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Abstract

We propose to design motion planning algorithms using twoadients: the sub-
division paradigm coupled witkoft predicates Such predicates are conservative
and convergent relative to traditional exact predicateddd “hard” in this con-
text). This leads taesolution-exactalgorithms which can be viewed as a strong
form of “resolution complete” algorithms. Resolution-ek@ess contains inherent
indeterminacies and other subtleties. We describe anitiigac framework, called
Soft Subdivision Search(SSS) for designing such algorithms. There are many par-
allels between our framework and the well-known ProbatmliRoad Maps (PRM)
framework. Both frameworks lead to algorithms that are lyigiractical, easy to
implement, have adaptive and local complexity. The ciitiiierence is that SSS
avoids the Halting Problem of PRM.

In a previous paper, we have demonstrated the ease of degiguiit predicates
for various motion planning problems. In this paper, we galiee and extend some
of these results. We show how exact algorithms can be reed®r an extension
of our framework. The SSS framework provides a theoreticalnd basis for new
classes of algorithms in motion planning and beyond. Sugbrithms are novel,
even in the exact case.

1.1 Introduction

Motion Planning is a fundamental problem in robotics. Onét®forigins is the
“findpath problem” in Artificial Intelligencef, 5]. In the 1980s, computational ge-
ometers began the algorithmic study of motion planniiig I 3], focusing onexact
planners assuming the input is exact, such planners return a pattyiéxzists, and
report “No Path” otherwise. Schwartz and Shakit][observed that the cell decom-
position approach is a universal approach for motion plagyrand in the algebraic
case, is effectively reducible to Collin’s cylindrical algraic decomposition. We in-
troduced the concept of retraction motion planningzn, [2€]. In the first survey

* This work is supported by NSF Grant CCF-0917093.
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on algorithmic robotics31], we observed that the retraction approach is also uni-
versal (again, this is effective in the algebraic case)eifihe work of Canny],

the retraction approach became popularly known as the fnapadapproach”. In the
1990's the roadmap approach takes another turn.

91. Theory. Today, exact motion planning continues to be actively itigased
(e.g., [L7]). A fairly up-to-date account from the perspective of raljebraic ge-
ometry may be found in3]. Some of these algorithms represent major theoretical
advancements. Nevertheless their impact on practicaticshis quite modest: thus
[3€] noted that exact implementations have been limited to 3abegof freedom,
and for simple robots only. Various sub-algorithms and sufipg data structures
needed in exact motion planning have been implement&{=_ [8]. For exam-
ple, the recent exact algorithm for the Voronoi diagramieé$ in space is regarded
as a significant advancéf]; but true goal here is Voronoi diagram of polyhedral
objects. Exactness has tremendous cost in terms of corgnahtomplexity: it
implicitly requires algebraic numbers. Direct manipudatiof algebraic numbers
is impractical. But for many basic problems, a weaker forrdemthe paradigm
of Exact Geometric Computation (EGC) is sufficieff]. Nevertheless, the usual
expedient is to replace exact arithmetic by machine aritloyleading to the ubig-
uitous problems of numerical non-robustnesg[Even ignoring efficiency issues,
there is a fundamental but less well-known barribe Turing computability of ex-
act algorithms for most non-algebraic problems is unkn@w#. This barrier exists
in most problems beyond kinematic motion planning. But §3éofr a rare case of
a non-algebraic motion planning problem that is provablypatable; this positive
result is possible thanks to deep results in transcendemtaber theory.

92. Practice. Since the mid 1990's, the method of Probabilistic Road Maps
(PRM) has become dominant among roboticists. Its basicutation comes from
Kavraki, Svestka, Latombe and Overmais] PRM is not a particular algorithm
but aalgorithmic framework for motion planners. Many variants of this framework
are known: Expansive-Space Tree planner (EST), Rapidhiyeexg Random Tree
planner (RRT), Sampling-Based Roadmap of Trees planndr)(3Rd many more.
Quoting Choset et alll, p.201]: “PRM, EST, RRT, SRT, and their variants have
changed the way path planning is performed for high-din@madirobots. They have
also paved the way for the development of planners for pmbleeyond basic path
planning”

In his invited talk at the recent workshon open problems in this field,
J.C. Latombe stated that the major open problem of PRM isitliates not know
how to terminate when there is no path. In practice, one sirtiples-out the al-
gorithm, but this leads to problems such as the “Climbersmiha” [L4, p. 4] de-
scribed in the work of Bretl (2005). We call this tialting Problem of PRM.
This is a known issue for researchers, and is the extremedbtine so-called “Nar-
row Passage Problem?{, p. 201]. Latombe’s talk suggested promising approaches

2 |ROS 2011 Workshop on Progress and Open Problems in Motanmitlg, September 30, 2011,
San Francisco.
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such as Lazy PRM4]; other lines of attack include explicit detection of thenno
existence of paths’]. The theoretical basis for PRM algorithms is that they are
probabilistic completeld]. The Halting Problem is inherent in probabilistic com-
pleteness.

€3. Common Ground. We seek a common ground that provides stronger guar-
antees than probabilistic completeness, but avoids thdimate demands of exact-
ness. Fortunately for our subject, exactness is a mismatahé needs of robotics.
This is clear from the remark that physical devices and gsrtsave limited accu-
racy. Practitioners are acutely aware of this. Yet it dogsabsolve us from math-
ematical precision if we wish the theoretical developménmbbotic algorithms to
thrive. This tension between the needs of practice and afryhkas led to their
divergent paths described above. So we turn to the idea sbllidon complete”
algorithms, noting that the 1983 paper of Brooks and Lozaerez f] was already
on this track. It is known that resolution complete algarithcan avoid the Halting
Problem (e.g.,36]). Unfortunately the notion of resolution completenessakiom
scrutinized, and is capable of many interpretations.1lf] fve pointed out some
untenable, or lacking, interpretations. As remedy, weothticed a version called
resolution-exactnessand proved basic properties of such algorithms. Surgiigin
we show that resolution-exactness has an inherent indietecy even for determin-
istic algorithms using exact predicates. But the indeteaty is mild in comparison
to that of probabilistic completeness. Unlike the deteaninof exact algorithms,
this indeterminacy seems a perfect match for the requiresiaémobotics.

There are two ingredients of resolution-exact algorithfine first is subdivision
of configuration space. We organize the subdivision inguldivision tree. In 2
and 3 dimensions, such trees are usually called quadtreescarees. Tree nodes
correspond to subsets of configuration space with simplpeshauch as boxes or
simplices. The notion of grid search is often identified wikolution complete al-
gorithms (e.g., see the Wikipedia entry on Motion Plannifgdhough grids are
superficially similar to subdivision, we stress that typiged-based methods are
inadequate for resolution-exactness. The second ingreidiaclassification pred-
icate to decide if a node is free or not. Such predicates could bepated exactly
in the algebraic case; that would be the reflex viewpoint adraputational geome-
ter, but it is not where we want to be. Our key insight is thisthe presence of
subdivision, exact predicates can be replaced by suitabeaximationsWe came
by this viewpoint through a series of related work on sulsidn algorithms (e.qg.,
[28, 23, 29)). Such approximations are formalizedsasft predicatesin [10]. There
we show through a series of motion planning examples, tlagivelease of design-
ing soft predicates, and claimed that they are practical.

Let us address this claim. Since the implementation of ogorithms is cur-
rently underway, our evidence for practicality is indirfaist, our subdivision in-
frastructure is based on well-understood and practica st@tictures (subdivision
tree, union-find, etc). Next, the soft predicates we desigoeggo with subdivision
are mostly reduced to estimating distances between tworkssatwhere a feature is
a point, line segment or a triangle in space. Moreover, thesgicates can be easily
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and correctly implemented (s&é&2 below). Thus there are no implementation gaps
for our algorithms. The argument so far centersgraplementability But how can
we be sure that these implementations willdvactically efficien? Here, we invoke
the evidence of prior resolution-based work. We mention fk@pers such as Zhu
and Latombe (1991)37], Barhehenn and Hutchinson (1995),[Jand Zhang, Kim
and Manocha (2008)[]. Of course, since these work preceded our formulation,
we must reinterpret their methods using our new perspedtiviact, it is illuminat-

ing and fruitful to revisit these papers from our currentgperctive. In short, through
the implementability and practical efficiency of resolutiexact algorithms, we may
have found a common ground for theory and practice.

€4. Our Goals. The current paper aims to clearly expose the foundatiorsssf r
olution exactness. There are three themes: (1) We first tledaf rom the success of
PRM research: the simplicity and generality of PRM frameéwanrsures that imple-
menters of this framework can get easy access to a wholeyfafrallgorithms, just
by modifying one or more components in the framework. Thaslfeus to formulate
an analogous framework for our approach, caflefi subdivision search(SSS). (2)
Next, we generalize the setting of our previous resul: [for instance, the basic
setting of a free space embedded in configuration spége. C Cspace, Can be
replaced by an open subsétof a normed linear spac&. The boxes used in our
subdivision trees can be replaced by other shapes such plicgis (3) Finally, we
want to revisit exact algorithms from a subdivision viewgoeach SSS algorithm
takes an input resolution parameter- 0, in addition to the normal inputs of path
planning. Itis essential thatis positive. But if we admit = 0, the resolution-exact
algorithm may become non-halting like PRM. We show how tostdHis problem.
Interestingly, such exact algorithms are novel and seente mplementable than
usual exact algorithms.

All proofs are given in a separate Appendix.

95. Preliminaries. We establish some notations for standard concepts. To focus
on the key ideas, this paper will assume the simplest fortiomaf the motion plan-
ning problem: point-to-point kinematic motion planning &my particular roboRz,
moving in a physical spacg” (k = 2,3) amidst a static obstacle C R*. The
configuration spac€,acc = Cspace(Ro) Will be appropriately embedded R?

(d > k) (see P1, p.128] for discussions of embedding issues). Tdwprint map

is F'p : Copace — 2R whereFp(vy) C R” is the physical space occupied by robot
Ry in configurationy. E.g., for a rigid robotF'p() is a rotated, translated copy
of Ry. Then a configurationy € Cip,ce is freeiff Fp(vy) N 2 = (. The set of
free configuration®’f,.. = Cyrec(Ro, 2) is an open subset @4, assuming
2is a closed set. But central to our theory is the boun@@€y, .. ) of Cyrcc. Con-
figurations ind(Cy,..) are said to besemi-free A motion is a continuous func-
tion p : [0,1] = Cspace, and its range:[0, 1] is called thetrace. The motion is
free if its trace is contained il's,... A path refers to a free motion. So the basic
motion planning problem for robak, is this: given startv and goals3 configu-
rations, and(? (definingC/,..), find a path fromo to § if one exists, and report



1 Soft Subdivision Search 5

“No Path” otherwise. A key tool is thelearance function C?¢ : Cspece — R>g
whereC'(~) is the separation of the footprintafrom 2, C'¢(v) := sep(F'p(v), £2)
wheresep(4, B) = inf {|ja — b|| : « € A, b € B} is theseparation between two
setsA, B C RF. ThusC/(y) > 0iff v € C'tree. Theclearanceof a motiony is the
minimumC?¢(u(t)) for¢ € [0, 1].

1.2 Two Frameworks for Motion Planning.

In this paper we use the terminology aforithmic framework to discuss broad
classes of algorithms, and view PRM as such a framework. gaorghm within the
framework is just a specific instantiation, using particular data strees, strategies
and subroutines. We will give a formulation of the PRM franoekvand our SSS
framework, and compare them.

€6. The PRM Framework. Here is a formulation of PRM, following LaValle
[21, Section 5.4.1]: the goal is to find a path connecting € Cspoce. We main-
tain a graphG = (V, E) whereV' C Cf,.. and edges in correspond to paths
connecting the vertices of the edge. We may assumenthatare inV. We need
two predicatesFree(u) to test if a configuration is free, andConnect(v,u) to
test if the (straight) motion from to u is free. Finally, assume sontermination
criterion that is comprised of two parts: success-criterion (foundth froma to
5) and a failure-criterion (time-out or other condition).

PRM FRAMEWORK:
While (termination criterion fails):
1. \Vertex Selection Method (VSM):
Choose a vertexin V for expansion.
2. Configuration Generation Method (CGM):
Generate some € Cypqc. (Perhaps near)
3. Local Planning Method (LPM):
If Free(u),
AddutoV
If Connect(v,u), add(v,u) to E.
Return success or failure accordingly.

Step 1 (VSM) is usually controlled by some priority queueresgnting the search
strategy. Step 2 (CGM) is the probabilistic step. But CGMIdaiso be determin-
istic, e.g., controlled by a dense sampling sequefdk [LaValle would call this the
“Sampling Framework” to avoid any prior commitment to randwess. But we say
“PRM Framework” for specificity, and in honor of the most wkown formula-
tion of such approaches. In Step 3 (LPM)js discarded if it is not free; another

3 To be sure, there are degrees of specificity. The most spéadiantiation might be called
“implementation” of some less specific “algorithm”.
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method is to generate a free configuratidrsuch that the subpath, fromto «’, of
the directv to u path is free. As noted inl[l, p.198], the practical success of PRM
stems from the fact that the predicdfece(u) is relatively cheap. There is a large
literature on computing this predicate, under the headirapliision detection In-
deed, theConnect(v, u) predicate is often reduced ®ree(u): if a “sufficiently
dense” sampling of configurations fromto u is free, just assume there is a path
from v to u.

By varying this simple framework, we could capture most & kmown varia-
tions mentioned earlier. The original PRM is framed in teoha road-map stage
followed by a query stage; so the above version is closettBasicPRM” of [L4].
But our discussion of the “PRM Framework” is intended to aastech variations.

€7. What confers power to PRM? The practical advantages of PRM is widely
recognized, and it is natural to assume that randomness &otlrce of this power.
LaValle et al pO] examine this question and concluded that sampling ratie t
randomness is the true source of power. Hsu et@ldrgue for the essential role of
randomness. Independent of this debate, we offer anotasomefor the success of
PRM: the PRM framework allows one to easily modify the cdnsint components
(sampling strategy, connection strategy, freeness patslietc) to obtain a variety of
algorithms that meet diverse needs. The basic infrastreaiigkept relatively stable.
This is possible thanks to tregmplicityandgeneralityof the PRM framework. Just
as important in practice, the framework is also viengiving: you could implement
the constituent components approximately or even wroragly, the software im-
plementatiofimay not necessarily fail (crash or loop). These propertiesesharp
contrast to the usual exact algorithms which are far fronpnand not too for-
giving of errors BZ]. In recognition of this, we would like to propose an analogo
framework for the subdivision approach.

98. The SSS Framework. For a fixed robotR,, the motion planning input is
an initial boxBy C Cspace, the obstacle? C R, the start and goal configurations
a, B € Cgpace, and aresolution parametere > 0. We are interested in “resolution-
restricted” search for a path fromto 3 inside By. As noted in the introduction,
our main data structure is a subdivision trée,The root isBy and each tree node
is a subbox ofBj. The algorithm amounts to a while-loop that “growE"in each
iteration by expanding some leaf until we find a path or coteltNo Path”. Here
are the supporting subroutines and data structures: asspiredicate C' that classi-
fies each node iff into FREE/STUCK/MIXED, with the property tha€'(B) = FREE
implies B C Cf,.. andC(B) = STUCK implies B N Cf,c. = (). We maintain a
priority queuel) = Q7 comprising thos®IXED-leaves whose lengt{ B) (defined
below) is at least. Let Q.GetNext() return a leafB of highest priority. ThisB
is given to another subroutiféxpand(B) which subdividesB into two or more
subboxes. These subboxes become the childréh(sb B is no longer a leaf). For
now, assume&xpand(B) always splitB into 2¢ congruent subboxes. After splitting,

4 The hardware implementation, however, might have cafaisitoconsequences. But here, we
rely on the fact that most robot systems are fail-safe.
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Cis immediately called to classify these subboxes. Boxdsile®REE need further
processing: assume a union-find data strucfuite maintain the connected compo-
nents of th&"REE leaves of7 . Say two boxe®3, B’ areadjacentif BN B’ isad—1
dimensional set. This defines a graph whose vertices afREREboxes, and edges
representing their adjacency relatidhmaintains the connected components of this
graph. We first insert each n&REE leaf B into D, and callUnion(B, B’) for any
FREE B’ that is adjacent t@. AssumeFind(B) returns the connected component
of B, and write ‘Boz(«)” to denote any leaf of that containgy € Cpqce.

SSS RAMEWORK
1. > Initialization.
While (C(Boz(c)) # FREE)
If Boz(«) has length< €, Return ("No Path”)
ElseExpand(Boz(a))
While (C(Boxz(B)) # FREE)
... do the same fos ...
2. > Main Loop:
While (Find(Boxz(a)) # Find(Box(8)))
If Q is empty, Return(“No Path”)
B <+ Q.GetNext()
Expand(B)
3. Compute &REE channelP from Boz(a) to Boz(f)
Generate a patk from P and Returnp)

Resolution approaches can be wasteful when it is non-agafi SSS, the reso-
lution increases is naturally adaptive (we only expand aeahcells). The resolution
literature sometimes claimed incorrectly that the siz§ as (must be) exponen-
tial in the depth. A counter example ig9] where we prove that tree size is only
polynomial in the depth for certain subdivision algorithfos root isolation. Our
formulation can recapture the approach of Zhu and Latorfilsg Barbehenn and
Hutchinson [], or Zhang, Kim and Manocha (2008}4] as follows: these papers
expand along a “mixed channels” (i.e., path compri$iRBE or MIXED boxes). We
could defineGet Next to expand similarly. It turns out (se&(]]) that our com-
putation ofC' could exploit the subdivision treg. LaValle observed this curious
property of our method, calling it “opening up the blackbaxftollision testing.

€9. Similarities. There are many similarities between PRM and SSS, especially
in their contrasts with exact algorithms.
1. Both have two key subroutines, representing (i) the dlebarch strategies and
(ii) free-ness testing. In PRM, the two subroutines are #rtex selection method
(VSM), and theF'ree(u) predicate, respectively. In SSS, they aegNext(), and
the predicate’(B).
2. An advantage of SSS and PRM is the possibility of findingppla¢éforethe entire
Cspace has been fully explored. Indeed, Hsu, Latombe and Kurnigwaf p. 640]
remarked that “foundational choice made in PRM planningiavoid computing
the exact shape of the free space”. Most exact methods ecguiexpensive a pre-
processing phase to compute a full description of free space
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3. Integrated path planning: both frameworks naturally pote a path, i.e., a
parametrized curve ifVy,... E.g., Step 3 of SSS converts a channel of free boxes
into a path. But exact algorithms often focus on computingnal®lic path in some
algebraic cell complex, assuming that some numerical stim@will convert it into

a path.

4. We have viewed PRM as a probabilistic framework, and SSSdeterministic
one. But both frameworks admit deterministic or probatidiglgorithms. In the
future, we plan to explore the probabilistic side of SSS.

€10. Differences.
I. Foremost, SSS algorithms do not suffer from a Halting Rnob
II. PRM needs the predicatéonnect(v, u) to connect two nodes. The analogue in
SSS simply amounts to checking if tWWBEE boxes are adjacent.
Ill. The search strategy in PRM resides in the Vertex Sedadtiethod (VSM) and
Configuration Generation Method (CGM). In SSS, it residesén Next () and
Expand(). Sampling strategies is a major research question in PRMLE]. Sam-
pling in SSS seems to be more easily controlled, thanks toahee of subdivisions.
For example, a trivial randomized strategy in SSS is to piok MIXED leaf with
equal probability. Two deterministic SSS strategies aeadith-first search (BFS)
and A-star/Dijkstra search]. We can havéiybrid strategies: given two or more
strategies, we just cycle through each one in turn. If onb@ftis randomized, then
our hybrid will also gain any advantage of randomness.

1.3 Soft Classifiers

TheConnect(v,w) predicate is often implemented heuristically. LaValié,[p. 177]
discussed certified methods for this test based on Lipscbitgtants. Such certified
tests is a generalization of tli&-ce(u) predicate for a single configuration. We now
consider a different generalization based on sets; it igchls the viewpoint of
interval arithmetic 28].

We first generalize the setup in the Preliminafyp), SupposeX is a normed
linear space with norrfj - || (e.g.,X = R9). Fix a subsetd X of the powerse2X
(e.g.,0X isthe set of boxes iX). Call X atestdomainif it has these properties:

e EachB € X is a full-dimensional closed bounded polytopeXn We call B
atest cell(or simply “cell”). We define an interior point B) called itscenter.

e [1X is closed under translation and dilation#fis a cell, then so is + o - B
foranyt € X, o > 0. Here,t + B denotes the translation &f by ¢, ando - B
denotes the dilation aB by ratioo at the center(B).

Note that forX = R?, if d = 1, then cells are just closed intervals with distinct
endpoints. Forl > 1, we have many more possibilities.

By aclassifierwe mean any functio6' : 0X — {IN,ON,QUT}. So a classifieris
a special kind of predicate that “classifies” every test dékese valuéscorrespond

5 These values may also be callERMPTY/MIXED/FULL, as in original Brooks-Perez paper. They
reflect the 3-valued nature of geometric predicates (assgaptw 2-valued logical predicates).
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(respectively) toFREE/MIXED/STUCK of the previous section. L&t C X be any
open subset oX. Call C aY -classifierif forall B € 0X,

{C(B)ZIN = BCY

C(B)=0UT= BNY =0 (2.1)

whereY denote the closure af. Thus a trivial classifier is one that is identically
0N, C'(B) = 0N. If the two implications of {.1) are replaced by logical equivalences
(“if and only if” conditions) then we calC' anexactY -classifier, denoted byC'y-.
Note that singletong € X are not test cell, and 90(p) is not defined. Neverthe-
less, the exacY -classifier has a unique extension to points wh@ydp) = IN if

p €Y,=0Nif p € Y, and= 0UT otherwise. This extension is justified as follows:
write “lim; B; — p” to indicate an infinite decreasing sequeriée C By C ---
that converges tp € X. It is easy to see thdtm; B; — p implies that the se-
quenceCy (By), Cy (B2), ... eventually stabilizes to the valugy, (p). We denote
this by writing “lim; Cy (B;) — Cy(p)”. We can now define our key concept: a
Y -classifierC is said to besoft if

limB; »p = limC(B;)— Cy(p).

Thus, a soft predicate converges to the exact (or “hard§ipate in the limit.

911. How to compute soft classifiers?7Two standard ideas of resolution-based
methods are (a) splitting cells to reduce complexity, andu@ng numerical ap-
proximation. Typically, (a) is determined by an arbitragsolution parameter but
[10] demonstrated the use of inherent adaptive splitting riaitélere we focus on
(b). LetC? : X — R be a continuous function. Call¢ a (generalized) clearance
function of the set{x € X : C¢(x) > 0} (it is generalized becaug&/ can be neg-
ative). Because of the splits in (&) need only be defined “locally”. RecallR

is the set of closed intervals; consideriaterval function O0C/¢ : 0X — [OR.

N w if OJceB) > o,

There is an classifier associated withC?¢, namely,C(B) = < out if Oc¢(B) <o,
ON else.

We call 0C? abox function for C? if it is conservative(i.e.,C¢(B) C 0OCY¢(B))
andconvergent(i.e.,lim; B; — p implieslim; 0C¢(B;) — C¥(p)). The following
is straightforward.

Lemmal.LetC? : X — R be a clearance function of a st If OC/¢ : 0X —
OR is a box function foilC?, then its associated classifier is a sbficlassifier.

In practice, it is easier to design classifiers that focuy onltheIN or theQUT
decisions. So we call an interval functiahC? : DX — R apositive box function
for Y if B C Y impliesC¢(B) C 0C¥(B), andlim; B; — p € Y implies
lim; OC¢(B;) — Ct(p) > 0. We similarly definenegative box functionfor Y. See
[10] (implicitly in [ 36]) for concrete examples of positive and negative classifier

912. Implementability. Correct implementation of algorithmic primitives is a
central concern of EGCJ]. It remains central for SSS theory. We now indicate why
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the soft predicates which we designedin][are easily, efficiently and correctly im-
plementable. To use numerical approximations, we need sedarbsed of R with
good computational propertiess, §16]. A simple choice are theéyadic numbers

D = {m2" : m,n € Z}, called BigFloats in software. To exploit hardware arith-
metic, we use the technique @fumerical) filters in EGC [37]. Basically, filters
perform machine arithmetic, but track error bounds to emsafe decisions. The
filter fails when any overflow or underflow is detected, at vihjpoint we switch to
BigFloats. Using ouCor e Li brary [35], such filter techniques are automated
so that users can write a “standaf@#+ program to implement their predicates.

In a future implementation paper, we will give a careful aguof the soft pred-
icates designed inL[)], but here is an overview of how to do filters using estimated
error bounds. Such bounds suggest that our filters will ydedll in the typical mo-
tion planning experiments. Assume tB¢andard Model of floating point arith-
metic [16, p. 44] whereby, for any operatiano y (o € {+, —, x,+, v/}) we have
xoy = (x o y)(1 + u) wherezcy denote the corresponding approximate arith-
metic, u is unit round-off error, and we use the notatioh = z(1 + ¢)” to mean
T = x(1 + 0) for somed € [—e, +¢ (thusd is an implicit constant). Note that
u = 275 ~ 1.11 x 10~!¢ for IEEE double precision. The IEEE Standard for
hardware arithmetic, and the widely available BigFloathzae calledvVPFR [25]
follows the Standard Model. For instance, to compute thede||p — ¢|| between
two dyadic points, assuming+# ¢, then in the Standard Model we can approximate
lp— q| with relative error ofy; wherey,, := %2 (see [L] for this y-analysis). We
havev, < 2nu unlessn is extremely large (e.gn, > 2°2 for IEEE double). More-
over, if {(x,y) = ax + by + ¢ = 0 is the equation of a line, then its distance to an
arbitrary dyadic pointxo, yo) is |¢(x0, y0)|/Va? + b2 and this has a relative error of
~9. This assumes that b, c are exact. But if the line is defined by two dyadic points
(zi,9i) (i = 1,2),thena = (ya—y1),b = (v2—21), ¢ = y1(z2—71) —21(y2 — Y1)
Our computation of the distance will now have a relative eofoy; s instead ofyg.
The extension of such estimates to the case of rotation ofrDnw8ll increasen,
but remains well under control. To obtain an upper or lowarrzbon a numerical
expression such d$(zo, yo)|/va? + b2, we just multiply its computed value by
a factor of(1 4+ 7,,) or (1 — 7,,) where®,, is an machine upper bound op. If
n < 128, say, theny, < 274°, Barring under or overflows, it means 45 bits of the
mantissa are correct; this should suffice for typical appions.

1.4 Dyadic Subdivision Trees

Clearly subdivision trees are capable of many generatimatiSo far, we assume
that a node is a box iR¢, and it splits int®2¢ congruent children. We want to allow
non-congruent shapes, and a variable number of childrea.ntivation is to ex-
ploit “anisotropic subdivisions”. E.g., in subdivisiorgalrithms for isotopic approx-
imation of curves and surface&d, 24, 27], we show empirically that “anisotropic
subdivision” could lead to dramatic speedups.

We considemgeneralized subdivision treesvhose nodes are cells from a test
domain 0X whereX = R<. By asubdivision we mean a finite subsét of DX
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such that the intersection of any two distinct cellsSithas dimensior< d — 1. If
the dimension of intersection is exactly- 1, we say the two cells a@djacentto
each other. Achannelis a sequence of cells where consecutive pairs are adjacent.
We callS asubdivision of |S| where|S| denotes the union of the cells i By a
k-split (or split) of a cellB € 0X we mean a subdivisiof\B, ..., By} of B with
k > 2 cells. We say the split idyadic if each vertex of theB;’s is either a vertex
of B or the midpoint of an edge dB. A dyadic subdivision treeis a subdivision
tree7 in which the children of each internal node forms a dyadid spits parent.
If 7 is finite, then the set of leaves @f forms adyadic subdivision of the root.
Dyadic subdivisions for boxes were exploited &®[24]. Why dyadic subdivision?
In 912, we indicated the key role of dyadic numbers. Now each vartegcurring
in a dyadic subdivision tree is a linear combination of theigesvy, . . ., v, of the
root By, v = Zz’;l a;v; where eachy; is a dyadic number. We sayis dyadic
relative to By. If By is dyadic, then is dyadic.

Our definition of a test celB requires the concept of a centéB) in the interior
of B. A candidate for(B) is the center of theircumball, i.e., unique smallest ball
containingB. But this center may not lie in the interior &f. So we first define the
inner radius ro(B) of B as the largest radius of a ball containedBn Then the
incenter ic(B) comprises the centers of balls of radiy$B) that are contained in
B. E.g., the incenter of a non-square rectangle is a line segr@gearly,ic(B) is
convex; the center of the circumball 6f( B) is taken to be theenter ¢(B). Thus
¢(B) € ic(B), and is unique. The smallest ball centered(d) and containing3
is called theouter ball of B, and its radiug:(B) is called the(outer) radius of
B. Let theaspect ratio p(B) andwidth w(B) (resp.,length ¢(B)) refer (resp.) to
r(B)/ro(B) and the minimum (resp., maximum) length of an edg&of

AL )
4-split ‘
.

2-spli 8-split
2 splui \P

&
A

o 4-split u
o

Fig. 1.1 Dyadic splits of (a) triangle and (b) tetrahedron

We turn todyadic subdivision schemesThe dyadic scheme for boxes is dis-
cussed in 13, 24, 10]. We briefly considedyadic simplicial schemesAs illus-
trated in Figurel.l(a), a triangle has three kinds of dyadic splits: the3-, and
2-splits. Dyadic splits of a tetrahedron is more complicatequst three kinds are
illustrated in Figurel.1(b). See P3, 24] for a method to choose among different
splits.
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1.5 Basic Properties of SSS

We prove some general results about SSS planners for the rinasion planning
problem (se€f5). An “SSS planner” is an algorithm obtained by instantigtihe
various subroutines in the SSS Framework. They subroutines ar€', Expand,
andCGet Next . Our basic assumptions about them are:

e (CO: Softness)@ is a soft classifier fo€ ;...

e (C1: Bounded dyadic expansion)Expand splits a cell dyadically into a
bounded number of subcells, each with a bounded number ttegrMore-
over, each edge of a cell must subdivide after a bounded nuofilsplits.

Note that we made no assumptiong&at Next here because the needed proper-
ties are embedded in the SSS framework: the main propett@gidNext returns a
MIXED-leaf with length?(B) > . Theoretically, itis cleaner to replace/f B) > &”
by “r(B) > &” throughout. Our theorems below use this variatigkithough our
goal is soft classifiers (C0), as a proof strategy, we williatly assumeC is the
exactC',..-classifier. In this case, we say our plannesisct (C1) ensure that the
boxes in any infinite path converge to a point. Alternativerfolations of (C1) are
possible. E.g., All cells have bounded aspect ratios. Tdess non-trivial to ensure,
say, in simplicial subdivision.

Theorem 1.Every SSS planner halts.

Thus halting is in-built, depending only on (C1) not (CO) Xinee give the minimal
correctness property of SSS planners.

Theorem 2 (Exact SSS)Assuming an exact SSS planner:
(a) If there is no path, the planner outputs “No Path”.
(b) If there is a path with clearance 2¢, the planner outputs a path.

€13. Resolution ExactnessLoosely interpreted, current “resolution complete”
algorithms provide perhaps the equivalent of Theorem 2tiare are three desider-
ata. First, we want to remove the assumption of exactne8gihe literature gener-
ally assume exactness in its analysis). Second, we wowdddikveaken the hypoth-
esis of Theorem 2(a) to “if there is no path with clearan¢&™ for some input-
independenk’ > 1. Finally, we want to strengthen the conclusion of Theorel) 2(
to output a path of clearane¢ K. This leads to our next definition.

A planner forRy is said to beesolution-exactif there exists a constaif > 1
such that (i) if there is a path from to 5 of clearanceX e, it returns a path with
clearance/ K; (ii) if there no path with clearance/ K, it returns “No Path”. Call
K anaccuracy constant

This definition admits an indeterminacy in the planner. Isecthe maximum
clearance of a path lies in the range/ K, K¢), a resolution-exact planner may
return either a path or “No Path”. We show this indeterminacynavoidable in
[10.
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We now require a bit more of soft predicates. Calf alassifierC effectiveif it
is® monotone(i.e.,C(B) # ON impliesC(B’) # on for all B’ C B), and there is a
(effectivity) constant > 1 such that ifCy (B) = IN thenC(B/o) = IN.

Lemma 2.Let C' have effectivity constant > 1. If there is a path of clearance
(14 o)e then the SSS Planner will output a path.

This lemmais still not enough for resolution-exactnessnééed additional prop-
erties of cells in our subdivision, and a simple solutioroigxploit the nice proper-
ties of boxes:

Theorem 3 (Resolution-Exact).Let C be effective and the cells be boxes with
bounded aspect ratios. Then the SSS Planner is resolutiact-e

1.6 What About Exact Algorithms?

Can the SSS framework proddcexact algorithms? The answer is yes. But we
first point out a non-solutionysing an Exact Planner with the resolution parameter
¢ = 0. Using Exact SSS re-introduces the need for algebraic ctatipn. Our
normaf formulation of SSS requires> 0. Whene = 0, indeterminacy is removed,
but at a high price: if there is no path, then SSS will not hialten if there is a
path, we may not find it because of non-halting; this could kedfiby imposing a
“generalized BFS” property oGet Next .

We now present a solution that exploits resolution-exastnk is based on the
theory of constructive zero boundsj, and does not need an Exact Planner.

Theorem 4.If the inputs numbers describing, {2, «, 3 are all algebraic num-
bers, there is an effectively computable numbet 6(Ry, 2, «, ) > 0 with this
property: if there is a path from from o to 3, then the clearance gf is > ¢.

One way to derive suchdis to bound the degree and height of algebraic quan-
tities arising in any motion planning algorithm. Thércould be taken as the root
separation for these algebraic quantities. A more carefmputation ofs can pro-
ceed as follows: using the fact that if there is a path, thenetlis a path in some
“retract” [31] (basically a Voronoi diagram augmented by some paths)k fidtract
is algebraic, and the minimum clearance along the retradtidme expressed by the
solution of a suitable set of polynomial constraints inwodythe input data. A zero
bound can be computed from a list of these constraints. Theseds depend on
the representation used for input angular or rotationalipaters.

6 Monotonicity is not strictly necessary, but it simplifiesr@arguments. Moreover, implementa-
tions can normally ensure monotonicity. In the intervarture, it is sometimes called “isotone”.

7 We are indebted to Steve LaValle for asking this questioR&3 2011 Workshop on Progress
and Open Problems in Motion Planning in September 30, 20411 Feancisco.

8 For that matter, we also assumed the accuracy con&tasistrictly greater than.
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Theorem 5. Suppose we have a resolution-exact planner with accuranpeter
K > 1. If we fix the resolution parameterto be < 6(Ry, {2, «, 8)/ K, then the
planner is exact.

914. Alternative approach to Exact SSS algorithms. A more practical ap-
proach is to avoid zero bounds, and to minimize the role oflaigic computation.
As in [10], we maintain a set of featureg B) that are within an influence region of
B, and anothep~ (B) C ¢(B). Our soft classifiers reduce to checking the empti-
ness ofp(B) or non-emptiness~ (B). But an exact predicate must ultimately com-
pute the true value af'¢,, .. (B). The idea is do thisnlywheng(B) is “simple”,
otherwise we spli3. Certainly,|¢(B)| = O(1) may be regarded as simple. Unfor-
tunately, because of input degeneracies, this conditionti@nough. Other options
for simplicity are possible, but they depend on the naturBgfThis leads to new
exact algorithms that seem more practical than traditionak.

1.7 Conclusion

In this paper, we described the SSS framework for desigrgglution-exact algo-
rithms. We argued that it shares many of the attractive ptigseof the successful
PRM framework. The ideas of resolution-limited algorithimsertainly very old.
But to our knowledge, the simpgleproperties of soft classifiers have never been
isolated, nor have concepts of resolution-limited comporiecbeen carefully scruti-
nized. We believe focus on these “simple ideas” will open aw classes of algo-
rithms that are practicandtheoretically sound, not only in motion planning.

There are many open questions concerning SSS framework.RRM, many
variations of SSS are possible. Perhaps the biggest tiemretallenge is the com-
plexity analysis of adaptive subdivisiofiq]. Here are some other topics:

e Our SSS framework detects “No Path” by exhaustion. We copéebd this up
by looking for non-existence of M-paths{], but it is a challenge to design
efficient techniques (this is connected to issues in contipat homology).

e We need better subdivision schemes $dr'(3) (see [L(] for SE(2)). Beyond
kinematic spaces, good subdivision is even less understood

e Design and analysis of adaptive search strategies, imgudindomized or hy-
brid ones. How efficiently can we update the “dynamic” A-starDijkstra
search structures of]?

e Design and implement new SSS algorithms; compare them ViiA.P

e An intriguing question is whether SSS match the performaf@RM in prac-
tice. Conventional wisdom says that PRM can provide prattolutions for
problems higk® degrees-of-freedom (DOF) while resolution methods cag onl

9 Several reviewers of our previous work sees only the sasepas of soft classifiers. They fail
to note that previous work are silent about convergence.odfse, convergence is standard in
numerical computing.

10 Here, we do not consider specialized planning problemsédoutés, snakes, humanoids, etc)
where the DOF can go much higher than what is discussed here.
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reach medium DOF. This seems to be supported by current ingpitation.
Choset 1, p. 202] suggests that the state-of-art PRM can handle DQifein
rangeb — 12. They noted that 40 DOF planar robot from Kavraki (1995) can-
not be tackled by other methods. The resolution-basedittigts of Zhang et

al [36] involve planar robots (except for one 3D robot). But we &edi the full
potential ofadaptivesubdivision methods have hardly been reached. So this
intriguing question begs for more experiments.

15. ACKNOWLEDGMENTS. lam indebted to Yi-Jen Chiang, Danny Halperin,

Steve LaValle, and Vikram Sharma for helpful discussions.
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1.8 APPENDIX

This appendix contain proofs for our theorems (for WAFR egvprocess).

916. Non-Splitting Criterion. Recall that in these theorems, we assume that
the criterion *(B) < ¢” is used to stop splitting a bo®B. The SSS Framework
uses the alternative criteriorf(B) < £”. Why this difference? Generally(B) is
more easily computable thariB), so we expect to us€ B) in implementations.
However, the theory is cleaner if we usgB). Note that/(B) is just the distance
between two vertices dB while »(B) involves the centes(B). For instance, ifB
is a dyadic box, thefi(B) is a dyadic number while(B) is a square-root. Thanks
to the (C1) assumption that cells have bounded complexiykmow that-(B) =
O(¢(B)), so these two criteria are closely related.

Theorem 1.Every SSS planner halts.

Proof. Property (C1) implies that in any infinite patf3; : ¢ > 0) of an SSS sub-
division tree7T, we havelim, ¢(B;) — 0. If we use the #(B) < &” criterion for
non-splitting, then halting is immediate. But if we use theéB) < ¢” criterion, we
also obtainlim; r(B;) — 0, thanks to the fact that cells have bounded complexity
(bounded number of vertices). Q.E.D.

Remark: (C1) ensures an important property. Take any iefsubdivision tree
T~ with no leaves. Then every infinite path i, converges to a point. Such a
subdivision tree is said to be “complete”.

Let D,,(r) denote the ball in¥ centered atn with radiusr.

Theorem 2 (Exact SSS)

Assuming an exact SSS planner:

(a) If there is no path, the planner outputs “No Path”.

(b) If there is a path with clearance 2¢, the planner outputs a path.

Proof. Let 7 be the subdivision tree at termination.

(a) At termination, we either report a path or output “No PaReporting a path
would contradict our assumption of no path.

(b) Suppose: : [0,1] — Cspace is a path froma to 8. By way of contradiction,
suppose SSS outputs “No Path”. This implies that every misaiksatisfies (B) <

e. Consider the sefl of leaves of7 that intersect:[0, 1] (the trace ofx). If B € A,
there exists € [0, 1] such tha(t) € B. This impliesB is either free or mixed. We
claim thatB is free. If B is mixed, then(B) < ¢ and there is a point € B thatis
semi-free. Thenu(t) — p|| < |u(t) — c(B)|| + ||le(B) — p|| < 2e. Thusp is free
since itis contained the bal),, ;) (2¢), andy has clearancgs. This contradicts the
assumption thaB is mixed. This proves our claim. Now we may form an channel
of free cells froma to 5 using cells inA. So SSS would have reported a path,
contradicting our assumption of “No Path”. Q.E.D.

Lemma 3.
LetC have effectivity constamt > 1. Then if there is a path of clearan¢e + o)e
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then the SSS Planner will output a path.

Proof. The proof is similar to that of (b) in the previous theoremcept that
now we use the valueBREE/MIXED computed byC instead of the exact notions
of free/mixed. Supposg : [0,1] — Cspece IS @ path of clearancél + o)e
and, by way of contradiction, our algorithm outputs “No Paffor any leaf B,

if there is some € [0,1] such thatu(t) € B, thenB is eitherFREE or MIXED
(not STUCK). We claim B is FREE. By way of contradiction, assumg is MIXED.
Thusr(B) < € and|c(B) — pu(t)|| < e. The ballD,,)((1 4 o)e) is free. Then
0B C Dypy(oe) € Dy ((1 4 0)e). Thuso B is free and henc€'(B) = FREE.
This contradicting proves our claim. Therefore the set afiés that coverg|0, 1]
must beFREE. Q.E.D.

q17. Conformal Channel of Boxes. For the next theorem, we consider box
subdivision. We develop some preliminary concepts.

Let By, B, be two adjacent boxes. We s#}, B, areconformally adjacent if
By N By is aface of bothB; andBs. In general /' = By N Bs is not a face o3y,
but a subset of a face @, . But there is a dyadic subdivisian} of B; such thatF
becomes a face of soni& in Dj. Likewise, letD), be the subdivision oB; such
that F' a face of some3), € D). Now, B} and B are conformally adjacent with
BiNB,=F.

We are not done yet. Say a subdivisibris conformal if every pair of adjacent
boxes inD are conformally adjacent. Also, let thddth w(D) of D be the mini-
mum of the widths of boxes i. Note thatD] U D, is not necessarily conformal.
A uniform (dyadic) subdivision D of a box B is a dyadic subdivision oB in
which every box inD are congruent. Clearly, uniform subdivisions are confdrma
We may choos®); to be the uniform subdivision @B; such that” is a face of some
B! € D;. Moreover, we can choosk; to be the unique minimal subdivision with
this property. Themv(D; U D2) = w({B1, B2}). Let us capture this in a lemma:

Conformal Adjacency Lemma.

If By, By are adjacent, there exists minimal subdivisidnsof B; (i = 1,2) such
that D; U D5 is conformal and there exists boxBé € D; whereF’ = By N Bz is
aface ofB.. Moreoverw({ By, B2}) = w(D1 U Ds).

We extend the notion of conformality to channels. We say ancbbP =
(B1,...,B,,) is conformal if any two consecutive boxes i? are conformally
adjacent. The channél is simpleif D = {By, ..., B,,} is a subdivision.

Conformal Channel Lemma.

LetP = (By,..., B,,) be asimple channel of boxes withe B; andg € B,,. Let
F;,=B;NBy1 (i =1,...,m—1). Then there exists dyadic subdivisibn of B;
(i =1,...,m) such that:

e DyU---UD,,isconformal.
o w({B1,...,Bn}) =w(D1U---UDy,).
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e Let BY be any box inD; that containsa: and B;,, be any box inD,, that
containsg. There are boxe®! and B! in D, (i = 1,...,m) such thatB; N
B}, | isequal toF; (i = 1,...,m—1). Note thatB; and B}’ might be the same.

e There is a conformal channel frof to B, comprising of boxes i, .

Theorem 3 (Resolution—ExactnessL)etCN' be effective and the subdivision cells are
boxes with bounded aspect ratios. Then the SSS Plannenpisities-exact.

Proof. Suppose there is a path of clearafte- o). The proof of Lemma 3 shows
there is a channdP of free boxes fromB(«) to B(S). Each box inP has radius

> /2. Because the aspect ratios are bounded, the widh) of boxes inP are at
leasts/ K for someK > 1. By the Conformal Channel Lemma, there is a conformal
subdivisionD of the boxes inP such thatv(D) = w(P) and there is a channél*

of boxes inD from B(«) € D to B(8) € D. Now P* is conformal sinceD

is conformal. There is an obvious “canonical pathfrom the center ofB(«) to
B(B). We see that the clearanceyofs at leastv(P) > ¢/ K.

To obtain a path* from « to 3, we can exteng with two “end segments”, viz.,
the straightline segments fromto ¢(B(«)) and frome(B(3)) to 8. We must now
prove that these end segments have clearanke By symmetry, consider a point
p on the end segment fromto ¢(B(«)). We know thatD,,((1 4 o)e) is free. Ifg
is any point at distance/ K from p, then

la—qll <lla=pll+lp—qll <e/2+e/K <2 <(1+0)e.
This proves thag is free, squ* has clearance at leastk'. Q.E.D.

Theorem 4.If the inputs numbers describinBy, 2, «, 5 are all algebraic num-
bers, there is an effectively computable numbet 6(Ry, 2, «, ) > 0 with this
property: if there is a motion from from « to 3, then the clearance ¢f is > §.

The truth of this theorem is not in question. We omit the tadidetails of calcu-
lating ¢ in this version. The sketch in the text indicates some waydding this.

Theorem 5.Suppose we have a resolution-exact planner with accuragnpeter
K > 1. If we fix the resolution parameterto be < §(Ry, 2, o, 8)/ K, then the
planner is exact.

Proof. If there exists a path, then there exists a path of clearante> Ke<. By the
correctness of our resolution-exact planner, if there @ation path with clearance
> Ke, then our algorithm will return a path. Conversely, if th&seno path, then
there is no path of clearance /K. By the correctness of our resolution-exact
planner, if there is a solution path with clearaneeK e, then our algorithm will
return “No Path”. Q.E.D.
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