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Abstract

We propose to design motion planning algorithms using twoadients: the sub-
division paradigm coupled witkoft predicates Such predicates are conservative
and convergent relative to traditional exact predicateddd “hard” in this con-
text). This leads taesolution-exactalgorithms which can be viewed as a strong
form of “resolution complete” algorithms. Resolution-ek@ess contains inherent
indeterminacies and other subtleties. We describe anitiigac framework, called
Soft Subdivision Search(SSS) for designing such algorithms. There are many par-
allels between our framework and the well-known ProbatmliRoad Maps (PRM)
framework. Both frameworks lead to algorithms that are lyigiractical, easy to
implement, have adaptive and local complexity. The ciitiiierence is that SSS
avoids the Halting Problem of PRM.

In a previous paper, we have demonstrated the ease of degiguiit predicates
for various motion planning problems. In this paper, we galiee and extend some
of these results. We show how exact algorithms can be reed®r an extension
of our framework. The SSS framework provides a theoreticalnd basis for new
classes of algorithms in motion planning and beyond. Sugbrithms are novel,
even in the exact case.

1.1 Introduction

Motion Planning is a fundamental problem in robotics. Onét®forigins is the
“findpath problem” in Artificial Intelligencef, 5]. In the 1980s, computational ge-
ometers began the algorithmic study of motion planniiig I 3], focusing onexact
planners assuming the input is exact, such planners return a pattyiéxzists, and
report “No Path” otherwise. Schwartz and Shakit][observed that the cell decom-
position approach is a universal approach for motion plagyrand in the algebraic
case, is effectively reducible to Collin’s cylindrical algraic decomposition. We in-
troduced the concept of retraction motion planningzn, [2€]. In the first survey

* This work is supported by NSF Grant CCF-0917093.
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on algorithmic robotics31], we observed that the retraction approach is also uni-
versal (again, this is effective in the algebraic case)eifihe work of Canny],

the retraction approach became popularly known as the fnapadapproach”. In the
1990's the roadmap approach takes another turn.

91. Theory. Today, exact motion planning continues to be actively itigased
(e.g., [L7]). A fairly up-to-date account from the perspective of raljebraic ge-
ometry may be found in3]. Some of these algorithms represent major theoretical
advancements. Nevertheless their impact on practicaticshis quite modest: thus
[3€] noted that exact implementations have been limited to 3abegof freedom,
and for simple robots only. Various sub-algorithms and sufipg data structures
needed in exact motion planning have been implement&{=_ [8]. For exam-
ple, the recent exact algorithm for the Voronoi diagramieé$ in space is regarded
as a significant advancéf]; but true goal here is Voronoi diagram of polyhedral
objects. Exactness has tremendous cost in terms of corgnahtomplexity: it
implicitly requires algebraic numbers. Direct manipudatiof algebraic numbers
is impractical. But for many basic problems, a weaker forrdemthe paradigm
of Exact Geometric Computation (EGC) is sufficieff]. Nevertheless, the usual
expedient is to replace exact arithmetic by machine aritloyleading to the ubig-
uitous problems of numerical non-robustnesg[Even ignoring efficiency issues,
there is a fundamental but less well-known barribe Turing computability of ex-
act algorithms for most non-algebraic problems is unkn@w#. This barrier exists
in most problems beyond kinematic motion planning. But §3éofr a rare case of
a non-algebraic motion planning problem that is provablypatable; this positive
result is possible thanks to deep results in transcendemtaber theory.

92. Practice. Since the mid 1990's, the method of Probabilistic Road Maps
(PRM) has become dominant among roboticists. Its basicutation comes from
Kavraki, Svestka, Latombe and Overmais] PRM is not a particular algorithm
but aalgorithmic framework for motion planners. Many variants of this framework
are known: Expansive-Space Tree planner (EST), Rapidhiyeexg Random Tree
planner (RRT), Sampling-Based Roadmap of Trees planndr)(3Rd many more.
Quoting Choset et alll, p.201]: “PRM, EST, RRT, SRT, and their variants have
changed the way path planning is performed for high-din@madirobots. They have
also paved the way for the development of planners for pmbleeyond basic path
planning”

In his invited talk at the recent workshon open problems in this field,
J.C. Latombe stated that the major open problem of PRM isitliates not know
how to terminate when there is no path. In practice, one sirtiples-out the al-
gorithm, but this leads to problems such as the “Climbersmiha” [L4, p. 4] de-
scribed in the work of Bretl (2005). We call this tialting Problem of PRM.
This is a known issue for researchers, and is the extremedbtine so-called “Nar-
row Passage Problem?{, p. 201]. Latombe’s talk suggested promising approaches

2 |ROS 2011 Workshop on Progress and Open Problems in Motanmitlg, September 30, 2011,
San Francisco.
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such as Lazy PRM4]; other lines of attack include explicit detection of thenno
existence of paths’]. The theoretical basis for PRM algorithms is that they are
probabilistic completeld]. The Halting Problem is inherent in probabilistic com-
pleteness.

€3. Common Ground. We seek a common ground that provides stronger guar-
antees than probabilistic completeness, but avoids thdimate demands of exact-
ness. Fortunately for our subject, exactness is a mismatahé needs of robotics.
This is clear from the remark that physical devices and gsrtsave limited accu-
racy. Practitioners are acutely aware of this. Yet it dogsabsolve us from math-
ematical precision if we wish the theoretical developménmbbotic algorithms to
thrive. This tension between the needs of practice and afryhkas led to their
divergent paths described above. So we turn to the idea sbllidon complete”
algorithms, noting that the 1983 paper of Brooks and Lozaerez f] was already
on this track. It is known that resolution complete algarithcan avoid the Halting
Problem (e.g.,36]). Unfortunately the notion of resolution completenessakiom
scrutinized, and is capable of many interpretations.1lf] fve pointed out some
untenable, or lacking, interpretations. As remedy, weothticed a version called
resolution-exactnessand proved basic properties of such algorithms. Surgiigin
we show that resolution-exactness has an inherent indietecy even for determin-
istic algorithms using exact predicates. But the indeteaty is mild in comparison
to that of probabilistic completeness. Unlike the deteaninof exact algorithms,
this indeterminacy seems a perfect match for the requiresiaémobotics.

There are two ingredients of resolution-exact algorithfine first is subdivision
of configuration space. We organize the subdivision inguldivision tree. In 2
and 3 dimensions, such trees are usually called quadtreescarees. Tree nodes
correspond to subsets of configuration space with simplpeshauch as boxes or
simplices. The notion of grid search is often identified wikolution complete al-
gorithms (e.g., see the Wikipedia entry on Motion Plannifgdhough grids are
superficially similar to subdivision, we stress that typiged-based methods are
inadequate for resolution-exactness. The second ingreidiaclassification pred-
icate to decide if a node is free or not. Such predicates could bepated exactly
in the algebraic case; that would be the reflex viewpoint adraputational geome-
ter, but it is not where we want to be. Our key insight is thisthe presence of
subdivision, exact predicates can be replaced by suitabeaximationsWe came
by this viewpoint through a series of related work on sulsidn algorithms (e.qg.,
[28, 23, 29)). Such approximations are formalizedsasft predicatesin [10]. There
we show through a series of motion planning examples, tlagivelease of design-
ing soft predicates, and claimed that they are practical.

Let us address this claim. Since the implementation of ogorithms is cur-
rently underway, our evidence for practicality is indirfaist, our subdivision in-
frastructure is based on well-understood and practica st@tictures (subdivision
tree, union-find, etc). Next, the soft predicates we desigoeggo with subdivision
are mostly reduced to estimating distances between tworkssatwhere a feature is
a point, line segment or a triangle in space. Moreover, thesgicates can be easily
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and correctly implemented (s&é&2 below). Thus there are no implementation gaps
for our algorithms. The argument so far centersgraplementability But how can

we be sure that these implementations willdvactically efficien? Here, we invoke
the evidence of prior resolution-based work. We mention fk@pers such as Zhu
and Latombe (1991)37], Barhehenn and Hutchinson (1995),[Jand Zhang, Kim
and Manocha (2008)[]. Of course, since these work preceded our formulation,
we must reinterpret their methods using our new perspedtiviact, it is illuminat-

ing and fruitful to revisit these papers from our currentgperctive. In short, through
the implementability and practical efficiency of resolutiexact algorithms, we may
have found a common ground for theory and practice.

€4. Our Goals. The current paper aims to clearly expose the foundatiorsssf r
olution exactness. There are three themes: (1) We first tkded rom the success of
PRM research: the simplicity and generality of PRM frameéwarsures that imple-
menters of this framework can get easy access to a wholeyfafrallgorithms, just
by modifying one or more components in the framework. Thaslfeus to formulate
an analogous framework for our approach, caflefi subdivision search(SSS). (2)
Next, we generalize the setting of our previous reslultd: [for instance, the basic
setting of a free space embedded in configuration sgage. C Cspace, Can be
replaced by an open subsétof a normed linear spac&. The boxes used in our
subdivision trees can be replaced by other shapes such plicgis (3) Finally, we
want to revisit exact algorithms from a subdivision viewgoeach SSS algorithm
takes an input resolution parameter- 0, in addition to the normal inputs of path
planning. Itis essential thatis positive. But if we admit = 0, the resolution-exact
algorithm may become non-halting like PRM. We show how toxtdHis problem.
Interestingly, such exact algorithms are novel and seems mplementable than
usual exact algorithms.

All proofs are given in a separate Appendix. Cross refereace hyperlinked in
the pdf version of this paper.

95. Preliminaries. We establish some notations for standard concepts. To focus
on the key ideas, this paper will assume the simplest fortiomaf the motion plan-
ning problem: point-to-point kinematic motion planning émy particular roboRz,
moving in a physical spacR” (k = 2,3) amidst a static obstacle C R*. The
configuration spac€s,ace = Cspace(Ro) Will be appropriately embedded iR?

(d > k) (see P1, p.128] for discussions of embedding issues). Tdwprint map

is F'p : Copace — 2R whereFp(vy) C R” is the physical space occupied by robot
Ry in configurationy. E.g., for a rigid robotF'p(v) is a rotated, translated copy
of Ry. Then a configuratiory € Cyp,c. is free iff Fp(y) N2 = . The set of
free configuration®’f,.. = Cjrec(Ro, §2) is an open subset @f,q.., assuming
2is a closed set. But central to our theory is the boun@a€y;, .. ) of Cy,.c.. Con-
figurations ind(CY,..) are said to besemi-free A motion is a continuous func-
tion p : [0,1] = Cspace, and its range:[0, 1] is called thetrace. The motion is
free if its trace is contained il's,.... A path refers to a free motion. So the basic
motion planning problem for robak, is this: given startv and goals3 configu-
rations, and(? (definingC/,..), find a path fromx to 3 if one exists, and report
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“No Path” otherwise. A key tool is thelearance function C?¢ : Cspece — R>g
whereC'(~) is the separation of the footprintafrom 2, C'¢(v) := sep(F'p(v), £2)
wheresep(4, B) = inf {|ja — b|| : « € A, b € B} is theseparation between two
setsA, B C RF. ThusC/(y) > 0iff v € C'tree. Theclearanceof a motiony is the
minimumC?¢(u(t)) for¢ € [0, 1].

1.2 Two Frameworks for Motion Planning.

In this paper we use the terminology aforithmic framework to discuss broad
classes of algorithms, and view PRM as such a framework. gaorghm within the
framework is just a specific instantiation, using particular data strees, strategies
and subroutines. We will give a formulation of the PRM franoekvand our SSS
framework, and compare them.

€6. The PRM Framework. Here is a formulation of PRM, following LaValle
[21, Section 5.4.1]: the goal is to find a path connecting € Cspoce. We main-
tain a graphG = (V, E) whereV' C Cf,.. and edges in correspond to paths
connecting the vertices of the edge. We may assumenthatare inV. We need
two predicatesFree(u) to test if a configuration is free, andConnect(v,u) to
test if the (straight) motion from to u is free. Finally, assume sontermination
criterion that is comprised of two parts: success-criterion (foundth froma to
5) and a failure-criterion (time-out or other condition).

PRM FRAMEWORK:
While (termination criterion fails):
1. \Vertex Selection Method (VSM):
Choose a vertexin V for expansion.
2. Configuration Generation Method (CGM):
Generate some € Cypqc. (Perhaps near)
3. Local Planning Method (LPM):
If Free(u),
AddutoV
If Connect(v,u), add(v,u) to E.
Return success or failure accordingly.

Step 1 (VSM) is usually controlled by some priority queueresgnting the search
strategy. Step 2 (CGM) is the probabilistic step. But CGMIdaiso be determin-
istic, e.g., controlled by a dense sampling sequefdk [LaValle would call this the
“Sampling Framework” to avoid any prior commitment to randwess. But we say
“PRM Framework” for specificity, and in honor of the most wkown formula-
tion of such approaches. In Step 3 (LPM)js discarded if it is not free; another

3 To be sure, there are degrees of specificity. The most spéadiantiation might be called
“implementation” of some less specific “algorithm”.
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method is to generate a free configuratidrsuch that the subpath, fromto «’, of
the directv to u path is free. As noted inl[l, p.198], the practical success of PRM
stems from the fact that the predicdfece(u) is relatively cheap. There is a large
literature on computing this predicate, under the headirapliision detection In-
deed, theConnect(v, u) predicate is often reduced ®ree(u): if a “sufficiently
dense” sampling of configurations fromto u is free, just assume there is a path
from v to u.

By varying this simple framework, we could capture most & kmown varia-
tions mentioned earlier. The original PRM is framed in teoha road-map stage
followed by a query stage; so the above version is closettBasicPRM” of [L4].
But our discussion of the “PRM Framework” is intended to aastech variations.

€7. What confers power to PRM? The practical advantages of PRM is widely
recognized, and it is natural to assume that randomness &otlrce of this power.
LaValle et al pO] examine this question and concluded that sampling ratie t
randomness is the true source of power. Hsu et@ldrgue for the essential role of
randomness. Independent of this debate, we offer anotasomefor the success of
PRM: the PRM framework allows one to easily modify the cdnsint components
(sampling strategy, connection strategy, freeness patslietc) to obtain a variety of
algorithms that meet diverse needs. The basic infrastreaiigkept relatively stable.
This is possible thanks to tregmplicityandgeneralityof the PRM framework. Just
as important in practice, the framework is also viengiving: you could implement
the constituent components approximately or even wroragly, the software im-
plementatiofimay not necessarily fail (crash or loop). These propertiesesharp
contrast to the usual exact algorithms which are far fronpnand not too for-
giving of errors BZ]. In recognition of this, we would like to propose an analogo
framework for the subdivision approach.

98. The SSS Framework. For a fixed robotR,, the motion planning input is
an initial boxBy C Cspace, the obstacle? C R, the start and goal configurations
a, B € Cgpace, and aresolution parametere > 0. We are interested in “resolution-
restricted” search for a path fromto 3 inside By. As noted in the introduction,
our main data structure is a subdivision trée,The root isBy and each tree node
is a subbox ofBj. The algorithm amounts to a while-loop that “growE"in each
iteration by expanding some leaf until we find a path or coteltNo Path”. Here
are the supporting subroutines and data structures: asspiredicate C' that classi-
fies each node iff into FREE/STUCK/MIXED, with the property tha€'(B) = FREE
implies B C Cf,.. andC(B) = STUCK implies B N Cf,c. = (). We maintain a
priority queuel) = Q7 comprising thos®IXED-leaves whose lengt{ B) (defined
below) is at least. Let Q.GetNext() return a leafB of highest priority. ThisB
is given to another subroutiféxpand(B) which subdividesB into two or more
subboxes. These subboxes become the childréh(sb B is no longer a leaf). For
now, assume&xpand(B) always splitB into 2¢ congruent subboxes. After splitting,

4 The hardware implementation, however, might have cafaisitoconsequences. But here, we
rely on the fact that most robot systems are fail-safe.
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Cis immediately called to classify these subboxes. Boxdsile®REE need further
processing: assume a union-find data strucfuite maintain the connected compo-
nents of th&"REE leaves of7 . Say two boxe®3, B’ areadjacentif BN B’ isad—1
dimensional set. This defines a graph whose vertices afREREboxes, and edges
representing their adjacency relatidhmaintains the connected components of this
graph. We first insert each n&REE leaf B into D, and callUnion(B, B’) for any
FREE B’ that is adjacent t@. AssumeFind(B) returns the connected component
of B, and write ‘Boz(«)” to denote any leaf of that containgy € Cpqce.

SSS RAMEWORK
1. > Initialization.
While (C(Boz(c)) # FREE)
If Boz(«) has length< e, Return ("No Path”)
ElseExpand(Boz(a))
While (C(Boz(B)) # FREE)
... do the same fos ...
2. > Main Loop:
While (Find(Boxz(a)) # Find(Box(8)))
If Q is empty, Return(“No Path”)
B <+ Q.GetNext()
Expand(B)
3. Compute &REE channelP from Boz(a) to Boz(f)
Generate and return the “canonical pathinside P.

Resolution approaches can be wasteful when it is non-agafi SSS, the reso-
lution increases is naturally adaptive (we only expand aeahcells). The resolution
literature sometimes claimed incorrectly that the siz§ as (must be) exponen-
tial in the depth. A counter example ig9] where we prove that tree size is only
polynomial in the depth for certain subdivision algorithfos root isolation. Our
formulation can recapture the approach of Zhu and Latorfilsg Barbehenn and
Hutchinson [], or Zhang, Kim and Manocha (2008}4] as follows: these papers
expand along a “mixed channels” (i.e., path compri$iRBE or MIXED boxes). We
could defineGet Next to expand similarly. It turns out (se&(]]) that our com-
putation ofC' could exploit the subdivision treg. LaValle observed this curious
property of our method, calling it “opening up the blackbaxftollision testing.

€9. Similarities. There are many similarities between PRM and SSS, especially
in their contrasts with exact algorithms.
1. Both have two key subroutines, representing (i) the dlebarch strategies and
(ii) free-ness testing. In PRM, the two subroutines are #rtex selection method
(VSM), and theF'ree(u) predicate, respectively. In SSS, they aegNext(), and
the predicate’(B).
2. An advantage of SSS and PRM is the possibility of findingppla¢éforethe entire
Cspace has been fully explored. Indeed, Hsu, Latombe and Kurnigwaf p. 640]
remarked that “foundational choice made in PRM planningiavoid computing
the exact shape of the free space”. Most exact methods ecguiexpensive a pre-
processing phase to compute a full description of free space
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3. Integrated path planning: both frameworks naturally pote a path, i.e., a
parametrized curve ifVy,... E.g., Step 3 of SSS converts a channel of free boxes
into a path. But exact algorithms often focus on computingnal®lic path in some
algebraic cell complex, assuming that some numerical stim@will convert it into

a path.

4. We have viewed PRM as a probabilistic framework, and SSSdeterministic
one. But both frameworks admit deterministic or probatidiglgorithms. In the
future, we plan to explore the probabilistic side of SSS.

€10. Differences.
I. Foremost, SSS algorithms do not suffer from a Halting Rnob
II. PRM needs the predicatéonnect(v, u) to connect two nodes. The analogue in
SSS simply amounts to checking if tWWBEE boxes are adjacent.
Ill. The search strategy in PRM resides in the Vertex Sadadtilethod (VSM) and
Configuration Generation Method (CGM). In SSS, it residesén Next () and
Expand(). Sampling strategies is a major research question in PRMLE]. Sam-
plingin SSS seems to be more easily controlled, thanks toahee of subdivisions.
For example, a trivial randomized strategy in SSS is to pick MIXED leaf with
equal probability. Two deterministic SSS strategies aeadith-first search (BFS)
and A-star/Dijkstra search]. We can havénybrid strategies: given two or more
strategies, we just cycle through each one in turn. If onb@ftis randomized, then
our hybrid will also gain any advantage of randomness.

1.3 Soft Classifiers

TheConnect(v,u) predicate is often implemented heuristically. LaValié,[p. 177]
discussed certified methods for this test based on Lipscbitgtants. Such certified
tests is a generalization of tli&-ce(u) predicate for a single configuration. We now
consider a different generalization based on sets; it igchis the viewpoint of
interval arithmetic 28].

We first generalize the setup in the Preliminafyp). SupposeX is a normed
linear space with norrfi- || (e.g.,X = R and|| - || is Euclidean norm). Fix a subset
0X of the powerse2™ (e.g., 0 X is the set of boxes iX). Call 0 X atest domain
if it has these properties:

e EachB € X is a full-dimensional closed bounded polytopeXn We call B
atest cell(or simply “cell”). We define an interior point B) called itscenter.

e [X is closed under translation and dilationHfis a cell, thenso i+ o - B
foranyt € X, o > 0. Here,t + B denotes the translation &f by ¢, ando - B
denotes the dilation aB by ratioo at the centee(B).

Note that forX = R¢, if d = 1, then cells are just closed intervals with distinct
endpoints. Fotl > 1, we have many more possibilities.
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By aclassifierwe mean any functio@' : 0X — {IN,ON,0UT}. So a classifier is
a special kind of predicate that “classifies” every test dékese valuéscorrespond
(respectively) toFREE/MIXED/STUCK of the previous section. L&t C X be any
open subset ok. Call C aY -classifierif forall B € 0X,

{C(B):IN = BCY

C(B)=0UT = BNY =0 (1.1)

whereY denote the closure af. Thus a trivial classifier is one that is identically
0N, C'(B) = 0N. If the two implications of {.1) are replaced by logical equivalences
(“if and only if” conditions) then we calC' anexactY -classifier, denoted byCy-.
Note that singletong € X are not test cells, and $6(p) is not defined. Neverthe-
less, the exacY -classifier has a unique extension to points whgyep) = IN if
p€Y,=0Nif p € 9Y, and= 0UT otherwise. This extension is justified as follows:
write “lim; B; — p” to indicate an infinite decreasing sequeriée C By C ---
that converges tp € X. It is easy to see thdim; B; — p implies that the se-
quenceCy (By), Cy (Bz), ... eventually stabilizes to the valu& (p). We denote
this by writing “lim; Cy (B;) — Cy (p)”. We can now define our key concept: a
Y -classifierC is said to besoft if

limB; - p = limC(B;)— Cy(p).

Thus, a soft predicate converges to the exact (or “hard§ipate in the limit.

911. How to compute soft classifiers?7Two standard ideas of resolution-based
methods are (a) splitting cells to reduce complexity, andu@ng numerical ap-
proximation. Typically, (a) is determined by an arbitragsolution parameter but
[10] demonstrated the use of inherent adaptive splitting rigitédere we focus on
(b). LetC? : X — R be a continuous function. Call¢ a (generalized) clearance
function of the set{z € X : C¢(z) > 0} (itis generalized becaug#&/ can be neg-
ative). Because of the splits in (&) need only be defined “locally”. RecallR

is the set of closed intervals; consideriaterval function 0CY¢ : 0X — [OR.

_ w if OceB) > o,

There is an classifier associated wiilC'¢, namely,C(B) = ¢ out if OC#¢(B) <0,
oN else.

We call 0C? abox function for C¢ if it is conservative(i.e.,C¢(B) C 0C¥(B))
andconvergent(i.e.,lim; B; — p implieslim; 0C¢(B;) — C¥(p)). The following
is straightforward.

Lemmal.LetC? : X — R be a clearance function of a st If OC/¢ : 0X —
OR is a box function folC?¢, then its associated classifier is a sbficlassifier.

In practice, it is easier to design classifiers that focuy onltheIN or theQUT
decisions. So we call an interval functianC'¢ : DX — R apositive box function
for Y if B C Y impliesC¢(B) C 0C¢(B), andlim; B, — p € Y implies

5 These values may also be callERMPTY/MIXED/FULL, as in original Brooks-Perez paper. They
reflect the 3-valued nature of geometric predicates (assgaptw 2-valued logical predicates).
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lim; OC¢(B;) — C¢(p) > 0. We similarly definenegative box functionfor Y. See
[10] (implicitly in [ 36]) for concrete examples of positive and negative classifier

912. Implementability. Correct implementation of algorithmic primitives is a
central concern of EGCI]. It remains central for SSS theory. An interesting re-
mark is thatmost papers on subdivision methods exploit cell resolybahassume
hard primitives being performed at the cell lev&@heorem 1 below illustrates this
half-measure. Yet subdivision only shows its full power wivge also exploit soft
primitives. Of course, implementers will use approximategives (machine arith-
metic implementation) but this is done with no guidance ftbeory.

We now indicate why the soft predicates which we designed.ii re eas-
ily, efficiently and correctly implementable. To use nuroaliapproximations, we
need a dense subdgbf R with good computational propertie3/, 16]. A simple
choice are thelyadic numbersD = {m2" : m,n € Z}, called BigFloats in soft-
ware. To exploit hardware arithmetic, we use the techniqu@americal) filters
in EGC [37]. Basically, filters perform machine arithmetic, but traakor bounds
to ensure safe decisions. The filter fails when any overflounaierflow is detected,
at which point we switch to BigFloats. Using oGor e Li br ary [35], such fil-
ter techniques are automated so that users can write a &@n@++ program to
implement their predicates.

In a future implementation paper, we will give a careful agumof the soft pred-
icates designed inL[)], but here is an overview of how to do filters using estimated
error bounds. Such bounds suggest that our filters will ydedll in the typical mo-
tion planning experiments. Assume tB¢éandard Model of floating point arith-
metic [16, p. 44] whereby, for any operatiano y (o € {+, —, x,+, v/}) we have
xoy = (x o y)(1 + u) wherezoy denote the corresponding approximate arith-
metic, u is unit round-off error, and we use the notatioh = z(1 + ¢)” to mean
T = x(1 + 0) for somed € [—e, +¢ (thusd is an implicit constant). Note that
u = 275 ~ 1.11 x 10~!¢ for IEEE double precision. The IEEE Standard for
hardware arithmetic, and the widely available BigFloatkaae calledvVPFR [25]
follows the Standard Model. For instance, to compute thedé||p — ¢|| between
two dyadic points, assuming+# ¢, then in the Standard Model we can approximate
lp— q| with relative error ofy; wherey,, := =2 (see [L] for this y-analysis). We
havevy, < 2nu unlessn is extremely large (e.gn > 2°2 for IEEE double). More-
over, if {(x,y) = ax + by + ¢ = 0 is the equation of a line, then its distance to an
arbitrary dyadic pointxo, yo) is |¢(x0, y0)| /v a? + b2 and this has a relative error of
~9. This assumes that b, c are exact. But if the line is defined by two dyadic points
(zi,9i) (i = 1,2),thena = (ya—y1),b = (v2—21), ¢ = y1(z2—71) — 21 (Y2 — Y1)
Our computation of the distance will now have a relative eofoy; s instead ofyg.
The extension of such estimates to the case of rotation ofrDnw8ll increasen,
but remains well under control. To obtain an upper or lowarrzbon a numerical
expression such d$(zo, yo)|/va? + b2, we just multiply its computed value by
a factor of(1 4+ 7,,) or (1 — 7,,) where®,, is an machine upper bound op. If
n < 128, say, theny, < 274°, Barring under or overflows, it means 45 bits of the
mantissa are correct; this should suffice for typical appions.
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1.4 Dyadic Subdivision Trees

Clearly subdivision trees are capable of many generatizatiSo far, we assume
that a node is a box iR¢, and it splits int®2¢ congruent children. We want to allow
non-congruent shapes, and a variable number of childrea.ntivation is to ex-
ploit “anisotropic subdivisions”. E.g., in subdivisiorgalrithms for isotopic approx-
imation of curves and surface&d, 24, 22], we show empirically that “anisotropic
subdivision” could lead to dramatic speedups.

We considemgeneralized subdivision treesvhose nodes are cells from a test
domain 0X whereX = R?. Two cells B, B’ areessentially disjointif B N B’
has dimensior< d — 1. If B N B’ has dimensior — 1, we say the two cells are
adjacentto each other. By aubdivision we mean a finite subse&t of 0X such
that any two cells are essentially disjoint.channelis a sequence of cells where
consecutive pairs are adjacent. We ¢la subdivision of |S| where|S| denotes
the union of the cells irS. By a k-split (or split) of a cellB € 0X we mean
a subdivision{ By, ..., B} of B with k& > 2 cells. We say the split idyadic if
each vertex of the3,’s is either a vertex of or the midpoint of an edge aBb.

A dyadic subdivision treeis a subdivision treg in which the children of each
internal node forms a dyadic split of its parent7Tfis finite, then the set of leaves
of 7 forms adyadic subdivision of the root. Dyadic subdivisions for boxes were
exploited in P3, 24]. Why dyadic subdivision? Iq/12, we indicated the key role
of dyadic numbers. Now each vertexoccurring in a dyadic subdivision tree is a
linear combination of the vertices, . .., v,, of the rootBy, v = Z;’il «a;v; where
eachq; is a dyadic number. We sayis dyadic relative to By. If By is dyadic, then

v is dyadic.

Our definition of a test celB requires the concept of a centéB) in the interior
of B. A candidate for(B) is the center of theircumball, i.e., unique smallest ball
containingB. But this center may not lie in the interior &f. So we first define the
inner radius ro(B) of B as the largest radius of a ball containedBn Then the
incenter ic(B) comprises the centers of balls of radiy$B) that are contained in
B. E.g., the incenter of a non-square rectangle is a line segr@gearly,ic(B) is
convex; the center of the circumball 6f( B) is taken to be theenter ¢(B). Thus
¢(B) € ic(B), and is unique. The smallest ball centered(dt) and containing3
is called theouter ball of B, and its radiug:(B) is called the(outer) radius of B.
Theaspect ratiois r(B)/ro(B). Let thewidth w(B) (resp.length ¢(B)) refer to
the minimum (resp., maximum) length of an edgef

We turn todyadic subdivision schemesThe dyadic scheme for boxes is dis-
cussed in 13, 24, 10]. We briefly considedyadic simplicial schemesAs illus-
trated in Figurel.1(a), a triangle has three kinds of dyadic splits: the3-, and
2-splits. Dyadic splits of a tetrahedron is more complicatequst three kinds are
illustrated in Figurel.1(b). See P3, 24] for a method to choose among different
splits.
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Fig. 1.1 Dyadic splits of (a) triangle and (b) tetrahedron

1.5 Basic Properties of SSS

We prove some general results about SSS Planners for thehasion planning
problem(95). An “SSS Planner” is an algorithm obtained by instantiatimg var-
ious subroutines in the SSS Framework. But assume a geratiati of the SSS
Framework(§8) whereby boxes are now cells in.X . The3 key subroutines ar€,
Expand, andGet Next . Our basic assumptions akiomsabout them are:

e (AO: Softness)CN' is a soft classifier fo€C ;..

e (Al: Bounded dyadic expansion)Expand splits a cell dyadically into a
bounded number of subcells, each with a bounded number G€egr with
the ratio/(B)/w(B) bounded. Moreover, the splitting schemeerpetual (it
will never get stuck).

e (A2: Clearance is Lipschitz) There is a constant, > 0 such that for all

’%7/ S Cspacea |C£(7) - Cé(’}//” < LOH’Y - W/H

We made no assumptions @et Next here because the needed properties are
embedded in the SSS framework, nam&t Next returns aMIXED-leaf with
length¢(B) > ¢ as long as such leaves exist. Although our goal is soft diessi
(A0), as a proof strategy, we will initially assunegis the exact's,..-Classifier. In
this case, we say our planneragact Note that (A1) does not guarantee bounded
aspect ratio, but it guarantees every infinite path conger@e) relates clearance
to the norm onX. This axiom holds even with rotational degrees of freedaee; s
[10] for the case o4 is SE(2), and Appendix B.

Theorem 1.Every SSS Planner halts.

Thus halting is in-built, depending only on (A1). Next we githe minimal cor-
rectness property of SSS Planners.

Theorem 2 (Exact SSS)Assuming an exact SSS Planner:
(a) If there is no path, the planner outputs “No Path”.
(b) If there is a path with clearance 2¢ L, the planner outputs a path.
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€13. Three Desiderata. Loosely interpreted, current “resolution complete” al-
gorithms provide perhaps the equivalent of Theorem 2. Beretlare three desider-
ata. First, we want to remove the assumption of exactne6€s s noted in§12,
the literature invariably assumes exactness in its arsml$sicond, we would like to
weaken the hypothesis of Theorem 2(a)ifdtere is no path with clearance/ K
for some input-independeit > 1. Third, we want to strengthen the conclusion of
Theorem 2(b) so that the output path has clearane¢ K.

914. Soft Predicates and Effectivity. The first desiderata above is to extend
Theorem2 to soft predicates. For such a result, we need a bit more ofosedli-
cates. Call & -classifierC effectiveif it is® monotone(i.e., C(B) # ON implies
C(B') + on for all B’ C B), and there is a (effectivity) constamt> 1 such that if
Cy (B) = INthenC(B/o) = IN. We remark that the explicit soft predicates which
we designed in1(] are all effective. An SSS Planner is said todftectiveif it uses
an effective soft predicate faf = Cy..

Theorem 3 (Effective SSS)Assume an SSS Planner with effectiwity 1.
(a) If there is no path, the planner outputs “No Path”.
(b) If there is a path with clearance (1 + o) Lo, the planner outputs a path.

915. Resolution-ExactnessThe second and third desiderata lead our key defi-
nition: A planner forR, is said to beesolution-exact(or “s-exact”) if there exists
a constanf > 1 such that

(i) if there no path with clearance/ K, it returns “No Path”;

(ii) if there is a path of clearancé ¢, it returns a path with clearance/ K.
Call K anaccuracy constant Resolution-exact planners admits an indeterminacy
in its output: suppose there is no path of clearanke but there exists one with
clearance in the range /K, K¢). In this case, the-exact planner may return ei-
ther a path or “No Path”. We show this indeterminacy is und@able in [L0]. An-
other subtlety of this definition is revealed if we ignore thigd desideratum. This
amounts to replacingi) with the following:

(i)' if there is a path of clearancédse, it returns a path.
Call the planneweakly resolution-exactin this case. What have we given up with
this weaker requirement? We have no guarantees on themteaoéthe returned.
Nevertheless, because of (i), we know there exists apatith clearance:/ K. So
the third desideratum is a “constructivity requirement&(must find such a’). The
following development will show the highly nontrivial nauof this requirement.

To infere-exactness, the fundamental issue is to infer a lower boarkeclear-
ance of a path inside a free channel. This is encoded as (48) ne

e (A3: Translational cells) If B € [0X is free, then its center has clearance
Cl(c(B)) > ro(B) wherery(B) is the inner radius. Such cells are said to be
translational.

6 Monotonicity is not strictly necessary, but it simplifiesr@arguments. Moreover, implementa-
tions can normally ensure monotonicity. In the intervarture, it is sometimes called “isotone”.
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Like (A2), axiom (A3) relates the norm to clearance. It is a non-tregsumption
on the parametrizatioN of configuration space. The “translational” terminology is
based on the analogy thatXf is purely translational, then (A3) is true. The appendix
will indicate why (A3) holds in standard motion planningifaulations. So far, we
have been non-specific about the “canonical pattthat is generated in Step 3 of
the SSS Framework. Ferexactness, the nature of this canonical path is important.
In particular, we must slightly modify Step 3in SSS, encotihéslin the next axiom:

e (A4: Canonical Paths)Assume that all cells are boxes aqdis effective. In
Step 3, ifC(Cube.(«)) # FREE or C'(Cube.(/3)) # FREE, SSS will return “No
Path”. (Otherwise it returns the “canonical paf®’in the channeP as usual.)

Here,Cube. () is the box centered at with length and width equal te.

Theorem 4 (Resolution-Exact SSS).
Under (A0-A4), SSS Planners are resolution-exact.

1.6 What About Exact Algorithms?

Can the SSS framework proddaxact algorithms? The answer is yes. But we first
point out a non-solutionysing an Exact Planner with the resolution parameter
0. First of all, using Exact SSS re-introduces the need foelaigic computation.
Second, by setting = 0, indeterminacy is removed, but at a high price: if there is
no path, then SSS will not halt. Even if there is a path, we nwyind it because of
non-halting; but this could be fixed by imposing a “geneediBFS” property on
Get Next . For these reasons, our norfhdrmulation of SSS requires> 0.

We now present a solution that exploits resolution-exasnk is based on the
theory of constructive zero boundsj, and does not need an Exact Planner.

Theorem 5.If the inputs numbers describingy, {2, «, 8 are all algebraic num-
bers, there is an effectively computable numbet 6(Ry, 2, «, ) > 0 with this
property: if there is a path from from « to 3, then the clearance of is > ¢.

One way to derive suchdis to bound the degree and height of algebraic quan-
tities arising in any motion planning algorithm. Thércould be taken as the root
separation for these algebraic quantities. A more carefmiputation ofs can pro-
ceed as follows: using the fact that if there is a path, thenetlis a path in some
“retract” [31] (basically a Voronoi diagram augmented by some paths)k fidtract
is algebraic, and the minimum clearance along the retradtidme expressed by the
solution of a suitable set of polynomial constraints inwiodythe input data. A zero
bound can be computed from a list of these constraints. Theseds depend on
the representation used for input angular or rotationalipaters.

7 We are indebted to Steve LaValle for asking this questioh@tROS 2011 Workshop.
8 For that matter, we also assumed the accuracy con&tasistrictly greater than.
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Theorem 6. Suppose we have a resolution-exact planner with accuranpeter
K > 1. If we fix the resolution parameterto be < 6(Ry, {2, «, 8)/ K, then the
planner is exact.

916. Alternative approach to Exact SSS algorithms. A more practical ap-
proach is to avoid zero bounds, and to minimize the role oflaigic computation.
As in [10], we maintain a set of featureg B) that are within an influence region of
B, and anothep~ (B) C ¢(B). Our soft classifiers reduce to checking the empti-
ness ofp(B) or non-emptiness~ (B). But an exact predicate must ultimately com-
pute the true value af'¢,, .. (B). The idea is do thisnlywheng(B) is “simple”,
otherwise we spli3. Certainly,|¢(B)| = O(1) may be regarded as simple. Unfor-
tunately, because of input degeneracies, this conditionti@nough. Other options
for simplicity are possible, but they depend on the naturBgfThis leads to new
exact algorithms that seem more practical than traditionak.

1.7 Conclusion

In this paper, we described the SSS framework for desigrgglution-exact algo-
rithms. We argued that it shares many of the attractive ptigseof the successful
PRM framework. The ideas of resolution-limited algorithimsertainly very old.
But to our knowledge, the simpgleproperties of soft classifiers have never been
isolated, nor have concepts of resolution-limited comporiecbeen carefully scruti-
nized. We believe focus on these “simple ideas” will open aw classes of algo-
rithms that are practicandtheoretically sound, not only in motion planning.

There are many open questions concerning SSS framework.RRM, many
variations of SSS are possible. Perhaps the biggest tiemretallenge is the com-
plexity analysis of adaptive subdivisiofiq]. Here are some other topics:

e Our SSS framework detects “No Path” by exhaustion. We copéebd this up
by looking for non-existence of M-paths{], but it is a challenge to design
efficient techniques (this is connected to issues in contipat homology).

e The general study of dyadic subdivision schemes satisfiig is of great in-
terest. We also nee to better understand subdivision sch@&m& E£(3) (see
[10] for SE(2)). Beyond kinematic spaces, good subdivision is even less un
derstood.

e Design and analysis of adaptive search strategies, ingudindomized or hy-
brid ones. How efficiently can we update the “dynamic” A-starDijkstra
search structures of]?

e Design and implement new SSS algorithms; compare them ViRii.P

e An intriguing question is whether SSS match the performaf€@RM in prac-
tice. Conventional wisdom says that PRM can provide pracsolutions for

9 Several reviewers of our previous work sees only the sasepas of soft classifiers. They fail
to note that previous work are silent about convergence.ddfse, convergence is standard in
numerical computing.
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problems higk® degrees-of-freedom (DOF) while resolution methods cag onl
reach medium DOF. This seems to be supported by current ingpitation.
Choset 1, p. 202] suggests that the state-of-art PRM can handle DQlfein
range5 — 12. They noted that 40 DOF planar robot from Kavraki (1995) can-
not be tackled by other methods. The resolution-basedittigts of Zhang et

al [36] involve planar robots (except for one 3D robot). But we &edi the full
potential ofadaptivesubdivision methods have hardly been reached. So this
intriguing question begs for more experiments.

17. ACKNOWLEDGMENTS. lamindebted to Yi-Jen Chiang, Danny Halperin,
Steve LaValle, and Vikram Sharma for helpful discussions.
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1.8 APPENDIX A: Proofs

This appendix contain proofs for our theorems (for WAFR egvprocess).

€18. Halting and Splitting Criterion. Inthe SSS Framewor(§8), we use the
criterion “/(B) < £” to stop splitting a cell. But in the following proofs, we Wil
assume the variant criterion of (B) < &”. Why this difference? Generally(B)
is more easily computable thanB), so we expect to usé B) in implementations.
However, the proofs are cleaner if we ugd). Note that/(B) is just the distance
between two vertices B while r(B) involves the centet(B). For instance, ifB
is a dyadic box, thed(B) is a dyadic number while(B) is a square-root.

Theorem 1. Every SSS Planner halts.

Proof. Property (A1) implies that in any infinite paftB; : ¢ > 0) of an SSS sub-
division tree7T, we havelim; ¢(B;) — 0. If we use the ¢(B) < &” criterion for
non-splitting, then this implies halting. But if we use thé B) < ¢” criterion, we
also obtainim; r(B;) — 0, because the bounded complexity of cells (A1) implies
r(B) = O((B)). Q.E.D.

Theorem 2 (Exact SSS).

Assuming an exact SSS Planner:

(a) If there is no path, the planner outputs “No Path”.

(b) If there is a path with clearance: L, the planner outputs a path.

Proof. Let 7" be the subdivision tree at termination.

(a) At termination, we either report a path or output “No Palthwe report a path,
it is because we found a free channel frah«) to B(8), and this implies the
existence of a path. Hence if there is no path, we will sureport “No Path”.

(b) Suppose: : [0,1] = Cipace IS @ path from to 8 with clearances. By way of
contradiction, suppose SSS outputs “No Path”. This imples every mixed leaf
satisfies (B) < . Consider the setl of leaves ofT that interseci:[0, 1] (the trace
of ). If B € A, there exist$ € [0, 1] such thafu(t) € B. This impliesB is either
free or mixed. We claim thaB is free. If B is mixed, then-(B) < ¢ and there is a
pointp € B thatis semi-free. Butu(t) — p|| < ||u(t) — c¢(B)|| + ||c(B) — p|| < 2e.
By (A2), |Cl(u(t)) — Cl(p)| < 2eLg. ThusC¥(p) > Cl(u(t)) —2eLy > 0,1.e.,p
is free. This contradicts the assumption thé semi-free, proving our claim. Now
we may form an channel of free cells framto g using cells inA. The existence
of such a channel implies SSS should have reported a path.cbniradicts our
assumption of “No Path”. Q.E.D.

The application of (A2) in the above proof can be capturedhgedcally as
follows: let D,.(c) denote theball in X centered at with radiusr. Then (A2)
implies the following:

Lemma 2.Letc € X. If Cl(c) = Lod > 0thenD;(c) is free.
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919. Soft Predicate and Effectivity. Theorem Jthe soft version oTheorem 2
is an immediate corollary of the following:

Lemma 3.
Let C' have effectivity constamt > 1. If there is a path of clearancél + o)cLg
then the SSS Planner will output a path.

Proof. The proof is similar to that of Theorem 2(b). But now we use vakies
FREE/MIXED computed byC instead of the exact concepts of free/mixed. Suppose
i [0,1] = Cipace is a path of clearancél + o)cLy and, by way of contradic-
tion, our algorithm outputs “No Path”. For any leB, if there is some < [0, 1]
such thatu(t) € B, thenB is eitherFREE or MIXED (not STUCK). We claim B

is FREE. By way of a second contradiction, assutidés MIXED. Thusr(B) < ¢

and |c(B) — u(t)]| < e. By Lemma2, we Know D14 (u(t)) is free. Then
0B C Dye(c(B)) € D110 (u(t)). ThusoB is free and henc€'(B) = FREE.
This contradiction proves our claim thBtis FREE. Therefore the set of leaves that
coveryu0, 1] must beFREE. This contradicts the “No Path” output. Q.E.D.

920. Resolution-Exactness We now prove our main theorem erexactness.
To provide quantitative information on the accuracy conisfa, we introduce two
global constants:

e There is a constank, > 1 such that forc € X, ||c|| < Kyl|c|| (the infinity
norm). This implies tha€ubes(c) C D, s(c).

e Thereis a constank’; > 1 such that boxes in an SSS Planner have widths at
leasts/ K. This constant exists because we do not subdivide a box adlius
less thare, and sor(B) > /2. Then axiom (Al) impliesv(B) > ¢/K; for
somekK.

E.g., if X = RY thenK, = V/d. If our boxes are restricted to cubes, then also

K, =+Vd.

Theorem 4 (Resolution-Exactness).
Under (A0-A4), SSS Planners are resolution-exact.
The Planner has accuracy constalit= max {4, 2K, (1 + o)Ly Ky} whereo is

the effectivity constant of predicaté

Recall that under (A4), we assume that our cells are actbaikes. We say a
box B is aligned (under By) if B is contained in some subdivision @f,; let
Aligned(By) denote the set of boxes aligned undgr Clearly, the boxes appearing
in an SSS Planner are all aligned under a fikgdwe can normally omit reference
to this By. We will prove a theorem about clearance of the “canonictd’ia a free
“aligned channel”:

Theorem 4A (Clearance in Free Aligned Channel)LetP = (B4,...,B,,) bea
free channel of aligned boxes, withe B, andg € B,,. Assume
(i) Cube;s(a) andCubes(3) are free, and
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(ii) the width of theB;’s is at leaste.
Under(A3), the canonical path irP from « to 5 has clearance> min {¢/2, §/4}.

The “canonical path” in SSS (Step 3) is precisely this pathhirorem 4A. Our
main result ore-exactness easily follows from Theorem 4A:

Proof of Theorem 4We must show the two requirements of resolution-exactness:
(i) If SSS outputs a path, then this is the canonical patbf a free channeP of
aligned boxes. Each box iR has width> ¢/K;. Axiom (A4) implies Cube, («)
andCube. () are free. Thus Theorem 4A implies the clearancePaf at least
min {e/2K1,c/4} > ¢/K. Therefore, if there is no path of clearancéX, the
Planner must output “No Path”.
(i) Suppose there is a path of clearar(de+ o)eLoKy whereo > 1 is the ef-
fectivity of C. The proof of Lemma 2 shows there iSBEE channelP of aligned
boxes fromB(«) to B(3). We further claim that’ (Cube. («)) = FREE: since the
clearance ofy is at least(1 + o)cLo Ko, Lemma2 implies thatD 1.k, () is

free. ThusCube () (a), which is contained iD(, ).k, (@), is free. Since’'

has effectivityo, C'(Cube.()) = FREE. Similarly, C'(Cubec (/3)) = FREE. Now we
invoke Theorem 4A to conclude th&athas clearance ¢/ K. Q.E.D.

We have not tried to optimize the accuracy const&nin our SSS Planner. A
simple way to minimizeK is to choose other criterion tham(B) < ¢” to stop
splitting a box.

€21. Channels of Aligned BoxesThe proof ofTheorem 4Ais shown through a
sequence of lemmas. Tleanonical path P in the free channeP = (By, ..., B,,)
in Theorem 4A is a fairly natural polygonal path. It is the catenation ofn + 1
subpathsP = o; pi1; -+ - 5 o Where:

e Starting froma, we take a certain 2-step path from « to ¢(B; ) as described
in Lemma7(b) below.

e Thenforeachi =1,...,m—1,we continue with théth subpath:; from ¢(B;)
to ¢(B;+1). Subpathy; is a certain canonical subpath joining the centers of the
two boxes, via the center @&; N B;.1, as described in Lemntabelow.

e Finally, we take a 2-step path,, from ¢(B,,,) to 8. This is analogous tg.

We begin with a simple property of aligned intervals (i.bg tase wher&, is
an interval).

Lemma 4. Let I, be an interval. Any two intervals I’ € Aligned(I,) are essen-
tially disjointorI C I’ or I’ C I.

Proof. We can construct a unique dyadic subdivision tfeg(1;) with no leaves.
This infinite tree contains every aligned intervalIlfl" € T, (Iy) do not lie on a
common path, then they are essentially disjoint. Othervtisgre is a containment
relation between them. Q.E.D.
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Let D C 0O(X) be any set of boxes. Itwidth w(D) is the minimum of the
widths of boxes inD. WhenD = { By, ..., B,,}, we simply writew(B1, ..., By)
instead of Ww({Bi,...,Bn})".

By definition, “boxes” are full-dimensional. We now need tnsider “boxes”
that are less than full-dimensional. In the following, welslassume the boxeB8
andB’ are given byB = [["_, I; andB’ = [[_, I. Let F = BN B’. Assuming
F'is non-empty, we have' = Hle Ji whereJ; = I, N I!. We call F adegenerate
boxif w(J;) = 0 for anyi. If B, B’ are essentially disjoint, thefi must be degen-
erate. Define thevidth of degenerate boxes as follows:Afis a point, we define
w(F):=0 and otherwise

w(F):= min{w(J;) :w(J;) >0andi=1,...,d}.
So unlesd’ is a point, we haves(F") > 0.

Lemma5.If B, B’ € Aligned(By) and B, B’ are adjacent, themv(B N B") >
w(B, B’).

Proof. Since B, B’ are adjacent, there is a uniqusuch that/; = I, N I/ is de-
generate. Wlog, say (/1) = 0. Thenw(J;) > 0 fori = 2,...,d. Sincel,, I/ are
both aligned relative td;(By) (the projection ofB, onto thei-th axis), Lemmalt
says thatl; C I/ or I/ C I,. Thusw(J;) = (I; N I}) = w(l;, I}). This proves
w(BNB') = min{w(l;,I}):i=2,...,d} > min{w(l;,I]):i=1,...,d} =
w(B, B’). Q.E.D.

Lemma 6.If B, B’ are two boxes witl(B) € B’, then
w(B N B') > min{w(B)/2,w(B")}.

Proof. It is sufficient to prove this for the case wheBe B’ are intervals. Lef, I’ be
intervals withe(Z) € I'. Sayl’ = [—w’/2,w'/2] and] = [c—w/2, c+w/2]. Wlog,
—w'/2 < ¢ <0.CASEc+w/2 < w'/2: ThenI NI’ containgc, ¢+ w/2] of width
w/2. This proves the lemma. CASE+ w/2 > w'/2: Then—c — w/2 < —w'/2,
and soc — w/2 < —w’/2. This proves that’ C I and sow(INI') = w(I’') = w/,
again proving the lemma. Q.E.D.

Lemma 7 (Canonical subpath for 2 overlapping boxes).

Let B, B’ be free boxes ifR<.

(i) If B C B’ then the straightline path from(B) to ¢(B’) has clearance at least
w(B)/2.

(i) If ¢(B) € B’, then the “canonical” 2-step path from(B) to ¢(B N B’) and
then toc(B’) has clearance at leastin {w(B)/4,w(B’)/2}.

Proof. The proof is illustrated by Figure.2(i) and (ii).
(i) The clearance of( B) is at leastv(B) /2, and the clearance of B’) is at least
w(B’)/2.1f 1 : [0,1] = Cree is the straightline path from(B) to ¢(B’), thenu(t)
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B/

B B B

./o o\ °
5 3 5
0) Gy B (iii)

Fig. 1.2 Paths frome(B) toc(B’): (i) B C B/, (i) ¢(B) € B/, (iii) B, B’ adjacent.

has clearance at lea§itl — t)w(B) + tw(B’))/2. Hence the path has clearance at
leastmin {w(B),w(B’)} /2 = w(B)/2.

(i) We apply part(i) twice: the straight path fromiB) to ¢(B N B’) has width at
leastw(B N B’)/2. A similar argument applies to the path frett3 N B’) to ¢(B’).
By Lemma6, w(B N B’) > min {w(B)/2,w(B’)}. Q.E.D.

Lemma 8 (Canonical subpath for 2 adjacent boxes).
Let B, B’ be two free aligned boxes that are also adjacent. Then tlseaed-step
“canonical path” from ¢(B) to ¢(B’) with clearance at leasi (B, B')/2.

Proof. This proof is illustrated in Figuré.Ziii). Let I = B N B’. We first show
that there is a 2-step pathfrom ¢(B) to ¢(F') with clearance at least(B, B’).

With our usual notation, suppoge= BNB’' = {a;} x Jo x - - - x Jg wherea; is
an endpoint of ;. Consider the boB” = I} x Jy x - - - x J4. Note thatF’ is a face of
B".We construct: by concatenating two straightline paths= p1; us wherey; is
the path frome(B) to ¢(B”), andpus is the path fronz(B”) to ¢(F'). By Lemmar(i),
the clearance ofy; is at leastw(B”)/2. But w(B”) = min{w(l;),w(F)} but
w(F) > w(B, B") by Lemmab. Thusy, has clearance at leas{ B, B’)/2.

Next consider the clearance @f: it is not hard to see that the clearance.gft)
is at least half of

w* := min {w(F),w(l1),w(I}])}.

Butw(F) > w(B, B’) by Lemmab. Hencew* > w(B, B').

We are almost done: by repeating the above argument, we algcal2-step path
from ¢(F’) to ¢(B’). Concatenating, we have a 4-step path. But our lemma claimed
a 2-step path: this 4-step path is actually equivalent toste@-path because of the
properties of alignment. First of all, note thitis actually a face of eitheB or B’.

If Fis aface ofB’ then the 2-step path fron{B’) to ¢(F) is actually a straightline
path. Moreover, this straightline path is a continuatiothe&f second half of the 2-
step path fronz(B) to ¢(F). This is illustrated in Figuré. (iii). Q.E.D.

Proof of Theorem 4A.Let P = (By,...,B,,) be a free channel of aligned
boxes. The canonical path from € B; to 5 € B,, is a concatenation of the
“canonical subpaths” given by Lemn¥dii) and Lemma8. The clearance of the
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subpaths from Lemm(ii) is at leastmin {¢/2, §/4}. The clearance of the subpaths
from Lemma8 is at least /2. This concludes our proof.

922. Exact Subdivision Algorithms. We now address exactness in the subdivi-
sion context.

Theorem 5. If the inputs numbers describinBy, 2, «, 5 are all algebraic num-
bers, there is an effectively computable numbet 6(Ry, 2, «, ) > 0 with this
property: if there is a motion from from « to 3, then the clearance ¢f is > §.

The truth of this theorem is not in question. We omit the tadidetails of calcu-
lating ¢ in this version. The sketch in the text indicates some wagydding this.

Theorem 6.Suppose we have a resolution-exact planner with accuranpeter
K > 1. If we fix the resolution parameterto be < 6(Ry, {2, «, 8)/ K, then the
planner is exact.

Proof. If there exists a path, then there exists a path of clearante> Ke. By the
correctness of our resolution-exact planner, if there @ation path with clearance
> Ke, then our algorithm will return a path. Conversely, if théseno path, then
there is no path of clearanse /K. By the correctness of our resolution-exact
planner, if there is a solution path with clearaneeK e, then our algorithm will
return “No Path”. Q.E.D.

1.9 APPENDIX B: Justification of (A2) and (A3)

The theorems in this paper are proved in APPENDIX A, assum@kigms (A0-A4).

Of these axioms, the reasonablen@s®) and(A3) is perhaps the least obvious. The
current appendix shows why they hold in typical settingseSehtwo axioms show

a tight connection between the Euclidean ndrm|| on X to the clearance func-
tion C¢ : X — R>(. But mediating between these two concepts is the Hausdorff
distancely (A, B) between two closed sets of physical spa,

923. On Parametrizations of Cy,,.. In this paper we assume@;,qc. iS
parametrized by (and identified with) the sétwhich is a subset dR¢, X C R<.
Naturally, we must properly define “adjacencies” of cellsXinin order to ensure
that the topology ofCs,... is captured. For instance, @;,..c. = SE(2), then
X = R? x [0,27] where we identify0 and2~ to have the proper adjacency. For
simplicity, we will assumeur cells are boxes

Observe that ifX has only translational degrees of freedom, then (A2) and (A3
are immediate. To handled rotational degrees of freedomexpéit the fact that
these are compact groups, and can only have bounded effaléamance. More
precisely, suppos& can be written as the produst = X1 x Xg whereXr and
X represent the “translational” and “rotational” comporseoft parameter space.
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Here X7 = R! is unbounded buKr C R" is compact (for someé > 0,r > 0,
t +r = d). For instance, ifX is a parametrization of the configuration/of> 1
unconstrained rigid bodies, thetiy = R3* and Xr = (SO(3))F C R3*. Or, if
X parametrizes the configuration space of a humanoid robat,XH = R? while
Xg is avery high degree rotational space.

Lety € X and B be a box inX. Then we may writey = (vr,vr) where
vyr € Xr,vr € Xg. Likewise,B = By x Bgr whereBr C Xy andBr C Xg.
We will consider two kinds of balls centeredat R? with radiuss:

Ds(c) = {zeR?:|lz—c| <5} (Euclidean ball)

Cubejs(c) = {z € R?: ||z — c|ls < 0} (Cube)
Thus the cube is just the ball under tkenorm, ||z = max {|z;| : i =1,...,d}
wherexz = (x1,...,z4). These functions generalize naturally to setsSifC

R?, then we have thgeneralized footprint Fp(S) := U.cs Fp(c), generalized
ball Ds(S) = UccsDs(c) and generalized cubeCubes(S) := Uces Cubes(c).
The generalized ball (resp. cube) is just the Minkowski sumSowith D;(0)
(resp.,Cubes(0)) whereO is the origin. The following properties hold for typical
parametrizations:

e (Translational component) f = (¢r,cr) € X1 x Xg, then the generalized
footprint
Fp(Cubes(cr) X cr) = Cubes(Fp(c)). (1.2)

The import of (L.2) is that the left hand side involv€sbes(cr) while the right
hand side involveSube; (Fp(c)): the former is in translational spadgr = R?,
the latter in physical spad@”.

e (Rotational component) There is a constantthat depends only on the robot
such that ifer = ¢/, then

du(Fp(c), Fp(c)) < Lillcr — cgll (1.3)

wheredy (A, B) is the Hausdorff distance between closed sets.

924. Justification of (A3) .
Lemma 9. Property (L.2) implies (A3): if B is a free box, then

Cl(e(B)) > w(B)/2.
Proof. By definition of clearance,

Cl(y) = Sup {6 : Ds(Fp(v)) N2 =0}, (1.4)

Thus, for any > 0,

Ds(Fp(y))N2=0 = Cl(y) =4. (1.5)
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SupposeB is free,c = ¢(B) andd = w(B)/2. ThenCubes(cr) X cgr, as a subset
of B, is free. But (L.2) implies F'p(Cube;(cr) X cr) = Cubes(Fp(c)). Thus

Cubes(Fp(c)) N2 =10.

SinceD;s(F'p(c)) C Cubes(Fp(c)), we inferCe(c) > § = w(B)/2 from (1.5. We
have verified A3). Q.E.D.

Counter exampleto (A3). To show that (A3) is a non-trivial property, we describe
a situation where it fails. Suppose the center of a disc rélot R? is constrained
to lie on thex-axis. So the configuration spaceXs = R and consider an interval
B = [0, 4] with centerc(B) = 0. Let {2 consists of a single point on theaxis
whose separation fro’p(0) is 6/2. ThenC?(¢(B)) = 6/2 < w(B)/2 = 4. So
(A3) does not hold.

€25. Justification of (A2) . We first note a connection between Hausdorff dis-
tance and clearance:

Lemma 10.Letc € X.
(a) If cis free, thenC'¢(c) is equal to

Cl(c):= ig},de(Fp(c),Fp(c”)) (1.6)

wherec” ranges over semi-free configurationsin
(b) ThenC?(c) is equal to

Cly(c):= ig},de(Fp(c),Fp(c")) a.7)

wherec” ranges over non-free configurations..

Proof.(a) Suppose” is semi-free and letf = dy (Fp(c), Fp(c’)). ThenFp(c”) is
contained inDs(F'p(c)). The semi-freeness ef implies Ds(F'p(c)) N {2 is non-
empty. This proveg'¢(c) < § (cf. (1.4)). This proves

Cl(c) < Oty (c). (1.8)

On the other hand, it is easy to see that there exists somefsmami’ such that
Cl(c) = du(Fp(c), Fp(c")). This proveC?(c) > Cli(c), and hence&l(c) =
Oél (C)

(b) If ¢ is non-free, therC?¢(c) = 0 and we getCl(c) = Cly(c) immediately
(choosec” = c in (1.7)). Suppose: is free. The argument forl(8) also shows
Cl(c) < Cly(c). ButCla(c) < Cty(c) andC¥y(c) = C¥(c). This provesC¥(c) =
Cls(c). Q.E.D.

Lemma 11.Assume Propertiesl(2) and (1.3). There existd.,; > 0 such that for
alle,d € X:
(a) (Hausdorff distance on footprint is Lipschitz)
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du (Fp(c), Fp(c)) < Lolle = ¢].

(b) (Axiom (A2))
|Ct(c) — CU)| < Lolle = €.

Proof. Let ¢,/ € X. Here we use theonstantX, introduced for the proof of
Theorem 4: we havie — /|| < Koplle — ¢/||0o-

(a) Initially assume:r = ¢, and|c — ¢'||oc = d. Thenc). € Cubes(cr) and
hence

Fp(c') C Fp(Cubes(cr) x cg) = Cubes(Fp(c)) C Di,s(Fp(c)).
Similarly, we can show'p(c) C Dg,s(Fp(c’)). This proves
dr (Fp(c), Fp(c')) < Kod. (1.9)
In general, we may hawe; # ¢, and:

dp (Fp(c), Fp(c))

<dy(Fp(c), Fp(cr,cr)) + du(Fp(dy, cr), Fp(c)) (triangular inequality forl )
< Koller — ¢plloo + Lafle = ¢ (by (1.9 and (1.9)

< (Ko+ Ly)fe =

This proves (a) if we leLy = Ky + L.
(b) Note that this part is trivial if botlr and¢’ are non-free. Supposéis non-
free. Then we may assumés free.

Cl(c) — CU(c) = Cl(c)
< dg(Fp(c), Fp(c')) (by Lemmal((b))
< Lolle— | (by Part(a))

Suppose’ is free. Then choose a semi-fréesuch thatC'¢(¢') = dy (Fp(c'), Fp(c")).
Then

Cllc) — CU) < du(Fp(e), Fp(¢")) — CU() (by Lemmal0(a))

(by Part(a))

Since the roles ot and ¢’ can be interchanged in the above argument, we have
shown|C¥(c) — CU(")| < Lolle — || Q.E.D.
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