
(Extended Abstract)

Integral Analysis of Evaluation-Based Root Isolation

Michael Burr, Felix Krahmer and Chee Yap

Courant Institute

New York University

{burr,krahmer,yap}@cims.nyu.edu

January 9, 2008

Abstract

Let f : R → R be a C1 function. Subdivision methods are widely used for isolating the roots
of f in a given interval. In this paper we consider evaluation-based subdivision which uses
simpler primitives than well-known subdivision methods such as Sturm or Descartes methods.
Evaluation-based algorithms are not restricted to polynomials, and can be seen as 1-dimensional
analogues of the Plantinga-Vegter meshing algorithm.

We provide an novel complexity analysis of such algorithms. Our approach can be viewed
as a kind of continuous amortization.

(1) First we give a general framework for performing such analysis. This leads to an adaptive
upper bound on the complexity of evaluation-based algorithms, based on an integral formula.

(2) Next we consider the benchmark case of a square-free integer polynomial f of degree
d and logarithmic height L. We give a priori worst-case upper bounds of the form O(d2L)
(assuming for simplicity L ≥ log d). These results exploit the evaluation analogues of the
Mahler-Davenport bounds.

1

1 Introduction

A basic problem in the computational geometry of surfaces is meshing of implicit surfaces. This asks
for an isotopic ε-approximation S̃ of a surface S in R

n given by an equation f = 0 where f : R
n → R.

See [4] for a survey of the recent literature on meshing. When f is a polynomial, there are algebraic
methods for solving this problem. Numeric/geometric methods based on subdivision are widely
used by practitioners because they are easier to implement than algebraic methods. They have
adaptive complexity which can be quite efficient on most inputs. A main example of subdivision
methods is the Marching Cube. This is a simple algorithm, whose main primitive is the evaluation
of the sign of f at vertices of the subdivision. Such non-algebraic algorithms are usually incomplete
[32]. Hence, hybrid methods that combine algebraic primitives with subdivision are often used.

The first subdivision method that is provably complete for non-singular surfaces is from Plantinga-
Vegter [22, 23]. They provided algorithms in 2 and 3-D, i.e., for f : R

n → R where n = 2 or 3. No
complexity analysis for these algorithms are known. In this paper, we analyze the complexity of
the 1-D version of their algorithm.

The 1-D version amounts to real root isolation (and refinement). There are many well-known
subdivision algorithms in this case. What is interesting is the computational model here: Plantinga-
Vegter is based on evaluation of functions, like Marching Cubes. But it also uses evaluation of
interval versions of a function and its derivatives. We call such algorithms evaluation-based.
In contrast, subdivision methods such as Sturm [11, 25, 17] and Descartes [8, 12, 2], use the more
sophisticated primitives which seem to restrict f to polynomials. But evaluation-based methods are
more widely applicable (e.g., f could be analytic). Note that Descartes Method can be developed
into concrete algorithms such as the Bisection Algorithm of Collins-Akritas [8] or continued fraction
algorithm [1, 29, 28]. The Bernstein polynomial approach [16, 21] may also be viewed as a variant
of Descartes method [12].

In [6], we extrapolated the Plantinga-Vegter algorithm to the 1-D case; for reference, call it
the EVAL algorithm. Mitchell [18] seems to be the first to formulate this algorithm based on
an algorithm of Moore [19]. For correctness, Mitchell and Plantinga-Vegter need only minimal
constraints on the interval arithmetic in their algorithms. But in order to carry out a complexity
analysis, we need some idea of how tight the interval functions are. For this, we assume the
centered form of interval functions [24].

The adaptive complexity of subdivision algorithms is a topic of growing interest. But what
is the proper measure of adaptivity? Most measures in the literature are based on the condition
number. For instance, Mourrain and Pavone [20] use this measure to bound the complexity of
Bernstein-type subdivision for isolating multivariate zeros. Condition-number approaches to com-
plexity are extensively used in the Smale school [3]. Another such concept is precision sensitivity
[27], the bit-version of output sensitivity which is well-known in computational geometry. In this
paper we introduce integral measures, viewed as a kind of continuous amortization argument.

Amortization is a standard analysis technique in discrete algorithms [9]. In the continuous
domain, Davenport [10] first gave an amortization argument which yielded the optimal recursion
tree complexity for Sturm method. Recently, amortization arguments are used in [11] (for Sturm
method) and [12] (for Descartes method). All these complexity bounds are dependent on the
Mahler-Davenport root separation bounds [10, 33]. In the present paper, bounds analogous to
Mahler-Davenport type bounds appear, but in the form of evaluation bounds rather than root-
separation.

Subdivision methods for root isolation may be classified by their “stopping predicates”. The
Sturm predicate is based on Sturm sequences, and Descartes predicate is based on the Descartes rule
of sign. In the evaluation-based method, we use an extremely simple principle: in an interval (a, b)

1

where f(a)f(b) < 0, there exists c ∈ [a, b] such that f(c) = 0. This is known as Bolzano Theorem, a
special case of the Intermediate Value Theorem. For this reason, the evaluation-based method could
be called the “Bolzano method”. These predicates represent a progression of decreasing strength:

STURM > DESCARTES > BOLZANO (1)

Sturm is the strongest predicate and is algebraic in nature (it only works for polynomials). Bolzano
is weakest but is more general, being purely numerical in nature. The computational complexity of
the predicates also decreases in this sequence. This may work to the overall advantage of simpler
predicates. Descartes method is empirically known to be faster than Sturm method (see [13, 26]).
The difference is attributable to the cheaper primitives of Descartes method since the number of
subdivisions in Sturm method is minimal among all subdivision methods. In [6] we offer evidence
that evaluation-based methods might similarly be competitive with Descartes method.

For the purposes of complexity analysis, however, we find a reverse ordering in (1): the simpler
predicates are harder to analyze. It is standard to judge these algorithms using the benchmark
problem of isolating all the real roots of an integer polynomial of degree d and logarithmic height
L. What is the size of the subdivision tree in terms of d and L? Davenport [10] proves that the tree
size is O(d(L + log d)) for the Sturm predicate. The corresponding bound for Descartes method is
also O(d(L+log d)) [12] but more subtle to show. In this paper, our analysis shall indicate to what
extent EVAL can match these bounds.

¶1. Overview of Paper. In the rest of this Section, we provide some additional literature
background. In Section 2, we describe the Vegter-Plantinga computational model and the algorithm
EVAL. In Section 3, we describe the general framework of “stopping functions” for analyzing the
complexity of EVAL. In Section 4, we illustrate the general framework with explicit stopping
functions. In Section 5, we give our main result, giving an a priori complexity bound of O(d2L) on
EVAL. In Section 6, we bound the gamma integral which is a component of the main bound. We
conclude in Section 7. An appendix gives missing proofs and additional material: a local stopping
function that remains to be analyzed, analysis of an “ideal” integral bound, and a bound for the
values of polynomials evaluated at algebraic points.

¶2. Additional Background. Root isolation has a large literature; we touch on a few results.
It appears that evaluation-based methods, in order to be complete, are necessarily tied to

interval arithmetic. Other examples of evaluation-based root isolation are based on interval forms of
the Newton operator. Moore, Krawcyk and others have provided such algorithms [19]. Mitchell [18]
presented a form of EVAL. His version is incomplete because he implicitly adopted the numerical
analyst’s view of fixed precision arithmetic. Mitchell notes that his algorithm is simpler than
the Newton-based method of Moore [19]. Kearfott [15, 14] has provided empirical evaluation of
Newton-type subdivision algorithms, and also provided a complexity analysis.

The Descartes/Bernstein method for root isolation has been extensively studied in recent years
[21]. Rouillier and Zimmermann [26] describe various improvements on the basic algorithm that
goes back to Akritas and Collins. The almost optimality of recursion tree size for such algorithms
was recently established [12]. This paper describes a unified framework for Descartes method that
includes the Bernstein polynomial approach. Evaluation bounds were recently introduced in our
work [7] on numerical solution of zero-dimensional triangular polynomial systems.

A major open problem in meshing is to construct subdivision algorithms that can treat sin-
gularities (see [4]). Recently, we provided such solutions in the Plantinga-Vegter model: for root
isolation (1-D) [6] and for curves (2-D) [5].

2

2 An Evaluation-based Algorithm.

Many of the results in this paper are applicable to C1 functions with simple zeros; our results,
however, will focus on polynomials and we leave it to the reader to reformulate the results to
general C1 functions. Fix f to be a polynomial of degree d. In the Plantinga-Vegter model, we
need the box (i.e., interval) versions of f and its derivatives.

¶3. Box Functions. For any set S ⊆ R, let S denote the set of closed intervals in S. If
I = [a, b], denote the midpoint of I m(I) = (a + b)/2 and the width of I w(I) = b − a. A
partition of I is a finite subset P ⊆ I such that the union of the intervals in P is equal to I, and
any two intervals in P have disjoint interiors. The size of P is the number of intervals in P , #(P).

Our partitions of I mostly come from repeated bisections: for any interval X = [a, b], the term
children of X refers to the two intervals [a, m(X)], [m(X), b]. Note {X} and {[a, m(X)], [m(X), b]}
are both partitions of X. In general, if P is a partition of I, and X ∈ P , then to bisect X in P
means to replace X by its two children in P . As a result #(P) increases by 1. A partition of I
that arises from repeated bisections of the initial {I} is called a subdivision of I.

For any interval X, define

KX = KX(f) := max
a∈X

d∑

i=1

|f (i)(a)|
i!

(w(X))i−1 . (2)

Also, write K ′
X for KX(f ′) where f ′ = f (1) is the first derivative. Note that X ⊆ Y implies

KX ≤ KY . We may call KX the Lipschitz constant for X, as it is easily seen that |f(a)−f(b)| ≤
KX |a − b| for a, b ∈ X.

A box function for f over I is a function of the form

f : I → R

such that all X ∈ I, we have f(X) ⊆ f(X). Here, f(X) denotes the set extension of f where
f(S) = {f(a) : a ∈ S} for any set S ⊆ R.

We use a particular box function, defined as follows:

f(X) :=

d∑

i=0

|f (i)(m(X))|
i!

(
w(X)

2
[−1, 1]

)i

. (3)

This is the centered form box function (see [24]). It satisfies the following properties:

Proposition 1. Let Y ⊆ X be an interval, then:
(i) w(f(Y)) ≤ KX · w(Y).
(ii) w(f(Y)) − w(f(Y)) ≤ KX · w(Y)2.

Property (ii) is called quadratic convergence for f . However, we do not use this property.

¶4. The Evaluation Algorithm. We now present the Evaluation Algorithm (EVAL) taken
from [6]. Given an interval I, EVAL will isolate all the real roots of f(x) in I. The idea is to
maintain a subdivision P of I. Initially, P = {I}. The algorithm operates in two phases.

Phase 1: Repeatedly bisect each X ∈ P until each interval X in P is terminal. By this, we
mean that one of the following two conditions hold for X:

C0(X) : 0 6∈ f(X) (4)

C1(X) : 0 6∈ f ′(X) (5)

3

Note that we need the box functions for f ′ as well as for f .
Phase 2: Let PI denote the subdivision of I at the end of Phase 1. For each X ∈ PI , we either

discard or retain X. If C0(X) holds, we discard X. If C1(X) holds, we evaluate the signs of f
at the two end points of X. If f have different sign change at these 2 points, we retain X, else
we discard it. We output the set P ′

I of retained intervals. Proving correctness of this algorithm
amounts to showing that P ′

I is set of isolating intervals for the roots of f in I.
This simplified description is correct provided the midpoints of each bisected interval is not a

root of f . Otherwise, we can give simple modifications (see [6]). When f is an integer polynomial,
EVAL can be implemented exactly using bigfloats.

Our goal is to find an upper bound for the size #(PI) of PI . This size is one more than the
number of bisection steps. The starting point for our analysis is a simple observation:

Lemma 2. If a ∈ Y ⊆ X and 0 ∈ f(Y) then w(Y) ≥ |f(a)|/KX .

Proof. Since {0, f(a)} ⊆ f(Y), we have w(f(Y)) ≥ |f(a)|. By Proposition 1(i), w(Y) ≥
w(f(Y))/KX and hence w(Y) ≥ |f(a)|/KX . Q.E.D.

3 General Framework of Stopping Functions.

Let g : R → R be a continuous function. If X is any interval, we will call X big (relative to g) if

w(X) ≥ 1

2
max
a∈X

{g(a)}. (6)

For convenience, say X is large (relative to g) if w(X) ≥ maxa∈X{g(a)}. Clearly, if X is large,
then X is big, and both of the children of X are also big. A partition P of I is big if each X ∈ P is
big. Our key definition is this: call g a stopping function (over an interval I) if for any interval
X ⊆ I that is not large relative to g must be terminal. The following is immediate:

Lemma 3. If g1, g2 are stopping functions over I, then so is max {g1, g2}.
We remark that this simple device of using max {g1, g2} is critical for achieving complexity

bounds; it acts as a regularizing device when we integrate.

Lemma 4. Let P be a big partition of I relative to stopping function g. Then the size of P is at
most

S := 2

∫

I

1

g(a)
da (7)

In addition, if g is never zero in I, then the integral S is finite.

Proof. If g is never zero, 1/g is continuous and never infinity. As I is compact and 1/g is
continuous, 1/g is bounded in I and so the integral is finite. S in the lemma can be rewritten as

S =
∑

X∈P

∫

X

2

g(a)
da. (8)

It remains to show that this sum is at least n. It suffices to show that each summand is at least 1.
For any X ∈ P , if we choose c = arg maxa∈X{g(a)}. Then we have

∫

X

2

g(a)
da ≥

∫

X

2

g(c)
da = w(X) · 2

g(c)
≥ 1, (9)

where the last step uses the fact that X is big. Q.E.D.

4

Theorem 5. Let PI be the partition of I at the end of Phase 1 of EVAL. Then

#(PI) ≤ max

{
1,

∫

I

2

g(a)
da

}
. (10)

Proof. If #(PI) = 1, the result is trivial. Assume #(PI) > 1. We may assume that I is large
since otherwise, I is terminal. EVAL maintains a partition of P which is initially {I}. Consider the
loop invariant that P is big. In each iteration, a large interval J ∈ P is replaced by its two children,
both big. In addition, the algorithm does not divide intervals that are not large. Thus the invariant
is preserved and the final subdivision PI is big. Then Lemma 4 implies that #(PI) ≤

∫
I

2
g(a)da.

Q.E.D.

Thus we see the utility of a stopping function g: it is an analysis tool for bounding the complexity
of EVAL. We will investigate possible g’s and discuss the information that each provides.

4 Global Stopping Function

So far, we have not seen any explicit stopping functions. We now give an example:

¶5. Global Lipschitz Constants. Our first example will use “global” Lipschitz constants KI

and K ′
I . Its main merit lies in its simplicity. The key definition is this: let X ∈ I. Write

fX(a) := max

{ |f(a)|
KX

,
|f ′(a)|
K ′

X

}
. (11)

We choose g = fI (i.e., X = I in (11)) as our stopping function. To show that g is a stopping
function, we must show that if X is not large (relative to g) then X is terminal. The next lemma
proves this result.

Lemma 6. The functions |f(a)|
KI

, |f ′(a)|
K′

I
and fI are stopping functions over I.

Theorem 7. Let PI be the partition of I at the end of Phase 1 of the Evaluation Algorithm. Then

#(P) ≤ max

{
1,

∫

I

2da

fI(a)

}
.

and this integral is finite.

Proof. We already know that fI is a stopping function over I (Lemma 6). The result follows
from Theorem 5 if fI is never 0. fI is never 0 since f is square free and f and f ′ do not share any
roots. Q.E.D.

The bound using fI is not very satisfactory, because it does not take into consideration local
conditions. See the appendix for a local version Ka (a ∈ I) of the Lipschitz constants and the
corresponding stopping function.

5 An Integral Bound based on Refined Stopping Function

Our ultimate goal is to analyze the complexity of EVAL for the benchmark problem where we
want to isolate all the real roots of f ∈ Z[x], a square-free integer polynomial of degree d and
height ‖f‖ < 2L. The height ‖f‖ is defined as the maximum absolute value of the coefficients of f .
The logarithmic height is defined to be log ‖f‖. In particular, we want a priori complexity bounds

5

in terms on d and L (see introduction). To achieve this, we exploit the freedom of our stopping
function framework to introduce other stopping functions that are more amenable to analysis.

A general remark is that such a priori bounds is a worst-case non-adaptive bound; they do not
replace the utility of the integral bounds (such as Theorem 7) which are adapted to the individual
f and I.

For simplicity, we shall make two mild assumptions in the rest of this extended abstract: (a)
L ≥ log d (cf. [12]). (b) f ′ and f ′′ are relatively prime. Removal of (a) only complicates the
statement of bounds, but not the proof. Removal of (b) requires more cases to consider, but no
essentially new ideas. These assumptions will be removed in the full paper.

Our goal is to give an a priori upper bound on EVAL for the benchmark problem of isolating
all the zeros of f . For this purpose, we may assume that the input I = [a, b] where |a|, |b| ≤ 2L and
a, b are integers, since all real zeros of f lies in this range [33]. Our main result is the following:

Theorem 8 (Main Result). The number of bisections performed by EVAL on input f and an
interval I is O(d2L).

Note that a bound of the form O(dL) would be optimal [12]. We will exploit the “gamma
function” that is central in Smale’s theory of point estimates [3, 30]. This is defined as

γ(x) = γf (x) := max
i≥2

(
|f (i)(x)|
i!|f ′(x)|

)1/(i−1)

. (12)

Intuitively, the inverse of γ(x) is the radius of Newton convergence of f at x. Write γ′(x) for γf ′(x)
(so γ′(x) should not be confused with the derivative of γ(x) which is not used).

Lemma 9. Let b ∈ J such that w(J) ≤ 1
2γ(b) . Then KJ ≤ 2d|f ′(b)|.

This is proved by replacing each f (i)(a) in the definition of KJ by its Taylor expansion at b.
Let

G(a) := min

{
1

2γ(a)
,

|f(a)|
2d|f ′(a)|

}
. (13)

Let G′(a) denote the function analogous to G(a) where, in the above definition, f is replaced by
f ′, f ′ by f ′′, and γ by γ′. Again, G′(a) is not the derivative of G.

Lemma 10. G is a stopping function.

Proof. Suppose J is not large relative to G. This means there exists b ∈ J such that w(J) < G(b).
We must show that J is terminal. It suffices to show that C0(J) holds. Since w(J) < G(b), we have

w(J) <
|f(b)|

2d|f ′(b)| ≤
|f(b)|
KJ

where the second inequality follows from Lemma 9, using the fact that 2w(J) < 1/γ(b). The
conclusion that C0(J) holds now follows from Lemma 2. Q.E.D.

Lemma 11. If w(J) ≥ G(a)
2 for all a ∈ J then

2

∫

J

da

G(a)
≥ 1

6

Proof. By Lemma 10, G(a) is a stopping function for J . Since {J} is big partition of J relative
to G, our desired result follows from Lemma 4. Q.E.D.

By a similar argument, G′(a), and hence also max {G(a), G′(a)}, are stopping functions. To
apply these lemmas, consider the following conceptual procedure. We say “conceptual” because it
is not meant to be implemented, but only a tool for analysis.

Procedure G:
Input: interval I
Output: partition of I

Start with the partition P = {I}.
For each J ∈ P ,

if for all a ∈ J , we have
w(J) ≥ max {G(a), G′(a)}

then we split J in P .

Theorem 12. Suppose Procedure G terminates with the partition P and #(P) ≥ 2.
(a) #(P) is an upper bound on the number of steps taken by the Eval Algorithm on input I.
(b)

#(P) ≤ 2

∫

I

da

max {G(a), G′(a)} .

Proof. It is easy to see that the following two properties must hold for each J ∈ P :

(a’) There exists b ∈ J such that w(J) < max {G(b), G′(b)}.

(b’) For all a ∈ J , we have 2w(J) ≥ max {G(a), G′(a)}.

From (a’), we conclude that either w(J) < G(b) or w(J) < G′(b). Then Lemma 10 implies either
C0(J) or C1(J). Therefore the Eval Algorithm halts on J . This proves that #(P) is at least as
large as the number of subdivisions steps of the Eval Algorithm on input I. This proves (a).

Now (b) follows from (b’):

2

∫

I

da

max {G(a), G′(a)} =
∑

J∈P

2

∫

J

da

max {G(a), G′(a)} ≥
∑

J∈P

1 = #(P). (14)

Q.E.D.

¶6. Avoiding Zeros of ff ′. By definition, G(a) ≥ 0 and G′(a) ≥ 0 for all a. The integral in
Theorem 12 is infinite iff both G(a) = 0 and G′(a) = 0. Now, G(a) = 0 iff f(a) = 0 or f ′(a) = 0.
Similar, G′(a) = 0 iff f ′(a) = 0 or f ′′(a) = 0. Hence, G(a) = G′(a) = 0 iff f ′(a) = 0. Thus, we
want to bound the integral over an interval I ′ ⊆ I that avoids Zero(f ′). It will turn out that we
want to avoid Zero(f) as well. We now outline the strategy to do this.

For each zero α ∈ Zero(f), let ρ(α) denote the distance from α to the nearest zero of Zero(f)
different from α. Note that ρ(α) = 0 iff α is a multiple zero. But since f is square-free, ρ(α) > 0.
Similarly, if β ∈ Zero(f ′), let ρ′(β) be the corresponding function for f ′. We need our assumption
about the square-freeness of f ′ to conclude that ρ′(β) > 0. Since Zero(f)∩Zero(f ′) is empty, we
can merge these two ρ functions into one, ρ : Zero(ff ′) → R>0.

We now provide a refined conceptual two-staged procedure:

7

Procedure H:
Input: interval I
Output: partition P2 of I

Start with the partition P = {I}.
Stage 1:

For each J ∈ P , split J in P if
one of the following conditions hold:
(a) #(J ∩ Zero(ff ′)) > 1.

(b) #(J ∩ Zero(ff ′)) = 1, and w(J) ≥ min
{

B(α), ρ(α)
4d(d−1)

}

where α ∈ Zero(ff ′) ∩ J and B(α) is a technical bound discussed below
Stage 2:

For each J ∈ P , partition J using Procedure G.

We consider two partitions of I: Let P1 be the partition at the end of Stage 1, and P2 be the
partition at the end of Stage 2. An interval J ∈ P1 is said to be special if #(J ∩ Zero(ff ′)) = 1
and non-special otherwise. Clearly, there are at most 2d−1 special intervals. Let P ′

1 ⊆ P1 denote
the set of non-special intervals of P1 and I ′ =

⋃
P ′

1 is the union of all non-special intervals. The
following lemma will be shown below:

Lemma 13. If J ∈ P1 is special then it is terminal, i.e., C0(J) or C1(J) holds.

The proof of lemma 13 will need the following property:

w(J) <
1

8γ(α)
. (15)

Condition (b) for splitting interval J is designed to achieve this. When we stop splitting J then it
is clear that

w(J) <
ρ(α)

4d(d − 1)
. (16)

Then (15) follows from an application of the following bound from [31]:

Proposition 14. 1
γ(α) > 2ρ(α)

d(d−1) .

In view of Lemma 13, we have the following bound on the final partition of Procedure H:

#(P2) ≤ 2d − 1 +
∑

J∈P ′
1

max

{
1,

∫

J

2da

max {G(a), G′(a)}

}

≤ #(P1) + 2
∑

J∈P ′
1

∫

J

da

max {G(a), G′(a)}

≤ #(P1) + 2

∫

I′

da

max {G(a), G′(a)} . (17)

Below we will show that #(P1) = O(dL), and in the next section, we show
∫
I′

da
max{G(a),G′(a)} =

O(d2L) (Theorem 15). This concludes our main theorem.

8

¶7. Proof that Special Intervals are Terminal. We now prove Lemma 13. Let J be a special
interval. Then there is a unique α ∈ J ∩ Zero(ff ′). There are two cases: when α ∈ Zero(f), we
show that C1(J) holds, and when α ∈ Zero(f ′), we show that C0(J) holds. We now define the
technical bound B(α) in Procedure H. Define

B(α) =

{
∞ if α is zero of f√

|f(α)|
4(log d)|f ′′(α)| if α is zero of f ′ . (18)

CASE α ∈ Zero(f): Since B(α) = ∞, it plays no role in the stopping condition (b) of
Procedure H. In this case, we know that w(J) ≤ 1

8γ(α) (see (15)). Since there is a zero of f in J ,

we would like C1(J) to hold. By Lemma 6, C1(J) would hold provided

w(J) <
|f ′(α)|

K ′
J

. (19)

Using the bound on w(J) and a Taylor expansion about α, one can show K ′
J ≤ 7

9
|f ′(α)|
w(J) , giving the

desired bound.
CASE α ∈ Zero(f ′): In this case, we know that

w(J) ≤ 1

2γ′(α)
. (20)

because of the f ′-analogue of inequality (15). Since there is a zero of f ′ in J , we would like C0(J)
to hold. By Lemma 6, C0(J) would hold provided

w(J) <
|f(α)|
KJ

(21)

Using the bound on w(J) and a Taylor expansion about α, we can see that KJ ≤ 4(log d)|f ′′(α)|w(J),
giving the desired bound when combined with the additional condition supplied by B(α).

¶8. Bounding the Size of P1. To bound the size of P1, it is enough to focus on the (at most)
2d − 1 special intervals. Consider the recursion tree T1 whose leaves are labeled by P1. Clearly,
#(T1) = 2#(P1)− 1. A leaf is said to be special iff it is labeled by a special interval. Let T ′

1 be the
result of pruning all non-special leaves from T1. Every non-special leaf has a sibling which is either
special or an interior node, and the root has no sibling. Hence #(T ′

1) ≥
#(T1)−1

2 = #(P1) − 1. Let
S = Zero(f)∩ I and S′ = Zero(f ′)∩ I where I is the input interval. Each leaf of T ′

1 is associated
with a unique α ∈ S ∪ S′; the corresponding interval will be denoted Iα. Clearly

#(T ′
1) ≤

∑

α∈S∪S′

lg(w(I)/w(Iα))

where lg = log2. Without loss of generality, we may assume w(I) ≤ 2L+1 since all zeros α of ff ′

satisfies |α| ≤ 2L ([33]). Hence

#(T ′
1) ≤ 2dL −

∑

α∈S∪S′

lg w(Iα) = 2dL − lg
∏

α∈S∪S′

w(Iα). (22)

Note that w(Iα) ≥ 1
2 min

{
B(α), ρ(α)

4d(d−1)

}
, by our stopping condition in Procedure H. If α ∈ S, this

reduces to w(Iα) ≥ 1
2

ρ(α)
4d(d−1) , and hence we obtain (see [31]):

− lg
∏

α∈S

w(Iα) ≤ − lg
∏

α∈S

ρ(α)

8d(d − 1)

= O(d log d + dL) = O(dL). (23)

9

Next, we consider the case α ∈ S′. In this case, B(α) =
√

|f(α)|
4(log d)|f ′′(α)| . Thus w(Iα) ≥

min {B(α), ρ(α)/8d(d − 1)}. We can split S′ into S′
0∪S′

1 where α ∈ S′
0 iff min {B(α), ρ(α)/8d(d − 1)} =

B(α). Thus ∏

α∈S′

w(Iα) ≥
∏

α∈S′
0

B(α)
∏

α∈S′
1

ρ(α)/8d(d − 1).

We have
− lg

∏

α∈S′
1

ρ(α)/8d(d − 1) = O(dL) (24)

as in (23). Moreover,

− lg
∏

α∈S′
0

√
|f(α)|

4(log d)|f ′′(α)| = O(dL) (25)

using the evaluation bound of Theorem 26 in the appendix. From (22,23,24,25), we conclude that
#(P1) = O(dL).

6 Bounding the Integral
∫

I ′
dx

max{G(x),G′(x)}.

This section proves the following bound:

Theorem 15.
∫
I′

dx
max{G(x),G′(x)} = O(dL2)

The general strategy goes as follows. First, because of our choice of I ′, we can ignore one of the
terms in the maximum:

∫

I′

dx

max {G(x), G′(x)} ≤
∫

I′

dx

G(x)
.

We bound the remaining integral by a sum of two integrals:
∫

I′

dx

G(x)
=

∫

I′
max

{
γ(x),

d|f ′(x)|
|f(x)|

}
dx ≤

∫

I′
γ(x)dx + d

∫

I′

∣∣∣∣
f ′(x)

f(x)

∣∣∣∣ dx = Γ + R

where Γ :=
∫
I′ γ(x)dx (“gamma integral”) and R :=

∫
I′

∣∣∣f
′(x)

f(x)

∣∣∣ dx (“logarithmic-derivative inte-

gral”). Note that R is closely related to R0 :=
∫
I min

{∣∣∣f
′(x)

f(x)

∣∣∣ ,
∣∣∣f

′′(x)
f ′(x)

∣∣∣
}

dx. Intuitively, R0 is the

“ideal integral” that captures the complexity of EVAL under ideal conditions. In the appendix, we
prove that R0 = O(dL). A similar proof yields:

Lemma 16. R =
∫
I′

∣∣∣f
′(x)

f(x)

∣∣∣ dx = O(dL).

In the rest of this section, we outline the method to bound the gamma integral:

Lemma 17. Γ =
∫
I′ γ(x)dx = O(d2L).

Thus Theorem 15 follows from Lemma 16 and Lemma 17. The gamma function satisfies a key
inequality:

Lemma 18. Let β2, . . . , βd be all the critical points of f(x) (i.e., zeros of f ′). Then

γ(x) ≤
d∑

j=2

1

2|x − βj |

10

The proof exploits the relation f (i)(x)/f ′(x) =
∑′

(j2,...,ji)

∏i
ℓ=2

1
x−βjℓ

, where jℓ’s are taken from

the set {1, . . . , d − 1}, and the prime in the summation indicates that the jℓ’s are pairwise distinct.

Corollary 19.

Γ =

∫

I′
γ(x)dx ≤

d∑

i=2

∫

I′

dx

2|x − βi|

Next, we write βi = ri + isi where ri = Re(βi) and si = Im(βi) are the real and imaginary
parts, and i =

√
−1. Furthermore, assume si = 0 iff i ≤ k, so all the real roots of f ′ are given by

r2, . . . , rk. In the appendix, we construct two integer polynomials R(X) and S(X) of degrees ≤ d2

whose zero set contains ri and si (resp.). We split the summation from Corollary 19 into the real
and complex parts:

Lemma 20 (Real Part).
k∑

i=2

∫

I′

dx

2|x − ri|
= O(d2L).

For the complex part, we obtain the better bound:

Lemma 21 (Complex Part).
d∑

i=k+1

∫

I′

dx

2|x − βi|
= O(dL).

These results exploits a “generalized evaluation bound” in the appendix. This completes the
proof of Lemma 17.

7 Conclusion

In this paper, we introduced novel techniques for analyzing the complexity of evaluation-based
algorithms. Our bounds are based on an integral formula (10) and an amortized evaluation bound
(Appendix). This can be viewed as a continuous amortization. We pose several open problems:
(a) Show that EVAL has subdivision complexity O(dL) in the benchmark case.
(b) Show that the “ideal integral” (35) satisfies R0 = Ω(dL).
(c) Extend integral analysis to higher dimensions, in particular the Plantinga-Vegter algorithms in
2 and 3-D.

References

[1] A. G. Akritas and A. Strzeboński. A comparative study of two real root isolation methods.
Nonlinear Analysis:Modelling and Control, 10(4):297–304, 2005.

[2] A. Alesina and M. Galuzzi. A new proof of Vincent’s theorem. L’Enseignement Mathémathique,
44:219–256, 1998.

[3] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-
Verlag, New York, 1998.

[4] J.-D. Boissonnat and M. Teillaud, editors. Effective Computational Geometry for Curves and
Surfaces. Number 59 in Mathematics and Visualization. Springer, 2006.

11

[5] M. Burr, S. Choi, B. Galehouse, and C. Yap. Complete subdivision algorithms, II: Isotopic
meshing of general algebraic curves, Nov. 2007. In Preparation.

[6] M. Burr, V. Sharma, and C. Yap. Evaluation-based root isolation, Nov. 2007. In preparation.

[7] J.-S. Cheng, X.-S. Gao, and C. K. Yap. Complete numerical isolation of real zeros
in general triangular systems. In Proc. Int’l Symp. Symbolic and Algebraic Computa-
tion (ISSAC’07), pages 92–99, 2007. Waterloo, Canada, Jul 29-Aug 1, 2007. DOI:
http://doi.acm.org/10.1145/1277548.1277562.

[8] G. E. Collins and A. G. Akritas. Polynomial real root isolation using Descartes’ rule of signs.
In R. D. Jenks, editor, Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic
Computation, pages 272–275. ACM Press, 1976.

[9] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press and McGraw-Hill Book Company, Cambridge, Massachusetts and New York, second
edition, 2001.

[10] J. H. Davenport. Computer algebra for cylindrical algebraic decomposition. Tech. Rep., Royal
Inst. of Technology, Dept. of Numer. Analysis and Computing Science, Stockholm, Sweden,
1985. Reprinted as Tech. Rep. 88-10, U. of Bath, School of Math. Sciences, Bath, England.
URL http://www.bath.ac.uk/ masjhd/TRITA.pdf.

[11] Z. Du, V. Sharma, and C. Yap. Amortized bounds for root isolation via Sturm sequences. In
D. Wang and L. Zhi, editors, Proc. Internat. Workshop on Symbolic-Numeric Computation,
pages 81–93, School of Science, Beihang University, Beijing, China, 2005. Int’l Workshop on
Symbolic-Numeric Computation, Xi’an, China, Jul 19–21, 2005.

[12] A. Eigenwillig, V. Sharma, and C. Yap. Almost tight complexity bounds for the Descartes
method. In Proc. Int’l Symp. Symbolic and Algebraic Computation (ISSAC’06), 2006. Genova,
Italy. Jul 9-12, 2006.

[13] J. Johnson. Algorithms for polynomial real root isolation. In B. Caviness and J. Johnson, edi-
tors, Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and monographs
in Symbolic Computation, pages 269–299. Springer, 1998.

[14] R. B. Kearfott. Abstract generalized bisection with a cost bound. Math.Comp., 49:187–202,
1987.

[15] R. B. Kearfott. Empirical evaluation of innovations in interval branch and bound algorithms
for nonlinear systems. SIAM J. Sci.Comput., 18(2):574–594, 1997. describes the generic
branch/bound iterative algorithm... Mainly empirical. Where is his article with complexity
analysis?

[16] J. M. Lane and R. F. Riesenfeld. Bounds on a polynomial. BIT, 21:112–117, 1981.

[17] T. Lickteig and M.-F. Roy. Sylvester-Habicht sequences and fast Cauchy index computation.
J. of Symbolic Computation, 31:315–341, 2001.

[18] D. Mitchell. Robust ray intersection with interval arithmetic. In Graphics Interface’90, pages
68–74, 1990.

[19] R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.

12

[20] B. Mourrain and J.-P. Pavone. Subdivision methods for solving polynomial equations. Tech-
nical Report 5658, INRIA, 2005.

[21] B. Mourrain, F. Rouillier, and M.-F. Roy. The Bernstein basis and real root isolation. In
J. E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial and Computational Geometry,
number 52 in MSRI Publications, pages 459–478. Cambridge University Press, 2005.

[22] S. Plantinga. Certified Algorithms for Implicit Surfaces. Ph.D. thesis, Groningen University,
Institute for Mathematics and Computing Science, Groningen, Netherlands, Dec. 2006.

[23] S. Plantinga and G. Vegter. Isotopic approximation of implicit curves and surfaces. In Proc.
Eurographics Symposium on Geometry Processing, pages 245–254, New York, 2004. ACM
Press.

[24] H. Ratschek and J. Rokne. Computer Methods for the Range of Functions. Horwood Publishing
Limited, Chichester, West Sussex, UK, 1984.

[25] D. Reischert. Asymptotically fast computation of subresultants. In ISSAC 97, pages 233–240,
1997. Maui, Hawaii.

[26] F. Rouillier and P. Zimmerman. Efficient isolation of [a] polynomial’s real roots. J. Computa-
tional and Applied Mathematics, 162:33–50, 2004.

[27] J. Sellen, J. Choi, and C. Yap. Precision-sensitive Euclidean shortest path in 3-Space. SIAM J.
Computing, 29(5):1577–1595, 2000. Also: 11th ACM Symp. on Comp. Geom., (1995)350–359.

[28] V. Sharma. Complexity Analysis of Algorithms in Algebraic Computation. Ph.D. thesis,
New York University, Department of Computer Science, Courant Institute, Dec. 2006. From
http://cs.nyu.edu/exact/doc/.

[29] V. Sharma. Complexity analysis of real root isolation using continued fractions. In Proc. Int’l
Symp. Symbolic and Algebraic Computation (ISSAC’07), 2007. Waterloo, Canada, Jul 29-Aug
1, 2007.

[30] V. Sharma, Z. Du, and C. Yap. Robust approximate zeros. In G. S. Brodal and S. Leonardi,
editors, Proc. 13th European Symp. on Algorithms (ESA), volume 3669 of Lecture Notes in
Computer Science, pages 874–887. Springer-Verlag, Apr. 2005. Palma de Mallorca, Spain, Oct
3-6, 2005.

[31] V. Sharma and C. Yap. Complexity of strong root isolation, 2007. In preparation.

[32] B. T. Stander and J. C. Hart. Guaranteeing the topology of an implicit surface polygonalization
for interactive meshing. In Proc. 24th Computer Graphics and Interactive Techniques, pages
279–286, 1997.

[33] C. K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University Press, 2000.

13

APPENDIX

8 Local Lipschitz Constants.

We would like to replace the global constants KI used in Theorem 7 by more local constants. One
suggestion, to use KX in place of KI , seems to lead to complicated conditions on our partitions
and to require the integral to depend on the partition. Instead, we proceed as follows.

In this section, we fix the interval I, and throughout, X range over I. For any a ∈ I and ℓ > 0,
define

Ka,ℓ := max
X⊆I
a∈X

w(X)≤ℓ

KX . (26)

.
If we replace KX by K ′

X in (26), the resulting constant will be denoted by K ′
a,ℓ.

Lemma 22. Let a ∈ I and ℓ > 0.
(i.a) Ka,ℓ is monotonically non-decreasing with ℓ.

(i.b) As ℓ → ∞, we have Ka,ℓ → ∞ and
|f(a)|
Ka,ℓ

→ |f(a)|
KI

.

(i.c) As ℓ → 0, we have Ka,ℓ → |f ′(a)| and
|f(a)|
Ka,ℓ

→ |f(a)|
|f ′(a)| . (Hence, define Ka,0 = |f ′(a)|.)

(ii.a) The product ℓ · Ka,ℓ in strictly increasing with ℓ.
(ii.b) As ℓ → ∞, we have ℓ · Ka,ℓ → ∞.
(ii.c) As ℓ → 0, we have ℓ · Ka,ℓ → 0.

The proof is omitted. From (ii.a-c), we conclude that there is a unique ℓ = ℓa such that
ℓa ·Ka,ℓ = |f(a)|. Define w(a) := ℓa as the local width at a, and define Ka := Ka,w(a) as the local
Lipschitz constant at a. Note that f(a) = 0 implies w(a) = 0 and hence Ka = |f ′(a)|.

We can also define the local width w′(a) (resp., local Lipschitz constant K ′
a) if we use f ′, K ′

a,ℓ

instead of f, Ka,ℓ in the above definitions of w(a) (resp., Ka).
For all a ∈ I, we have

w(a) =
|f(a)|
Ka

. (27)

From Lemma 22(ii), we immediately obtain:

Lemma 23. Let a ∈ I and ℓ > 0. Then

ℓ ≥ |f(a)|
Ka,ℓ

⇔ ℓ ≥ w(a) ≥ |f(a)|
Ka,ℓ

.

ℓ ≤ |f(a)|
Ka,ℓ

⇔ ℓ ≤ w(a) ≤ |f(a)|
Ka,ℓ

.

Moreover, equality is simultaneously achieved on both sides.

We define fℓ(a) = max

{
|f(a)|
Ka,l

,
|f ′(a)|
K ′

a,l

}
.

Using these facts, we define our candidate for a stopping functions:

f∗(a) := max

{ |f(a)|
Ka

,
|f ′(a)|

K ′
a

}
(28)

= max
{
w(a), w′(a)

}
. (29)

14

Using these definitions, Lemma 23 can be rephrased as follows:

ℓ ≥ fℓ(a) ⇔ ℓ ≥ f∗(a) ≥ fℓ(a). (30)

ℓ ≤ fℓ(a) ⇔ ℓ ≤ f∗(a) ≤ fℓ(a). (31)

Moreover, equality occurs simultaneously on both sides.

Lemma 24. f∗ is a stopping function.

Proof. Let a ∈ X. If C0(X) and C1(X) fail, as before, it means w(X) ≥ max {|f(a)|/KX , |f ′(a)|/K ′
X} =

fX(a). Thus w(X) ≥ fw(X)(a). By (30), this is equivalent to w(X) ≥ f∗(a). Hence X is large.
Q.E.D.

Theorem 25. Let PI be the partition of I at the end of Phase 1 of the Evaluation Algorithm. Then

#(P) ≤ max

{
1,

∫

I

2da

f∗(a)

}
= max

{
1,

∫

I
min

{
Ka

|f(a)| ,
Ka

|f(a)|

}
2da

}
. (32)

and this integral is finite.

We already know that f∗ is a stopping function. This result follows from Theorem 5 if f∗ is
never 0. f∗ is never 0 since f is square free and f and f ′ do not share any roots.

9 An Amortized Evaluation Bound

We prove an amortized evaluation bound that has independent interest. Unlike the usual Mahler-
Davenport bounds, it does not involve root separation.

Let f =
∑d

i=t ciX
i ∈ C[X] (t = 0, . . . , d) where c0ct 6= 0. Recall that the height of f is

‖f‖ = maxd
i=t |ci|. Let lc(f) = |cd| and tc(f) = |ct| (resp.) denote the absolute values of the leading

coefficient and tail coefficient (i.e., smallest non-zero coefficient) of f . We write res(f, g) for the
resultant of two polynomials f, g. In addition to heights, we use the Mahler measure of polynomials,
defined as M(f) = lc(f)M1(f) where

M1(f) :=
d∏

i=1

max {1, |αi|}

where α1, . . . , αd are all the complex roots of f .

Theorem 26. Let φ(x), η(x) ∈ C[x] be complex polynomials of degrees m and n. Let β1, . . . , βn be
all the zeros of η(x).
(a)

n∏

i=1

|φ(βi)| ≤ ((m + 1)‖φ‖)n

(
M(η)

lc(η)

)m

.

(b) Suppose there exists relatively prime F, H ∈ Z[x] such that F = φφ, H = ηη for some φ, η ∈ C[x].
If the degrees of φ and η are m and n, then

n∏

i=1

|φ(βi)| ≥
1

lc(H)m+m · ((m + 1)‖φ‖)n M(η)m ·
(
(m + 1)‖φ‖

)n+n
M(H)m

.

We also have
n∏

i=1

|φ(βi)| ≥
1

lc(H)m+m · ((m + m)‖F‖)n M(η)m+m ·
(
(m + 1)‖φ‖

)n
M(η)m

.

15

Proof. (a) We may index the βi’s such that, for some n′ ∈ {0, 1, . . . , n}, we have |βi| ≥ 1 iff
i > n′. Now for i = 1, . . . , n′, we have |φ(βi)| < ‖φ‖(m + 1) and hence

n′∏

i=1

|φ(βi)| ≤ (‖φ‖(m + 1))n′

. (33)

This inequality is strict iff n′ > 0. For i = n′ + 1, . . . , n, we have |φ(βi)| ≤ ‖φ‖(m + 1)|βi|m. So

n∏

i=n′+1

|φ(βi)| ≤ (‖φ‖(m + 1))n−n′

(
n∏

i=n′+1

|βi|
)m

= (‖φ‖(m + 1))n−n′

(
M(η)

lc(η)

)m

(34)

Part (a) follows from (33) and (34).
(b) We have res(F, H) = lc(H)m+m

∏n+n
i=1 F (βi) where β1, . . . , βn, βn+1, . . . , βn+n are all the

zeros of H (see [33, p. 167]). Thus,

1 ≤ |res(F, H)| = lc(H)m+m ·
n∏

i=1

|φ(βi)|
(

n+n∏

i=n+1

|φ(βi)| ·
n+n∏

i=1

|φ(βi)|
)

n∏

i=1

|φ(βi)| ≥ 1

lc(H)m+m ·
∏n+n

i=n+1 |φ(βi)| ·
∏n+n

i=1 |φ(βi)|

≥ 1

lc(H)m+m · ((m + 1)‖φ‖)n M(η)m ·
(
(m + 1)‖φ‖

)n+n
M(H)m

,

where the last inequality is an application of the bound in part (a). Alternatively, we could proceed
thus:

n∏

i=1

|φ(βi)| ≥ 1

lc(H)m+m ·∏n+n
i=n+1 |F (βi)| ·

∏n
i=1 |φ(βi)|

≥ 1

lc(H)m+m · ((m + m)‖F‖)n M(η)m+m ·
(
(m + 1)‖φ‖

)n
M(η)m

.

Q.E.D.

We also need the following bound:

Lemma 27. If S ⊆ {α1, . . . , αd} is a set of non-zero roots of f then

∏

α∈S

|α| ≥ tc(f)

M(f)
.

Proof.

∏

α∈S

|α| ≥
d∏

i=t+1

min {1, |αi|}

=

∏d
i=t+1 |αi|∏d

i=t+1 max {1, |αi|}

=
lc(f)

∏d
i=t+1 |αi|

M(f)

=
tc(f)

M(f)
.

16

Q.E.D.

So if f is an integer polynomial,
∏

α∈S |α| ≥ 1
M(f) .

10 Bound on Integral of Logarithmic Derivatives

Our goal is to show Lemma 16. Of independent interest, we also bound a related integral,

R0 =

∫ b

a
min

{∣∣∣∣
f ′(a)

f(a)

∣∣∣∣ ,
∣∣∣∣
f ′′(a)

f ′(a)

∣∣∣∣
}

da. (35)

Note that R0 is a lower bound on the integral (32). The interest in R0 comes from the hope that
the integral (32) is asymptotically equal to R0 “under ideal conditions”.

¶9. Bounding R (Lemma 16). We may write I ′ =
⋃k

i=1[ai, bi] where the [ai, bi]’s are pairwise
disjoint. Moreover, f ′(x)/f(x) has constant non-zero sign over each [ai, bi], and so the integral∫ bi

ai
|f ′(x)/f(x)|dx = [log |f(x)|]bi

ai
= log |f(bi)|/|f(ai)|. Therefore, R =

∑k
i=1 log |f(bi)|/|f(ai)|. We

can now directly apply the Evaluation Bound Theorem, Theorem 26: the polynomials φ(x), F (x)
in Theorem 26 are just f(x) = φ(x) = F (x), and η(x) =

∏k
i=1(x− ai)(x− bi) with H(x) = 2Nη(x)

for a suitable integer N . Also, log M(H) = O(dL) and log ‖f‖ = O(dL). The overall bound of
O(dL) follows from a routine calculation.

¶10. Bounding R0. Let h = (f ′)4 − (ff ′′)2. Note that f, f ′, h are pairwise relatively prime.
Clearly, we have

R0 = RD + RE =

∫

D

∣∣∣∣
f ′(a)

f(a)

∣∣∣∣ da +

∫

E

∣∣∣∣
f ′′(a)

f ′(a)

∣∣∣∣ da.

where D, E are unions of intervals with endpoints in Zero(h), and RD, RE are defined by that
arg min of the integrand of R.

Let us focus on RD since RE is similar. Again,

RD = R+
D − R−

D =

∫

D+

f ′(a)

f(a)
da −

∫

D−

f ′(a)

f(a)
da

where D+ := {x ∈ D : f ′(x)f(x) ≥ 0} and D− := {x ∈ D : f ′(x)f(x) ≤ 0} Thus D+, D− are union
of intervals whose endpoints belong to Zero(hff ′). Note that R+

D and R−
D are non-negative.

Let us focus on R+
D since R−

D is similar. Suppose D+ =
⋃k

i=1[ai, bi]. Then we have

R+
D =

k∑

i

∫ bi

ai

f ′(x)

f(x)
dx

=

k∑

i

log f(x)|bi

ai

= log
k∏

i

f(bi)

f(ai)
. (36)

We next bound R+
D in terms of the degree and height of f ∈ Z[x].

Theorem 28. Let deg f = d and ‖f‖ < 2L. Then R0 = O(dL).

17

Proof. It is enough to show that RD = O(dL) since RE has the same bound. It is sufficient to
upper bound R+

D since R−
D will be bounded in exactly the same way.

The polynomial hff ′ has degree < 6d and height O(1)L, again using our assumption that
log d ≤ L. From (36), we see that

R+
D = log(

k∏

i

|f(bi)|) − log(
k∏

i

|f(ai)|.

Since the bi’s are distinct zeros of hff ′, we can apply the upper bound in Theorem 26:

log(
k∏

i

|f(bi)|)) ≤ log
[
((d + 1)‖f‖)6dM(hff ′)d

]

= O(dL).

Here, we have used the fact that M(f) = O(‖f‖) since log d ≤ L. Again, since the ai’s are distinct
zeros of hff ′, we can apply the lower bound in Theorem 26:

− log(
k∏

i

|f(ai)|)) ≤ log
[
((d + 1)‖f‖)6dM(hff ′)d

]

= O(dL).

Q.E.D.

11 On the Real and Imaginary Part of Zeros.

Let f ∈ R[X] be a real polynomial of degree d ≥ 1. Suppose its complex zeros are α1, . . . , αd

and let ri = Re(αi) and si = Im(αi) for each i. Our goal is to construct two integer polynomials
R(X), S(X) whose roots contains the ri’s and si’s respectively. We also want to bound the heights
of R(X) and S(X). CAVEAT: In this section, ri, si here refer to real/complex parts of roots of f ;
elsewhere, they refer to real/complex parts of roots of f ′.

¶11. REAL PART. We first construct a polynomial R(X) whose roots include all the ri’s
(cf. [33, p. 202]).

Use the Taylor expansion of f(X + iY) at the point X:

f(X + iY) = f(X) + f ′(X)(iY) +
f ′′(X)

2
(iY)2 + · · · + f (d)(X)

d!
(iY)d

= P (X, Y) + (iY)Q(X, Y)

where

P = P (X, Y) :=

⌊d/2⌋∑

j=0

f2j(X)(−Y 2)j

Q = Q(X, Y) :=

⌈d/2⌉−1∑

j=0

f2j+1(X)(−Y 2)j

18

and fi(X) := (−1)⌊i/2⌋ f (i)(X)
i! is the “normalized” ith derivative (with sign). Note that f0(X) =

f(X) and degY (P) ≥ degY (Q). It follows that ri are real zeros of the resultant R(X) :=
resY (P (X, Y), Y · Q(X, Y)). It is easy to verify that

resY (P, Y · Q) = f0(X)resY (P, Q).

To further factor R(X), let us assume d ≥ 3, so that degY (P) ≥ degY (Q) ≥ 2. Then we can write

P (X, Y) = P (X, Y 2), Q(X, Y) = Q(X, Y 2)

where degY P = ⌊d/2⌋ ≥ ⌈d/2⌉ − 1 = degY Q. Then we may verify

R(X) = f(X) · R(X)2

where R(X) = resY (P , Q).
For the next bound, we use the 1-norm ‖f‖1 and 2-norm ‖f‖2 of f .

Lemma 29. The degree of R = resY (P , Q) is

(
d

2

)
=

d(d − 1)

2
.

Also, ‖R‖2 ≤ (2d‖f‖1)
d−1.

Proof. The degree of R comes from looking at the main diagonal of the Sylvester matrix defining
the resultant. There are two cases: Case d is odd: here degY P = degY Q = (d−1)/2. The product
of the diagonal elements is (f0)

(d−1)/2(fd)
(d−1)/2. Since deg f0 = d and deg fd = 0, the degree of

this product is d(d−1)/2. Case d is even: here degY P = d/2 and degY Q = (d−2)/2. The product
of the diagonal elements is (f0)

(d−2)/2(fd−1)
d/2. Since deg f0 = d and deg fd−1 = 1, the degree of

this product is again d(d−2)
2 + d/2 = d(d − 1)/2.

For the height of R, we use the Goldstein-Graham bound (see [33, p. 173]). Let resY (P , Q) =
det(T) where T = [tij]i,j is the (d − 1) × (d − 1) Sylvester matrix constructed from P , Q. For
instance the first and last rows of T are (respectively) given by

(f0, f2, f4, . . . , f⌊d/2⌋, 0, . . . , 0),

(0, . . . , 0, f1, f3, , . . . , f⌈d/2⌉−1).

Let W = [wij]i,j be the (d − 1) × (d − 1) matrix whose (i, j)th entry is given by wij = ‖tij‖1.

Each of the tij is of the form fk for some k = k(i, j). We use the simple estimate ‖fk‖1 ≤
(
d
k

)
‖f‖1

and hence the 2-norm of the first row of W is

(
‖f0‖2

1 + ‖f2‖2
1 + ‖f4‖2

1 + · · · + ‖f⌊d/2⌋‖2
1

)1/2
<



∑

i≥0

(
d

i

)2

‖f‖2
1)




1/2

≤ 2d‖f‖1.

In fact, the 2-norm of every row of W is bounded by 2d‖f‖1. The Graham-Goldstein bound says
‖R‖2 is upper bounded by the product of these 2-norms, i.e., ‖R‖2 ≤ (2d‖f‖1)

d−1. Q.E.D.

Since lg ‖f‖1 ≤ lg d + L = O(L), we obtain

lg ‖R‖2 = O(d(d + L)). (37)

19

¶12. COMPLEX PART. A similar procedure can be used to construct a polynomial S(Y)
whose roots include all the si = Im(αi). The details are somewhat different, which we proceed to
derive. First, we write f(X) as a sum of its even and odd parts:

f(X) = fe(X) + fo(X) (38)

= fe(X
2) + X · fo(X

2) (39)

where fe, fo ∈ R[X] have degrees ⌈(d − 1)/2⌉ and ⌊(d − 1)/2⌋, respectively. For i ≥ 0, we further
write the i-th derivatives of fe and fe in the form:

f (i)
e (X) =

{
fe,i(X

2) if i = even

X · fe,i(X
2) if i = odd,

f (i)
o (X) =

{
X · fo,i(X

2) if i = even

fo,i(X
2) if i = odd.

The polynomials fe,i and fo,i are implicitly defined by these equations.
Use the Taylor expansion of f(X + iY) at the point iY :

f(X + iY) =
∑

i≥0

f (i)(iY)
Xi

i!

=
∑

i≥0

[
f (i)

e (iY) + f (i)
o (iY)

] Xi

i!

=
∑

i≥0

[
fe,2i(−Y 2) + iY fo,2i(−Y 2)

] X2i

(2i)!
+
∑

i≥0

[
iY fe,2i+1(−Y 2) + fo,2i+1(−Y 2)

] X2i+1

(2i + 1)!

=
∑

i≥0

[
fe,2i(−Y 2)

(2i)!
+ X

fo,2i+1(−Y 2)

(2i + 1)!

]
X2i + iY

∑

i≥0

[
X

fe,2i+1(−Y 2)

(2i + 1)!
+

fo,2i(−Y 2)

(2i)!

]
X2i

= P (X, Y) + iY Q(X, Y)

where
P (X, Y) =

∑2⌊(d−1)/2⌋
i=0 pi(Y)Xi,

with p2i(Y) =
fe,2i(−Y 2)

(2i)! and p2i+1(Y) =
fo,2i+1(−Y 2)

(2i+1)! ,

Q(X, Y) =
∑2⌈(d−1)/2⌉

i=0 qi(Y)Xi,

with q2i(Y) =
fo,2i(−Y 2)

(2i)! and q2i+1(Y) =
fe,2i+1(−Y 2)

(2i+1)! .

NOTE: we are reusing the symbols P, Q, and they should not be confused with the polynomials
P, Q used in the definition of R(X) above.

Now the imaginary part of the zeros of f(X) are zeros of the resultant S(Y) := resX(P, Q)
since

resX(P (X, Y), Y · Q(X, Y)) = Y 2⌊(d−1)/2⌋resX(P, Q). (40)

Note that S(Y) is the determinant of a Sylvester matrix T whose first and last rows are

(p0, p1, p2, . . . , p2⌊(d−1)/2⌋, 0, . . . , 0),

(0, . . . , 0, q0, q1, . . . , q2⌈(d−1)/2⌉).

The dimension of T is (d − 1) × (d − 1), and deg(S(Y)) ≤ d(d − 1).
To bound the height of S(Y), we proceed as before: ‖pi‖1 ≤

(
d
i

)
‖f‖1 and ‖qi‖1 ≤

(
d
i

)
‖f‖1.

Then the Goldstein-Graham bound implies ‖S‖2 ≤ (2d‖f‖1)
d−1, or lg ‖S‖2 = O(dL).

20

Lemma 30. The degree of S = resX(P, Q) is
(

d

2

)
=

d(d − 1)

2
.

Also, ‖S‖2 ≤ (2d‖f‖1)
d−1.

12 Bounding the Gamma Integral

We first prove the key inequality of Lemma 18, restated here:

Lemma 18. Let β2, . . . , βd be all the critical points of f(x) (i.e., zeros of f ′). Then

γ(x) ≤
d∑

j=2

1

2|x − βj |

Proof. We have

f (i)(x)

f ′(x)
=

′∑

(j2,...,ji)

i∏

ℓ=2

1

x − βjℓ

where the summation ranges over all ordered (i−1)-tuples (j2, j3, . . . , ji) taken from {1, . . . , d − 1},
1 ≤ j2 < j3 < · · · < ji ≤ d − 1. The prime in the summation symbol,

∑′, indicates the strict
inequality, j2 < · · · < ji. When we omit the prime in the summation, it means that the tuples
could have duplicated components, 1 ≤ j2 ≤ j3 ≤ · · · ≤ ji ≤ d − 1. Thus

∣∣∣∣∣
f (i)(x)

f ′(x)

∣∣∣∣∣

1/(i−1)

=

∣∣∣∣∣∣

∑

(j2,...,ji)

′
i∏

ℓ=2

1

x − βjℓ

∣∣∣∣∣∣

1/(i−1)

≤




∑

(j2,...,ji)

′
i∏

ℓ=2

1

|x − βjℓ
|




1/(i−1)

≤




∑

(j2,...,ji)

i∏

ℓ=2

1

|x − βjℓ
|




1/(i−1)

unprimed summation

=






d∑

j=2

1

|x − βj |




i−1


1/(i−1)

≤
d∑

j=2

1

|x − βj |
.

For i ≥ 2, we have i! ≥ 2i−1, and hence
∣∣∣∣∣
f (i)(x)

i!f ′(x)

∣∣∣∣∣

1/(i−1)

≤ 1

2

∣∣∣∣∣
f (i)(x)

f ′(x)

∣∣∣∣∣

1/(i−1)

≤ 1

2

d∑

j=2

1

|x − βj |
.

Q.E.D.

Recall that βi = ri + isi where ri = Re(βi), si = Im(βi). Also si = 0 iff 2 ≤ i ≤ k. We next split
the analysis into the real and nonreal parts.

21

¶13. REAL PART. Recall that Procedure H, we obtained disjoint special intervals [ai, bi] ⊆ I
containing the real roots of f ′. Without loss of generality, assume that the real roots of f ′ in I are
r1 < r2 < · · · < rℓ for some ℓ ≤ k ≤ d. Let I ′′ := I \

⋃ℓ
i=1[ai, bi] ⊆ I ′. For consistency, we set b0 = a

and aℓ+1 = b. Writing

φR(X) =
k∏

i=2

(X − ri), (41)

we have:

∫

I′

k∑

i=2

dx

|x − ri|
≤

∫

I′′

k∑

i=2

dx

|x − ri|

=
ℓ∑

j=0

∫ aj+1

bj

k∑

i=2

dx

|x − ri|

=
ℓ∑

j=0

ln

∣∣∣∣
φR(aj+1)

φR(bj)

∣∣∣∣ .

Thus we have shown:

Lemma 31. ∫

I′

k∑

i=1

dx

|x − ri|
≤ ln

ℓ∏

j=0

∣∣∣∣
φR(aj+1)

φR(bj)

∣∣∣∣ .

It is interesting to note that that the real roots outside the interval I appears in this bound.

¶14. COMPLEX PART. Consider the case where βi is nonreal, i.e., i > k. Initially, assume
a + |si| ≤ ri ≤ b − |si| where I = [a, b]. Then

∫

I′

dx

|x − βi|
≤

∫ b

a

dx

|x − βi|

≤
∫ b

a

dx

max {|x − ri|, |si|}
(∗)
=

∫ ri−|si|

a

dx

ri − x
+

∫ ri+|si|

ri−|si|

dx

|si|
+

∫ b

ri+|si|

dx

x − ri

= ln

(
ri − a

|si|

)
+ 2 + ln

(
b − ri

|si|

)
.

where (*) is valid since max {|x − ri|, |si|} = |si| iff x ∈ [ri−|si|, ri+|si|]. Next, suppose ri−|si| ≤ a.

Then the above bound holds, provided the term ln
(

ri−a
|si|

)
be dropped. Similarly, if ri + |si| ≥ b

then the term ln
(

b−ri

|si|

)
should be dropped. Combining all these cases, we obtain:

Lemma 32.
∫

I′

dx

|x − βi|
≤ lnmax

{
1,

(
ri − a

|si|

)}
+ 2 + lnmax

{
1,

(
b − ri

|si|

)}
.

22

We may assume that the roots βi are indexed so that

rk+1 − |sk+1| ≤ rk+2 − |sk+2| ≤ · · · ≤ rd − |sd|.

Then there exists ℓ ∈ {k + 1, . . . , d + 1} such that a < ri − |si| iff ℓ ≤ i. Note that ℓ = d + 1 means
there is no such i.

Similarly, we have βk+1, . . . , βd such that

rk+1 + |sk+1| ≤ rk+2 + |sk+2| ≤ · · · ≤ rd + |sd|.

There exists λ ∈ {k, k + 1, . . . , d} such that rj + |sj | < b iff λ ≤ j. Again, λ = k means there is no
such j. Thus Lemma 32 implies:

∫

I′

d∑

i=k+1

dx

|x − βi|
≤ ln

d∏

i=k+1

max

{
1,

(
ri − a

|si|

)}
+ 2(d − k) + ln

d∏

i=k+1

max

{
1,

(
b − ri

|si|

)}

= ln
d∏

i=ℓ

(
ri − a

|si|

)
+ 2(d − k) + ln

λ∏

i=k+1

(
b − ri

|si|

)
.

In order to bound the integral in Lemma 33 in terms of d and L, we introduce the polynomials

φA(X) :=
d∏

i=ℓ

(ri − X) (42)

φB(X) :=
λ∏

i=k+1

(X − ri) (43)

φC(X) :=
d∏

i=k+1

(X − si). (44)

It follows from Lemma 27 that

d∏

i=ℓ

|si| ≥
1

M(φC)
≥ 1

M(S)
,

λ∏

i=k+1

|si| ≥
1

M(φC)
≥ 1

M(S)
(45)

where S(Y) is the polynomial of Lemma 30. This allows us to rephrase the preceding integral
bound in a compact form:

Lemma 33. ∫

I′

d∑

i=k+1

dx

|x − βi|
≤ ln

φA(a)φB(b)

M(φC)2
+ 2(d − k)

13 Applying the Evaluation Bounds.

In the previous section, we bounded the integrals for the real part (Lemma 31) and non-real parts
(Lemma 33). These bounds were given in terms of the polynomials φR, φA, φB, φC (see (41) and
(42)) evaluated at suitable points. To convert these into explicit bounds in terms of d and L, we
now use the Evaluation Bound in Theorem 26.

23

¶15. BOUND ON REAL PART. Consider the integral in Lemma 31. Recall that the Mahler
measure of a rational number is M(p/q) = max {|p|, |q|} if p/q is a rational in lowest terms. It is
not hard to see that the following amortized bound on the Mahler measures of the aj ’s and bj ’s:

lg
ℓ∏

j=0

M(aj+1)M(bj) = O(dL). (46)

We may set

ηA(X) =
ℓ∏

j=0

(X − aj+1), ηB(X) =
ℓ∏

j=0

(X − bj).

By multiplying ηs (s = A, B) with a suitable power of two, Ks, we obtain Hs(X) = Ksηi(X) ∈ Z[X].
It is clear that lg M(Hs) = O(dL) and lg lc(Hs) = lg Ks = O(dL).

We split the proof into two steps. The first step is upper bound

lg
ℓ∏

j=0

|φR(aj+1)|.

We must exploit the fact that all the zeros of φR (see (41)) are also zeros of f ′ (this is in contrast
to (47) below). Hence we have

‖φR‖ ≤ 2dM(φR) ≤ 2dM(f ′).

We apply Theorem 26(a), with φ replaced φR(X), η replaced by ηA(X), H by HA. Hence m ≤ d
and n ≤ d, and

ℓ∏

j=0

|φR(aj+1)| ≤ ((d + 1)‖φR‖)d M(ηA)d

≤
(
(d + 1)2dM(R)

)d
M(ηA)d.

lg
ℓ∏

j=0

|φR(aj+1)| = O(d2L).

The second step is to lower bound

lg
ℓ∏

j=0

|φR(bj)|.

We apply Theorem 26(b), with φ replaced φR(X) as before, but η replaced by ηB(X), H by HB,
F by f ′. We have m ≤ d − 1 and n ≤ d as before. Now φ is given by f ′/φR of degree m ≤ d − 1,
and η = HB/ηB = KB of degree n = 0.

ℓ∏

j=0

|φR(bj)| ≥ 1

lc(HB)d−1 · ((d‖φR‖)0 M(η)d−1 · ((m + 1)‖φ‖)dM(HB)d−1

− lg
ℓ∏

j=0

|φR(bj)| = O(d2L).

This concludes the proof of Lemma 20.

24

¶16. BOUND ON NONREAL PART. Consider the polynomial φA(X) in (42). We have
([33, p. 118])

‖φA‖ ≤ 2dM(φA) ≤ 2dM(R
′
) (47)

where R
′

is defined for f ′, analogous to the definition of R defined for f above. Recall that
w.l.o.g. a, b are integers satisfying |a|, |b| ≤ 2L. We now apply Theorem 26(a) where we take the

polynomial φ(X) to be φA, and F to be R
′
. The polynomial η(X) is just X −a, and H = η. Hence

m = d and n = 1. Also M(η) < 2L and we have

|φA(a)| ≤ ((d + 1)‖φA‖) · M(η)d ≤ (d + 1)M(R
′
) · 2Ld

and taking logs,
lg φA(a) = O(dL). (48)

Similarly, lg φB(b) = O(dL).
From (45), we see that − lg

∏
i |si| ≤ lg M(S). By Lemma 30, we get lg M(S) = O(dL).

Plugging this and (48) into Lemma 33, we obtain a tight complexity bound for the integral over
non-real roots βi’s: ∫

I′

d∑

i=k+1

dx

|x − βi|
= O(dL). (49)

This concludes the proof of Lemma 21.

25

