃(B0) = F , and

let

φ̃(B) := {f ∈ φ̃(p(B)) : f(mB) ≤ Clr(mB) +K2(φ̃(p(B))) · rB}. (2.7)

for B ( B0, where p(B) denotes the parent box of B.
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We show that φ̃(B) is a convergent over-approximation version of φ(B).

Lemma 2.2.8. For all subdivision boxes B, φ(B) ⊆ φ̃(B). Furthermore, for all

sufficiently small boxes B, φ̃(B) = φ(B).

Proof. Suppose that f ∈ φ(B). Then by definition there exists p ∈ B such that

f(p) = Clr(p). If f(mB) = Clr(mB) then clearly f ∈ φ̃(B) by Equation (2.7).

Otherwise, there exists some g 6= f such that g(mB) = Clr(mB), in which case we

again have that f ∈ φ̃(B) by Lemma 2.2.7. It follows that φ(B) ⊆ φ̃(B).

Furthermore, given a sequence of boxes B1 ⊃ B2 ⊃ · · · with rBi → 0 we have

that f(m)Bi → f(p), Clr(mBi) → Clr(p), and rBi → 0. Therefore, f(mB) ≤

Clr(mB) +K2(φ̃(p(B))) · rB eventually holds only if f ∈ φ(B).

2.3 Algorithm

In this section we present our algorithm for computing an isotopic ε-approximation

M̃(F) of the minimization diagram of a family of functions F . The idea is based

on the subdivision paradigm: we repeatedly subdivide an initial bounding box B0

into smaller boxes until certain box predicates hold. For this, we use a smooth

quadtree (as defined in Chapter 1) as the primary underlying data structure to

store our subdivision. We then use the guarantees made by the box predicates in

the initial splitting stage to construct our approximate diagram in each subdivision

box “locally.”

2.3.1 The Main Algorithm

In this section we present our main algorithm, whose outline is below. We as-

sume that the input is a family F of C1 scalar functions in general position with
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convergent interval forms. To simplify the description of our algorithm, we also

make the (somewhat unrealistic) assumptions that no Voronoi bisector intersects

the corner of a subdivision box, and that no Voronoi vertex lies on the boundary

of a subdivision box. In Section 2.3.6 we discuss these last assumptions and how

to remove them.

• Input: A family F of C1 scalar functions in general position, a geometric

accuracy parameter ε > 0, and a bounding box B0.

• Output: A piece-wise linear isotopic ε-approximation M̃(F) of the minimiza-

tion diagram of F in B0.

1. Subdivide B0 (taken as the root of a smooth quadtree) until |φ̃(B)| ≤ 3 for

all leaf boxes B in the subdivision.

2. Compute a set of well-isolated root boxes Qroot (Section 2.3.2).

3. Perform the Plantinga-Vegter curve tracing construction on B0\(∪B∈Qroot5B)

(Section 2.3.3).

4. Perform construction on the root box B for every B ∈ Qroot (Section 2.3.4).

5. Perform construction on each box B′ in the annulus 5B \ B of an extended

root box for every B ∈ Qroot (Section 2.3.5).

2.3.2 Isolating Root Boxes

We next describe how to compute a set Qroot of subdivision boxes each of which

contains exactly one Voronoi vertex. For a box B with center mB, we define its

c-scaling to be cB = {c(p−mB) + mB : p ∈ B}.
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B

3B

5B

Figure 2.3: A root box B and its extended root box 5B (left), and a collection of
isolated extended root boxes (right).

Recall that the Voronoi bisectors in M(F) are implicit curves of the form (f −

g)−1(0) for some distinct functions f, g ∈ F . Our root isolation technique depends

on the following predicate, which guarantees the existence of a well-isolated root.

Namely, we add a box B to Qroot if the following predicate holds.

Root(B) := 7B ⊆ B0

∧ (∀B′ ∈ Qroot, 7B ∩ 7B′ = ∅)

∧ |φ̃(B)| = 3

∧ φ̃(B) = φ̃(5B)

∧ PVφ̃(B)(5B)

∧ JCφ̃(B)(5B)

∧MKφ̃(B)(B).

(2.8)

At a high level Root(B) ensures that there is a unique, well-isolated root in B (see

Figure 2.3). We call a box B in the subdivision a root box if Root(B) holds, and

we call 5B its extended root box. We now explain each clause in Equation (2.8).

The first clause, 7B ⊆ B0, ensures that B is well-separated from the boundary
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of the bounding box B0. The second clause, ∀B′ ∈ Qroot, 7B ∩ 7B′ = ∅, ensures

that B is well-isolated from the set of root boxes already in Qroot. The third

clause, |φ̃(B)| = 3, ensures that B has at most 3 active functions. The fourth

clause, φ̃(B) = φ̃(5B), ensures that there are no additional active functions (and

hence no additional active bisectors) in the extended root box of B.

For a family of functions F ′ ⊆ F , PVF ′(B) means that PVf holds for every

f ∈ F ′. The fifth clause, PVφ̃(B)(5B), bounds the curvature of each Voronoi

bisector in the extended root box.

For a family of functions F ′ ⊆ F with at least three elements, JCF ′(B) and

MKF ′(B) mean that JCF (B) and MKF (B) hold for every system F (x) = ((f −

g)(x), (f − h)(x)) comprised of distinct functions f, g, h ∈ F ′. The sixth clause,

JCφ̃(B)(5B), combined with the fact that |φ̃(B)| = 3, ensures that there is at most

one Voronoi vertex in the extended root box 5B. Finally and most importantly,

the seventh clause, MK(B)φ̃(B), ensures that there is at least one Voronoi vertex

in B.

The clauses in Root(B) appear in heuristic order of the amount of computation

needed to evaluate them, from lowest to highest. Importantly, the predicate Root

is hereditary in the sense that if Root(B) holds and B′ ⊆ B contains a Voronoi

vertex then Root(B′) holds as well.

2.3.3 Curve Tracing

Outside of extended root boxes, we use the Plantinga-Vegter curve tracing algo-

rithm [PV04] on a single curve at a time. The Plantinga-Vegter algorithm outputs

a piece-wise linear, isotopic approximation of an underlying implicit curve. It

amounts to using the well-known marching cubes algorithm [LC87] on a smooth
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Figure 2.4: Two examples of the marching cubes curve-tracing algorithm in a
smooth subdivision applied to an implicit curve (f−g)−1(0). We evaluate the sign
of (f−g) at each corner of the box, and, if the neighboring box along a side is split,
at the midpoint of the side as well. We then place a bisector node at the midpoint
of each side segment whose endpoints have different signs, and attach the bisector
nodes in the unique way that is consistent with the corner signs (shown in red).

subdivision, together with the PV predicate given in Equation (2.4).

More precisely, for every subdivision box B outside of an extended root box,

we split until |φ̃(B)| ≤ 2. Then, for each such box, the Plantinga-Vegter algorithm

ensures that the following predicate holds:

(|φ̃(B)| = 1) ∨ PVφ̃(B)(B).

If |φ̃(B)| = 1, then B lies in the interior of a Voronoi region, and no construction

is necessary. Otherwise, |φ̃(B)| = 2 and we keep splitting until PVφ̃(B)(B) holds,

i.e., until PV(f−g)(B) holds where φ̃(B) = {f, g}.

For each such box B satisfying |φ̃(B)| = 2 ∧ PV(f−g)(B), we then perform

the marching cubes construction on B (see Figure 2.4). This consists of (exactly)

computing the sign of (f − g) at each corner of B, and placing a bisector node on

each side of B that has corners with different signs. If B has two neighbors on a
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(f − g)−1(0)

(f − h)−1(0)

(h− g)−1(0)

f g

gh

f g

gh

Figure 2.5: A root box containing a Voronoi vertex of the functions f , g, and
h with inactive bisector halves shown as dashed (left). If such a box B satisfies
Root(B), we label each corner of B with the function with minimal value at each
corner of B, and apply a “multi-label marching cubes” type construction (right).
A full case analysis appears in Figure 2.6.

side, then we additionally compute the sign at the midpoint of the side, and place

a bisector node on each half-side whose endpoints differ. Because we assume that

the underlying subdivision is smooth, each leaf box in the subdivision has at most

two neighbors.

As Plantinga and Vegter showed, the fact that the PV predicate holds ensures

that there is an unambiguous way to connect the bisector nodes on the sides of

B that gives correct topology. As our final step, we connect bisector nodes with

line segments in this way. Our final construction within B then consists of a line

segment or a pair of line segments which form M̃(F) ∩B.

2.3.4 Construction Within Root Boxes

We now describe our construction for root boxes B ∈ Qroot. Because Root(B)

holds for every B ∈ Qroot, we in particular know that there are three distinct

functions f, g, h,∈ F such that MKF (B) holds, where F (x) = (f(x)−g(x), f(x)−

h(x)). This guarantees that there is a Voronoi vertex in B. Moreover, because
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JCF (5B) holds, we know that this vertex is unique within 5B.

Our root box construction amounts to a multi-label version of the marching

cubes algorithm; see Figure 2.5. A key difference between our setting and the

standard root isolation setting is how Voronoi bisectors intersect. There are two

differences.

First, because f(x)−g(x) = f(x)−h(x) = 0 implies that g(x)−h(x) = 0, we

have that every root x of two Voronoi bisectors is in fact a root of at least three

bisectors (exactly three when F is in general position). I.e., Voronoi bisectors are

dependent.

Second, only half of each bisector going into a Voronoi vertex is active (see

the left diagram in Figure 2.5). More formally, given a parameterization S(t) of

a curve S = (f − g)−1(0) with S(0) = x for a Voronoi vertex x ∈ B, only one of

{S(t) : t ≥ 0} ∩B ⊆M(F) and {S(t) : t ≤ 0} ∩B ⊆M(F) holds.

Our construction must therefore determine which bisector halves are active.

To do this, we first label each corner c of B with arg minf∈φ̃(B) f(c). Then, we

place bisector nodes for each of the three bisectors on the boundary of B according

to the case analysis in Figure 2.6 to ensure correct topology. Finally, we place a

Voronoi vertex in the center of B, and connect each bisector node to the Voronoi

vertex.

2.3.5 Construction Within Extended Root Boxes

We now describe our construction of M̃(F) ∩B′ for boxes B′ in an extended root

box 5B \B where B is a root box.

Because Root(B) holds, MK(B) and JC(5B) hold, and therefore we are guar-

anteed that there are no roots in 5B \B. Therefore, the main idea for constructing
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Figure 2.6: Cases for constructing inside a root box B which contains a Voronoi
vertex up to rotation and relabeling of the functions. Here the vertex is the in-
tersection of three Voronoi bisectors (f − g)−1(0), (f − h)−1(0), and (g − h)−1(0).
In Cases 1, 2, and 3, the corner labels determine the topology of the underlying
diagram. In the (hypothetical) Cases 4a and 4b – when all of the corner labels
are the same and thus all three bisector nodes lie on one side of the box – the
underlying combinatorial pattern is ambiguous. However, Lemma 8 in [LSVY14]
shows that these cases are impossible in a box B in which MK(B) holds.

66



Figure 2.7: Construction within an extended root box 5B. Boxes in the outer
annulus 5B \ 3B may be split to conform with the outer subdivision B0 \ 5B, but
the boxes in the inner annulus 3B \ B remain unsplit and are all congruent with
B. Two Voronoi bisectors connected to the Voronoi vertex in B may also intersect
the same boxes in 5B/B, as shown in the gray box above the root box. 5B may
contain multiple connected components (as shown by the curve at left), but only
one principal component.

M̃(F) within 5B \B is again to use the Plantinga-Vegter curve tracing algorithm

(as described in Section 2.3.3) on each Voronoi bisector separately.

However, there are two differences. First, two Voronoi bisectors emanating

from the Voronoi vertex in B may intersect the same subdivision box B′ in 5B \B

(as demonstrated by the gray box above the root box in Figure 2.7). However,

we are guaranteed that they do not intersect. We therefore perform the marching

cubes algorithm on each such Voronoi bisector separately, but place separate nodes

on each side segment of B′ in order to ensure that the connected segments do not

cross.

The second issue only affects boxes B′ in 3B \B that are neighbors of B. For

such boxes, the Plantinga-Vegter algorithm may not “detect” a bisector node on

the boundary between B and B′ placed during the construction in B described in

Section 2.3.4. However, because 3B consists of nine congruent subdivision boxes,
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Figure 2.8: A root box B below a box B′ ∈ 3B. In the left diagram, two bisectors
are shown in red and blue respectively, with their active halves solid and their
inactive halves dashed. (The combinatorial type corresponds to Case 2 or Case 3
in Figure 2.6; the third bisector is not shown.) The corresponding construction of

M̃(F ) in B and B′ appears on the right. Bisector nodes placed by the root box
construction appear as dots, and bisector nodes placed by the Plantinga-Vegter
appear as crosses. For the blue bisector, the placement of these nodes is the same,
but for the red bisector there are bisector nodes on three sides of B′, and we discard
the cross corresponding to its inactive half.

the Plantinga-Vegter construction for each bisector only adds two nodes in B′. In

this situation we attach the node on the boundary of B and B′ to the one bisector

node placed by the Plantinga-Vegter construction which ensures correct topology.

See Figure 2.8.

Call S ⊆ M(F) ∩ 5B a component of M(F) in 5B if S is connected, and a

principal component if additionally S ∩ B 6= ∅. We claim that there is a single

principal component in 5B . After the steps described in Section 2.3.4 and this

section so far, we have completed construction of the principal component within

5B. However, there may be other components in 5B, as shown by the curve

on the left in Figure 2.7. As the final step in our construction, we perform the

Plantinga-Vegter construction on any such curves.
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2.3.6 Removing Some Assumptions

We now sketch how to remove some of the assumptions on the input to our algo-

rithm. First, we describe how to remove the assumption that no Voronoi bisectors

(f−g)−1(0) intersect the corners of subdivision boxes. As mentioned in [PV04], we

can simply assign f(x)−g(x) to be positive whenever f(x)−g(x) = 0 on a corner

x. Unfortunately, determining that f(x) − g(x) = 0 requires exact computation,

but we are already using this anyway.

Second, we describe how to remove the assumption that no Voronoi vertices lie

on the boundary of subdivision boxes. Suppose that in fact a Voronoi vertex does

lie on the boundary of a box B. The problems with this are two-fold: the MK test

on B will generally fail to detect the vertex, and the constructions in Sections 2.3.4

and 2.3.5 are not valid.

To fix these problems, we use a technique used for root box construction

in [LSVY14]. They observe that every Voronoi vertex lies in the interior of 2B

for some subdivision box B. In particular, if a Voronoi vertex lies on the boundary

of B then it lies in the interior of 2B.

They therefore change the clause MK(B) to MK(2B) in Equation (2.8), and

perform root box construction (analogous to our Section 2.3.4) on 2B rather than

B, and extended root box construction on 10B instead of 5B.4 Since 2B is not

a subdivision box (although it is a union of several such boxes), making the con-

struction within 10B conformal with the external subdivision B0 \ 10B requires

some additional work, which is described in [LSVY14].

Finally, we consider the assumption that the input functions are in general

4[LSVY14] uses an extended root box of size 8B rather than 10B, but the same idea works
for 10B and is simpler.
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position. Although we need this assumption to guarantee that we can isolate each

Voronoi vertex, if we apply our algorithm to a family of functions F that is not

in general position then we note that our algorithm still outputs a diagram which

isolates all Voronoi vertices which are the intersection of three bisectors, and is

within Hausdorff distance ε of M(F).

2.4 Anisotropic Voronoi Diagrams

In this section we introduce the class of Voronoi diagrams of polygonal sites

equipped with anisotropic norms in the plane. We will then show how to instan-

tiate our framework to compute an isotopic ε-approximation of such a diagram.

In particular in Section 2.4.1 we compute the separation function of a polygon

under an anisotropic norm (and show that it is C1), and in Section 2.4.2 we com-

pute the Lipschitz constant of this separation function. Finally, we discuss our

implementation and provide preliminary experimental results in Section 2.4.3.

The class of Voronoi diagrams of polygonal sites (which include point and

line segment sites as degenerate special cases) equipped with anisotropic norms

generalize anisotropic Voronoi diagrams for point sites, which were introduced by

Labelle and Shewchuk [LS03].

Definition 2.4.1. We define the class of anisotropic norms to be those of the form

‖x‖M :=
√
xTMx for some symmetric positive definite matrix M ∈ R2×2.

We can define any norm in terms of its unit ball, which must be a centrally

symmetric convex body. Anisotropic norms are those whose unit balls are ellipses.

Using this view it is easy to see that anisotropic Voronoi diagrams generalize

multiplicatively weighted Voronoi diagrams. The latter diagrams correspond to
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the special case when M = c2 · I2 for some c > 0, which corresponds to a norm

with a (1/c)-scaled Euclidean disk as its unit ball.

2.4.1 Separation Computations

In this section, we show how to compute the separation from point sites and

line segment sites under an anisotropic norm ‖·‖M . Because the boundary of a

polygon consists of a chain of point and line segment features, these computations

also suffice to determine the separation from a polygon. Namely, the separation

from a polygon is the minimum separation to one of its constituent features.

Fix an anisotropic norm ‖·‖M , and let r be a point in R2. Then the squared

separation between r and a point site p equipped with ‖·‖M is

Sepp(r)2 = (r − p)TM(r − p), (2.9)

which has gradient

∇Sepp(r)2 = 2M(r − p). (2.10)

Next we compute the separation of r to a line L with parameterization L(t).

The separation of r from L is given by min{‖L(t)− r‖M : t ∈ R}. Let t∗ = t∗(r) :=

arg min{‖L(t)− r‖M : t ∈ R} denote the parameter value at which L(t) achieves

this minimum separation.

Computing t∗ allows us to compute the separation not just from the line L,

but to a line segment [p, q], where p = L(0) and q = L(1). Namely, we define

Sep[p,q](r) piecewise in terms of t∗, with the relevant case depending on whether

r is closest to the interior or one of the endpoints of [p, q]. We first give a formula

for t∗, and the separation to L.
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Lemma 2.4.2. Let p, q, r ∈ R2, with p 6= q, and let L be the line (parameterized

by t) running through p, q with L(0) = p, L(1) = q. Let v = q − p and let

w = r − p. Then the minimum separation of L equipped with ‖·‖M is achieved at

the point L(t∗(r)) where

t∗(r) =
vTMw

vTMv
.

Therefore, the separation between of r from L is

SepL(r)2 = wTMw − (vTMw)2/(vTMv).

Proof. Note that L(t) = L(0) + t(L(1)−L(0)) = p+ tv so that r−L(t) = w− tv.

The squared separation of r from L(t) is then SepL(t)(r)2 = (r − L(t))TM(r −

L(t)) = (w−tv)TM(w−tv), which for fixed r is a univariate quadratic polynomial

in t and therefore has a single critical point. We get that the derivative of this

separation function with respect to t is

d SepL(t)(r)

dt
= −2vTM(w − tv).

Setting the derivative equal to zero, we get that the minimum separation is achieved

at

t∗(r) =
vTMw

vTMv
,

as desired. Plugging t∗(r) in for t in SepL(t)(r), we get the desired expression for

SepL(r)2.

Lemma 2.4.3. Let p, q, r ∈ R2, with p 6= q,and let L be the line (parameterized by
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t) running through p, q with L(0) = p, L(1) = q. Let v = q−p and let w = r−p.

Let t∗ = arg min{‖L(t)− r‖M : t ∈ R}.

Then the squared separation of the line segment site [p, q] equipped with ‖·‖M
and its gradient are given by the following formulas.

Sep[p,q](r)2 =


Sepp(r)2 if t∗(r) ≤ 0,

wTMw − (vTMw)2/(vTMv) if t∗(r) ∈ (0, 1),

Sepq(r)2 if t∗(r) ≥ 1.

∇(Sep[p,q](r)2) =


∇(Sepp(r)2) if t∗(r) ≤ 0,

2M(w − vTMw
vTMv

· v) if t∗(r) ∈ (0, 1),

∇(Sepq(r)2) if t∗(r) ≥ 1.

Moreoever, the squared separation function is C1, i.e., it and its gradient are con-

tinuous.

Proof. The formula for the separation function follows immediately from Lemma 2.4.2,

and the formula for the gradient follows by direct computation. It remains to show

that the squared separation function is C1.

The piece-wise components of SepL(t)(r)2 and its gradient are all polynomials,

and hence smooth. Therefore it suffices to check that the Sepp(r)2 = wTMw −

(vTMw)2/(vTMv) when t∗(r) = 0, that Sepq(r)2 = wTMw−(vTMw)2/(vTMv)

when t∗(r) = 1, and that the gradients of these pairs of expressions also agree at

t∗(r) = 0 and t∗(r) = 1, respectively.

These equivalences are straightforward to check using the fact that by definition
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t∗(r) = vTMw
vTMv

, which implies that vTMw = 0 when t∗(r) = 0 and vTMw = vTMv

when t∗(r) = 1.

2.4.2 Lipschitz Constant Computations

In order to track active features as described in Section 2.2.4 we need an upper

bound on the Lipschitz constants of anisotropic norms.

Lemma 2.4.4. Let M =

 a b

b c

 ∈ R2×2 be a symmetric positive definite ma-

trix. Then for a site S equipped with ‖·‖M we have

K(SepS) =
1√
2

√
a+ c+

√
(a− c)2 + 4b2. (2.11)

Proof. Because M is symmetric positive definite, the maximizer x∗ of ‖x‖2
M =

xTMx is the eigenvector associated with the largest eigenvalue λ1(M) of M . More-

over, (x∗)TMx∗ = λ1(M) · ‖x∗‖2.

A direct computation shows that the eigenvalues ofM are 1
2
(a+c±

√
(a− c)2 + 4b2).

Taking the square root of the larger eigenvalue gives the expression in Equa-

tion (2.11).

2.4.3 Implementation

We have implemented a prototype of our algorithm, called SubVor, for com-

puting anisotropic Voronoi diagrams of polygons. The prototype is available on

GitHub [BLPY16], and received the Replicability Stamp at the Eurographics Sym-

posium on Geometry Processing (SGP) 2016 for being able to reproduce the fig-
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ures in our conference paper.5 SubVor follows our algorithm for tracking active

features and using box predicates to achieve a topologically correct Voronoi dia-

gram. The visualization component uses OpenGL, and supports basic interaction

such as zooming.

However, we emphasize that the code is preliminary. In particular, it does

not yet implement all of the details described in the construction phase of the

algorithm, only computes up to machine (double) precision even when arbitrary

precision is required, and has not been tested thoroughly enough.

The program takes two parameters, εa and εg, which control topological and

geometric accuracy by either limiting or forcing quadtree boxes to split. The

first, εa, specifies an “absolute” minimum radius for quadtree boxes. If a box’s

radius is smaller than εa and the box is still unresolved then the program ceases

splitting and marks the box as unresolved. A box may be marked as unresolved

either because it contains a degenerate Voronoi vertex (more than three Voronoi

bisectors intersecting at a point), or because εa was not set to be small enough for

our program to ensure topological correctness. If a box B is marked as unresolved

then we do not guarantee anything about the topology of the Voronoi diagram

inside B.

The second parameter, εg, specifies a bound on the desired “geometric” accu-

racy of the computation. If a box intersects an active Voronoi bisector then it will

always be split down to radius εg/2, ensuring that the Hausdorff distance between

the actual Voronoi diagram and the computed approximation is less than εg.

5See http://www.replicabilitystamp.org/.
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2.4.3.1 Examples

We conclude by giving four examples of Voronoi diagrams computed by our pro-

gram. Input sites are shown in black, the subdivision grid in gray, and the com-

puted (approximate) Voronoi diagram in red. Unresolved boxes are shown in blue.

Figure 2.9: These two images show a Voronoi diagram computed on the same
collection of line segments. The first image was produced with εa set to be relatively
large, and with high εg, while the second image was produced with small εg. The
first image shows that relatively little splitting is necessary to trace bisectors and
confirm many Voronoi vertices. The second image (in which the subdivision grid
is hidden) shows the effect of computing to high geometric precision (small εg).
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Figure 2.10: A Voronoi diagram with mixed point and line segment input sites
with small εg (left), and a Voronoi diagram with point sites each equipped with
a different anisotropic metric (right). Some of the anisotropic norms are very
different in the figure on the right, leading to disconnected Voronoi regions.
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Part II

Lattice Algorithms
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Chapter 3

Background on Lattices

3.1 Introduction

Lattices are the primary object of study in Part II of this thesis. A lattice is a

discrete additive subgroup of Rd, or equivalently, the set of all integer combinations

of some linearly independent vectors b1, . . . , bn ∈ Rd.

Lattices are well-studied mathematical objects [CS98], and in the last few

decades have found many applications within computer science including in inte-

ger programming (e.g. [Len83, Kan87, Dad12]), coding theory (e.g. [EZ04, LB14]),

and especially cryptography (e.g. [Ajt96, AD97, GGH97, HPS98, GPV08, Reg09b,

Gen09]).

In this thesis we present several results related to computational aspects of

lattices. First, in this chapter we give background material about linear algebra

and lattices. In Section 3.3 we also provide a novel exposition of ties between

fundamental domains, CVP(P) algorithms, and basis reduction, which relates to

notions of basis reduction that we use in later chapters. Next, in Chapter 4 we
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study the Lattice Distortion Problem (LDP). The rough goal of LDP is to compute

how “similar” two given lattices L1 and L2 are. Finally, in Chapter 5 we present

algorithms for computing nearly orthogonal and well-conditioned lattice bases.

3.2 Preliminaries

3.2.1 Linear Algebra

In this section we review and establish notation for a number of basic concepts in

linear algebra. For a well-written exposition of most of the concepts, see [TI97].

For 1 ≤ p <∞, the `p norm of a vector x ∈ Rn is defined as

‖x‖p :=
( n∑
i=1

|xi|p
)1/p

,

and the `∞ norm is defined as ‖x‖∞ := maxi∈[n] |xi|. We will most often work with

`2, i.e. with the Euclidean norm, which we simply write as ‖x‖.

Call a matrix O ∈ Rm×n orthogonal if ‖Ox‖ = ‖x‖ for every x ∈ Rn. Equiva-

lently, O is orthogonal if OTO = In, where In is the n× n identity matrix.

3.2.1.1 Gram-Schmidt Vectors

Given linearly independent vectors b1, . . . , bn ∈ Rm, we define their Gram-Schmidt

orthogonalization b̃1, . . . , b̃n as follows.

b̃1 := b1, b̃i := bi −
i−1∑
j=1

µi,j b̃j for 1 < i ≤ n, (3.1)
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where

µi,j :=
〈bi, b̃j〉
〈b̃j, b̃j〉

. (3.2)

Given a matrix B ∈ Rm×n, we define its (reduced) QR-decomposition as

B = QR, where Q ∈ Rm×n is an orthogonal matrix, and R ∈ Rn×n is an upper-

triangular matrix. The matrices Q and R have a close correspondence to the

Gram-Schmidt vectors; the QR-decomposition “writes the vectors bi in the ba-

sis of the Gram-Schmidt vectors ṽ1, . . . , ṽn.” The columns of Q are equal to the

normalized Gram-Schmidt vectors, i.e., qi = b̃i/‖b̃i‖. The entries ri,j of R satisfy

ri,i = ‖b̃i‖ for 1 ≤ i ≤ n, and ri,j = µj,i · ‖b̃i‖ for 1 ≤ i < j ≤ n.

3.2.1.2 Projection

We denote the orthogonal projection of a vector x ∈ Rn onto a linear subspace

S ⊆ Rn by πS(x). Given linearly independent vectors B = (b1, . . . , bn) and 0 ≤

i ≤ n, we use the notation π
(B)
i (x) to denote projection of x onto the subspace

span(b1, . . . , bi)
⊥ (where we define π

(B)
0 to be the identity map). For example, the

Gram-Schmidt vectors satisfy b̃i = π
(B)
i−1(bi).

3.2.1.3 The Operator Norm and Condition Number

We define the operator norm of a full-rank matrix A ∈ Rn×n as

‖A‖ := sup
x∈Rn\{0}

‖Ax‖
‖x‖ ,

and the condition number of A as κ(A) := ‖A‖‖A−1‖. Alternatively, we may define

‖A‖ = σ1(A) and κ(A) = σ1(A)/σn(A), where σ1 ≥ · · · ≥ σn denote the singular

values of A. Because det(A) =
∏n

i=1 σi(A), it holds that κ(A) ≥ ‖A‖/ det(A)1/n,
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GL(n,R)

Unimodular = GL(n,Z)

SL(n,Z)

N(n,R)

N(n,Z)

Figure 3.1: The partial ordering of certain subgroups of GL(n,R).

and in particular κ(A) ≥ ‖A‖ when det(A) ≤ 1.

3.2.1.4 Multiplicative Matrix Groups

We will consider several sets of n× n matrices which form groups with respect to

matrix multiplication.

• The general linear group of matrices over the reals, GL(n,R). I.e., all real-

valued invertible n× n matrices.

• Unimodular matrices, GL(n,Z). I.e., integer-valued n × n matrices with

determinant ±1.

• Upper-triangular unipotent matrices over the reals, N(n,R). I.e., all upper-

triangular, real-valued n×n matrices with 1s on the main diagonal. We also

consider the subgroup of integer-valued matrices N(n,Z).
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3.2.2 Basic Lattice Definitions

In this section we review a number of standard definitions and facts about lat-

tices. See the book by Micciancio and Goldwasser [MG02] and the notes by

Regev [Reg09a] for comprehensive surveys about computational aspects of lat-

tices, and also the notes by Dadush [Dad13] and Stephens-Davidowitz [Ste16] for

useful expositions of select topics.

A lattice L is the set of all integer combinations of some linearly independent

vectors b1, . . . , bn ∈ Rd. We call the matrix B whose columns are b1, . . . , bn a basis

of L, and say that B generates L. We write this as

L(B) = L(b1, . . . , bn) :=
{ n∑

i=1

aibi : ai ∈ Z
}
. (3.3)

If a basis B ∈ Rd×n generates a lattice L, we say that L has rank n and

dimension (or ambient dimension) d.

We next define several important geometric quantities of a lattice L of rank n

and dimension d. Let ‖x‖ denote the Euclidean norm of a vector x ∈ Rd, and let

Bd(r) denote the closed Euclidean ball of radius r in d dimensions. For 1 ≤ i ≤ n,

we define the ith successive minimum of L as

λi(L) := min{r ∈ R+ : dim(span(L ∩Bd(r))) ≥ i}. (3.4)

In particular, λ1(L) is the length of the shortest non-zero vector in L.

Given a lattice L, we define the dual lattice of L as L∗ := {x ∈ span(L) : ∀y ∈ L 〈x, y〉 ∈ Z}.

Given a basis B ∈ Rd×n of L, we define its pseudo-inverse as B+ := (BTB)−1BT ,

and its dual basis B∗ as B∗ := (B+)T (note that we simply have B∗ = (B−1)T
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when d = n). Given a basis B of L, it holds that L∗ = L(B∗), i.e., that the dual

basis generates the dual lattice. The following theorem of Banaszczyk relates the

successive minima of a lattice to the successive minima of its dual.

Theorem 3.2.1 (Banaszczyk’s Transference Theorem, [Ban93]). For every lattice

L of rank n and every 1 ≤ i ≤ n, 1 ≤ λi(L) · λn−i+1(L∗) ≤ n.

When the underlying lattice is clear from context, we write λi, λ
∗
i to denote

the ith successive minima of a lattice and its dual, respectively.

Let dist(L, t) := minx∈L‖x − t‖ denote the distance of t to L. We define the

covering radius of L as

µ(L) := max
x∈span(L)

dist(L,x). (3.5)

The following well-known bound relates the covering radius and successive min-

ima of a lattice. See, e.g., [MG02].

Theorem 3.2.2. For every lattice L of rank n, µ(L) ≤
√
n

2
· λn(L).

The determinant of a lattice L with basis B is defined as det(L) := det(BTB)1/2

(which is simply |det(B)| when B is full-rank). Any basis of L can be expressed

as BU for some unimodular matrix U , so this quantity is well-defined.

3.2.3 Computational Lattice Problems

Below we define both search and decision variants of the two most important

computational problems on lattices, the Shortest Vector Problem (SVP) and the

Closest Vector Problem (CVP). We also define the Closest Vector Problem with

Preprocessing (CVPP). For further details about standard computational lattice
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problems and a survey about rank-preserving reductions between them, see [Ste15].

The following definitions hold for any approximation factor γ ≥ 1.

3.2.3.1 Search Problems

Definition 3.2.3. The γ-approximate Shortest Vector Problem (γ-SVP) is the

search problem defined as follows. Given a lattice L (specified by a basis B ∈ Qd×n)

output a non-zero vector v ∈ L such that ‖v‖ ≤ γ · λ1(L).

Definition 3.2.4. The γ-approximate Closest Vector Problem (γ-CVP) is the

search problem defined as follows. Given a lattice L (specified by a basis B ∈ Qd×n)

and a target vector t ∈ Qd, output a vector v ∈ L such that ‖v−t‖ ≤ γ ·dist(L, t).

Definition 3.2.5. The γ-approximate Closest Vector Problem with Preprocessing

(γ-CVPP) is the problem of finding a preprocessing function P and an algorithm

Q which work as follows. Given a lattice L (specified by a basis B ∈ Qd×n, P

outputs a new description of L. Given P (L) and a target vector t ∈ R, Q outputs

a vector v ∈ L such that ‖v − t‖ ≤ γ · dist(L, t).

Often in CVPP the preprocessing algorithm P is required to output a descrip-

tion P (L) of polynomial size. Note that a single preprocessing P (L) of a lattice L

can be used to answer multiple CVP queries on L.

3.2.3.2 Decision Problems

Definition 3.2.6. The γ-approximate Gap Shortest Vector Problem (γ-GapSVP)

is the decision problem defined as follows. The input is a lattice L (specified by a

basis B ∈ Qd×n) and a number r > 0. It is a ‘YES’ instance if λ1(L) ≤ r, and a

‘NO’ instance if λ1(L) > γ · r.
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Definition 3.2.7. The γ-approximate Gap Closest Vector Problem (γ-GapCVP)

is the decision problem defined as follows. The input is a lattice L (specified by

a basis B ∈ Qd×n), a target vector t ∈ Qd, and a number r > 0. It is a ‘YES’

instance if dist(L, t) ≤ r, and a ‘NO’ instance if dist(L, t) > γ · r.

When γ > 1, γ-GapSVP and γ-GapCVP are promise problems. An algorithm

for solving a promise problem only needs to handle ‘YES’ and ‘NO’ instances

correctly, and can have arbitrary behavior on other instances.

3.2.4 Basis Reduction

We review several standard notions of basis reduction, including Lenstra-Lenstra-

Lovász-reduction (LLL-reduction) [LLL82] and Hermite-Korkine-Zolotareff-reduction

(HKZ-reduction) [KZ73]. Basis reduction plays a key role in Chapters 4 and 5,

and we discuss specific topics in more detail there. We note that two bases B and

B′ generate the same lattice if and only if there exists a unimodular matrix U such

that B′ = BU (see, e.g., Lecture 1 in [Reg09a]), so one can view the task of basis

reduction as finding a suitable unimodular matrix to right-multiply a basis by.

Call a lattice basis B size-reduced if µi,j ∈ [−1
2
, 1

2
) for all i > j (where µi,j is as

defined in Equation (3.2)).

Definition 3.2.8. A basis B ∈ Qn×n is LLL-reduced if

1. B is size-reduced,

2. For all 1 ≤ i ≤ n− 1, 3
4
‖b̃i‖2 ≤ µ2

i+1,i‖b̃i‖2 + ‖b̃i+1‖2.

Definition 3.2.9. A basis B ∈ Qn×n of a lattice L is HKZ-reduced if

1. ‖b1‖ = λ1(L),
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2. B is size-reduced,

3. If n > 1 then (π
(B)
1 (b2), . . . , π

(B)
1 (bn)) is an HKZ-reduced basis of π1(L).

The seminal LLL algorithm of [LLL82] gave a polynomial-time algorithm for

computing LLL-reduced bases B which one can use to approximate many lattice

problems. In particular, using the definition of an LLL-reduced basis together with

the fact that λ1(L) ≥ mini∈[n]‖b̃i‖ for any basis, it is straightforward to check that

the first vector b1 in an LLL-reduced basis satisfies ‖b1‖ ≤ 2n/2 ·λ1(L(B)). There-

fore the LLL-algorithm gives a polynomial-time algorithm for 2n/2-SVP. Moreover,

Babai [Bab86] showed how to extend this to a polynomial-time algorithm for solv-

ing 2n/2-CVP (see Section 3.3.1 for an outline of his algorithm).

HKZ-reduced bases give the strong guarantee that their first vector b1 is a short-

est non-zero vector in the lattice. However, because exact SVP is NP-hard (un-

der randomized reductions) [Ajt98], computing HKZ-reduced bases is intractable.

In fact, as the definition indicates, computing an HKZ-reduced basis essentially

amounts to solving n instances of SVP.

A natural question is whether it is possible to interpolate between LLL-reduced

bases and HKZ-reduced bases, i.e., to get a trade-off between the running time

and quality of lattice bases. Schnorr [Sch87] introduced Block Korkine-Zolotareff-

reduced (BKZ-reduced) bases to address this question. The idea behind BKZ-

reduced bases is that, although HKZ-reduced bases are intractable to compute

in general, one can form a basis out of HKZ-reduced “blocks” of size k for some

k ≤ n. Indeed, using a 2O(n)-time algorithm for SVP (such as [MV13]), one can

compute HKZ-reduced blocks of size k = O(log n) in polynomial time.

In [GN08], Gama and Nguyen defined slide-reduced bases, which refine the idea

87



of BKZ-reduction. Slide-reduced bases play an important role in time-approximation

quality trade-offs that arise in Chapters 4 and 5.

3.3 Relating Fundamental Domains, CVP(P) Al-

gorithms, and Basis Reduction

In this section we describe a connection between fundamental domains of a lat-

tice, algorithms for CVP and CVPP, and basis reduction which we summarize in

Table 3.1 and Figure 3.2.

Applying size-reduction to a basis B is the standard way to make its vectors

short while preserving its Gram-Schmidt vectors. In Chapters 4 and 5 we use

two other such notions of “Gram-Schmidt preserving basis reductions.” We build

context for these notions of basis reduction here by describing their connections to

fundamental domains and CVP(P) algorithms.

Given a lattice L, a convex set F ⊆ span(L) is a fundamental domain of L if

(1) F is L-packing, i.e., ∀x,y ∈ L,x 6= y, (F + x) ∩ (F + y) = ∅, and (2) F is

L-covering, i.e., L + F = span(L). See Lecture 3 in [Dad13] for a more thorough

exposition.

In other words, a fundamental domain partitions span(L) into disjoint regions

F+x according to the vectors x ∈ L. This observation leads to a natural decoding-

based class of algorithms for finding close lattice vectors. Namely, such an algo-

rithm consists of first computing a fundamental domain F of L from some family

of fundamental domains, and second decoding the target vector t to the unique

lattice vector x satisfying t ∈ F + x.

One can naturally view this class of algorithms as solving CVPP. Indeed, one
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Fundamental domain CVP(P) algorithm Basis reduction
Basis-induced box Nearest plane Size-reduction
Basis-induced parallelepiped Rounding off Seysen-reduction
Voronoi cell Iterative slicer, MV-algorithm CVP-reduction

Table 3.1: The correspondence between fundamental domains, CVP(P) algo-
rithms, and basis reduction techniques.

may view computing F as the preprocessing step P , and the decoding step as the

algorithm Q described in the definition of CVPP (Definition 3.2.5). However, an

algorithm in this framework can also be used to solve CVP by first computing

F and then applying the decoding algorithm. Several important algorithms for

finding close lattice vectors fall into this framework, and relate to basis reduction.

We next describe a connection between CVP and basis reduction. We say that

a basis reduction algorithm is Gram-Schmidt preserving if, on input a basis B, it

outputs a basis B′ satisfying L(B) = L(B′) and b̃i = b̃
′
i for every i. Equivalently, an

algorithm is Gram-Schmidt preserving if on input B it computes a basis B′ = BU

for some U ∈ N(n,Z). Note that this differs from general basis reduction in which

case U is only required to be unimodular.

Given a basis B = (b1, . . . , bn) with such a “fixed” sequence of Gram-Schmidt

vectors b̃1, . . . , b̃n, one may view the problem of reducing bi for i = n, . . . , 2 as

solving an instance of CVP on the lattice L(b1, . . . , bi−1) with target vector bi.

In the following subsections, we describe three fundamental domains and their

connection to CVP and basis reduction.
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0 b̃1

b̃2
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Figure 3.2: Three fundamental domains associated with a lattice L and its basis
(b1, b2) tiling space near the origin: the box induced by b̃1, b̃2 (left), the par-
allelepiped induced by b1, b2 (center), and the Voronoi cell of the lattice V(L)
(right). The same target vector t appears in red in all three diagrams. Decoding
to a lattice point according to the box (left) and the Voronoi cell (right) gives the
correct closest vector of b1, while decoding acording to the parallelepiped (center)
incorrectly gives 0.

3.3.1 Basis-induced Boxes

Babai’s nearest plane algorithm for approximately solving CVP [Bab86] works as

follows. On an input lattice L and target vector t, it first computes a “good” basis

B of L with Gram-Schmidt orthogonalization b̃1, . . . , b̃n. Then, after initializing

s := t, it computes the updates

s := s−
⌊ 〈s, b̃i〉
〈b̃i, b̃i〉

⌉
bi

for i = n, . . . , 1. Finally, it outputs t − s, which is in L since each update to s

consists of addition by lattice vectors.

We note that for j < i the update s −
⌊
〈s,b̃j〉
〈b̃j ,b̃j〉

⌉
bj does not affect the ith

coordinate of s. Therefore, after all of the udpates, the ith coordinate of s is less

than or equal to 1
2
‖b̃i‖ for all 1 ≤ i ≤ n. I.e., 〈s, b̃i〉/〈b̃i, b̃i〉 ≤ 1

2
for all 1 ≤ i ≤ n.
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It therefore holds that s lies in the box

(b̃1, . . . , b̃n) ·
[
− 1

2
,
1

2

)n
=
{ n∑

i=1

aib̃i : −1

2
≤ ai <

1

2

}
. (3.6)

This box is a fundamental domain of L, and the vector output by Babai’s algorithm

is the unique lattice vector x such that t ∈ F + x. Therefore, Babai’s algorithm

fits into the “decoding from a fundamental domain” based framework for solving

CVPP.

We note the direct correspondence between Babai’s algorithm and size-reduction

of a lattice basis. Indeed, the size-reduction algorithm is as follows. Given a basis

B with Gram-Schmidt orthogonalization b̃1, . . . , b̃n, for i = n, . . . , 2, apply Babai’s

rounding algorithm with basis b1, . . . , bi−1 to t := bi. Furthermore, both of these

algorithms correspond to shifting a target vector into the box (b̃1, . . . , b̃n)·
[
− 1

2
, 1

2

)n
by adding lattice vectors.

3.3.2 Basis-induced Parallelepipeds

Given a basis B of L, one may try an even simpler algorithm for finding a close

lattice vector to t than Babai’s algorithm. Namely, one can simply write t in

the basis B and round each coefficient. I.e., one can output x :=
∑n

i=1baiebi,

where the coefficients ai are uniquely defined by t =
∑n

i=1 aibi. Although the

approximation factor is worse than the nearest plane algorithm (which achieves

an approximation factor of 2n/2 when B is an LLL-reduced basis), this simple

algorithm still achieves a 2O(n) approximation factor when B is an LLL-reduced

basis. Indeed, Babai analyzed this algorithm alongside the nearest plane algorithm

in his original work [Bab86], where he called it the “rounding off” algorithm.
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Subtracting x from t amounts to shifting t into the parallelepiped induced by

the basis B, namely

B ·
[
− 1

2
,
1

2

)n
=
{ n∑

i=1

aibi : −1

2
≤ ai <

1

2

}
, (3.7)

which is again a fundamental domain of the lattice.

Size-reduction is the standard technique for reducing a lattice basis with re-

spect to a fixed sequence of Gram-Schmidt vectors. However, as we shall see in

Chapters 4 and 5, shifting a vector into a parallelepiped corresponds to a notion

of basis reduction introduced and analyzed by Seysen [Sey93], which ensures that

both a basis B and its dual basis B∗ contain short vectors simultaneously.

3.3.3 Lattice Voronoi Cells

The Voronoi cell V(L) of a lattice L is the set of points in span(L) that lie at least

as close to the origin as to any other lattice point. Namely,

V(L) := {x ∈ span(L) : ∀y ∈ L ‖x‖ ≤ ‖y − x‖}. (3.8)

By definition, deciding whether 0 is the closest lattice point to some t ∈ span(L)

is equivalent to deciding whether t ∈ V(L). More generally, it is not hard to check

that a shift V(L) + x of the Voronoi cell with x ∈ L corresponds to the set of

vectors closest to x, and therefore that these shifts partition span(L) into sets of

vectors closest to each lattice point. It follows that V(L) is a fundamental domain

of the lattice, and that (exact, search) CVP corresponds to finding x ∈ L such
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that t ∈ V(L) + x.1

Of course, getting an algorithm for CVP from this characterization requires

specifying how V(L) is represented, and how one checks in which shift V(L) + x

the target vector t lies. The first scheme for this came from the “iterative slicer”

algorithm of Sommer et al. [SFS09]. Micciancio and Voulgaris [MV13] improved

on this work to get an Õ(4n)-time algorithm for CVPP (and, because the prepro-

cessing also requires Õ(4n)-time to compute, CVP as well).2 This was the first

singly-exponential time algorithm for CVP, and remains the fastest deterministic

algorithm. In follow-up work, Bonifas and Dadush [DB15] gave a Õ(2n)-time Las

Vegas algorithm for CVPP via the so-called “randomized straight line” algorithm.

There exists a related, natural notion of basis reduction which captures the

“shortest possible” lattice basis with respect to a fixed sequence of Gram-Schmidt

vectors. We define a basis B = (b1, . . . , bn) to be CVP-reduced if for every 1 <

i ≤ n it holds that ‖bi‖ = minx∈L{‖x‖ : π
(B)
i−1(x) = b̃i}. Let CVP(L, t) denote

the closest vector to t in L. To CVP-reduce a basis, it suffices to set bi :=

bi−CVP(L(b1, . . . , bi−1), bi) for i = 2, . . . , n. This exactly corresponds to shifting

πspan(b1,...,bi−1)(bi) into V(L(b1, . . . , bi−1)).

Helfrich used the notion of CVP-reduction in her algorithm for computing

Minkowski-reduced bases [Hel85], where she called it “correctly deprojecting” lat-

tice vectors. We use it in our algorithm for computing bases with minimal orthog-

onality defect in Section 5.3. (See Chapter 5 for definitions and Section 5.3 for

details of our algorithm.)

1Any pair of shifts V(L)+x, V(L)+y with x 6= y are interior-disjoint, but are not necessarily
disjoint. So, technically we need to define a “half open” version of the Voronoi cell for it to
be a fundamental domain. However, for simplicity we disregard this issue, and note that such
non-empty intersections V(L) + x ∩ V(L) + y have a useful interpretation as sets of points with
multiple closest lattice vectors.

2Recall that the Õ notation suppresses polylogarithmic factors in the argument.
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Chapter 4

On The Lattice Distortion

Problem

This chapter is based on the publication [BDS16], which was joint work with Daniel

Dadush and Noah Stephens-Davidowitz.

4.1 Introduction

In this chapter we address a basic question: how “similar” are two lattices? We

formalize this question in a natural way for studying the similarity of two geometric

objects, namely, in terms of the minimum distortion of a mapping between them.

I.e., given lattices L1,L2 does there exist a bijective linear mapping T : L1 → L2

that nearly preserves distances between points? If we insist that T exactly pre-

serves distances, then this is the Lattice Isomorphism Problem (LIP), which was

studied in [PS97, SSV09, HR14, LS14]. We extend this study to the Lattice Dis-

tortion Problem (LDP), which asks how well such a mapping T can approximately
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preserve distances between points.

Given two lattices L1,L2 ⊆ Rn, we define the distortion between them as

D(L1,L2) := min
T∈Rn×n

{‖T‖‖T−1‖ : T (L1) = L2},

where ‖T‖ := supx∈Rn\{0}‖Tx‖/‖x‖ is the operator norm. The quantity κ(T ) :=

‖T‖‖T−1‖ is the condition number of T , which measures how much T distorts

distances. It is easy to see that distortion is invariant under scaling of the lattices,

i.e., D(L1,L2) = D(c1L1, c2L2) for all c1, c2 > 0. D(L1,L2) bounds the ratio

between most natural geometric parameters of L1 and L2 (up to scaling), and

hence D(L1,L2) is a strong measure of “similarity” between lattices. In particular,

dist(L1,L2) = 1 if and only if L1,L2 are isomorphic (i.e., if and only if they are

related by a scaled orthogonal transformation).

The Lattice Distortion Problem LDP is then defined in the natural way. Namely,

the input is a pair of lattices L1,L2 represented by bases, and the goal is to compute

a bijective linear transformation T mapping L1 to L2 such that κ(T ) = D(L1,L2).

In this work we study the approximate search and decision versions of this problem,

which we refer to as γ-LDP and γ-GapLDP, respectively, for some approximation

factor γ = γ(n) ≥ 1. (See Section 4.2.3 for precise definitions.)

4.1.1 Our Contribution

As our first main contribution, we show that the distortion between any two lattices

can be approximated by a natural function of geometric lattice parameters. Indeed,

our proof techniques are constructive, leading to our second main contribution:

an algorithm that computes low-distortion mappings, with a trade-off between
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the running time and the approximation factor. Finally, we show hardness of

approximating lattice distortion.

A natural way to derive useful bounds on the distortion between two lattices

is to study the “different scales over which the two lattices live.” A natural notion

of this is given by the successive minima. Since low-distortion mappings approxi-

mately preserve distances, it is intuitively clear that two lattices can only be related

by a low-distortion mapping if their successive minima are close to each other (up

to a fixed scaling).

Concretely, for two n-dimensional lattices L1,L2, we define

M(L1,L2) = max
i∈[n]

λi(L2)

λi(L1)
, (4.1)

which measures how much we need to scale up L1 so that its successive minima

are at least as large as those of L2. For any linear map T from L1 to L2 and any

1 ≤ i ≤ n, it is not hard to show that λi(L2) ≤ ‖T‖λi(L1). Thus, by definition

M(L1,L2) ≤ ‖T‖. Applying the same reasoning for T−1, we derive the following

simple lower bound on distortion.

D(L1,L2) ≥M(L1,L2) ·M(L2,L1). (4.2)

We note that this lower bound is tight when L1,L2 are each generated by bases

of orthogonal vectors. But, it is a priori unclear if any comparable upper bound

should hold for general lattices, since the successive minima are a coarse charac-

terization of the geometry of the lattice. Nevertheless, we show a corresponding

upper bound.
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Theorem 4.1.1. Let L1,L2 be n-dimensional lattices. Then,

M(L1,L2) ·M(L2,L1) ≤ D(L1,L2) ≤ nO(logn) ·M(L1,L2) ·M(L2,L1).

While the factor on the right-hand side of the theorem might be far from

optimal, we show in Section 4.5.1 that it cannot be improved below Ω(
√
n). This

is because there exist lattices that are much more dense than Zn over large scales

but still have λi(L) = Θ(1) for all i. I.e., there exist very dense lattice sphere

packings (see, e.g., [Sie45]).

To prove the above theorem, we make use of the intuition that a low-distortion

mapping T from L1 to L2 should map a “short” basis B1 of L1 to a “short”

basis B2 of L2. (Note that the condition TB1 = B2 completely determines T =

B2B
−1
1 .) The difficulty here is that standard notions of “short” fail for the purpose

of capturing low-distortion mappings. In particular, in Section 4.5.2, we show that

Hermite-Korkine-Zolotarev (HKZ) reduced bases, one of the strongest notions of

“shortest possible” lattice bases, do not suffice by themselves for building low-

distortion mappings. (See Section 4.2.5 for the definition of HKZ-reduced bases.)

In particular, we give a simple example of a lattice L where an HKZ-reduced basis

of L misses the optimal distortion D(Zn,L) by an exponential factor.

Fortunately, we show that a suitable notion of shortness does exist for build-

ing low-distortion mappings by making a novel connection between low-distortion

mappings and a notion of basis reduction introduced by Seysen [Sey93]. In partic-

ular, for a basis B = [b1, . . . , bn] and dual basis B∗ = B−T = [b∗1, . . . , b
∗
n], Seysen’s

97



condition number is defined as

S(B) = max
i∈[n]
‖bi‖‖b∗i ‖ .

Note that we always have 〈bi, b∗i 〉 = 1, so S measures how tight the Cauchy-Schwarz

inequality is over all primal-dual basis-vector pairs. Another way of viewing S(B)

is as a condition number of B which is invariant under scaling of the columns (i.e.

basis vectors) of B. We extend this notion and define S(L) as the minimum of S(B)

over all bases B of L. Call a basis B = [b1, . . . , bn] sorted if ‖b1‖ ≤ · · · ≤ ‖bn‖.

Using this notion, we obtain the bounds in Theorem 4.1.1 as follows.

Theorem 4.1.2. Let L1,L2 be n-dimensional lattices with sorted bases B1, B2 ∈

Rn×n, respectively. Then we have that

M(L1,L2)M(L2,L1) ≤ κ(B2B
−1
1 ) ≤ n2S(B1)2S(B2)2 ·M(L1,L2)M(L2,L1).

In particular, we have that

M(L1,L2)M(L2,L1) ≤ D(L1,L2) ≤ n2S(L1)2S(L2)2 ·M(L1,L2)M(L2,L1).

From here, the bound in Theorem 4.1.1 follows directly from the following

theorem of Seysen.

Theorem 4.1.3 (Seysen [Sey93]). For any L ⊂ Rn, S(L) ≤ nO(logn).

This immediately yields an algorithm for approximating the distortion between

two lattices, by using standard lattice algorithms to approximate M(L1,L2) and

M(L2,L1). But, Seysen’s proof of the above theorem is actually constructive. In
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particular, he shows how to efficiently convert any suitably reduced lattice basis

into a basis with a low Seysen condition number. (See Section 4.2.5.2 for details.)

Using this methodology, combined with standard basis reduction techniques, we

derive the following time-approximation trade-off for γ-LDP.

Theorem 4.1.4 (Algorithm for LDP). For any log n ≤ k ≤ n, there is an algo-

rithm solving kO(n/k+logn)-LDP in 2O(k)-time.

In other words, using the bounds in Theorem 4.1.1 together with known al-

gorithms, we are able to approximate the distortion between two lattices. But,

because Theorem 4.1.3 is effective, we are able to solve search LDP by explicitly

computing a low-distortion mapping between the input lattices.

We also prove the following lower bound for LDP.

Theorem 4.1.5 (Hardness of LDP). γ-GapLDP is NP-hard under randomized

polynomial-time reductions for any constant γ ≥ 1.

In particular, we show a reduction from approximating the decisional Shortest

Vector Problem (GapSVP) over lattices to γ-GapLDP, where the approximation

factor that we obtain for GapSVP is O(γ). Since hardness of GapSVP is quite well-

studied [Ajt98, Mic01, Kho05, HR12], we are immediately able to import many

hardness results to GapLDP. (See Corollary 4.4.5 and Theorem 4.4.7 for precise

statements.)

4.1.2 Comparison to related work

The most related work to ours was the paper by Haviv and Regev [HR14] on the

Lattice Isomorphism Problem (LIP). In their paper, they leverage the observation

that an isomorphism from L1 to L2 must send shortest non-zero vectors of L1 to
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shortest non-zero vectors of L2 (and vice-versa) to get an nO(n)-time algorithm for

solving LIP.

LDP appears as the natural generalization of LIP, in which the goal is to com-

pute a low-distortion mapping between the lattices, but which need not preserve

distances exactly. I.e., the goal of LDP is to compute a mapping which approxi-

mately preserves distances.

One might expect that the approach of Haviv and Regev should also work

for the purpose of solving LDP either exactly or for approximation factors below

nO(logn). However, the crucial assumption in LIP – that vectors in one lattice

must be mapped to vectors of the same length in the other – breaks down in the

current context, and we therefore do not know how to extend their techniques

to LDP. On the other hand, our algorithm does use the intuition that vectors at

“the same scale” should be mapped to each other as best as possible. Indeed, the

mappings that our algorithm constructs are of the form T = BA−1 for bases A,B

(i.e. T : ai 7→ bi for 1 ≤ i ≤ n), where the lengths of the basis vectors ai, bi

approximate the ith successive minima of L(A),L(B), respectively. (Also, the

lengths of a∗i , b
∗
i approximate the (n− i+ 1)th successive minima of L(A)∗,L(B)∗,

respectively.)

More generally, we note that LIP is the lattice analog of the Graph Isomor-

phism Problem (GI), and that indeed the problems are related. Both problems

are in SZK but not known to be in P, and GI reduces to LIP [SSV09]. Therefore,

LDP is analogous to the Approximate Graph Isomorphism Problem, which was

studied by Arora, Frieze, and Kaplan [AFK02], who showed an upper bound, and

Arvind, Köbler, Kuhnert, and Vasudev [AKKV12], who proved both upper and

lower bounds. In particular, [AKKV12] showed that various versions of this prob-
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lem are NP-hard to approximate to within a constant factor. Qualitatively, these

hardness results are similar to our Theorem 4.1.5.

4.1.3 Open Problems

Our algorithm only works for solving γ-LDP with large approximation factors

γ = nΩ(logn). The most obvious open problem is to find an algorithm which

solves γ-LDP for smaller γ. We currently do not even know whether there exists

a polynomial-time algorithm for γ-LDP on lattices of fixed rank n for any γ =

no(logn).

Open Problem 4.1.6. Find an algorithm for γ-LDP for some γ = no(logn) which

runs in polynomial time for lattices of fixed rank n.

The main problem with addressing Open Problem 4.1.6 is that we do not have

any good characterization of nearly optimal distortion mappings between lattices.

Another major open problem is what the correct bound in Theorem 4.1.3 is. In

particular, there are no known families of lattices for which the Seysen condition

number is provably superpolynomial, and hence it is possible that S(L) = poly(n)

for every lattice L of rank n. Indeed, a better bound would immediately improve

our Theorem 4.1.2 and give a better approximation factor for GapLDP, partially

addressing Open Problem 4.1.6.

Open Problem 4.1.7. Is S(L) = poly(n) for every lattice L of rank n?

Organization

In Section 4.2, we present necessary background material. In Section 4.3, we give

our approximations for lattice distortion, proving Theorems 4.1.2 and 4.1.4. In
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Section 4.4, we give the hardness for lattice distortion, proving Theorem 4.1.5. In

Section 4.5, we give some illustrative example instances of lattice distortion.
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4.2 Preliminaries

We omit any mention of the bit length in the running time of our algorithms.

In particular, all of our algorithms take as input vectors in Qn and run in time

f(n) · poly(m) for some f , where m is the maximal bit length of an input vector.

We therefore suppress the factor of poly(m).

4.2.1 Linear mappings between lattices

We next characterize linear mappings between lattices in terms of bases.

Lemma 4.2.1. Let L1,L2 be full-rank lattices. Then a mapping T : L1 → L2

is bijective and linear if and only if T = BA−1 for some bases A,B of L1,L2

respectively. In particular, for any basis A of L1, T (A) is a basis of L2.

Proof. Let T = BA−1 where A = [a1, . . . ,an] and B = [b1, . . . , bn] are bases of

L1,L2 respectively. We first show that such a mapping is a bijection from L1 to

L2. Because T has full rank, it is injective as a mapping from Rn to Rn, and it is
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therefore injective as a mapping from L1 to L2. To show that T is surjective, pick

w ∈ L2. It holds that w =
∑n

i=1 cibi for some c1, . . . , cn ∈ Z since B is a basis of

L2, and moreover
∑n

i=1 ciai ∈ L1 is a preimage of w. Therefore, T is a bijection

from L1 to L2.

We next show that any linear map T with T (L1) = L2 must have the form

T = BA−1. Let A = [a1, . . . ,an] be a basis of L1, and let B = T (A). We claim

that B = [b1, . . . , bn] is a basis of L2.

Let w ∈ L2. Because T is a bijection between L1 and L2, there exists v ∈ L1

such that T (v) = w. Using the definition of a basis and the linearity of T ,

w = T (v) = T
( n∑
i=1

ciai
)

=
n∑
i=1

cibi,

for some c1, . . . , cn ∈ Z. Because w was picked arbitrarily, it follows that B is a

basis of L2.

4.2.2 Seysen’s condition number S(B)

Seysen shows how to take any basis with relatively low multiplicative drop in

its Gram-Schmidt vectors and convert it into a basis with relatively low S(B) =

maxi ‖bi‖‖b∗i ‖ [Sey93]. By combining this with Gama and Nguyen’s slide reduction

technique [GN08], we obtain the following result.

Theorem 4.2.2. For every log n ≤ k ≤ n there exists an algorithm that takes a

lattice L as input and computes a basis B of L with S(B) ≤ kO(n/k+log k) in time

2O(k).

In particular, applying Seysen’s procedure to slide-reduced bases suffices. We

include a proof of Theorem 4.2.2 and a high-level description of Seysen’s procedure
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in Section 4.2.5.

4.2.3 The Lattice Distortion Problem

Definition 4.2.3. For any γ = γ(n) ≥ 1, the γ-Lattice Distortion Problem (γ-

LDP) is the search problem defined as follows. The input consists of two lattices

L1,L2 (represented by bases B1, B2 ∈ Qn×n). The goal is to output a matrix

T ∈ Qn×n such that T (L1) = L2 and κ(T ) ≤ γ · dist(L1,L2).

Definition 4.2.4. For any γ = γ(n) ≥ 1, the γ-GapLDP is the promise problem

defined as follows. The input consists of two lattices L1,L2 (represented by bases

B1, B2 ∈ Qn×n) and a number c ≥ 1. The goal is to decide between a ‘YES’

instance where dist(L1,L2) ≤ c and a ‘NO’ instance where dist(L1,L2) > γ · c.

4.2.4 Complexity of LDP

We show some basic facts about the complexity of GapLDP. First, we show that

the Lattice Isomorphism Problem (LIP) corresponds to the special case of GapLDP

where c = 1. LIP takes bases of L1,L2 as input and asks if there exists an or-

thogonal linear transformation O such that O(L1) = L2. Haviv and Regev [HR14]

show that there exists an nO(n)-time algorithm for LIP, and that LIP is in the

complexity class SZK.

Lemma 4.2.5. There is a polynomial-time reduction from LIP to 1-GapLDP.

Proof. Let L1,L2 be an LIP instance. First check that det(L1) = det(L2). If

not, then output a trivial ‘NO’ instance of 1-GapLDP. Otherwise, map the LIP

instance to the 1-GapLDP instance with the same input bases and c = 1. For any

T : L1 → L2, we must have det(T ) = 1. Recalling that det(T ) =
∏n

i=1 σi(T ) and
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κ(T ) = σ1(T )/σn(T ) (where σi is the ith largest singular value), we therefore have

that κ(T ) = 1 if and only if ‖T‖ = ‖T−1‖ = 1. So, this is a ‘YES’ instance of

GapLDP if and only if L1,L2 are isomorphic.

Lemma 4.2.6. 1-GapLDP is in NP.

Proof. Let I = (L1,L2, c) be an instance of GapLDP (where L1, L2 are specified

by bases A, B, respectively), and let s be the length of I. We will show that for

a ‘YES’ instance, there is a mapping T : L1 → L2 that requires at most poly(s)

bits to specify and satisfies κ(T ) ≤ c. Assume without loss of generality that

L1,L2 ⊆ Zn. Otherwise, scale the input lattices to achieve this at the expense of

a factor s blow-up in input size.

Using the definition of singular values and the fact that L1,L2 ⊆ Zn,

1/‖T−1‖ = σn(T ) ≤ (|det(L2)/ det(L1)|)1/n ≤ max{1, |det(L2)/ det(L1)|} ≤ |det(L2)| .

Therefore, to satisfy ‖T‖‖T−1‖ ≤ c, we must have that |tij| ≤ ‖T‖ ≤ c/‖T−1‖ ≤

c · |det(L2)| for each entry tij of T . By Cramer’s rule, each entry of T will be an

integer multiple of det(L1)−1, so we can assume without loss of generality that the

denominator of each entry of T is det(L1).

Combining these bounds and applying Hadamard’s inequality, we get that |tij|

takes at most

log(c · det(L1) · det(L2)) ≤ log
(
c ·

n∏
i=1

‖ai‖ ·
n∏
i=1

‖bi‖
)

bits to specify. Accounting for the sign of each tij, it follows that T takes at most

n2 · log(2c ·∏n
i=1‖ai‖‖bi‖) ≤ n2 · (s+ 1) bits to specify.
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We remark that we can replace c with the quantity nO(logn)·M(L1,L2)M(L2,L1)

(as given by the upper bound in Theorem 4.1.1) in the preceding argument to ob-

tain an upper bound on the number of bits needed to represent an optimal mapping

T .

4.2.5 Basis reduction

4.2.5.1 Slide-reduced bases

Gama and Nguyen (building on the work of Schnorr [Sch87]) introduced the notion

of slide-reduced bases [GN08], which can be thought of as a relaxed notion of HKZ

bases that can be computed more efficiently.

Definition 4.2.7 ([GN08, Definition 1]). Let B be a basis of L ⊂ Qn and ε > 0.

We say that B is ε-DSVP (dual SVP) reduced if its corresponding dual basis

[b∗1, . . . , b
∗
n] satisfies ‖b∗n‖ ≤ (1 + ε) · λ1(L∗). Then, for an integer k ≥ 2 which

divides n, we say that B = [b1, . . . , bn] is (ε, k)-slide reduced if

1. B is size-reduced;

2. ∀ 0 ≤ i ≤ n/k−1, the “projected truncated basis” [π
(B)
ik+1(bik), . . . , π

(B)
ik (bik+k)]

is HKZ reduced; and

3. ∀ 0 ≤ i ≤ n/k − 2, the “shifted projected truncated basis”

[π
(B)
ik+1(bik+2), . . . , π

(B)
ik+1(bik+k+1)] is ε-DSVP reduced.

Theorem 4.2.8 ([GN08]). There is an algorithm that takes as input a lattice

L ⊂ Qn, ε > 0, and an integer k ≥ log n which divides n and outputs a (k, ε)-

slide-reduced basis of L in time poly(1/ε) · 2O(k).
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We are primarily concerned with the ratios between the length of the Gram-

Schmidt vectors of a given basis. We prefer bases whose Gram-Schmidt vectors do

not “decay too quickly,” and we measure this decay by

η(B) := max
i≤j

‖b̃i‖
‖b̃j‖

.

Previous work bounded η(B) for HKZ-reduced bases as follows.

Theorem 4.2.9 ([LLS90, Proposition 4.2]). For any HKZ-reduced basis B over

Qn, η(B) ≤ nO(logn).

We now use Theorem 4.2.9 and some of the results in [GN08] to bound η(B)

of slide-reduced bases.

Proposition 4.2.10. For any integer k ≥ 2 dividing n, if B is an (1/n, k)-slide-

reduced basis for a lattice L ⊂ Qn, then η(B) ≤ kO(n/k+log k).

Proof. We collect three simple inequalities that will together imply the result.

First, from [GN08, Eq. (16)], we have ‖b̃1‖ ≤ kO(n/k)·‖b̃jk+1‖ for all 0 ≤ j ≤ n/k−1.

Noting that the projection [πik(bik+1), . . . , πik(bik+k)] of a slide-reduced basis is also

slide reduced, we see that

‖b̃ik+1‖ ≤ kO(n/k) · ‖b̃jk+1‖ , (4.3)

for all 0 ≤ i ≤ j ≤ n/k − 1. Next, from Theorem 4.2.9 and the fact that the

“projected truncated bases” are HKZ reduced, we have that

‖b̃ik+`‖ ≤ kO(log k) · ‖b̃ik+`′‖ , (4.4)

107



for all 1 ≤ ` ≤ `′ ≤ k. Finally, [GN08] observe that

‖b̃ik+k‖ ≤ C · ‖b̃ik+k+1‖ , (4.5)

for all 0 ≤ i ≤ n/k − 2, where C > 0 is some universal constant.1

Now, let 0 ≤ i ≤ i′ ≤ n/k−1 and 1 ≤ `, `′ ≤ k such that 1 ≤ ik+` < i′k+`′ ≤ n.

If i = i′, then clearly ‖b̃ik+`‖/‖b̃i′k+`′‖ ≤ kO(log k) by Eq. (4.4). Otherwise, i < i′

and

‖b̃ik+`‖
‖b̃i′k+`′‖

≤ kO(log k) · ‖b̃ik+`‖
‖b̃i′k+1‖

(Eq. (4.4))

≤ kO(n/k+log k) · ‖b̃ik+`‖
‖b̃ik+k+1‖

(Eq. (4.3))

≤ kO(n/k+log k) · ‖b̃ik+`‖
‖b̃ik+k‖

(Eq. (4.5))

≤ kO(n/k+log k) (Eq. (4.4)),

as needed.

Finally, we show how to get rid of the requirement that k divides n. We will do

this by (1) extending an input basis B̂ of a lattice L with n vectors to a basis with

n′ := dn/ke · k vectors by appending long, orthogonal vectors to B̂, (2) running

the slide-reduction algorithm on the new basis to obtain a slide-reduced basis B′,

and then (3) showing that the first n vectors B of B′ form a basis of the original

lattice L.

Proposition 4.2.11. For any log n ≤ k ≤ n, there is an algorithm that takes as

1They actually observe that a slide-reduced basis is LLL reduced, which immediately implies
Eq. (4.5).
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input a lattice L ⊂ Qn and outputs a basis B of L such that η(B) ≤ kO(n/k+log k).

Furthermore, the algorithm runs in 2O(k)-time.

Proof. We assume without loss of generality that k is an integer. Let n′ := dn/ke·k

be the smallest integer greater than or equal to n that is divisible by k. On input a

basis B̂ = [b̂1, . . . , b̂n] for the lattice L ⊂ Qn, the algorithm behaves as follows. Let

r := 2Ω(n2)·maxi ‖b̂i‖. Let L′ := L⊕rZn′−n = L(b̂1, . . . , b̂n, r·en+1, . . . , r·en′) ⊂ Qn′

be “the lattice generated by appending n′ − n orthogonal vectors of length r to

B̂.” The algorithm then computes a (1/n, k)-slide reduced basis B′ = [b1, . . . , bn′ ]

of L′ as in Theorem 4.2.8, and returns the basis B = [b1, . . . , bn] consisting of the

first n entries of B′.

It follows immediately from Theorem 4.2.8 that the running time is as claimed,

and from Proposition 4.2.10 we have that η(B) ≤ η(B′) ≤ kO(n′/k+log k) ≤ kO(n/k+log k).

So, we only need to prove that B is in fact a basis for L (as opposed to some other

sublattice of L′).

Let i be the minimum index such that bi /∈ span(L). It is clear that i ≤

n + 1. We claim that i = n + 1, i.e., that span(B) = span(L) and therefore that

L(B) = L. Suppose not. Then there exists 1 ≤ j ≤ n such that π
(B′)
i−1 (b̂j) 6= 0 and

π
(B′)
i−1 (b̂j) ∈ π(B′)

i−1 (L′). Then,

λ1(π
(B′)
i−1 (L′)) ≤ ‖π(B′)

i−1 (b̂j)‖ ≤ ‖b̂j‖ ≤ 2−Ω(n2) · π(B′)
i−1 (bi), (4.6)

where the last inequality follows from the fact that ‖π(B′)
i−1 (bi)‖ ≥ ‖πspan(L)⊥(bi)‖ ≥

λ1(πspan(L)⊥(L′)) = r.

Slide-reduced bases are also LLL-reduced (see [GN08, Section 3.2]), so B′ is

LLL-reduced and therefore [π
(B′)
i−1 (bi), . . . , π

(B′)
i−1 (bn′)] is also LLL-reduced. But be-
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cause [π
(B′)
i−1 (bi), . . . , π

(B′)
i−1 (bn′)] is LLL-reduced, it holds that ‖π(B′)

i−1 (bi)‖ ≤ 2O(n) ·

λ1(π
(B′)
i−1 (L′)) (see, e.g., [GN08, Equation (2)]), which contradicts Equation (4.6).

4.2.5.2 Seysen bases

Although slide-reduced bases B consist of short vectors and have bounded η(B),

they make only weak guarantees about the length of vectors in the dual basis B∗.

Of course, one way to compute a basis whose dual will contain short dual basis

is short is to simply compute B such that B∗ is a suitably reduced basis of L∗.

Such a basis B is called a dual-reduced basis, and sees use in applications such

as [HR14].

However, we would like to compute a basis such that the vectors in B and

B∗ are both short, which Seysen addressed in his work [Sey93]. Seysen’s main

result finds a basis B such that both B and B∗ are short by dividing this problem

into two subproblems. The first involves finding a basis with small η(B), as in

Section 4.2.5.1. The second subproblem, discussed in [Sey93, Section 3], involves

conditioning unipotent matrices. Let N(n,R) be the multiplicative group of unipo-

tent n× n-matrices. That is, a matrix A ∈ N(n,R) if aii = 1 and aij = 0 for i > j

(i.e., A is upper triangular and has ones on the main diagonal). Let N(n,Z) be the

subgroup of N(n,R) with integer entries. Because N(n,Z) is a subset of GL(n,Z),

we trivially have that L(B) = L(B · U) for every U ∈ N(n,Z).

Let ‖B‖∞ := maxi,j∈[n] |bij| denote the largest magnitude of an entry in B. We

follow Seysen [Sey93] and define S ′(B) = max{‖B‖∞, ‖B−1‖∞}. We also let

ζ(n) = sup
A∈N(n,R)

{
inf

U∈N(n,Z)
{S ′(A · U)}

}
.
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Theorem 4.2.12 ([Sey93, Prop. 5 and Thm. 6]). There exists an algorithm

Seysen that takes as input W ∈ N(n,R) and outputs Ŵ = W · U where U ∈

N(n,Z) and S ′(Ŵ ) ≤ nO(logn) in time O(n3). In particular, ζ(n) ≤ nO(logn).

Let B = QR be a QR-decomposition of B. We may further decompose R as

R = DW , where dii = ‖b̃i‖ and

wij =


0 if j < i,

1 if j = i,

µji if j > i.

In particular, note that W ∈ N(n,R).

For completeness, we reprove the following theorem which shows, given an

input basis B′, how to upper bound S(Seysen) as a function of η(B′) and ζ(n).

Theorem 4.2.13 ([Sey93, Theorem 7]). Let B = Seysen(B′), where B′ ∈ Qn×n

is a full-rank matrix. Then S(B) ≤ n · η(B′) · ζ(n)2.

Proof. Let B′ = QR = QDW where Q is an orthogonal matrix, D is a diagonal

matrix, W is an upper-triangular unipotent matrix, and R = DW . Furthermore,

let U ∈ N(n,Z) be as in Theorem 4.2.12, i.e., so that B = B′U and S ′(WU) ≤

nO(logn). Let R̂ = RU = DWU and let Ŵ = WU . Then for all 1 ≤ j ≤ n,
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‖bj‖2‖b∗j‖2 = ‖r̂j‖2‖r̂∗j‖2 (Q is orthogonal)

=

j∑
i=1

(di,i · ŵi,j)2 ·
n∑
k=j

(ŵ∗k,j/dk,k)
2

=

j∑
i=1

n∑
k=j

( di,i
dk,k

)2

· (ŵi,jŵ∗k,j)2

≤ n2 ·max
k≥i

( di,i
dk,k

)2

· ζ(n)4, (By Theorem 4.2.12)

≤ n2 · η(B′)2 · ζ(n)4 (Since η(B′) = η(D))

= n2 · η(B′)2 · ζ(n)4,

which proves the claim.

Proof of Theorem 4.2.2. Let B = Seysen(B′), where B′ is a basis as computed in

Proposition 4.2.11. We then have that

S(B) ≤ n · η(B′) · ζ(n)2 (by Theorem 4.2.13)

≤ n · kO(n/k+log k) · ζ(n)2 (by Proposition 4.2.11)

≤ n · kO(n/k+log k) · (nO(logn))2 (by Theorem 4.2.12)

≤ kO(n/k+log k).

We can compute B′ in 2O(k) time using Proposition 4.2.11. Moreover, by The-

orem 4.2.12, Seysen runs in O(n3) time. Therefore the algorithm runs in 2O(k)

time.
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4.2.6 Lower bounding S(B)

Call a basis B = [b1, . . . , bn] sorted if ‖b1‖ ≤ · · · ≤ ‖bn‖. Clearly, ‖bi‖/λi ≥ 1 for

a sorted basis B. Note that sorting B does not change S(B), since S(·) is invariant

under permutations of the basis vectors.

A fundamental question (stated in Open Problem 4.1.7) is whether the upper

bound S(L) ≤ nO(logn) on S(L) can be improved for every lattice L of rank n.

We conclude this section by showing that for sorted bases B, η(B) lower bounds

S(B), and therefore improving the upper bound on S(L) would require finding a

family of bases with lower η than HKZ-reduced bases (i.e. better than the bases

obtained via the algorithm in Proposition 4.2.11 with k = n).

Proposition 4.2.14. For sorted bases B, η(B) ≤ S(B).

Proof. We use the fact that for any basis B of rank n and any 1 ≤ i ≤ n,

‖b̃i‖−1 ≤ ‖b∗i ‖. (4.7)

Note that bi = b̃i + wi for some wi ∈ span(b1, . . . , bi−1). Equation (4.7) then

follows from the fact that

1 = 〈bi, b∗i 〉 = 〈b̃i + wi, b
∗
i 〉 = 〈b̃i, b∗i 〉 ≤ ‖b̃i‖‖b∗i ‖,

where the equalities hold because 〈bi, b∗j〉 is equal to 1 if i = j and is equal to 0

otherwise, and the inequality holds because of the Cauchy-Schwarz inequality.

Therefore,

η(B) = max
i≤j

‖b̃i‖
‖b̃j‖

≤ max
i≤j
‖b̃i‖‖b∗j‖ ≤ max

i≤j
‖bi‖‖b∗j‖ ≤ max

j
‖bj‖‖b∗j‖ = S(B),
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where the first inequality holds by Equation (4.7) and the third inequality holds

since B is sorted.

It is easy to see that Proposition 4.2.14 is false for unsorted bases. Indeed, an

unsorted diagonal basis B always has S(B) = 1 but may have arbitrarily large

η(B).

4.3 Approximating Lattice Distortion

In this section, we show how to compute low-distortion mappings between lattices

by using bases B with low S(B).

4.3.1 Basis length bounds in terms of S(B)

A natural way to quantify the “shortness” of a lattice basis is to upper bound

‖bk‖/λk for all k ∈ [n]. For example, [LLS90] shows that ‖bk‖/λk ≤
√
n when

B is an HKZ basis. We give a characterization of Seysen bases showing that

in fact both the primal basis vectors and the dual basis vectors are not much

longer than the successive minima. Namely, S(B) is an upper bound on both

‖bk‖/λk and ‖b∗k‖/λ∗n−k+1 for sorted bases B. Although we only use the fact that

S(B) ≥ ‖bk‖/λk we show both bounds. Seysen [Sey93] gave essentially the same

characterization, but we state and prove it here in a slightly different form.

Lemma 4.3.1 (Theorem 8 in [Sey93]). Let B be a sorted basis of L. Then for all

k ∈ [n],

1. ‖bk‖/λk(L) ≤ S(B).

2. ‖b∗k‖/λ∗n−k+1(L) ≤ S(B).
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Proof. For every k ∈ [n] we have

‖bk‖/λk ≤ ‖bk‖λ∗n−k+1 (by the lower bound in Theorem 3.2.1)

≤ ‖bk‖ max
k≤i≤n

‖b∗i ‖ (the b∗i ’s are linearly independent)

≤ max
k≤i≤n

‖bi‖‖b∗i ‖ (B is sorted)

≤ S(B).

This proves Item 1. Furthermore, for every k ∈ [n] we have

‖b∗k‖
λ∗n−k+1

≤ ‖bk‖‖b
∗
k‖

λkλ∗n−k+1

≤ max
i∈[n]
‖bi‖‖b∗i ‖ = S(B).

The first inequality follows from the assumption that B is sorted, and the second

follows from the lower bound in Theorem 3.2.1. This proves Item 2.

4.3.2 Approximating LDP using Seysen bases

In this section, we bound the distortion D(L1,L2) between lattices L1,L2. The

upper bound is constructive and depends on S(B1), S(B2), which naturally leads

to Theorem 4.1.4.

The proof uses two linear algebraic identities. First, it uses the fact that one

can write the product XY of two matrices X, Y as a sum of outer products. I.e.,

it holds that

XY =
n∑
i=1

xiy
T
i , (4.8)

where xi is the ith column of X and yi is the ith row of Y . Second, we use the

following identity about the operator norm of a rank-one matrix defined as an
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outer product. Namely, given vectors x,y,

‖xyT‖ = ‖x‖‖y‖. (4.9)

Lemma 4.3.2. Let A = [a1, . . . ,an] and B = [b1, . . . , bn] be sorted bases of L1,L2

respectively. Then,

‖BA−1‖ ≤ n · S(A)S(B) ·M(L1,L2).

Proof.

‖BA−1‖ =
∥∥∥ n∑
i=1

bi(a
∗
i )
T
∥∥∥ (by Equation (4.8))

≤
n∑
i=1

∥∥bi(a∗i )T∥∥ (by triangle inequality)

=
n∑
i=1

‖bi‖‖a∗i ‖ (by Equation (4.9))

≤ n ·max
i∈[n]
‖bi‖‖a∗i ‖

≤ n · S(B) ·max
i∈[n]

λi(L2)‖a∗i ‖ (by Item 1 in Lemma 4.3.1)

≤ n · S(A)S(B) ·max
i∈[n]

λi(L2)/‖ai‖ (by definition of S(A))

≤ n · S(A)S(B) ·max
i∈[n]

λi(L2)/λi(L1) (A is sorted)

= n · S(A)S(B) ·M(L1,L2).

We can now prove the bounds on distortion given in Theorem 4.1.2.

116



Proof of Theorem 4.1.2. Note that for i = 1, 2 there always exists a basis Bi of Li
which achieves S(Bi) = S(Li). Indeed, this follows from the fact that for every

lattice L and r > 0 there are finitely many bases B of L with S(B) ≤ r, which was

shown by Seysen [Sey93, Corollary 9] (see also Corollary 5.4.1 in the next chapter).

Therefore, applying Lemma 4.3.2 twice to bound both ‖B2B
−1
1 ‖ and ‖B1B

−1
2 ‖, we

get the upper bound.

For the lower bound, let v1, . . . ,vn ∈ L1 be linearly independent vectors such

that ‖vi‖ = λi(L1) for every i. Then, for every i,

λi(L2) ≤ max
j∈[i]
‖Tvj‖ ≤ ‖T‖max

j∈[i]
‖vj‖ = ‖T‖λi(L1).

Rearranging, we get that λi(L2)/λi(L1) ≤ ‖T‖. This holds for arbitrary i, so

in particular maxi∈[n] λi(L2)/λi(L1) = M(L1,L2) ≤ ‖T‖. The same computation

with L1,L2 reversed shows that M(L2,L1) ≤ ‖T−1‖. Multiplying these bounds

together implies the lower bound in the theorem statement.

Finally, we can prove Theorem 4.1.4, which gives an algorithm with a time-

approximation trade-off for computing low-distortion mappings.

Proof of Theorem 4.1.4. Let (L1,L2) be an instance of LDP. For i = 1, 2, compute

a basis Bi of Li using the algorithm described in Theorem 4.2.2 with parameter

k. We have that S(Bi) ≤ kO(n/k+log k). This computation takes 2O(k) time. The

algorithm then simply outputs T = B2B
−1
1 .

By Lemma 4.3.2 and the upper bounds on S(Bi), we get that κ(T ) ≤ kO(n/k+log k)·

M(L1,L2) ·M(L2,L1), which is within a kO(n/k+log k) factor of D(L1,L2) by The-

orem 4.1.1. So, the algorithm is correct.
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4.4 Hardness of LDP

In this section, we prove the hardness of γ-GapLDP. (See Theorem 4.4.7.) Our re-

duction works in two steps. First, we a variant of GapCVP that we call γ-GapCVP′

to GapLDP. (See Definition 4.4.1 and Theorem 4.4.3.) Given a CVP instance con-

sisting of a lattice L and a target vector t, our idea is to compare “L with t

appended to it” to “L with an extra orthogonal vector appended to it.” (See

Eq. (4.10).) We show that, if dist(t,L) is small, then these lattices will be similar.

On the other hand, if (1) dist(kt,L) is large for all integers k with small magnitude,

and (2) λ1(L) is not too small, then the two lattices must be quite dissimilar.

We next show that γ-GapCVP′ is as hard as GapSVP using a variant of the

celebrated reduction of [GMSS99]. (See Theorem 4.4.4.) It differs from the original

in that it “works in base p” instead of in base two. We show that this is sufficient

to satisfy the promises required by γ-GapCVP′.

4.4.1 Reduction from a variant of CVP

We first define γ-GapCVP′, a variant of GapCVP which differs from GapCVP in

two ways. Namely, it requires for a ‘NO’ instance the additional promises (1) that

d < γ · λ1(L), and (2) that all non-zero integer multiples kt of the target vector t

with |k| ≤ γ are far from the lattice.

Definition 4.4.1. For any γ = γ(n) ≥ 1, γ-GapCVP′ is the promise problem

defined as follows. The input is a lattice L ⊂ Qn (specified by a basis B ∈ Qn×n),

a target t ∈ Qn, and a distance d > 0. It is a ‘YES’ instance if dist(t,L) ≤ d and a

‘NO’ instance if d < λ1(L)/γ and dist(kt,L) > γd for integers k with 1 ≤ |k| ≤ γ.

We will need the following characterization of the operator norm of a matrix
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in terms of its behavior over a lattice. Intuitively, this says that “a lattice has a

point in every direction.”

Fact 4.4.2. For any matrix A ∈ Rn×n and (full-rank) lattice L ⊂ Rn,

‖A‖ = sup
y∈L\{0}

‖Ay‖
‖y‖ .

Proof. It suffices to note that, for any x ∈ Rn with ‖x‖ = 1 and any full-rank

lattice L ⊂ Rn, there is a sequence y1,y2, . . . of vectors yi ∈ L such that

lim
m→∞

ym
‖ym‖

= x.

This follows by taking ym to be the closest vector in L to mx, and by noting that

the covering radius of L is finite.

Recall that a polynomial-time, many-one mapping from an instance of problem

A to an instance problem B which preserves ‘YES’ and ‘NO’ instances is called a

Karp reduction from A to B. A polynomial-time algorithm for solving a problem

A given access to an oracle for a problem B is called a Cook reduction from A to

B.

Theorem 4.4.3. For any γ = γ(n) ≥ 1, there is a Karp reduction from 6γ-GapCVP′

to γ-GapLDP.

Proof. On input L ⊂ Qn with basis (b1, . . . , bn), t ∈ Qn, and d > 0, the reduction

behaves as follows.

Let B1 := [b1, . . . , bn, 2d · en+1]. Let B2 := [b1, . . . , bn, t + 2d · en+1]. I.e.,
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B1 =

 B 0

0 2d

 , B2 =

 B t

0 2d

 . (4.10)

(Formally, we must embed the bi and t in Qn+1 under the natural embedding, but

we ignore this for simplicity.) Let L1 := L(B1) and L2 := L(B2). The reduction

then outputs the γ-GapLDP instance L1, L2, (specified by the bases B1, B2) and

c > 0, for some c which will be set in the analysis.

It is clear that the reduction runs in polynomial time. Suppose that dist(t,L) ≤

d. We note that L2 does not change if we shift t by a lattice vector. So, we may

assume without loss of generality that 0 is a closest lattice vector to t and therefore

‖t‖ ≤ d.

Indeed, for any y ∈ L1, we can write y = (y′, 2dk) for some y′ ∈ L and k ∈ Z.

Then, we have

‖B2B
−1
1 y‖ = ‖(y′ + kt, 2dk)‖ ≤ ‖(y′, 2dk)‖+ |k|‖t‖ ≤ 3‖y‖/2.

Similarly, ‖B2B
−1
1 y‖ ≥ ‖y‖−|k|‖t‖ ≥ ‖y‖/2. Therefore, by Fact 4.4.2, κ(B2B

−1
1 ) ≤

(3‖y‖/2)/(‖y‖/2) = 3. So, we take c := 3, and the resulting GapLDP instance is

a ‘YES’ instance.

Now, suppose dist(zt,L) > 6γd for integers z with 1 ≤ |z| ≤ 6γ, and λ1(L) >

6γd. Let A be a linear map with A(L1) = L2. Recall that κ(A) ≥ ‖A‖ ≥

maxx∈L1\{0}
‖Ax‖
‖x‖ , where the first inequality holds because A has determinant one.

We have that A(0, 2d) = (y′′, 2dk) for some y′′ ∈ L + kt and some k ∈ Z. We

consider three cases. If k = 0, then y′′ ∈ L \ {0} and ‖A(0, 2d)‖ = ‖(y′′, 0)‖ ≥

λ1(L) > 6γd, so that we have κ(A) ≥ ‖A(0, 2d)‖/2d > 3γ. If 1 ≤ |k| ≤ 6γ,
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then ‖A(0, 2d)‖ ≥ dist(kt,L) > 6γd, so κ(A) ≥ ‖A(0, 2d)‖/2d > 3γ. Finally, if

|k| > 6γ, then ‖A(0, 2d)‖ ≥ |2dk| > 12dγ, so again κ(A) ≥ ‖A(0, 2d)‖/2d > 3γ.

In each case, κ(A) > 3γ = γ · c, so the output GapLDP instance is a ‘NO’

instance.

4.4.2 Hardness of This Variant of GapCVP

We next prove the hardness of γ-GapCV P ′.

Theorem 4.4.4. For any 1 ≤ γ = γ(n) ≤ poly(n), there is a Cook reduction from

γ-GapSVP to γ-CVP′.

Proof. Let p be a prime with 10γ ≤ p ≤ 20γ. On input a basis B := [b1, . . . , bn]

for a lattice L ⊂ Qn, and d > 0, the reduction behaves as follows. For i = 1, . . . , n,

let Li := L(b1, . . . , pbi, . . . , bn) be “L with its ith basis vector multiplied by p.”

And, for all i and 1 ≤ j < p, let ti,j := jbi. For each i, j, the reduction calls its

γ-GapCVP′ oracle on input Li, ti,j, and distance d. Finally, it outputs ‘YES’ if

the oracle answered ‘YES’ for any query. Otherwise, it outputs ‘NO’.

The algorithm makes an oracle call for each 1 ≤ i ≤ n and each 1 ≤ j < p,

for a total of O(γn) oracle calls. It follows that the reduction runs in polynomial

time.

We next prove the correctness of the reduction. Note that

dist(jbi,Li) = min

{∥∥∥ n∑
`=1

a`b`

∥∥∥ : a` ∈ Z, ai ≡ j mod p

}
.

In particular, λ1(L) = mini,j dist(jbi,Li). So, suppose that λ1(L) ≤ d. Then there

must be some i, j such that dist(ti,j,Li)2 ≤ λ1(L)2 ≤ d2, and therefore the oracle
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answers ‘YES’ at least once.

Now, suppose that λ1(L) > γd. Since Li ⊂ L, we have λ1(Li) ≥ λ1(L) > γd,

and therefore d < λ1(Li)/γ, as needed. And, by the above observation, we have

dist(jbi,Li) ≥ λ1(L) > γd for all 1 ≤ i ≤ n and 1 ≤ j < p. Furthermore, for

any integer 1 ≤ z < p, we have dist(zjbi,Li) = dist((zj mod p) · bi,Li) > γd,

where we have used the fact that p is prime so that zj 6≡ 0 mod p. It follows that

dist(zti,j,Li) > dist(zjbi,Li) > γd for each integer z with 1 ≤ |z| < γ. So, the

oracle will always answer ‘NO’.

Corollary 4.4.5. For any 1 ≤ γ = γ(n) ≤ poly(n), there is a reduction from

6γ-GapSVP to γ-GapLDP. Furthermore, the reduction runs in polynomial time.

Proof. Combine Theorems 4.4.3 and 4.4.4.

Haviv and Regev (building on work of Ajtai, Micciancio, and Khot [Ajt98,

Mic01, Kho05]) proved the following strong hardness result for γ-GapSVP [HR12].

Theorem 4.4.6 ([HR12, Theorem 1.1]).

1. γ-GapSVP is NP-hard under randomized polynomial-time reductions for any

constant γ ≥ 1. I.e., there is no randomized polynomial-time algorithm for

γ-GapSVP unless NP ⊆ RP.

2. 2log1−ε n-GapSVP is NP-hard under randomized quasipolynomial-time reduc-

tions for any constant ε > 0. I.e., there is no randomized polynomial-time

algorithm for 2log1−ε n-GapSVP unless NP ⊆ RTIME(2polylog(n)).

3. nc/ log logn-GapSVP is NP-hard under randomized subexponential-time reduc-

tions for some universal constant c > 0. I.e., there is no randomized polynomial-

time algorithm for nc/ log logn-GapSVP unless NP ⊆ RSUBEXP :=
⋂
δ>0 RTIME(2n

δ
).
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With this, Theorem 4.1.5 and additional hardness results follow immediately.

Theorem 4.4.7. The three hardness results in Theorem 4.4.6 hold with GapLDP

in place of GapSVP.

Proof. Combine Theorem 4.4.6 with Corollary 4.4.5.

4.5 Some illustrative examples

4.5.1 Separating distortion from the successive minima

We now show that, for every n, there exists a lattice L such that D(L,Zn) ≥

Ω(n) ·M(L,Zn) ·M(Zn,L) using a simple argument by Regev [Reg17].2 Indeed,

to show this bound it suffices to take any lattice L with λi(L) = Θ(
√
n) and

λi(L∗) = Θ(
√
n) for all i ∈ [n]. This is true for almost all lattices in a certain

precise sense; see [Sie45].

Lemma 4.5.1. For any n ≥ 1, there is a lattice L ⊂ Qn such that λi(L) = Θ(
√
n)

and λi(L∗) = Θ(
√
n) for every i ∈ [n].

Proposition 4.5.2 ([Reg17]). For any n ≥ 1, there exists a lattice L ⊂ Qn such

that

D(L,Zn) ≥ Ω(n) ·M(L,Zn) ·M(Zn,L) .

Proof. We note that to lower bound D(L,Zn) for any L it suffices to lower bound

the condition number κ(B) = ‖B‖‖B−1‖ of every basis B of L. This is because

every linear bijection from Zn to L must map In to a basis of L.

2In [BDS16], we gave a weaker version of this bound with Ω(
√
n) in place of Ω(n). We showed

this by arguing about the determinant and successive minima of a random lattice (in the sense
of [Sie45]) compared to Zn.

123



Let L ⊂ Qn be any lattice as in Lemma 4.5.1, and let B = [b1, . . . , bn] be a

basis L. Then

‖B‖ ≥ max
i∈[n]
‖bi‖ ≥ λ1(L) ≥ Ω(

√
n). (4.11)

Similarly,

‖B−1‖ = ‖B∗‖ ≥ max
i∈[n]
‖b∗i ‖ ≥ λ1(L∗) ≥ Ω(

√
n). (4.12)

Moreover, because λi(Zn) = 1 and λi(L) = Θ(
√
n) for every i ∈ [n] we have that

M(L,Zn) ·M(Zn,L) = Θ(1). Combining this with Equations (4.11) and (4.12)

proves the claim.

4.5.2 Non-optimality of HKZ bases for distortion

We show an example demonstrating that mappings between lattices built using

HKZ bases are non-optimal in terms of their distortion. Let Bn be the n × n

upper-triangular matrix with diagonal entries equal to 1 and upper triangular off-

diagonal entries equal to −1
2
. I.e., Bn has entries

bij =


0 if j < i,

1 if j = i,

−1
2

if j > i.

Luk and Tracy [LT08] use the family {Bn} as an example of bases that are

well-reduced but poorly conditioned. Indeed it is not hard to show that {Bn} are

HKZ bases that nevertheless have κ(Bn) = Ω(1.5n) (see [LT08], Example 2). We

use these bases to show the necessity of using Seysen reduction even on HKZ bases.

Theorem 4.5.3. For every n ≥ 1, there exists an n × n HKZ basis B such that

dist(Zn,L(B)) ≤ nO(logn), but κ(B) ≥ Ω(1.5n).
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Proof. Let B′ = Bn be an HKZ basis in the family described above, and take In

as the basis of Zn. Then κ(B′ · In) = Ω(1.5n).

On the other hand, let B = Seysen(B′). Then, because η(B′) = 1, S(B) =

nO(logn) by Theorem 4.2.13. Clearly, λi(Zn) = 1 for all i ∈ [n]. On the other

hand, 1 ≤ λi(L(B)) ≤ √n for all i ∈ [n], where the lower bound holds because

min‖b̃i‖ = 1, and the upper bound comes from the fact that ‖b′i‖ ≤
√
n for all

i ∈ [n].3 It follows that M(Zn,L(B)) ≤ √n and M(L(B),Zn) ≤ 1. Applying

Lemma 4.3.2 to B and B−1, we then get that κ(B · In) ≤ nO(logn).

3In fact, λn(L(B)) = O(1).
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Chapter 5

Algorithms for Computing Nearly

Orthogonal and Well-Conditioned

Lattice Bases

This chapter is based on the publication [Ben17].

5.1 Introduction

Any given basis B = [b1, . . . , bn] of a lattice L is not unique, and a common goal

is to compute a reduced basis of L, i.e., one which satisfies useful properties such

as having short and nearly orthogonal vectors. The theory of basis reduction is

intimately related to solving lattice problems, and is therefore a major area of

study.

In terms of approximation algorithms, the seminal LLL algorithm [LLL82] ef-

ficiently computes a basis which yields an approximate solution to the shortest
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vector problem (SVP). Such LLL-reduced bases can also be used to approximately

solve the closest vector problem (CVP) efficiently [Bab86], and have many other

applications. In terms of slower but exact algorithms, Kannan’s algorithm for ex-

act SVP and CVP [Kan87] relies on computing HKZ-reduced bases [KZ73], which

give a greedy way of formalizing of what it means to be a shortest-possible lattice

basis.

A general way of formalizing what it means for a basis B to be short and

orthogonal is according to its orthogonality defect, defined as

δ(B) :=
n∏
i=1

(‖bi‖/‖b̃i‖) =
( n∏
i=1

‖bi‖
)
/ det(L), (5.1)

where b̃i is the ith Gram-Schmidt vector of B. The problem of computing bases

with minimum orthogonality defect is called the Quasi Orthogonal Basis Problem

(QOB). See [MG02] Chapter 7, Section 2 for a survey.

The orthogonality defect is a widely-used measure of the quality of lattice bases,

and captures the quality of standard notions of reduced bases. It holds that LLL-

reduced bases B have δ(B) ≤ 2n(n−1)/4 (see, e.g., [Vaz01]), and that HKZ-reduced

bases B have δ(B) ≤ nn and are within a nn/2 factor of optimal (see [MG02]

and Theorem 5.2.3). Furthermore, Minkowski-reduced bases (another greedy way

of formalizing shortest-possible lattice bases) have orthogonality defect at most

2O(n2) [vdWG68], a characterization which is crucial to Helfrich’s algorithm for

computing them [Hel85].

The orthogonality defect also appears directly in applications. For example,

the original security analysis of the well-known GGH encryption and signature

schemes [GGH97] depends on the difficulty of computing a basis with low orthog-
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onality defect.1

Standard notions of basis reduction including LLL-reduction and HKZ-reduction

guarantee that the vectors in a reduced basis B are relatively short, but make no

explicit guarantees about the lengths of vectors in the dual basis B∗. Some appli-

cations require short primal bases B, some require short dual bases B∗, and some

require B to be well-conditioned so that B and B∗ both have short vectors simulta-

neously. In particular, in Chapter 4 we used the existence of such well-conditioned

bases to upper bound the distortion between two lattices.

To study the question of finding well-conditioned lattice bases, Seysen [Sey93]

defined the matrix condition number S(B) := maxi∈[n]‖bi‖‖b∗i ‖. Trying to find

lattice bases that are well-conditioned in the sense of Seysen is a natural problem

in its own right, and recently has found applications such as ours. We call the

problem of finding bases B which minimize S(B) the Seysen basis problem.

For any full-rank matrix B, Hadamard’s inequality asserts that δ(B) ≥ 1, while

by the Cauchy-Schwarz inequality S(B) = maxi∈[n]‖bi‖‖b∗i ‖ ≥ maxi∈[n] |〈bi, b∗i 〉| =

1. Therefore, one can view δ and S as measuring how tight Hadamard’s inequality

and the Cauchy-Schwarz inequality are for a basis B, respectively. The quanti-

ties δ and S are also related by the simple inequality S(B) = maxi∈[n]‖bi‖‖b∗i ‖ ≥

maxi∈[n]‖bi‖/‖b̃i‖ ≥ δ(B)1/n.2 I.e., S(B) upper bounds the normalized orthogo-

nality defect δ(B)1/n.

As his main result, Seysen [Sey93] showed that every lattice has a basis B such

that S(B) ≤ nO(logn), and moreover that one can compute such a basis in 2O(n)-

time. Seysen also implicitly showed that a basis B minimizing S(B) lies inside

1Although the original GGH and related NTRU signature scheme [HPS98] have been crypt-
analyzed [Ngu99, NR09], they continue to inspire related new schemes.

2This holds by Equation (4.7).

128



a ball of radius nO(logn) · λn, where λn denotes the largest successive minimum

of L. This characterization yields an algorithm for computing an optimal Seysen

basis: simply enumerate all bases B lying inside a ball of radius nO(logn) · λn and

output the one which minimizes S(B). However, the number of vectors lying inside

such a ball depends on the parameter λn/λ1 (the ratio of the largest and smallest

successive minima of L), so this algorithm’s runtime may be exponential even for

lattices of constant rank n. A similar characterization and algorithm work for

QOB, but again the algorithm’s runtime depends on λn/λ1.

The orthogonality defect and Seysen’s condition number are fundamental geo-

metric quantities, and as such the problem of finding bases which minimize them

is important. In this chapter we give algorithms which minimize δ and (1 + ε)-

approximately minimize S and run in time depending only on the rank n of the

lattice times a polynomial in the input length. To the best of our knowledge,

no such algorithms were previously known even for computing bases which ap-

proximately minimize either quantity within a poly(n) factor for lattices of rank

n.

Although our algorithms have high enough runtime that they are mainly of

theoretical interest, there are a number of ways in which they may be useful for

applications. First, spending a large amount of time reducing a basis makes sense

as a pre-processing step in contexts such as cryptography and coding theory where

the goal is often to answer multiple CVP queries on the same lattice. Second,

our main algorithmic technique of breaking a lattice into pieces according to its

successive minima seems natural and likely has a number of other applications.

Third, we describe directions for potentially getting faster runtimes while still

using essentially the same algorithms.
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Approximation Runtime Notes

QOB

nn/2 2O(n) HKZ bases.

kO(n(n/k+log k)) 2O(k) For any log n ≤ k ≤ n. [GN08], this chapter.

1 nO(n4) This chapter.

Seysen

kO(n/k+log k) 2O(k) For any log n ≤ k ≤ n. [Sey93, BDS16].

1 f(n, λn/λ1) Implicit in [Sey93].

1 + ε (n/ε)O(n3 logn) This chapter.

Table 5.1: A summary of algorithms for the approximate Quasi Orthogonal Basis
(QOB) and approximate Seysen Basis problems, which correspond to finding bases
that minimize δ and S respectively. Here n denotes the rank of the input lattice;
the listed runtimes suppress polynomial dependence on the input length. f denotes
an explicit function depending on n and λn/λ1.

5.1.1 Summary of Results

In this chapter we show how to compute bases B which achieve minimal (resp.

(1 + ε)-approximately minimal) δ(B) (resp. S(B)) over all bases of L(B) in time

that does not depend on λn/λ1 and in polynomial space. Our main results are the

algorithms summarized in the following pair of theorems.

Theorem 5.1.1 (QOB exact algorithm, informal). There exists an algorithm

which given a lattice L of rank n outputs a basis B of L with δ(B) ≤ δ(B′) for

all bases B′ of L. The algorithm runs in polynomial time for every fixed n and in

polynomial space.

Theorem 5.1.2 (Seysen Basis approximation scheme, informal). There exists an

algorithm which given a lattice L of rank n and an ε > 0 outputs a basis B of L

with S(B) ≤ (1+ε)·S(B′) for all bases B′ of L. The algorithms runs in polynomial

time for every fixed n and ε, and in polynomial space.

Table 5.1 summarizes these and other algorithms for the Seysen basis and QOB

problems. There and throughout the remainder of the paper we suppress polyno-

mial dependence on the input length when analyzing the runtimes of algorithms.
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We then show that a single convex body associated with a given lattice L,

namely a scaling of the Minkowski Ellipsoid E(L), contains the nearly optimal

basis output by Theorem 5.1.2. Let v1, . . . ,vn ∈ L denote linearly independent

vectors achieving the successive minima λ1, . . . , λn of L (i.e. ‖vi‖ = λi(L)), let

ṽ1, . . . , ṽn denote their Gram-Schmidt orthogonalization. The Minkowski Ellipsoid

E(L) is the ellipsoid whose ith axis is aligned with ṽi and whose ith radius has

length λi(L).

Because such an ellipsoid contains relatively few additional lattice vectors, this

in turn leads to a conceptually simpler algorithm for computing good Seysen bases

which consists of enumerating all bases B within this ellipsoid and outputting the

one with minimal S(B). In fact, one can view our first algorithm for the Seysen

basis problem as a constructive proof that a nearly optimal Seysen basis lies inside

scaled Minkowski Ellipsoids.

Theorem 5.1.3 (Basis in scaled Minkowski Ellipsoid, informal). For every lattice

L of rank n and every ε > 0 there exists a basis B = [b1, . . . , bn] of L such that

S(B) ≤ (1 + ε) · S(B′) for all bases B′ of L, and b1, . . . , bn ∈ t · E(L) for some t

depending only on n and ε.

In order to prove our main theorems we first show a number of lemmas about

the successive minima of a lattice in Section 5.2.3. Although their proofs are

straightforward, some have not appeared before to the best of our knowledge and

may be of independent interest. For example, Lemma 5.2.7 states that a sufficiently

large gap in the successive minima of a lattice implies that the span of vectors

achieving the first few successive minima in a lattice is orthogonal to the span of

vectors achieving the first few successive minima in the corresponding dual lattice.

The idea behind this lemma – that one can use gaps in the successive minima to
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decompose a lattice – is also the main idea behind our algorithms.

Finally, in Section 5.3.1 we observe that the slide-reduced bases of Gama and

Nguyen [GN08] have relatively low orthogonality defect as a consequence of their

low Gram-Schmidt decay. Slide-reduced bases are also relatively efficient to com-

pute compared to the bases output by our exact algorithm, and provide a time-

approximation quality tradeoff.

5.1.2 Techniques

We give a brief outline of our results and the ideas used in our algorithm while

deferring definitions and formal statements. Let Vk = span(v1, . . . ,vk), and let

πk(x) denote the projection of x onto V ⊥k .

The main idea behind our algorithms is to split a lattice into pieces according

to large gaps in its successive minima, compute a basis for each of these pieces, and

then lift the bases for each piece to form a basis of the whole lattice. Namely, our

algorithms use three observations: (1) if there are no large gaps in the successive

minima then we can simply enumerate an optimal basis in time depending only on

n, (2) if L = L1⊕L2 then an optimal basis B of L has the form B = B1⊕B2 where

B1, B2 are bases of L1,L2 respectively, and (3) if there is a large multiplicative gap

in the successive minima, i.e. λk+1/λk is large, then “L ≈ (L ∩ Vk) ⊕ πk(L)”.

Because of observation (3), a large gap in the successive minima allows us to take

advantage of observation (2) and reduce the problem of finding a good basis for

L to the subproblems of finding good bases for (L ∩ Vk), πk(L). In particular, our

algorithms work by computing sub-bases b1, . . . , bk of B whose spans agree with

the successive minima of L (i.e. bases satisfying span(b1, . . . , bk) = Vk) whenever

λk+1/λk is sufficiently large.
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The classic enumeration-based algorithms of Kannan [Kan87] for computing

HKZ-reduced bases and Helfrich [Hel85] for computing Minkowski-reduced bases

work by “repeatedly enumerating the next Gram-Schmidt vector” of a basis. Our

algorithms extend this idea by enumerating basis blocks and then lifting the blocks

to form a full basis, in a similar manner to the Block Korkine-Zolotareff-reduced

(BKZ-reduced) bases of Schnorr [Sch87]. Helfrich’s algorithm is the most similar to

ours of any previous algorithm in that it uses repeated enumeration and lifting. It

also runs in 2O(n3)-time, which is comparable to the running time of our algorithms,

showing that hard basis reduction problems may require high runtimes.

The technique of splitting a lattice into pieces according to its successive minima

seems natural, and should have further applications. Similar ideas have appeared in

other work. In particular, an algorithm by Haviv and Regev [HR14] for determining

whether two lattices are isomorphic inspired our algorithm. Their algorithm works

by splitting each lattice L into the sublattice L∩Vk and the projected lattice πk(L)

whenever there is any gap in the successive minima (λk+1 > λk); our algorithm

only does so when there is a large gap (λk+1 � λk).

5.1.3 Open Questions

There are several natural open questions related to our work. The first is whether

we can turn our approximation scheme for Seysen Bases into an exact algorithm.

Our algorithm already enumerates optimal bases for projections of the lattice, but

it’s unclear how to lift these bases to a basis for the whole lattice without incurring

small error.

Open Problem 5.1.4 (Exact Seysen basis FPT algorithm). Find an algorithm

which, on input a lattice L, computes a basis B of L which achieves S(B) = S(L)
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in polynomial time for lattices of fixed rank.

The second question is whether the runtimes in our algorithms can be improved.

One direction is to improve the runtime’s dependence on the gaps in successive

minima inside sublattices. Although the dependence is bounded as a function of

n, it is still quite large.

The third question is whether our techniques yield algorithms for related prob-

lems. In particular, it seems that similar enumeration-based techniques may yield

algorithms for other basis quality measures, and for the lattice distortion problem

(LDP) studied in [BDS16].

Open Problem 5.1.5 (LDP approximation scheme). Can the techniques in this

chapter be extended to give an approximation scheme or exact algorithm for the

lattice distortion problem which runs in polynomial time for lattices of fixed rank?

The approximation factor given by Babai’s algorithm for CVP (described in

Section 3.3.1) is a function of the basis used in his algorithm. A natural question

is whether one can use our techniques to compute a basis which minimizes this

quantity for any given lattice.

Open Problem 5.1.6 (Optimal Babai basis). Can the techniques in this chapter

be extended to give an algorithm for computing a basis B which minimizes the quan-

tity (1 + maxi∈[n](
∑i

j=1‖b̃j‖
2)/(‖b̃i‖2))1/2 and runs in polynomial time for lattices

of fixed rank? Is there such an algorithm for computing a basis which minimizes

the similar quantity η(B) := maxi≤j
‖b̃i‖
‖b̃j‖

?
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5.1.4 Organization

In Section 5.2 we present background material about lattices, and prove a number

of basic lemmas which will be useful in our subsequent analysis. In Section 5.3 we

study bases with low orthogonality defect, and present the algorithm corresponding

to Theorem 5.1.1. In Section 5.4 we study bases that are well-conditioned in the

sense of Seysen, and present the algorithm corresponding to Theorem 5.1.2 and

the proof of Theorem 5.1.3.
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5.2 Preliminaries

We will need the following theorem, which shows how to enumerate lattice points

inside a Euclidean ball. We use the formulation of [HR14], which uses Kannan’s

algorithm to find a dual HKZ basis using low space, and observes that short lattice

vectors have small coefficients when written in such a basis.

Theorem 5.2.1 (Lattice point enumeration, Corollary 2.16 in [HR14]). Given

a number t ≥ 1 and an n-dimensional lattice L, there exists an algorithm that

enumerates all vectors w ∈ L such that ‖w‖ ≤ t · λ1(L) in (t · n)O(n)-time and

using polynomial space.
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5.2.1 The Basis Quality Measures δ and S

5.2.1.1 The Quasi Orthogonal Basis Problem

Following [MG02] Chapter 7, Section 2, we define the problem of finding a basis

which minimizes δ as the Quasi Orthogonal Basis problem (QOB). Recall that

δ(B) :=
∏n

i=1(‖bi‖/‖b̃i‖), and let δ(L) := minB:L(B)=L δ(B) denote the minimal

value of δ over all bases B of L. Let δ(n) := sup{δ(L) : L of rank n}.

Definition 5.2.2. For any γ = γ(n), the γ-approximate Quasi Orthogonal Basis

problem is the search problem defined as follows. The input consists of a lattice L

(specified by a basis B′ ∈ Qm×n). The goal is to output a basis B of L such that

δ(B) ≤ γ · δ(L).

The next fact follows directly from Minkowski’s Second Theorem and the fact

that ‖bi‖ ≤
√
i · λi for HKZ bases B (as proved by Lagarias et al. [LLS90]).

Theorem 5.2.3. Let B be an HKZ basis of a lattice L of rank n. Then δ(B) ≤ nn

and in particular δ(n) ≤ nn.

Micciancio and Goldwasser [MG02] use a very similar argument to show the

“in particular” part, and that δ(B) ≤ nn/2 · δ(L(B)) for HKZ bases B.

5.2.1.2 The Seysen Basis Problem

Recall that S(B) := maxi∈[n]‖bi‖‖b∗i ‖, and let S(L) := minB:L(B)=L S(B) denote

the minimal value of S over all bases B of L. Let s(n) := sup{S(L) : L of rank n}.

Definition 5.2.4. For any γ = γ(n), the γ-approximate Seysen Basis problem is

the search problem defined as follows. The input consists of a lattice L (specified by

a basis B′ ∈ Qm×n). The goal is to output a basis B of L such that S(B) ≤ γ ·S(L).
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We recall the upper bound from Theorem 4.2.13 which showed that s(n) ≤

nO(logn). Because of this theorem and the Cauchy-Schwarz inequality we get that

1 ≤ S(L) ≤ s(n) = nO(logn) for every lattice L. Therefore the decision variant of

the Seysen basis problem is trivial for γ ≥ nω(logn).

5.2.1.3 Basic Properties of δ and S

It is not hard to show the following basic properties of δ and S.

Fact 5.2.5. Let B = [b1, . . . , bn] ∈ Rm×n. Then:

1. δ([bπ(1), . . . , bπ(n)]) = δ(B) and S([bπ(1), . . . , bπ(n)]) = S(B) for every permu-

tation π : [n]→ [n].

2. δ(OB) = δ(B) and S(OB) = S(B) for every orthogonal O ∈ Rm×n.

3. S(B) = S(B∗) and therefore S(L) = S(L∗).

Call a basis B sorted if ‖b1‖ ≤ · · · ≤ ‖bn‖. By item 1 there always exists a

sorted basis B which satisfies S(B) = S(L(B)). By item 2, δ and S are invariant

under an orthogonal change of basis.

5.2.2 Non-Optimality of HKZ Bases

HKZ-reduced bases give one way of formalizing what it means to be a shortest

possible lattice basis. Nevertheless, there are HKZ bases B that do not minimize

either δ or S. In fact, we show that an example of a poorly conditioned HKZ basis

previously given in [LT08] and in Section 4.5.2 also has poor orthogonality defect.

Therefore, HKZ reduction alone does not suffice to minimize δ or S.
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Let B be the n× n upper triangular basis with diagonal entries equal to 1 and

off-diagonal upper triangular entries equal to −1
2
. I.e., B has entries

bij =


0 if j < i,

1 if j = i,

−1
2

if j > i.

Let B′ be the n×n bidiagonal basis with entries equal to 1 on the main diagonal,

and entries equal to −3
2

on the diagonal above. I.e., B′ has entries

b′ij =


1 if j = i,

−3
2

if j = i+ 1,

0 otherwise.

It is not hard to show that B is an HKZ basis, and that L(B) = L(B′). It is also

not hard to show that S(B) ≥ Ω(1.5n), that δ(B) ≥ nΩ(n), that S(B′) ≥ Ω(1.5n)

and that δ(B′) ≤ 2O(n). Furthermore, Theorem 4.2.13 asserts that there exists a

basis B′′ of L(B) with S(B′′) ≤ nO(logn). Comparing δ(B) with δ(B′) and S(B)

with S(B′′) we then have that HKZ bases may be exponentially far from optimal

in terms of minimizing both S and δ. Moreover, comparing S(B′) with S(B′′)

shows that bases with low orthogonality defect may still be poorly conditioned.

The non-optimality of B comes from its off-diagonal elements both for mini-

mizing δ and for minimizing S. I.e., the above examples show that size-reduction

can be non-optimal. It is an interesting question whether there always exist bases

minimizing δ and S whose Gram-Schmidt vectors are the same as some HKZ basis.

Open Problem 5.2.6. For every lattice L of rank n, is there an HKZ-basis B of
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L and some U ∈ N(n,Z) such that δ(BU) = δ(L)? Are there always such B and

U so that S(BU) = S(L)?

5.2.3 The Successive Minima of Sublattices and Projected

Lattices

By vectors that achieve the successive minima of L we mean linearly independent

vectors v1, . . . ,vn ∈ L that satisfy ‖vi‖ = λi(L) for a lattice L of rank n. When

the underlying lattice L is clear from context, we use v1, . . . ,vn to denote vectors

that achieve the successive minima of L, and let Vk = span(v1, . . . ,vk). Similarly,

we use w1, . . . ,wn to denote vectors that achieve the successive minima of L∗, and

let Wk = span(w1, . . . ,wk).

We write the projection πk as shorthand for π
(V )
k , i.e. projection onto the

orthogonal complement of Vk. Given a projection π and a matrixB = [b1, . . . , bn] ∈

Rm×n, let π(B) = [π(b1), . . . , π(bn)]. Note that the projections π(bi) still lie inside

the ambient space Rm.

In this section we show several useful facts about the lattices L∩Vk and πk(L).

We first show that a sufficiently large gap in the successive minima implies useful

structure in the subspaces Vk,Wn−k.

Lemma 5.2.7. Let L be a lattice of rank n, and assume that λk+1(L)/λk(L) > n

for some k ∈ [n− 1]. Then Vk ⊥ Wn−k.

Proof. Let i ∈ [k] and j ∈ [n − k]. Using the Cauchy-Schwarz inequality and the

upper bound in Theorem 3.2.1,

|〈vi,wj〉| ≤ ‖vi‖‖wj‖ ≤ λk · λ∗n−k <
λk+1

n
· λ∗n−k ≤ 1. (5.2)
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Because primal and dual vectors must have integral inner product |〈vi,wj〉| < 1

implies that 〈vi,wj〉 = 0. Because Equation (5.2) holds for all i ∈ [k], j ∈ [n− k],

it follows that Vk ⊥ Wn−k.

The following lemma establishes relations between the successive minima of a

lattice L and the lattices L ∩ Vk and πk(L). These bounds are folklore; the upper

bound in Equation (5.3) has appeared, e.g., in [LLS90]. These bounds and those

in the following pair of lemmas roughly say that λk+j(L) ≈ λj(πk(L)).

Lemma 5.2.8. Let L be a lattice of rank n, and let k ∈ [n− 1]. Then:

1. For every j ∈ [k], λj(L ∩ Vk) = λj(L).

2. For every j ∈ [n− k],

λk+j(L)−
√
k

2
λk(L) ≤ λj(πk(L)) ≤ λk+j(L) (5.3)

Proof. For every j ∈ [k], we have that v1, . . . ,vj ∈ L ∩ Vk so λj(L ∩ Vk) ≤ λj(L).

On the other hand, L ∩ Vk ⊆ L, so λj(L ∩ Vk) ≥ λj(L). This proves item 1.

We have that πk(vk+1), . . . , πk(vk+j) ∈ πk(L) are linearly independent by the

linear independence of v1, . . . ,vn. Therefore λj(πk(L)) ≤ max`∈[j]‖πk(vk+`)‖ ≤

λk+j(L), proving the upper bound in item 2.

Let u1, . . . ,un−k ∈ πk(L) be vectors achieving the successive minima of πk(L),

and let j ∈ [n − k]. By the triangle inequality and the definition of the covering

radius, there exist liftings x1, . . . ,xj ∈ L of u1, . . . ,uj such that πk(x`) = u`,

and ‖x`‖ ≤ ‖u`‖ + µ(L ∩ Vk) for every ` ∈ [j]. By the linear independence
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of v1, . . . ,vk,u1, . . . ,un−k, we therefore have that λk+j(L) ≤ max`∈[j]‖x`‖ ≤

max`∈[j]‖u`‖ + µ(L ∩ Vk) = λj(πk(L)) + µ(L ∩ Vk). Finally, using Theorem 3.2.2

and item 1, µ(L ∩ Vk) ≤
√
k

2
λk(L ∩ Vk) =

√
k

2
λk(L). We then have λk+j(L) ≤

λj(πk(L))+
√
k

2
λk(L). Subtracting

√
k

2
λk(L) from both sides proves the lower bound

in item 2.

By applying the lower and upper bounds in Equation (5.3), we get the following

bounds for k ∈ [n−1] and j ∈ [n−k−1], which says that the gaps in the successive

minima in the projection of a lattice are close to the corresponding gaps in the

original lattice.

λk+j+1(L)−
√
k

2
λk(L)

λk+j(L)
≤ λj+1(πk(L))

λj(πk(L))
≤ λk+j+1(L)

λk+j(L)−
√
k

2
λk(L)

. (5.4)

We also get the following pair of lemmas.

Lemma 5.2.9. Assume that λk+1/λk > c for some 1 ≤ k ≤ n− 1 and c = c(n) ≥
√
n. Let 1 ≤ j ≤ n− k. Then λk+j(L)/λj(πk(L)) ≤

(
1 + 1

2c/
√
k−1

)
≤ 2.

Proof. By applying the lower bound in Equation (5.3) to the denominator, and

then dividing the numerator and denominator by λk+j(L),

λk+j(L)

λj(πk(L))
≤ λk+j(L)

λk+j(L)−
√
k

2
λk(L)

≤ 1

1−
√
k

2c

=
(

1 +
1

2c/
√
k − 1

)
≤ 2.

Lemma 5.2.10. Assume that λk+1/λk > c and that λk+j+1/λk+j ≤ c for some 1 ≤

k ≤ n− 1, 1 ≤ j ≤ n− k− 1, and c = c(n) ≥ √n. Then λj+1(πk(L))/λj(πk(L)) ≤(
1 + 1

2c/
√
k−1

)
· c ≤ 2c.
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Proof. By applying the upper bound in Equation (5.4), and then dividing the

numerator and denominator by λk+j(L),

λj+1(πk(L))

λj(πk(L))
≤ λk+j+1(L)

λk+j(L)−
√
k

2
λk(L)

≤ c

1−
√
k

2c

= c ·
(

1 +
1

2c/
√
k − 1

)
≤ 2c.

We next show a correspondence between sublattices and projected lattices re-

lated to the successive minima when Vk ⊥ Wn−k. We say that a linear subspace S is

a lattice subspace of L if there exist x1, . . . ,xk ∈ L such that span(x1, . . . ,xk) = S.

Lemma 5.2.11. Let L be a lattice of rank n, and assume that Vk ⊥ Wn−k for

some k ∈ [n− 1]. Then:

1. (L ∩ Vk)∗ = π
(W )
n−k(L∗).

2. L∗ ∩Wn−k = πk(L)∗.

Proof. Let L be a lattice and let S be a lattice subspace of L. Then it holds that

(L ∩ S)∗ = πS(L∗) (see, e.g., [Dad12, Lemma 2.4.1]).

Applying this fact to L with S = Vk, (L∩Vk)∗ = πVk(L∗). Using the assumption

that Vk ⊥ Wn−k we additionally have πVk(L∗) = π
(W )
n−k(L∗), which proves item 1.

Applying the same argument to L∗ with S = Wn−k we get that (L∗ ∩Wn−k)
∗ =

πWn−k(L) = πk(L). Item 2 then follows by taking duals.

Finally we show an equivalence between the subspaces spanned by vectors

achieving the successive minima of a lattice, and vectors achieving the successive

minima of a projection of the lattice.
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Lemma 5.2.12. Let L be a lattice of rank n, let v1, . . . ,vn ∈ L be vectors

that achieve the successive minima of L, and let u1, . . . ,un−i ∈ πi(L) be vec-

tors that achieve the successive minima of πi(L) for some i ∈ [n − 1]. As-

sume that λk+1(L)/λk(L) >
√
k

2
+ 1 for some k > i. Then span(ṽi+1, . . . , ṽk) =

span(u1, . . . ,uk−i).

Proof. By definition u1, . . . ,uk−i /∈ Vi so it suffices to show that u1, . . . ,uk−i ∈ Vk.

Suppose not. Then uj /∈ Vk for some j ∈ [k− i]. Using the triangle inequality and

the definition of the covering radius, there exists a lifting x ∈ L\Vk of uj such that

πi(x) = uj, and ‖x‖ ≤ ‖uj‖+µ(L∩Vi). Using Theorem 3.2.2, Lemma 5.2.8 item 1,

and the upper bound in Equation (5.3), ‖uj‖+µ(L∩Vi) ≤ ‖uj‖+
√
i

2
·λi(L∩Vi) ≤

λi+j(L) +
√
i

2
· λi(L) ≤ (

√
k

2
+ 1) · λk(L). But because x /∈ Vk, this implies that

λk+1(L) ≤ ‖x‖ ≤ (
√
k

2
+ 1) · λk(L), which is a contradiction.

5.3 Algorithms for QOB

5.3.1 Approximation Algorithms

We first show that the slide-reduced bases of Gama and Nguyen [GN08] give a

time-approximation quality tradeoff for QOB. Let η(B) := max1≤i≤j≤n‖b̃i‖/‖b̃j‖

denote the Gram-Schmidt decay of a basis. In Section 4.2.5.1 we showed how to

bound the Gram-Schmidt decay of slide-reduced bases. Here we use these bounds

to conclude that slide-reduced bases have low orthogonality defect as well.

Lemma 5.3.1. Let B be a size-reduced basis of rank n. Then δ(B) ≤
√
n! · η(B)n.
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Proof. For every i ∈ [n],

‖bi‖2 ≤ ‖b̃i‖2 +
1

4

i−1∑
j=1

‖b̃j‖2 ≤ ‖b̃i‖2 +
(i− 1) · η(B)2

4
‖b̃i‖2 ≤ (i+ 3) · η(B)2

4
‖b̃i‖2.

Therefore, δ(B) =
∏n

i=1(‖bi‖/‖b̃i‖) ≤
√
n! · η(B)n.

A bound on the orthogonality defect of slide-reduced bases follows immediately.

Proposition 5.3.2. For every log n ≤ k ≤ n there exists an algorithm that takes

as input a lattice L of rank n and outputs a basis B of L satisfying δ(B) ≤

kO(n(n/k+log k)). The algorithm runs in 2O(k) time.

Proof. Combine Proposition 4.2.11 and Lemma 5.3.1.

In the k = n regime, Proposition 5.3.2 yields an upper bound of δ(B) ≤

nO(n logn), which is worse than the nn bound for HKZ bases whose proof uses

properties of HKZ-reduced bases other than their Gram-Schmidt decay. In the

k = log n regime, Proposition 5.3.2 shows that there is a polynomial time algorithm

which yields an upper bound of δ(B) ≤ 2O(n2 log logn/ logn), which is slightly better

than the 2O(n2) bound guaranteed by LLL-reduced bases.

5.3.2 An Exact Algorithm

The following enumeration-based algorithm computes a basis B that achieves

δ(B) = δ(L) in time depending only on n. We will use the same idea of “enu-

merating blocks according to gaps in the successive minima” in our approximation

scheme for Seysen bases described in Section 5.4.4. The main differences are that

here (1) the enumeration of later blocks depends on previous blocks, and (2) the
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algorithm lifts blocks to a full basis in a different way, which allows us to get an

exact algorithm.

We recall the definition of CVP-reduction from Section 3.3.3. The CVP-

reduction of a vector CVP-Red(v,L) denote the vector v′ := v − x, where

x := arg miny∈L‖v − y‖.

Algorithm 2: OrthDefectMin(L)

Input: A lattice L of rank n (specified by a basis B′ ∈ Qn×n).
Output: A basis B of L achieving δ(B) = δ(L).
K ← {k ∈ [n− 1] : λk+1(L)/λk(L) > δ(n)} ∪ {n}
return OrthDefectAux(L, ∅, K)

Theorem 5.3.3. OrthDefectMin(L) computes a basis B of L satisfying δ(B) =

δ(L) in nO(n4)-time and polynomial space.

Proof. Because det(L) ≤ ∏n
i=1 λi(L), δ(B) ≥ ∏n

i=1‖bi‖/λi(L). Combining this

with the fact that δ(n) ≤ nn from Theorem 5.2.3, we have that if B is sorted and

‖bi‖/λi > nn for some i then B is non-optimal. We use this fact to prove the

correctness of OrthDefectMin by induction.

Let K := {k ∈ [n− 1] : λk+1(L)/λk(L) > nn} ∪ {n}, and let k′ := minK. By

the preceding argument in the base case an optimal basis B of L must contain k′

vectors b1, . . . , bk′ ∈ L∩ Vk′ , which we can assume without loss of generality come

first since δ is invariant under permutation of basis vectors.

Further, suppose that b1, . . . , bk ∈ L∩Vk is a prefix of an optimal basis B, and

that k′ ∈ K with k′ > k. Then similarly there must exist vectors bk+1, . . . , bk′ ∈

L ∩ (Vk′ \ Vk) such that b1, . . . , bk, bk+1, . . . , bk′ can be extended to an optimal

basis of L. Moreover, for an optimal basis, we must have (1) that ‖πk(bi)‖ ≤

‖bi‖ ≤ nnλk′(L) and (2) that ‖bi‖ = ‖CVP-Red(πk(bi),L ∩ Vk)‖. It follows that
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Algorithm 3: OrthDefectAux(L, S,K)

Input: A lattice L of rank n (specified by a basis B′ ∈ Qn×n), a set of k
linearly independent vectors S = {b1, . . . , bk} ⊆ L which can be
extended to a basis of L, the set K ⊆ [n] of all indices k′ such that
k < k′ < n and λk′+1(L)/λk′(L) ≤ δ(n), and the index n.

Output: Vectors bk+1, . . . , bn such that B = [b1, . . . , bn] is a basis of L
which satisfies δ(B) ≤ δ(B′) among all bases B′ of L prefixed with
b1, . . . , bk.

k′ ← minK; d←∞
if k = 0 then

X ← {x ∈ L : ‖x‖ ≤ nn · λk′(L)}
else

X ← {CVP-Red(x,L ∩ Vk) : x ∈ πk(L) and ‖x‖ ≤ δ(n) · λk′(L)}
end

for b′k+1, . . . , b
′
k′ ∈ Xk′−k s.t. [b1, . . . , bk, b

′
k+1, . . . , b

′
k′ ] can be extended to a

basis of L do
if |K| > 1 then

b′k′+1, . . . , b
′
n ← OrthDefectAux(L, S ∪ {b′k+1, . . . , b

′
k′}, K \ {k′})

end
if δ([b1, . . . , bk, b

′
k+1, . . . , b

′
n]) < d then

d← δ([b1, . . . , bk, b
′
k+1, . . . , b

′
n])

bk+1, . . . , bn ← b′k+1, . . . , b
′
n

end

end
return bk+1, . . . , bn
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bk+1, . . . , bk′ = b′k+1, . . . , b
′
k′ for one of the tuples b′k+1, . . . , b

′
k′ ∈ Xk′−k, and the

correctness of OrthDefectMin then follows inductively.

We next bound the time complexity of OrthDefectMin. Let ` = k′ − k

denote the length of a block bk+1, . . . , bk′ of vectors enumerated at some stage

of OrthDefectMin. In the case where k = 0, we have that λk′(L)/λ1(L) ≤

(nn)k
′−1 = n(`−1)n. In the case where k > 0, because λk+1/λk > nn we have

by Lemma 5.2.9 that λk+j(L)/λj(πk(L)) ≤ 2 for 1 ≤ j ≤ `. Furthermore, be-

cause λk+j+1/λk+j ≤ nn for 1 ≤ j ≤ ` − 1, we have by Lemma 5.2.10 that

λj+1(πk(L))/λj(πk(L)) ≤ 2nn. Therefore,

λk′(L)/λ1(πk(L)) ≤ 2λ`(πk(L))/λ1(πk(L)) ≤ 2(2nn)`−1 ≤ nO(`n).

It follows that for every x ∈ X the vector πk(x) lies in a ball of radius nO(`n) ·

λ1(πk(L)). At each stage we need only enumerate points in the `-dimensional

lattice πk(L)∩Vk′ , so by Theorem 5.2.1 we can enumerate all such vectors in nO(`2n)-

time and polynomial space, and therefore all `-tuples of such vectors in nO(`3n)-time

and polynomial space. Lifting each enumerated vector via CVP-Red amounts to

solving CVP on a k-dimensional lattice and therefore takes kO(k) ≤ nO(n)-time and

polynomial space. Therefore, nO(`3n) also bounds the total of amount of time and

space required to compute X`.

Let Tn(m) := max1≤`≤m n
O(`3n) · Tn(m − `). Then the total running time of

OrthDefectMin is bounded by Tn(n), which solves to Tn(n) = nO(n4).

We remark on one simple optimization to OrthDefectMin. Namely, when

setting X in the “else” branch in OrthDefectMinAux, it suffices to consider

vectors x with ‖x‖ ≤ δ(n)/δ([b1, . . . , bk]) · λk′(L). The factor of δ([b1, . . . , bk]) in
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the denominator accounts for the orthogonality defect of the prefix of the basis

computed so far.

5.4 Approximation Schemes for Seysen Bases

5.4.1 Finding Optimal Seysen Bases via Enumeration

In this section we present a simple algorithm for enumerating bases which minimize

S. However, its runtime depends on the parameter λn/λ1, and therefore may be

unbounded in n. Nevertheless it will serve as a useful subroutine in our subsequent

algorithm for computing blocks of a basis. (We previously used a similar enumer-

ation technique for finding the blocks in an orthogonality defect minimizing basis

in Section 5.3.2.) Seysen [Sey93] used a similar line of reasoning to upper bound

the number of bases B with S(B) smaller than a given value.

We recall Lemma 4.3.1, which says that for a sorted basis B = [b1, . . . , bn] of a

lattice L, S(B) ≥ ‖bk‖/λk(L) for all k ∈ [n]. We get the following corollary.

Corollary 5.4.1. Let B = [b1, . . . , bn] be a basis of L satisfying S(B) ≤ c · S(L)

for some c ≥ 1. Then for every k ∈ [n], there exist k basis vectors bi1 , . . . , bik such

that ‖bij‖ ≤ c · s(n) · λk(L) for every j ∈ [k]. In particular, ‖bi‖ ≤ c · s(n) · λn(L)

for every i ∈ [n].

Corollary 5.4.1 and Theorem 5.2.1 yield a simple enumeration-based algorithm

for computing an optimal Seysen basis.

Proposition 5.4.2. There exists an algorithm EnumerateSeysenOpt which

takes a lattice L as input and outputs a basis B of L satisfying S(B) = S(L) in

(s(n) · λn(L)/λ1(L))O(n2) time and polynomial space.
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Proof. There is a polynomial time, dimension-preserving reduction from the suc-

cessive minima problem to CVP [Mic08], and therefore λn/λ1 can be computed in

nO(n)-time and polynomial space using Kannan’s algorithm [Kan87].

By Corollary 5.4.1 every optimal Seysen basis B = [b1, . . . , bn] is such that

‖bi‖ ≤ s(n) · λn(L) for every i. By Theorem 5.2.1 we can enumerate all vectors

w ∈ L such that ‖w‖ ≤ s(n) ·λn(L) in (s(n) ·λn(L)/λ1(L))O(n) time, and therefore

we can enumerate all n-tuples of such vectors in (s(n) · λn(L)/λ1(L))O(n2) time.

We therefore obtain an optimal Seysen basis by taking the n-tuple of such vectors

B = [b1, . . . , bn] which achieves minimal S(B) among all those that are bases of

L.

5.4.2 A Lower Bound on S(L)

Lemma 5.4.3. Let L be a lattice of rank n with λk+1(L)/λk(L) > s(n). Then

max{S(L ∩ Vk), S(πk(L))} ≤ S(L).

Proof. Let B be a sorted basis of L which achieves S(B) = S(L). Because

λk+1(L)/λk(L) > s(n) we have by Corollary 5.4.1 that b1, . . . , bk ∈ L ∩ Vk.

Let C = [c1, . . . , ck] = [b1, . . . , bk]. Then C is a basis of L ∩ Vk, and we

claim that c∗i = πVk(b
∗
i ) for i ∈ [k]. Indeed for i, j ∈ [k], πVk(b

∗
j) ∈ span(C) and

〈ci, πVk(b∗j)〉 = 〈bi, πVk(b∗j)〉 = 〈bi, b∗j〉. The last expression is equal to 1 if i = j and

0 otherwise as required. Then for every i ∈ [k] we have that ‖ci‖‖c∗i ‖ ≤ ‖bi‖‖b∗i ‖

since ci = bi and c∗i = πVk(b
∗
i ). Therefore, S(L∩Vk) ≤ S(C) = maxi∈[k]‖ci‖‖c∗i ‖ ≤

maxi∈[k]‖bi‖‖b∗i ‖ ≤ S(B) = S(L).

A similar argument shows that, takingD = [d1, . . . ,dn−k] = [πk(bk+1), . . . , πk(bn)],

D is a basis of πk(L) and S(πk(L)) ≤ S(D) ≤ S(B) = S(L). The result follows

by combining the lower bounds on S(L).
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5.4.3 Seysen Reduction

The following lemma uses essentially the same analysis as Proposition 5 in [Sey93],

which shows how to build a well-conditioned basis using well-conditioned blocks.

We recall from Section 3.3 that geometrically Seysen reduction amounts to

shifting a vector to lie inside a parallelepiped [b1, . . . , bk] · [−1
2
, 1

2
]k. This con-

trasts with size-reduction, which amounts to shifting a vector to lie inside a box

[b̃1, . . . , b̃k] · [−1
2
, 1

2
]k. Although size-reduction gives a stronger guarantee about the

size of entries in the primal basis, using Seysen reduction is necessary to ensure

that entries in both the primal and dual bases are small simultaneously. Indeed,

this was Seysen’s key insight in [Sey93].

Let bXe denote component-wise rounding of a real-valued matrix X. Let

‖X‖∞ := maxi,j |Xij| denote the largest magnitude of an entry in X. For a matrix

B = [b1, . . . , bn], let m+(B) := maxi∈[n]‖bi‖,3 and m−(B) := mini∈[n]‖bi‖ denote

the largest and smallest norms of columns of B respectively.

Lemma 5.4.4. Let B ∈ Rm×n be a basis, let C = [b1, . . . , bk], and let D =

[π
(B)
k (bk+1), . . . , π

(B)
k (bn)] so that B = [C,Z + D] for some Z with span(Z) ⊥

span(D). Then there exists a polynomial-time computable, unimodular matrix T =

T (B, k) and X ∈ Rm×(n−k), Y ∈ Rm×k satisfying

1. BT = [C,X +D] with span(X) ⊆ span(C) and span(X) ⊥ span(D),

2. (BT )∗ = [C∗ + Y,D∗] with span(Y ) ⊆ span(D∗) and span(Y ) ⊥ span(C∗),

3Micciancio and Goldwasser [MG02] define m+(B) for bases as µ(B) and call the problem of
finding a basis with small µ(B) the Shortest Basis Problem (SBP).
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3. m+(X) ≤ k
2
·m+(C),

4. m+(Y ) ≤ n−k
2
·m+(D∗).

Proof. Let B = QB′ be the QR-decomposition of B. Then B′ has the form:

B′ =

 C ′ Z ′

0 D′


with blocks C ′ ∈ GL(k,R), D′ ∈ GL(n− k,R). Let

T = T (B, k) :=

 Ik −b(C ′)−1Z ′e

0 In−k

 . (5.5)

Then T has integer entries and det(T ) = 1, so T is unimodular. Furthermore,

B′T, (B′T )∗ are of the form

B′T =

 C ′ X ′

0 D′

 , (B′T )∗ =

 (C ′)∗ 0

Y ′ (D′)∗

 ,

for some X ′, Y ′. Let X := Q−1 · [X ′, 0]T , let Y := Q−1 · [0, Y ′]T . Using the

orthogonality of Q and the definitions of X and Y , it is clear that items 1 and 2

hold.

Let W = (C ′)−1Z ′ − b(C ′)−1Z ′e. A straightforward computation shows that

X ′ = C ′W and Y ′ = −(D′)∗W . Using the orthogonality of Q and the fact that

‖W‖∞ ≤ 1
2
, m+(X) = m+(X ′) = m+(C ′W ) ≤ 1

2

∑k
i=1‖c′i‖ = 1

2

∑k
i=1‖ci‖ ≤

k
2
·m+(C), which implies item 3. Similarly, m+(Y ) = m+(Y ′) = m+(−(D′)∗W ) ≤

1
2

∑n−k
i=1 ‖(d′i)∗‖ = 1

2

∑n−k
i=1 ‖d∗i ‖ ≤ n−k

2
·m+(D∗), which implies item 4.
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The following corollary analyzes how Seysen reduction affects the conditioning

of bases in terms of the conditioning of its blocks.

Corollary 5.4.5. Let B ∈ Rm×n be a basis, let C = [b1, . . . , bk], and let D =

[π
(B)
k (bk+1), . . . , π

(B)
k (bn)]. Let T = T (B, k) denote the matrix defined in Equa-

tion (5.5), and let A = BT . Then S(A) ≤ max{β1, β2}, where

β1 = β1(C,D) =
(

1 +
n− k

2
· m

+(D∗)

m−(C∗)

)
S(C),

β2 = β2(C,D) =
(

1 +
k

2
· m

+(C)

m−(D)

)
S(D).

(5.6)

Proof. Fix i ∈ [k]. We have by Lemma 5.4.4 that ai = ci and that a∗i = c∗i + yi

for some yi with ‖yi‖ ≤ n−k
2
·m+(D∗). Therefore,

‖ai‖‖a∗i ‖
S(C)

≤ ‖ai‖‖a
∗
i ‖

‖ci‖‖c∗i ‖
≤ ‖c

∗
i ‖+ ‖yi‖
‖c∗i ‖

≤ 1 +
‖yi‖

m−(C∗)
≤ 1 +

(n− k) ·m+(D∗)

2m−(C∗)
.

It follows that ‖ai‖‖a∗i ‖ ≤ β1.

Fix i ∈ {k + 1, . . . , n}. We have by Lemma 5.4.4 that a∗i = d∗i−k and that

ai = xi−k + di−k for some xi−k with ‖xi−k‖ ≤ k
2
·m+(C). Therefore,

‖ai‖‖a∗i ‖
S(D)

≤ ‖ai‖‖a∗i ‖
‖di−k‖‖d∗i−k‖

≤ ‖xi−k‖+ ‖di−k‖
‖di−k‖

≤ 1 +
‖xi−k‖
m−(D)

≤ 1 +
k ·m+(C)

2m−(D)
,

It follows that ‖ai‖‖a∗i ‖ ≤ β2. Therefore for all i ∈ [n], ‖ai‖‖a∗i ‖ ≤ max{β1, β2},

which proves the claim.

Note that 1 ≤ m+(B) · m−(B∗) ≤ S(B) by the Cauchy-Schwarz inequality.

Using the lower bound, one could merge the expressions in Equation (5.6) into
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a single expression depending on m+(C) · m+(D∗), but this would lead to worse

bounds in our subsequent analysis.

5.4.4 A First Approximation Scheme for Seysen Bases

We now present an algorithm for computing a (1+ε)-approximately optimal Seysen

basis. The main idea is to break the lattice into blocks according to large gaps

in its successive minima, and to enumerate an optimal basis for each block. In

GoodSeysen g(n, ε) quantifies the threshold for such a large gap; g(n, ε) will be

set in the analysis.

The vectors ṽ1, . . . , ṽn denote the Gram-Schmidt vectors associated with vec-

tors v1, . . . ,vn ∈ L which achieve the successive minima of L. In LiftAn-

dReduce, T (B, k) denotes the Seysen reduction matrix defined in Equation (5.5).

Algorithm 4: GoodSeysen(L, ε)
Input: A lattice L of rank n (specified by a basis B′ ∈ Qm×n), and a

number ε ∈ (0, 1).
Output: A basis B of L such that S(B) ≤ (1 + ε) · S(L).
k1 < · · · < km ← {k ∈ [n− 1] : λk+1(L)/λk(L) > g(n, ε)} ∪ {0}
Bm ← EnumerateSeysenOpt(πkm(L)) /* With Am = Bm for

analysis */

for i = m− 1 to 1 do
Ai ← EnumerateSeysenOpt(πki(L) ∩ span(ṽki+1, . . . , ṽk(i+1)

))
Bi ← LiftAndReduce(πki(L), k(i+1) − ki, Ai, Bi+1)

end
return B1

Note that k1 = 0 in GoodSeysen. The following lemma analyzes the Seysen

condition number S(Bi) for each intermediate basis Bi computed in GoodSeysen.

Lemma 5.4.6. Let L be a lattice of rank n with λk+1(L)/λk(L) > n for some

k ∈ [n − 1]. Let C be a basis of L ∩ Vk that satisfies S(C) = S(L ∩ Vk), and
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Algorithm 5: LiftAndReduce(L, k, C,D)

Input: A lattice L of rank n (specified by a basis B′ ∈ Qm×n), an index
k ∈ [n− 1] such that λk+1(L)/λk(L) > n, a basis C = [c1, . . . , ck] of
L ∩ Vk, and a basis D = [d1, . . . ,dn−k] of πk(L).

Output: A basis A of L such that S(A) ≤ (1 + t) ·max{S(C), S(D)} where
t = t(L, k) is defined as in Lemma 5.4.6.

b1, . . . , bk ← c1, . . . , ck
bk+1, . . . , bn ← Liftings of d1, . . . ,dn−k such that bi ∈ L and πk(bi) = di−k
for i ∈ {k + 1, . . . , n}
B ← [b1, . . . , bn]
return B · T (B, k)

let D be a basis of πk(L) that satisfies S(D) ≤ c · S(πk(L)) for some c ≥ 1. Let

A = LiftAndReduce(L, k, C,D). Then A is a basis of L that satisfies S(A) ≤

c ·(1+ t) ·max{S(L ∩ Vk), S(πk(L))} where t = t(L, k) =
n2 · s(n)

2
·λk(L)/λk+1(L).

Proof. We have that A = B · T (B, k), where B is a basis of L by construction

and T (B, k) is unimodular by Lemma 5.4.4. So, A is a basis of L as well. We

prove the upper bound on S(A) by upper bounding the quantities β1 and β2 in

Equation (5.6), and applying Corollary 5.4.5.

Because λk+1(L)/λk(L) > n we have that Vk ⊥ Wn−k by Lemma 5.2.7, and

therefore L(D∗) = πk(L)∗ = L∗ ∩Wn−k and L(C∗) = (L ∩ Vk)∗ = π
(W )
n−k(L∗) by

Lemma 5.2.11. By Lemma 5.2.8 item 1 we have that λk(L ∩ Vk) = λk(L) and

λn−k(L∗ ∩Wn−k) = λn−k(L∗). We will use all of these identities freely.

We first upper bound β2. Using the assumption that S(C) = S(L ∩ Vk), we

have by Corollary 5.4.1 that

m+(C) ≤ s(k) · λk(L ∩ Vk) = s(k) · λk(L). (5.7)
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Using the lower bound in Theorem 3.2.1,

m−(D) ≥ λ1(L(D)) = λ1(πk(L)) ≥ 1

λn−k(πk(L)∗)
=

1

λn−k(L∗ ∩Wn−k)
=

1

λn−k(L∗)
.

(5.8)

Therefore by Equations (5.7) and (5.8), the upper bound in Theorem 3.2.1, and

the assumption that S(D) ≤ c · S(πk(L)),

β2(C,D) =
(

1 +
k

2
· m

+(C)

m−(D)

)
· S(D)

≤
(

1 +
k

2
· s(k) · λk(L) · λn−k(L∗)

)
· S(D)

≤ c ·
(

1 +
k · n

2
· s(k) · λk(L)/λk+1(L)

)
· S(πk(L)).

We next upper bound β1. Using the assumption that S(D) ≤ c · S(πk(L))

and the identities S(D∗) = S(D), S(πk(L)∗) = S(πk(L)) we have that S(D∗) ≤

c · S(L∗ ∩Wn−k). Therefore by Corollary 5.4.1 we have that

m+(D∗) ≤ c · s(n− k) · λn−k(L∗ ∩Wn−k) = c · s(n− k) · λn−k(L∗). (5.9)

Using the lower bound in Theorem 3.2.1,

m−(C∗) ≥ λ1(L(C)∗) = λ1(π
(W )
n−k(L∗)) ≥ 1/λk(π

(W )
n−k(L∗)∗) = 1/λk(L∩Vk) = 1/λk(L).

(5.10)

Therefore by Equations (5.9) and (5.10), the upper bound in Theorem 3.2.1, and

the assumption that S(C) = S(L ∩ Vk),
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β1(C,D) =
(

1 +
n− k

2
· m

+(D∗)

m−(C∗)

)
· S(C)

≤
(

1 + c · n− k
2
· s(n− k) · λk(L) · λn−k(L∗)

)
· S(C)

≤ c ·
(

1 +
(n− k) · n

2
· s(n− k) · λk(L)/λk+1(L)

)
· S(L ∩ Vk).

We now prove the main theorem which ensures the approximation quality and

runtime of GoodSeysen(L, ε). The main idea in the analysis is that the large

gaps in successive minima between blocks ensure good approximation quality, while

the small gaps within blocks ensure good runtime.

Theorem 5.4.7. Let ε ∈ (0, 1) and let g(n, ε) := n3·s(n)/ε+1. Then GoodSeysen(L, ε)

outputs a basis B of L satisfying S(B) ≤ (1 + ε) ·S(L) in (poly(n) · s(n)/ε)O(n3) ≤

(n/ε)O(n3 logn)-time and polynomial space.

Proof. We first bound the approximation quality of the basis returned by

GoodSeysen(L, ε). We have that Bi is a basis of πki(L), and we will prove by

induction that S(Bi) ≤ (1 + ε)(m−i)/n · S(πki(L)). In the base case, S(Bm) =

S(πkm(L)) by Proposition 5.4.2. For the inductive case we will use Lemma 5.4.6

to analyze the quality of the basis Bi of πki(L) lifted from the basis Ai of πki(L)∩

span(ṽki+1, . . . , ṽk(i+1)
) and the basis Bi+1 of πk(i+1)

(L).

We will repeatedly use the fact that λki+1(L)/λki(L) ≥ g(n, ε) > n3 + 1 for

i ∈ {2, . . . ,m}. Fix i ∈ [m − 1], and let `i = ki+1 − ki for i ∈ [m − 1] (again

recall the k1 = 0). Let u1, . . . ,un−ki ∈ πki(L) denote vectors that achieve the

successive minima of πki(L). Since λki+1+1(L)/λki+1
(L) >

√
n

2
+ 1, we have that
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span(u1, . . . ,u`i) = span(ṽki+1, . . . , ṽki+1
) by Lemma 5.2.12. Moreover, S(Ai) =

S(L(Ai)) by Proposition 5.4.2, and S(Bi+1) ≤ ci+1 ·S(L(Bi+1)), where ci+1 = (1 +

ε)(m−i−1)/n by the induction hypothesis. Therefore, Ai, Bi+1 satisfy the conditions

for C, D in Lemma 5.4.6, respectively.

For i = 1, λ`i+1(πki(L))/λ`i(πki(L)) = λk2+1(L)/λk2(L) ≥ g(n, ε). Further-

more, for every i ∈ {2, . . . ,m− 1}, using the lower bound in Equation (5.4) it

holds that

λ`i+1(πki(L))

λ`i(πki(L))
≥
λk(i+1)+1(L)−

√
ki
2
λki(L)

λk(i+1)
(L)

≥ g(n, ε)−
√
ki

2g(n, ε)
≥ g(n, ε)−1. (5.11)

We then have that

S(Bi) ≤ (1 + t) · (1 + ε)(m−i−1)/n

·max{S(πki(L) ∩ span(ṽki+1, . . . , ṽki+1
)), S(πk(i+1)

(L))}

≤(1 + t) · (1 + ε)(m−i−1)/n · S(πki(L)),

where t = t(πki(L), `i) is as defined in Lemma 5.4.6. The first inequality follows

from Lemma 5.4.6 and the second from Lemma 5.4.3. It remains to upper bound

t. Indeed by Equation (5.11),

t =
n2 · s(n)

2
· λ`i(πki(L))/λ`i+1

(πki(L)) ≤ n2 · s(n)

2(g(n, ε)− 1)
≤ ε/(2n).

It’s not hard to show that x/2 ≤ ln(1+x) for x ∈ (0, 1) using the Taylor expansion

of ln(1+x). Furthermore, 1+x ≤ ex for all x ∈ R. Therefore, 1+ t ≤ 1+ε/(2n) ≤

1 + ln(1 + ε)/n ≤ (1 + ε)1/n as desired.
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Next we bound the runtime of GoodSeysen. All operations except for com-

puting the successive minima of the input lattice and enumerating an optimal

Seysen basis require at most polynomial time in n and are performed at most

O(n) times each. As mentioned in the proof of Proposition 5.4.2 the successive

minima problem can be solved in nO(n)-time and polynomial space using Kannan’s

algorithm [Kan87].

It remains to bound the runtime of computing

Ai = EnumerateSeysenOpt(πki(L)∩span(ṽki+1, . . . , ṽk(i+1)
)) for each i. For i =

1, L = L(Ai) and λj+1(L)/λj(L) ≤ g(n, ε) for 1 ≤ j ≤ `i − 1. For i ∈ {2, . . . ,m}

we have by Lemma 5.2.8 item 1 and Lemma 5.2.10 that for every 1 ≤ j ≤ `i − 1,

λj+1(L(Ai))

λj(L(Ai))
=
λj+1(πki(L))

λj(πki(L))
≤ 2g(n, ε).

Therefore, by Proposition 5.4.2, computing Ai takes at most

(s(`i) · λ`i(πki(L))/λ1(πki(L)))O(`2i ) ≤ (s(`i) · (2g(n, ε))`i−1)O(`2i )

≤ (s(n) · poly(n)/ε)O(`3i )

time. The overall time spent on calls to EnumerateSeysenOpt is then at most∑m
i=1(s(n) · poly(n)/ε)O(`3i ) ≤ (s(n) · poly(n)/ε)O(n3) ≤ (n/ε)O(n3 logn), which dom-

inates the overall runtime of GoodSeysen. Computing each Ai also dominates

the space complexity of GoodSeysen, and takes polynomial space by Proposi-

tion 5.4.2.
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5.4.5 Minkowski Ellipsoids Contain Good Seysen Bases

In this section we characterize the (1 + ε)-approximately optimal Seysen bases

computed by GoodSeysen by showing that they lie inside a scaled Minkowski

Ellipsoid t · E(L) for some t depending only on n and ε. This characterization

in turn yields a simpler approximation scheme for computing Seysen bases which

consists of enumerating all bases lying inside such an ellipsoid.

Let L be a lattice of rank n. Recall that the Minkowski Ellipsoid E(L) is the

ellipsoid whose ith axis is aligned with ṽi and whose ith radius has length λi(L).

More formally, define the closed Minkowski Ellipsoid associated with L as

E(L) :=
{
x ∈ span(L) :

n∑
i=1

( 〈x, ṽi〉
‖ṽi‖ · λi

)2

≤ 1
}
. (5.12)

The interior of E(L) contains no non-zero lattice points, a fact which can be used

to prove Minkowski’s Second Theorem (see, e.g., [Reg09a]).

Lemma 5.4.8. Let B = [b1, . . . , bn] = GoodSeysen(L, ε), and let Ai, ki, and `i

be as defined in GoodSeysen. Let ṽ1, . . . , ṽn denote the Gram-Schmidt orthog-

onalization of vectors achieving the successive minima of L, let r, j ∈ [n], and let

i ∈ [m] be the maximum index such that j > ki. Then |〈br, ṽj〉| /‖ṽj‖ ≤ `i ·m+(Ai).

Proof. If A = LiftAndReduce(L, k, C,D), then

m+(πspan(C)(A)) ≤ max{1, rank(C)/2} ·m+(C), and m+(πspan(D)(A)) = m+(D) by

Lemma 5.4.4. Applying this observation recursively, and noting that Ai = Bi in

the base case when i = m, we get that m+(πspan(Ai)(B)) = m+(πspan(Ai)(Bi)) ≤

max{1, `i/2} ·m+(Ai), where Bi is as defined in GoodSeysen.
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Furthermore, ṽj ∈ span(ṽki+1, . . . , ṽki+`i) = span(Ai), so |〈br, ṽj〉| /‖ṽj‖ ≤

‖πspan(Ai)(br)‖. Clearly, ‖πspan(Ai)(br)‖ ≤ m+(πspan(Ai)(B)), and the claim follows.

Theorem 5.4.9. Let L be a lattice of rank n, and let

B = [b1, . . . , bn] = GoodSeysen(L, ε). Then b1, . . . , bn ∈ t · E(L) where t =

(poly(n) · s(n)/ε)n ≤ (n/ε)O(n logn).

Proof. Let Ai, ki, `i and g(n, ε) = n3 · s(n)/ε + 1 be as defined in GoodSeysen.

Fix j ∈ [n], and let i ∈ [m] be the maximum index such that j > ki. I.e.,

ṽj ∈ span(Ai). Let `i = ki+1 − ki if i ∈ [m − 1], and `i = n − km if i = m. By

Corollary 5.4.1 and Lemma 5.2.8,

m+(Ai) ≤ s(`i) · λ`i(L(Ai)) = s(`i) · λ`i(πki(L)) ≤ s(`i) · λk(i+1)
(L). (5.13)

Therefore, combining Lemma 5.4.8, Equation (5.13), and the fact that

λki+`i(L)/λki+1(L) ≤ g(n, ε)`i−1,

|〈br, ṽj〉/‖ṽj‖| ≤ `i ·m+(Ai)

≤ `i · s(`i) · λk(i+1)
(L)

≤ `i · s(`i) · g(n, ε)`i−1 · λj(L)

≤ (poly(n) · s(n)/ε)n · λj(L).
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Then for all r ∈ [n],

n∑
j=1

( 〈br, ṽj〉
‖ṽj‖ · λj

)2

≤ n · (poly(n) · s(n)/ε)2n.

Recalling the definition of E(L) from Equation (5.12) and the fact that s(n) ≤

nO(logn) from Theorem 4.2.13, it follows that b1, . . . , bn ∈ t · E(L) where t =

(poly(n) · s(n)/ε)n ≤ (n/ε)O(n logn).

Lemma 5.4.10 (Enumerating lattice points inside a scaled Minkowski Ellipsoid).

Given a number t ≥ 1 and a lattice L of rank n, there exists an algorithm running

in (t ·n)O(n)-time and polynomial space that enumerates all vectors x ∈ t ·E(L)∩L.

Proof. We reduce the problem of enumerating lattice points inside a scaled

Minkowski Ellipsoid to the problem of enumerating lattice points inside a ball. Let

Λ be the diagonal matrix with diag(Λ) = (λ1(L), . . . , λn(L)), let

V = [ṽ1/‖ṽ1‖, . . . , ṽn/‖ṽn‖], and let T = V · Λ.

Let Bn
2 denote the closed Euclidean ball, and let int(S) denote the interior of

a set S. Note that T (Bn
2 ) = E(L), so that T−1 is a bijection between t ·E(L) ∩ L

and t · Bn
2 ∩ T−1(L) for every t > 0. In particular the fact that there are no non-

zero lattice points in the interior of E(L) implies that T−1(L)∩ int(Bn
2 ) = {0}, so

λ1(T−1(L)) ≥ 1.

We can therefore output all points in t · E(L) ∩ L by enumerating each point

x ∈ T−1(L) with ‖x‖ ≤ t and then outputting Tx. Computing T amounts

to computing vectors achieving the successive minima of L, which can be done

using nO(n) time and polynomial space. Finally, because λ1(T−1(L)) ≥ 1, we can

enumerate all x ∈ T−1(L) with ‖x‖ ≤ t in (t · n)O(n)-time and polynomial space
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by Theorem 5.2.1.

Let t = (poly(n) · s(n)/ε)n ≤ (n/ε)O(n logn), and let

EnumerateSeysenEllipsoid(L, ε) denote the algorithm which enumerates all

n-tuples B = [b1, . . . , bn] of vectors in t · E(L), and outputs the basis B′ which

achieves minimal S(B′) among all the n-tuples B that are bases of L.

Corollary 5.4.11. Let L be a lattice of rank n. Then

EnumerateSeysenEllipsoid(L, ε) computes a basis B of L such that S(B) ≤

(1+ε) ·S(L) in (s(n) ·poly(n)/ε)O(n3) ≤ (n/ε)O(n3 logn)-time and polynomial space.

Proof. Combine Theorem 5.4.9 with Lemma 5.4.10.

We remark that EnumerateSeysenEllipsoid(L, ε) achieves the same ap-

proximation quality and runtime as GoodSeysen(L, ε), and is conceptually sim-

pler. We emphasize again that one may in fact view GoodSeysen(L, ε) as a

constructive proof of correctness for EnumerateSeysenEllipsoid(L, ε).
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