
Towards Soft Exact Computation?

Chee Yap

Department of Computer Science
Courant Institute, NYU

New York, NY 10012, USA
{yap}@cs.nyu.edu

Abstract. Exact geometric computation (EGC) is a general approach for achieving robust numerical
algorithms that satisfy geometric constraints. At the heart of EGC are various Zero Problems, some of
which are not-known to be decidable and others have high computational complexity. Our current goal is
to introduce notions of “soft-ε correctness” in order to avoid Zero Problems. We give a bird’s eye view of
our recent work with collaborators in two principle areas: computing zero sets and robot path planning.
They share a common Subdivision Framework. Such algorithms (a) have adaptive complexity, (b) are
practical, and (c) are effective. Here, “effective algorithm” means it is easily and correctly implementable
from standardized algorithmic components. Our goals are to outline these components and to suggest
new components to be developed. We discuss a systematic pathway to go from the abstract algorithmic
description to an effective algorithm in the subdivision framework.

1 Introduction

We are interested in computations involving the continuum and the reals. Most algorithms in scientific
computation and engineering are of this nature (e.g., [41]). In practice, they fall under the domain of numerical
computing [49,28]. Numerical algorithms are expected to make errors and the question of their correctness
takes on a much more subtle meaning than the typical discrete or algebraic algorithms. One way to avoid
these errors is to reformulate these problems algebraically with exact algorithms. This is often possible but
not always desirable or practical [58]. So we aim at solutions that are fundamentally numerical.

The most widely used procedure for constructing numerical algorithms is to first construct an algorithm,
say A, based on a real RAM computational model ([51, Section 9.7] or [40]) and then implement A as an

algorithm Ã of the Standard Model of Numerical Analysis ([21, Section 2.2] or [48]). All operations in A are

exact, but in Ã, each numerical operation x ◦ y is replaced by an approximation x ◦̃ y whose relative error
is at most u > 0 (the unit round-off error). In principle, such an Ã (unlike A) can be implemented on a

Turing machine. For simplicity, we assume no overflow in the Standard Model. In the simplest case, Ã is just
a copy of A except for the ◦ 7→ ◦̃ transformation. In the analysis of algorithms, our first task is to prove the
correctness of a given algorithm. In the present setting, we are faced with a pair (A, Ã) of algorithms. The

modus operandi is to (i) show correctness of A and (ii) do error analysis of Ã. There are issues with this

procedure. It is the correctness of Ã that we need. Correctness of A is a necessary, but not sufficient condition.
The translation A 7→ Ã hits a snag if there is branch-at-zero step in A: we must decide if a pivot value is
exactly zero. This situation arises, for instance, in Gaussian elimination with partial pivoting (GEPP). In
this paper, the problem of deciding if a numerical value x is equal to zero will be called “the Zero Problem”.
In reality, there are various Zero Problems – see [46] for a formal definition of these problems. When x is
algebraic, the Zero Problem is decidable, but otherwise, it is generally not-known to be decidable. Partial
solutions include replacing the standard model by arbitrary precision arithmetic (“BigNums”), or using the

modified statement: “Ã is correct if u is small enough.” What is the status of Ã if u is not small enough?
There is also no guarantee that such a u exists. Basically, there are still Zero Problems lurking beneath such
reformulations.

In this paper, we wish to avoid the Zero Problems by modifying the notion of correctness of the given
computational problem P : instead of seeking algorithms that are (unconditionally) correct, we seek algo-
rithms that are ε-correct where ε > 0 is an extra input, called the resolution parameter. Let Pε denote

? This work is supported by NSF Grants CCF-1423228 and CCF-1564132.



2this modified problem. As ε → 0, then Pε converges to the original problem. Unlike the “correct when u is
small enough” criteria, we want our ε-correctness criterion to be met for each ε > 0. What we seek is an
algorithm for Pε that is uniform in ε. In discrete optimization algorithms, this is called an “approximation
scheme” [44]. The polynomial-time versions of such schemes are called PTAS (“polynomial-time approxi-
mation schemes”). It is known that unless P = NP , the “hardest” problems in the complexity class APX
do not have PTAS’s. Although our continuum problems do not fall under such discrete complexity classes,
our Zero Problems represent fundamental intractability analogous to the P = NP barrier. The difference is
that discrete intractability leads to exhaustive or exponential search, but continuum intractability leads to
a halting problem.

Besides the viewpoint of combinatorial optimization, we briefly note other ways of using ε in the literature.
In numerical computation, ε is commonly interpreted as an a priori guaranteed upper bound on the forward
and/or backwards error of the algorithm’s output. Depending on whether the error is taken in the absolute
or relative sense of error, this gives at least 6 distinct notions of “ε-correct”. As in the above Standard
Model (with unit roundoff error u) such interpretations do not automatically escape the Zero Problem. Such
interpretations of ε may be extended to geometry. For example, instead of bound on numerical errors, we
interpret ε as bound on deviations from ideal geometric objects such as points, curves or surfaces. Suppose
the output of the algorithm is a finite set S = {p1, . . . , pn} of points (e.g., S are the extreme points of a
convex hull), one might define S to be ε-correct if each pi ∈ Bε(p

∗
i ) where S∗ = {p∗1, . . . , p∗n} is the exact

solution. Here, Bε(p) denotes the ball centered at p of radius ε. Unfortunately, such a view still encodes a
(deferred) Zero Problem because the condition pi ∈ Bε(p

∗
i ) is a “hard predicate”. Intuitively, the ball Bε(pi)

has a hard boundary (this is a “hard-ε”). Our goal is to soften such boundaries, using suitable soft-ε criteria.
This will be illustrated through some non-trivial problems.

In this paper, we give a bird’s eye view of a collection of papers over the last decade with our collab-
orators, from computing zero sets to path planning in robotics. We will attempt to put them all under a
single subdivision rubric. We are less interested in the specific results or algorithms than in the conceptual
framework they suggest.

1.1 From Zero Problems to Predicates

The “soft exact computation” in our title is an apparent oxymoron since softness suggests numerical ap-
proximation in opposition to exact computation. The notion of “exactness” here comes from computational
geometry [8] where it is assumed that algorithms must compute geometric objects with the exact combinato-
rial or topological structure. The most successful way to achieve such algorithms is called “Exact Geometric
Computation” (EGC) [46]. In EGC, we explicitly reduce our computation to various Zero Problems. An
example of a Zero Problem is to decide if a determinant D(x) is zero where x are the entries of a n × n
matrix. This may arise as the so-called orientation predicate in which x represent n vectors of the form
ai − a0 (i = 1, . . . , n) with aj ∈ Rn (j = 0, . . . , n). For real geometry, we usually need a bit (sic) more than
just deciding zero or not-zero: we need sign(D(x)) ∈ {−1, 0,+1}. If this sign computation is error-free, then
the combinatorial structure is guaranteed to be exact. Practitioners avoid the Zero Problem by defining an
approximate sign function, s̃ign(D(a)) ∈ {−1, 0̃, 1} where the “approximate zero sign” 0̃ is determined
by the condition |D(a)| < ε. This is called “ε-tweaking” (using different multiples of ε’s in different parts
of the code) to reduce the possibility of failure. This tweaking is rarely justified (presumably it introduces
some ε-correctness criteria, but what is it?)

What is the correct way to use this ε? We need a different perspective on Zero Problems: each Zero
Problem arises from the evaluation of a predicate. We distinguish two kinds of predicates: logical predicates
are 2-valued (true or false) but geometric predicates are typically 3-valued (−1, 0,+1). Thus we view
sign(D(x)) above as a geometric predicate. Calling the sign function a “predicate” imbues it with geometric
meaning: thus when we call sign(D(x)) an orientation predicate, we know that we are dealing with a
geometrically meaningful property of the n vectors arising from n + 1 points. These 3 sign values are not
fully interchangeable: we call 0 the indefinite value and the other two values are definite values.

To continue this discussion, let us fix a geometric predicate C on Rm,

C : Rm → {−1, 0,+1} . (1)



3We assume C has1 the Bolzano property in the sense that if S is a connected set and there exists
a, b ∈ S such that C(a) = −1 and C(b) = +1 then there exists c ∈ S such that C(c) = 0. For example, if
C(a) := sign(D(a)) where D(x) is the above determinant (with m = n2), then C has the Bolzano property.
More generally, if D(x) is any continuous function, its sign predicate is Bolzano.

Next we take a critical step by extending the predicate C on points a ∈ Rm to sets of points S ⊆ Rm.
The significance is that we have moved from algebra to analysis: we could treat D(a) algebraically since it
amounts to polynomial evaluation, but the analytic properties come to the forefront when we consider the
set D(S). And soft-ε concepts are fundamentally analytic.

We define the set extension of C as follows: for S ⊆ Rm, define C(S) = 0 if there exists a ∈ S such that
C(a) = 0; otherwise, C(S) may be defined to be C(a) for any a ∈ S. The Bolzano property implies that
C(a) is well-defined. Thus the set extension of C is the predicate C : 2R

m → {−1, 0, 1} where 2X denotes the
power set of any set X. If we are serious about computation, we know that S must be suitably restricted to
“nice” subsets of Rm. Following the lead of interval analysis [34], we interpret “nice” to mean axes-aligned
full-dimensional boxes in Rm. Let Rm be the collection of such boxes. When the domain of the set extension
of C is restricted to such boxes, we have this box predicate

C : Rm → {−1, 0,+1} (2)

where the symbol ‘C’ from the point predicate in (1) is reused. This reuse is justified if we regard Rm as a
subset of Rm. In other words, each element of Rm is either a full-dimensional box or a point.

Our next goal is to approximate the box predicate C. Consider another box predicate

C̃ : Rm →
{
−1, 0̃,+1

}
. (3)

Call C̃ a soft version of (2) if it is conservative and convergent: conservative means C̃(B) 6= 0̃ implies

C̃(B) = C(B); convergent means if {Bi : i ≥ 0} is an infinite monotone2 sequence of boxes that converges

to a point a, then C̃(Bi) converges to C(a), i.e., C̃(Bi) = C(a) for i large enough. We say {Bi : i ≥ 0} is

firmly convergent if there is some σ > 0 such that Bi+1 ⊆ Bi/σ for all i ≥ 0. We say C̃ is firm relative

to C if C(B) 6= 0 implies C̃(B/2) 6= 0̃. The “2” in this definition may be replaced by any firmness factor
σ > 1, if desired. As σ → 1, the computational cost of C would increases. For resolution-exact path planning,
we only need3 half of the properties of firmness, namely, C(B) = 1 implies C̃(B/σ) = 1 [50]. But even path

planning may exploit the other half of firmness (i.e., C(B) = 0 implies C̃(B/σ) = 0) because it could lead
to faster determination of NO-PATH.

From any geometric predicate C, we derive three logical predicates C+, C−, C0 in a natural way: C+(a) :=
[[C(a) > 0]]. The notation “[[S]]” denotes the truth value of any sentence S: for instance [[1 > 2]] is equal to
false but [[1 + 2 = 3]] is equal to true. We call “[[S]]” a test. In general, S = S(x) depends on variables x,
and our test [[S(x)]] represents a logical function. Similarly, C−(a) := [[C(a) < 0]] and C0(a) := [[C(a) 6= 0]].
This last predicate is called the exclusion predicate and is very important for us: it is used in all of our
algorithms. Again we extend these predicates naturally to sets or boxes as above. In particular, we have
C0(B) = [[0 /∈ C(B)]].

2 Two Illustrative Classes of Problems

We introduce two classes of geometric problems to serve as running examples:

(A) Computing a Zero Set Zero(f).
Here, f = (f1, . . . , fm), fi : Rn → R, and Zero(f) := {a ∈ Rn : fi(a) = 0, i = 1, . . . ,m}. We can also
define this problem for complex zeros, i.e., Zero(f) ⊆ Cn. In the case fi are integer polynomials, Zero(f)

1 After Bernard Bolzano (1817). Bolzano’s Theorem states that if a < b and sign(f(a)f(b)) < 0 then there is some
c ∈ (a, b) such that f(c) = 0. See also [43,3] for this principle in real root isolation.

2 Monotone means Bi+1 ⊆ Bi for all i.
3 The factor σ > 1 was call the “effectivity factor” in [50]. In the present paper, we avoid this terminology since it

conflicts with our notion of “effectivity” of this paper.



4 is an algebraic variety where an exact algebraic solution is often interpreted to mean computing some nice
representative (e.g., a Gröbner basis) of the ideal generated by f . But we are literally interested in the
continuum: we seek some “explicit” representation of Zero(f) as a subset of Rn. Invariably, “explicit” has
to be numerical, not symbolic. For example, an explicit solution to Zero(f1) where f1(x) = x2−2 may be
1.4 but not the expression “

√
2”. For our discussion, let us interpret an explicit representation to mean

a simplicial complex K [9, Chap.7] of the same dimension as Zero(f), and whose support K ⊆ Rn is ε-
isotopic to Zero(f). This definition implies that their Hausdorff distance satisfies dH(K, Zero(f)) < ε,
but more is needed: an ε-isotopy maps points in Zero(f) to points in K within a distance ε. It is
important that K has the same dimension as Zero(f): for instance, if Zero(f) is a curve in R3, we
really want the output K to represent a polygonal curve K. In contrast, a common output criteria
asks for an ε-tubular path containing Zero(f). Unfortunately, this allows the curve to have unexpected
behavior within the tube (e.g., doubling back arbitrarily far on itself within the tube). Most of the
current research are aimed at cases where Zero(f) is zero-dimensional (finite set) or co-dimension one
(hypersurface). We mostly focus on the zero-dimensional case in this survey.

(B) Robot path planning.
Suppose a robot R0 is fixed. Then the problem is: given a polyhedral obstacle set Ω ⊆ Rk (k = 2, 3)
and start α and goal β configurations, find an Ω-avoiding path π of R0 from α to β; or declare NO-
PATH if such π’s do not exist. Let Cspace = Cspace(R0) denote the configuration space, and Cfree =
Cfree(R0, Ω) denote the Ω-free configurations in Cspace. For instance, if R0 is a rigid spatial robot,
then configurations are elements of SE(3) = R3×SO(3) where SO(3) are the orthogonal 3×3 matrices
representing rotations. One challenge in this area is to produce implemented algorithms that are rigorous
yet competitive with the practical approaches based on sampling.

Both these problems have large literatures. Problem (A) is a highly classical problem in mathematics
with applications in geometric, numeric and symbolic computation. Problem (B) is central to robotics. In
both cases, there are many available algorithms, and thus there are high standards for any proposed new
algorithm, both theoretically and practically. In particular, they need to be implemented and compared to
existing ones: subdivision algorithms appear to be able to meet both criteria. In robotics, to be “practical”
includes an informal requirement of being “real time” for standard size input instances. In contrast, exact
algorithms (especially for Problem (B)) are rarely implemented.

There are Zero Problems in both (A) and (B) as formulated above. For (A), even for the case n = m = 1
(univariate roots) where the input f = (f1) is polynomial, we face Zero Problems. These Zero Problems are
not an issue when f1 has rational coefficients; but we are interested in coefficients that are algebraic numbers
or number oracles [4,29]. For real roots, there are many complete real RAM algorithms based on Sturm
sequences, on Descartes rule of sign or on Newton-bisection. In each case, the algorithms call for testing
if f1(a) = 0 for various points a ∈ R (we may assume a is a dyadic number, but this does not make the
test any easier when the coefficients of f1 are irrational). The very formulation of root isolation requires the
output interval to have exactly one root, possibly a multiple root. Distinguishing between two simple roots
that are close together from a single double root is again a Zero Problem. There are difficult Zero Problems
in higher dimensional problems (even for hypersurfaces) that remain open: most current correctness criteria
is conditioned on non-singularity of Zero(f). For Problem (B), there is also a Zero Problem corresponding
to the sharp transition from path to NO-PATH. We now introduce soft-ε criteria to circumvent these Zero
Problems:

(a) For root isolation [53], we introduce the ε-clustering problem: given a region-of-interest B0 ∈ Rn

and ε > 0, output a set ∆1, . . . ,∆k ⊆ 2B0 of disjoint balls with radii < ε, and output multiplicities
µ1, . . . , µk satisfying

µi := #f (∆i) = #f (3∆i) ≥ 1

where #f (S) is the total multiplicities of the roots in S. The union of these balls must cover all the roots
of f in B0 but they may not include any root outside of 2B0. Each ∆i represents a cluster of roots and
the requirement #f (∆i) = #f (3∆i) (which is our definition of “natural” clusters) can be viewed as a
robustness property.

(b) For path planning [50], we say that the planner is resolution-exact if it satisfies two conditions:

(Path) If there is a path of clearance Kε, the algorithm must return some path π;



5(Nopath) If there is no path of clearance ε/K. the algorithm must output NO-PATH.

Here K > 1 (called the accuracy constant) depends only on the algorithm and is independent of
the input instance. The key is that (Path) and (Nopath) are not exhaustive because they do not cover
input instances where the largest clearance of paths is strictly between ε/K and Kε. The planner may
output either a path or NO-PATH in such instances. Since we require halting algorithms, the planner
would produce an indeterminate answer in these cases. As we will see, indeterminacy (as opposed to
determinacy) is a characteristic feature of soft-ε algorithms.

Based on criteria (a), we achieved the most general setting for root clustering algorithms – when the
polynomials have number oracles as coefficients. Based on criteria (b), we developed and implemented path
planners for various planar robots, culminating in our planners for rods and rings in 3D [22]. This is the
first practical, non-heuristic algorithm for spatial robots with 5 degrees-of-freedom (DOFs). We remark that
although we assumed that the robot R0 is fixed, all our subdivision path planners can uniformly treat robots
from a parametric family R0(p0, . . . , pk). For instance, if R0 is a 2-link robot, we may define R0(p0, p1, p2)
as the 2-link robot whose first two links have lengths p1 and p2, and these links have thickness p0 (see [56]).
Links are line segments, and they are thickened by forming a Minkowski sum with a ball of radius p0. The
thickness parameter is extremely useful in practice. Treating parametric families of robots is a feat that few
exact algorithms are able to do; the only exception we know of is when R0 is a ball, and here, the exact path
planners based on Voronoi diagram can allow the radius of the ball as a parameter [35].

In general, besides the extra ε input, our subdivision algorithms also accept an input box B0 called the
region-of-interest (ROI), meaning that we wish to restrict the solutions to B0. Specifying B0 is not generally
a burden, and is often a useful feature. In the case of root clustering, this meaning is clear – we must account
for all the roots in B0. There are Zero Problems associated with the boundary of B0. To avoid this issue in
root clustering, we allow the output clusters to include roots outside of B0, but still within an expanded box
2B0 (or (1 + ε)B0 if so desired).

3 Effectivity of the Subdivision Framework

We have noted that the usual pathway to a numerical algorithm Ã is through an intermediate real RAM
algorithm A. This Ã amounts to specifying a suitable precision for each arithmetic operation in A. The
difficulty of this pathway is illustrated by the benchmark problem in root isolation: this is the problem of
isolating all the roots of a univariate polynomial p(x) with integer coefficients [5]. It has been known for about

30 years that there is an explicit real RAM algorithm A with transformation A 7→ Ã such that Ã is a near-
optimal algorithm for the benchmark problem. The algorithm A is from Schönhage-Pan (1981-92) [20]. Here

“near-optimal” means4 a bit complexity of Õ(n2L) where p(x) has degree n and L-bit coefficients. Although

the construction of such an Ã from a real RAM A remains open, there are now several implementations of
near-optimal algorithms based on subdivision, all shortly after the appearance of the subdivision algorithms
[24]. See [52] for an account of this development (there are two parallel accounts, for complex roots and for
real roots). We may ask why? Intuitively, it is because subdivision computation is reduced to operations
on individual boxes (i.e., locally) and we can adjust the precision to increase as the box size decreases. In
contrast, controlling the precision of arithmetic operations in a real RAM algorithm for some target resolution
in the output appears to be hopelessly complicated at present.

There is no formal “subdivision model of computation”. We intend our algorithms to be ultimately
Turing-computable. So we only speak of the “subdivision approach or paradigm”. Nevertheless, it is useful
to introduce a Subdivision Framework which can be instantiated to produce many different algorithms.

In the simplest terms, we may describe it as follows: first assume that we are computing in Rm, where
Rm is the set of full-dimensional axes-aligned boxes. Let S be a subset of Rm. Its support is the set
S :=

⋃
B∈S B. We call S a subdivision (of its support S) if the interiors of any two boxes in S are disjoint.

The subdivision process is typically controlled by two box predicates C0, C1 : Rm → {true, false}. Here C0

is the standard exclusion predicate, and C1 the inclusion predicate (which varies with the application).

4 The Õ-notation is like the O-notation except that logarithm factors in n and in L are ignored. In the subdivision
setting, “near-optimality” may be taken to be Õ(n2(n+ L)).



6 Our central problem is this: given a box B0, to recursively split B0 into subboxes until each subbox
B satisfies C0(B) ∨ C1(B). The recursive splitting forms a tree T (B0) of boxes with B0 at the root, with
each internal node B failing C0(B) ∨ C1(B). We assume some scheme for splitting a box B into a subset
B1, . . . , Bk where {B1, . . . , Bk} is a subdivision of B. A simple scheme is to let k = 2m and the Bi’s are
congruent to each other. There are also various binary schemes where k = 2. In the binary schemes, it is
necessary to ensure that the aspect ratios of the subboxes remain bounded. Assuming that k is a constant
in the splits, each internal node in T (B0) has degree k. If T (B0) is finite, then the leaves of T (B0) form
a subdivision of B0. We are mainly interested in the subdivision S(B0), comprising those leaves that fail
C0(B) (thus satisfying C1(B)).

Let Q0, Q1 be queues of boxes, with the usual queue operations (push and pop) for adding and removing
boxes. Consider the following subroutine to compute S(Q1). We may, for instance, initialize Q1 to {B0}.

Subdivide Routine

INPUT: Q1

OUTPUT: Q2

Q2 ← ∅
While Q1 is non-empty

B ← Q1.pop()
If C0(B) fails

If C1(B) holds,

Q2.push(B) //i.e., output B
Else

Q1.push(split(B))

The main correctness question about the Subdivide routine is termination: does Q1 eventually become
empty? This is equivalent to every box B eventually satisfying C0(B) ∨ C1(B) (if a box is split, this con-
sideration is transferred to its children). For instance, in real root isolation, B0 is an interval and we have
termination iff there are no multiple roots in B0. For path planning, we modify C0(B) to C0(B) ∨ Cε(B)
where Cε(B) holds if the width of B is less than ε. Therefore, to ensure termination, we must either re-
strict the input (e.g., there are no multiple roots), or introduce suitable ε-correctness concepts (such as
resolution-exactness in path planning in Section 2(b)).

We view Subdivide Routine as the centerpiece of our algorithm. Its output is the queue Q2 containing
the subdivision S(B0). For instance, the EVAL and CEVAL algorithms in [42] are basically this subroutine.
But in general, we expect to do some post processing of Q2 to obtain the final result. For example, we may
have to construct the simplicial complex K representing the zero set Zero(f) [39,31,32]. Likewise, we may
need to do some initialization to prepare for subdivision. For example, in path planning, we need to first
ensure that the start α and goal β configurations are free [50]. This suggests that we need an initialization
phase before the Subdivide Routine, and we need a construction phase after. Following [31], we may assume
that input and output for each phase are appropriate queues. We are ready to present a simple form of this
framework:

Simple Subdivision Framework

INPUT: B0, ε, . . .
OUTPUT: Q3

I. Initialization Phase

Q1 ← Preprocessing(B0)

II. Subdivision Phase

Q2 ← Subdivide(Q1)

III. Construction Phase

Q3 ← Construct(Q2)



7We can derive algorithms for the illustrative problems (A) and (B) using this framework. This amounts
to instantiating the routines in the three phases. A key idea in our design of these routines is to make
the subdivision phase do most of the work, i.e., its complexity ought to dominate that of the other two
phases. This is not true for all subdivision algorithms: an example is Snyder’s approach to isotopic curves
and surfaces [47] (see [9, Chap.5.2.3]). The plausibility of our key idea comes from the fact that when
subdivision is fine enough, everything would be “as simple as possible”, modulo singularities. Singularities,
even isolated ones, can be arbitrarily complex. For example, the neighborhood of a degenerate Voronoi vertex
can have arbitrarily high degree. We may simply exclude singularities by fiat (as in isotopic curves [39,31]
or in arrangement of curves [30]). But our ultimate goal is not to avoid singularities but to introduce soft-ε
notions (as in root isolation [4] or in Voronoi diagrams [6]). We design the C0(B) and C1(B) to capture
the non-degenerate situations outside of such singularities. We say that output Q2 of Subdivide(Q1) is
“fine enough” if the cost of constructing the final output is O(1) per box in Q2. In the problems of isotopic
curves and surfaces [39,31,32], the output is a planar embedded graph (for curves) or a triangulation (for
surfaces). When the subdivision is “fine enough”, we only need to construct simple, almost-trivial, graphs or
triangulations G(B) in O(1) time for each B ∈ S(B0). The output is the union of these G(B)’s. Thus, the
global complexity of these algorithms is indeed dominated by the subdivision process. This key idea ensures
that the resulting algorithm is easy implementable or practical. A caveat is that the complexity may become
a bottle neck in higher dimensions. Nevertheless, it ensures that we could solve such problems, at least in
small regions-of-interest.

How good is the proposed framework? For real root isolation of integer polynomials, the size of the sub-
division tree T (B0) is near-optimal [45,12]; the analysis can be greatly generalized [14], including accounting
for bit complexity. The complexity of the PV algorithm in higher dimensions has also been analyzed [15,16].
For top performance in univariate complex root isolation [5,4] it is necessary to introduce Newton iteration
and to maintain more complicated data structures (“components”) in order to achieve near-optimal bounds.
See [52, §1.1] for a subdivision framework that incorporates Newton iteration. Newton iteration will produce
non-aligned boxes, i.e., boxes that do not come from repeated splits of B0. This is not an issue for root iso-
lation but in geometric problems such as arrangement of curves [30] and Voronoi diagrams [6], non-aligned
boxes (called root boxes) arise where it was necessary to provide “plumbing” so that the non-aligned boxes
“conforms” with the rest of the aligned boxes.

We generally need to maintain adjacency relations among boxes in S(B0), especially for the construction
phase. Two boxes B,B′ are adjacent if B∩B′ has codimension 1. There is a general technique to efficiently
maintain such information, namely to ensure that the subdivision S(B0) is smooth [7]. Smoothness means
that if B,B′ ∈ S(B0) are two adjacent boxes, then their depths in the tree T (B0) differ by at most 1. This
can be done systematically by (1) maintaining “principal neighbor” pointers for each box and (2) perform
smoothSplit(B) instead of split(B) in Subdivide(Q1). In smoothSplit(B), we split B and recursively
split any adjacent boxes necessary to maintain smoothness. Although a single smoothSplit(B) can be linear
in the size of Q1, we show in [7] that this operation has amortized O(1) complexity, and hence does not
change the overall complexity.

So far, we have assumed subdivision in Rn. What about subdivision in non-Euclidean spaces? Burr [14]
has provided an account of subdivision in abstract measure space, aimed at amortized complexity analysis.
We take a different approach, with an eye towards implementation rather than analysis: in path planning,
we need to perform subdivision in configuration spaces Cspace. Such spaces are typically non-Euclidean:
Cspace = R2 × T where T is the torus [56], Cspace = R3 × S2 [23], and Cspace = SE(3) = R3 × SO(3)
[55]. Using the analogy of charts and atlases in manifold theory, we define charts and atlases for subdivision.
Furthermore, we generalize boxes to general shapes called “test cells” that include simplices or convex
polytopes which have bounded aspect ratios. Resolution-exact planners (Section 2(b)) can be achieved in
such settings and with an accuracy constant given by K = C0D0L0(1 +σ) where C0, D0, L0, σ are constants
associated with (respectively) the atlas, subdivision scheme, a Lipshitz constant and effectivity factor [55].
It is also clear that we could extend subdivision atlases to projective spaces (RPn and CPn).

In our abstract, we said that algorithms in the subdivision framework are “effective” in the sense of easily
and correctly implementable from standard algorithmic components. The preceding outline exposes some of
these algorithmic components: queues, subdivision structures, boxes with adjacency links, union find data
structure, etc. But the critical issue of numerical approximation is deferred to the next section.



84 Numerical Precision in Subdivision Framework

The main problem of subdivision is when to stop, and this is controlled by predicates. In our Subdivide

Subroutine, we used two logical box predicates C0(B) and C1(B). Both are typically reduced to some form
of sign computation: in the PV algorithm [39], C0(B) is defined as [[0 /∈ f(B)]] for some continuous function
f : Rn → R. As for C1(B), we follow a nice device of [15] for describing this predicate: first define

∇(2)f : Rn × Rn → R

where∇(2)f(x,y) = 〈∇f(x),∇f(y)〉 and 〈·, ·〉 denotes the dot product. For instance, for n = 2,∇(2)f(x,y) =
∂1f(x) · ∂1f(y) + ∂2f(x) · ∂2f(y) where ∂i denotes partial derivative with respect to xi. Then C1(B) is
[[0 /∈ ∇(2)f(B,B)]]. Both C0(B) and C1(B) are mathematically exact formulations, but far from effective.

We now sketch a 3 stage development to systematically derive an implementable form, following [52]. The
outline may be illustrated by using the C0(B) predicate: we first define an interval version of C0(B) denoted
C0(B). Then we modify the interval version to an “effective” version denoted ˜C0(B). These version are

connected through a chain of logical implications:

˜C0(B)⇒ C0(B)⇒ C0(B).

Each of these predicates are, in turn, based on underlying functions on boxes: C0(B) is [[0 /∈ f(B)]] and˜C0(B) is [[0 /∈ ˜f(B)]]. We must now define the functions f and ˜f for any f .
Our numerical algorithms are intended to be certified in the sense of interval arithmetic [34,26]. But we

wish to carry our subdivision algorithms in a slightly more general setting, say in normed vector spaces X,Y .
Here, we can do differentiation (as in ∇(2)f) and do dilation of boxes or balls (as in B 7→ 2B). Suppose we
have a function f : X → Y . Define the natural set extension of f to be

f : 2X → 2Y (4)

where f(S) := {f(x) : x ∈ S} for S ∈ 2X . We are5 “overloading” the symbol f in (4). But if we identify
the elements of X with the singletons in 2X , we see that this extension is natural, and justifies reuse of the
symbol f . Again, 2X is too big and we restrict f to the nice subsets of X. Let X and Y be the collection
of nice subsets of X and Y . Note that even if B ⊆ X is a nice set, f(B) need not be nice (except when
Y = R). In other words, the function (4) does not naturally induce a function of the form

F : X → Y. (5)

Thus we are obliged to explicitly define the function F in (5). What is the relation between f and F? We
call F a box form of f provided it is conservative relative to f (i.e., f(B) ⊆ F (B)) and convergent
to f (i.e., if {Bi : i ≥ 0} converges to a point p ∈ X, then limi→0 F (Bi) = f(p)). We may write “F → f”
if F is convergent to a point function f . This parallels our definition of soft predicates. We write “ f” for
a generic box form of f . If it is necessary to distinguish different box forms, we use subscripts such as 2f .
The function (5) is called a box function when it is the box form of some f . The interval literature defines
many box forms for f : Rn → R. For example, the mean value form of f given by

M
f(B) := f(m(B)) + ∇f(B)T · (B −m(B)) (6)

where m(B) is the midpoint of B and ∇f = (f1, . . . , fn)T is the gradient of f , with fi = ∂if . Our definition
of mean value form invokes another box form ∇f(B) = ( f1, . . . , fn)T . Since this second box form is
generic,

M
is still not fully unspecified.

Suppose F is a box form of f . By regarding X as a subset of X, we can view f as the restriction of F to
X, i.e., f = F |X . Let Fi : X → Y (i = 1, 2) be two functions (not necessarily box forms). Write F1 ⊆ F2

if for all B ∈ X, F1(B) ⊆ F2(B). Then we have

Let F1 ⊆ F2. If F2 is a box form, then F1 is a box form.

5 Some authors introduce a new symbol, say F , to signal this change.



9Of course, we also have F1|X = F2|X . What we need in our application, however, is the “converse”: if F1 ⊆ F2

and F1 is a box form, then F2 is a box form. To motivate this application, consider the mean value form

M
: its definition (6) calls for an exact evaluation f(m(B)), which we must approximate. In general, for any

interval form f , we need to approximate it by some function of the type ˜f : Rm → R. But how are ˜f
and f related? We will say ˜f an effective form of f provided these properties hold:

(i) (Inclusion) f ⊆ ˜f and
(ii) (Precision) q( f(B),˜f(B)) ≤ w(B) where w(B) is the width of B and q(I, J) is the Hausdorff metric

on closed intervals.
(iii) (Exactness) f is dyadically exact.

We will discuss the third property (iii) below. But first, we note that properties (i) and (ii) ensure our desired
converse:

Lemma 1. If ˜f satisfies (i) and (ii), then ˜f is a box form of f .

To compute ˜f(B), this lemma says that, provided our numerical approximation is rounded correctly to
satisfy Property (i), then we only have to ensure that the error is bounded by the width of B as in Property
(ii). Although the boxes B are distributed over space and time, the global correctness is guaranteed by the
nature of our predicates.

We now turn to Property (iii). This requirement is connected to general ideas about efficiency and
effectivity of numerical computation. For this, we assume that X = Rn and Y = R. In practice, real numbers
are most efficiently approximated by dyadic numbers, Z[ 12 ] or BigFloats (see [57]). Our definition of ˜f
serves the fiction that it could accept every box in Rn. This is useful fiction because it cleanly fits into
mathematical analysis. But in implementations, these box functions only need to accept dyadic boxes, i.e.,
boxes whose corners have dyadic coordinates. We say a box function F : Rn → R is dyadically exact if
its restriction to dyadic boxes outputs dyadic intervals. This explains our Property (iii). Evidently, it is not
hard satisfy all 3 properties of effectivity.

Literate6 Algorithmic Development. In [52], we developed a subdivision algorithm for isolating the
simple real roots of a real system

f = (f1, . . . , fn) : Rn → Rn.

As a subdivision algorithm, it has several predicates: the centerpiece is the Miranda Test MK(B) for existence
of real roots in B. We have our ubiquitous exclusion test, but defined as C0(B) := [[(∃i = 1, . . . , n)(0 /∈
fi(B))]]. We also need a Jacobian Test JC(B) to confirm at most one root. Each predicate C is first defined
mathematically, then as box predicates C, and finally as effective predicates ˜C. Thus, there are three levels
of description:

(A) Abstract C, f
(I) Interval C, f
(E) Effective ˜C, ˜f
As expressed by Burr et al. [15, §2.3], the goal is to delay the introduction of C (and hence ˜C). The
motivation comes from the fact that the theory is cleanest at Level (A), and less so at later levels. In effect,
we have three algorithms:

A, A, ˜A (7)

each being an instantiation of a common algorithmic scheme by predicates and functions of the appropriate
level. This is analogous to standard construction of numerical algorithms from A 7→ Ã (see the Introduction);
the difference is that our starting point A is in the Subdivision Framework. We then prove the algorithms
correct at each level. At each level, we bring in new details but are able to rely on the properties already
proved in the previous level. For instance, an important phenomenon when we transition from A to A
is the appearance of Lipshitz constants inherent in interval methods. This approach (“AIE methodology”)
displays a continuity of ideas and exposes the issues unique to each level. The clarity and confidence in the
correctness of ˜A are surely much better than if we had attempted7 an ab initio correctness proof of ˜A.
Quoting Knuth:

“Beware of bugs in the above code; I have only proved it correct, not tried it.”
6 In the spirit of Knuth’s “Literate Programming”.
7 It is possible that such proofs contribute to the poor reputation of error analysis as a topic.



105 On Oracle Objects

In our Simple Subdivision Framework, we pass queues from one phase to the next. Such queues serve
to represent intermediate states of our ultimate output (the simplex K for Problem A or the path π for
Problem B). In this section, we explore the idea of representing computational objects that encode states
and other information. The term “object” suggests connection to Object Oriented Programming Languages
(OOPL) since, in order to make our algorithms effective, it must be ultimately implemented in a programming
language. See the recent paper of Brauße et al. [10] that also brings programming semantics into the theory
of real computation.

5.1 Soft Tests

We begin by discussing the “ur-predicate”, the comparison of two real numbers x, y. We may write the
comparison as a logical predicate [[x < y]], using the test notation of Section 1.1. If true, we branch to point
A, and otherwise we branch to point B. In exact computation, the two points A and B in the program encode
the respective assertions [x < y] and [x ≥ y], where the notation “[S]” is now an assertion that S is true. In
numerical computation, we might need point C in the program to encode the assertion [x ? y] (don’t know).
To simplify our primitives, let us reduce this 3-valued test to a 2-valued version, denoted [(x < y)] where
point A represents the assertion [x < y] (as before) but point B asserts [x ≥?y]. But outcome “[x ≥?y]”
suggests the assertion [x ≥ y]∨ [x ? y] (we will explore this more carefully below). In reality, we reached the
point B because the test [(x < y)] was done with limited precision p. Thus we may explicitly indicate this
precision8 by writing [(x < y)]p. We call [(x < y)]p a one-way test because the failure to assert [x < y]
does not imply the negated assertion [x ≥ y].

The 2-valued exact tests [[x < y]] and [[x ≥ y]] are equivalent in the sense that one is obtained from the
other by switching truth values. But [(x < y)]p and [(x ≥ y)]p have no such symmetry. This suggests that
we could define another form of [(x < y)]p in which the point B encodes the assertion [x ≥ y], but point
A encodes [x <?y]. These two versions of the one-way test have their respective uses – the first version is
aimed at confirming the assertion “[x < y]”, and the second version is aimed at falsifying it. To distinguish
them, let us write Con[x < y]p for confirmation test and Fal[x < y]p for other. Unless otherwise stated, we
continue to view the test [(x < y)] in the confirmation mode. It might appear that we are splitting hairs
by reducing a 3-way test to two 2-way tests. But since these tests may involve heavy computations (such
as testing if a robot configuration is free), this split may be useful. Alternatively, the numbers x, y may
represent complicated expressions (see below).

To implement such one-way tests, we need to assume that x, y are number oracles (see [29]). That
means for each p ∈ Z, we can ask for a p-bit approximation of x, denoted (x)p. This9 means (x)p = x± 2−p.
We may represent (x)p by a dyadic number with at most p bits after the binary point. For instance, we can
implement the one-way [(x < y)]p as follows:

if (x)p + 2−p < (y)p − 2−p

return [x < y]
else

return [x ≥?y]

Observe that this algorithm is indeterminate (see Section 2) because (x)p does not identify a specific value,
but depends on the oracle for x. The exact test [[x < y]] can be reduced to two one-way tests as follows:

8 We use “precision” for the a priori user-specified bound. The algorithm delivers a value whose a posteriori error
is at most this precision.

9 We write a = b± c to mean there exists a constant θ ∈ [−1, 1] such that a = b+ θ · c. Alternatively, |a− b| ≤ |c|.



11
Subroutine [[x < y]]:

For p = 0, 1, . . .
if Con[x < y]p

return [x < y]
else if Fal[x < y]p

return [x ≥ y]

In the case x = y, this subroutine is non-halting. Unfortunately, this is the best we can do without more
information about x or y. It turns out that we can modify the loop above to produce a halting subroutine.
That is the Soft Zero Test in [54] which has three outcomes: [x < y], [x > y] and [x ' y]. The last outcome
is new, and is defined10 to mean [1

2
x < y < 2x

]
∨

[1

2
x > y > 2x

]
. (8)

The first disjunct implies that x, y are both positive, and the second implies both are negative. We denote
this test by [{x : y}]. What makes this test decidable (halting) is the introduction of the new outcome. But
we also need a “mild” assumption: either x or y is non-zero. It is assumed that both x and y are non-negative
in [54]. That is justified by the intended application where both x and y are sums of absolute values (from
the Pellet Test). Essentially, this Soft Zero Test is at the heart of our soft-ε criteria for roots. In exact
computation, comparing two numbers x : y is equivalent to the computing the sign of the single number
x− y. The Soft Zero Test shows that you can do a bit more by keeping x and y separate.

What is the logical status of the intuitive formula “[x >?y] = [x > y]∨ [x?y]”? The truth-values [x < y]p
are parametrized by x, y and also p. It is enough to consider the non-parametric setting where, in addition
to true, false, we add a third logical value, frue (false-or-true). Then we have these truth tables:

∧ true frue false

true true frue false
frue frue frue false
false false false false

true frue false

¬ false frue true

∨ true frue false

true true true true
frue true frue frue
false true frue false

So far, we looked at point-based comparisons. We now consider interval-based comparisons. The ur-predicate
here is the Membership Test [[x ∈ I]] where I is an interval. Here, we view I as a dyadic interval and x is

the usual oracle. Let [{x ∈ I}] denote the Soft Membership Test with two outcomes, [x ∈̃ I] and [x /̃∈ I].
We define them as [x ∈ 2I] and [x /∈ I/2], respectively. If desired, we may replace ‘2’ by 1 + 2−p and denote
it by [{x ∈ I}]p. It is indeterminate because, in case x ∈ 2I \ I/2, both outcomes are acceptable. This can
be implemented as the exact test

[[(x)p ∈ I]] (9)

since p = −d1 + log2(w(I))e is easily computable. Exactness of (9) follows from the fact that I and (x)p

are dyadic. If [(x)p ∈ I], we output [x ∈̃ I], and otherwise, we output [x /̃∈ I]. The Soft Membership Test is
unconditional. These ideas can be generalized to produced soft membership in balls or boxes: the predicates
in [42,5] are examples of such tests.

5.2 Whence Number Oracles?

Number oracles are ubiquitous in the theory of real computation [51,29]. Their availability is largely assumed.
Perhaps it is generally assumed that they come from well-known mathematical series, and all we need to do
is to evaluate such series to enough precision. But even this problem deserves careful investigation from the
viewpoint of complexity. For instance, the family of hypergeometric functions provide us with a rich class
of series that include the elementary functions and much more. But if we are given a function in terms of
its hypergeometric parameters, there are issues of transforming them to speed up the convergence. From
the work of Richard Brent in the 1970s, it is well-known that to evaluate such functions at a fixed point is
extremely fast (basically the speed of integer multiplication, perhaps with extra log factors). But this tells us
little about global or uniform complexity of these approximation algorithms. We refer the interested reader

10 Despite the appearance of asymmetry, x and y are treated symmetrically by this definition.



12to [18,19]. In algebraic computation, we do not have such series. But it is easy to provide an oracle for any
algebraic number α if we have a defining integer polynomial, p(α) = 0 with p′(α) 6= 0. If α is real, we can
find an isolating interval [a, b] for α. Thereafter, we can use bisection to produce a convergent sequence of
intervals. Following Dekker and Brent [11], we can use a Newton-bisection iteration to speed up this process.
A recent variant of Newton-bisection from Abbot, Sagraloff and Kerber [1,27] led to the complexity analysis
of such speedups. There are analogous procedures to produce oracles for complex α. It turns out that in
geometric computations, we seldom begin with algebraic numbers: instead we typically start with rational
numbers and α is built up as an expression using different algebraic operators to produce arbitrary algebraic
numbers. Let us briefly describe this class of oracles.

Let Ω be a set of real algebraic operators. Typically, Ω contains at least
{
±,×,÷,

√
·
}
∪ Z. Assume

that each operator ω ∈ Ω has an approximation algorithm [57]. Let E(x) = E(x1, . . . , xn) be an algebraic

expression over {x1, . . . , xn} ∪Ω. E.g., E(x) =
√
x2 − 2y + 1− 3

√
xy − y2. If a = (a1, . . . , an) is a sequence

of number oracles, then there are general mechanisms to construct an oracle for the number E(a) (see
[33,59]). Note that this description is more general than the usual setting for EGC where the expression
E is a constant; but the extension to expressions with arguments is relatively direct straightforward. Zero
Problems arise from the fact that some operators such as ÷,

√
· or log are partial functions, and so E(a) may

be undefined. We need to detect this situation and halt. This is a hopeless case, even for E(a) = a1 − a2,
unless we have prior information such as a1, a2 are algebraic with degree and height bounds (or some height
substitute).

5.3 Cluster Oracles

Oracles arising from algebraic expressions can be generalized to geometric expressions in the sense of Con-
structive Solid Geometry (CSG) [2]. Here, the expressions are built from primitive geometric shapes such
as numbers, points, balls and half-spaces, using boolean operators such as intersection and union. Such ex-
pressions can be new sources for number oracles. But in this subsection, we will focus on a recent extension
of number oracles to “cluster oracles”. It arose in our root clustering algorithms [5,4], and its extension to
solving triangular systems in Cn [25]. Intuitively, Cauchy sequences must be generalized to “Cauchy trees”
because clusters may split upon request for more precision.

Multisets arise naturally when we consider the zero sets of functions: let D ⊆ Cn and f : Cn → Cn.
Assume that f−1(0) ∩D is a finite set, and for each a ∈ f−1(0), we can assign an integer µ(a) ≥ 1 called
its multiplicity. We introduce two useful notations: let Zerof (D) := D ∩ f−1(0) and #f (D) be the total
multiplicities of the roots in Zerof (D). The pair (ZeroF (D),#F (D)) is an example of a multiset.

In general, a multiset S is a pair (S, µ) where S is11 an ordinary set (called the underlying set of S)
and µ = µS assigns a multiplicity, a positive integer µ(x), to each x ∈ S. Also let µ(S) :=

∑
x∈S µ(x)

be the (total) multiplicity of S, assumed to be finite. Let |S| denote the cardinality of S; so |S| ≤ µ(S).
If |S| = 1 (resp., |S| = 0) we say S is a singleton (resp., empty). We denote the empty multiset as well
(ordinary) empty set by the same symbol ∅. If T is another multiset, we write S ⊆ T and call S a subset
of T if S ⊆ T and µS(x) ≤ µT (x) for all x ∈ S. In this paper, we assume12 equality, i.e., µS(x) = µT (x), in
subset relations. The intersection S ∩ T is the largest multiset R such that R ⊆ S and R ⊆ T .

Our multisets interact with the world of ordinary sets: let X be an ordinary set. Then ‘S ⊆ X’ means
that S ⊆ X. Likewise ‘S ∩X’ denotes the multiset T ⊆ S where x ∈ T iff x ∈ X.

We are interested in the concept of a “cluster” C. Informally, a cluster C is a multiset in a larger multiset
U which is nicely separated from U \C. Let us formulate this concept in the context of a normed linear space
X with norm ‖ · ‖. Let ∆ = ∆(m, r) ⊆ X denote the ball centered at m of radius r ≥ 0. For real α > 0, let
α∆(m, r) denote the ball ∆(m,αr). Let us fix a multiset U ⊆ X. A cluster (of U) is a non-empty set C ⊆ U
of the form C = U ∩∆ for some ball ∆ ⊆ X. Call such a ∆ an isolator of cluster C; this isolator is natural
if, in addition, C = U ∩ 3∆. If C has a natural isolator, we call it a natural cluster. The fundamental
property of natural clusters is this:

11 There should no confusion with the notion support of a simplicial complex K.
12 Strict inequality may arise in subsets of zero sets: if F = (F1, . . . , Fn) where Fi are polynomials, and G =

(G1, . . . , Gn) where each Gi divides Fi, then ZeroG(D) ⊆ ZeroF (D) might exhibit this phenomenon.



13Lemma 2. Let X be a normed linear space and U ⊆ X be a finite multiset. Then any two natural clusters
C,C ′ of U are either disjoint or have a subset relation, i.e., either C ∩ C ′ = ∅ or C ⊆ C ′ or C ′ ⊆ C.

Basically the proof works because of the triangle inequality in X. As a corollary, there are at most 2|U | − 1
natural clusters of U , and they can be organized into a cluster tree: each node in the tree is a natural cluster
of U and the child-parent relation is just C ⊂ C ′. The original cluster concept in [53,4] assumes X = C. In
[25] it was extended to X = Cn, for complex roots of triangular systems. Computing natural clusters may
be regarded as the soft-ε criterion for root isolation; as we shall see, it is effective and can completely remove
the Zero Problems associated with multiple roots.

But how do we compute such clusters? We need predicates to check if a given ∆ is an isolator and to
determine its total multiplicity. For X = Cn, we could use some multidimensional form of Pellet’s test,
and for X = Rn, there are similar tools such as multidimensional Sturm theory based on quadratic forms
[38,36,37]. Unfortunately, at present, these tools do not appear to be practical. In lieu of this, we take another
route in [25]: we first reduce the input system into triangular systems using known algebraic techniques. In
the triangular form, we can compute the multivariate clusters and their multiplicities using the efficient
univariate multiplicity tests of [4,24].

The main tool in [4,24] is a test from Pellet (1881). Fix a complex polynomial f(z) ∈ C[z]. First consider
the test

Tk(f) :=
[[
|ak| >

∑
i 6=k

|ai|
]]

(10)

where f(z) =
∑n

i=0 aiz
i. This test is defined for any k = 0, . . . , n. Pellet’s theorem says that

if Tk(f) succeeds then #f (∆(0, 1)) = k.

So this test, which is a simple application of Rouché’s Theorem, can confirm that the total multiplicity of the
complex roots of f in the unit disc ∆(0, 1) centered at the origin is exactly k. The case k = 0 is interesting
– it is an exclusion test! It is more expensive than the standard C0 test, but we shall see that its failure
provides some partial converse information. We can confirm that the disc ∆(0, r) of radius r > 0 has k
roots by applying the Tk-test to the polynomial f(rz) =

∑
i biz

i where bi = air
i. Similarly, we can confirm

that ∆(m, 1) (the unit disc centered at m ∈ C) has k roots by applying the Tk-test to the Taylor-shifted
polynomial f(z + m). Combining these two operations, we obtain a test for an arbitrary disk ∆(m, r). Let
Tk(f,m, r), or simply Tk, denote such a test.

The next question is crucial: when is the success of Tk test assured? It is shown that there are positive
numbers c < 1 < C such that if

#f (c ·∆(m, r)) = #f (C ·∆(m, r))

then Tk(f,m, r) will succeed. In other words, this gives a partial converse to Pellet’s test. Unfortunately,
these numbers depend on the degree: c = Ω(1/n) and C = O(n3). By applying Graeffe iteration 5 + log log n
times to f , we reduce these numbers to c = 2

√
2/3 ' 0.94 and C = 4/3. Suppose B is a subdivision box and

∆(B) is its circumscribing disc. Let TG
k (f ;B) denote the application of the Tk test to the Graeffe-transformed

∆-shifted polynomial f . Choose k = 0:

If TG
0 (f ;B) succeeds, #f (B) = 0.

If TG
0 (f ;B) fails, #f (2B) > 0.

We classify boxes as excluded if this test succeeds, and included otherwise. We now have a very powerful
test that is analogous to the Soft Membership Test earlier. The remaining issues treated in the paper are:

– We need approximate versions of these tests: thus we use T̃G
k instead of TG

k . The Soft Zero Test is used
to make numerical comparison of (10).

– We use T̃G
0 (B) as exclusion test. We maintain the connected components of those B’s that are included

(i.e., fail the exclusion test). These components are potentially cluster. We refine a component by splitting

each of its constituent boxes, and applying the T̃G
0 tests again.

– To obtain near-optimal bounds, we use the Abbot form of Newton-Bisection [1,27] on a connected

component C. If C is sufficiently separated from the other components, then we could use the T̃G
k test

to determine that #(C) = k, and even apply the order k Newton iteration successfully.



14– For complexity analysis (in the bench mark case), we need charging schemes that charge these tests to
roots of f in 2B0. It turns out that for the non-integer polynomials, we can provide some complexity
estimates based on the root geometry.

We hope this overview may make the original papers more accessible. In [25], we package the above struc-
tures into cluster oracles in order to compute multi-dimensional clusters inductively. Such cluster oracles,
viewed as objects in the sense of OOPL, can provide an efficient mechanism for other similar applications.

6 Conclusion and Open Problems

The foundations of subdivision computation is a wide-open area of research, with promises of new and
effective algorithms that have mild (or no) conditions on the input. Our illustrative examples suggest that
such algorithms can be practical and compare favorably with less-rigorous solutions or symbolic or exact
solutions.

Our soft-ε criteria for two key problems seems to have achieved a satisfactory level of completeness: (a)
complex root clustering for polynomials with oracle coefficients [4] and (b) resolution-exact path planning
[50]. Of course, success creates its own (new) set of problems: for (a), we would like to treat more general
functions such as analytic or harmonic functions. For (b), the challenge is to design a practical nonheuristic
planner for spatial robots with 6 degrees-of-freedom. This natural but elusive quest appears to be reachable
within our framework. Finally, we pose some open problems:

1. Algorithms with soft-ε correctness is the continuous analogue of “approximation schemes” in discrete
optimization algorithms. Just as the barrier to polynomial-time schemes (PTAS) are located in NP -
hardness or similar complexity classes, the barrier in the continuous case are various Zero Problems. We
would like a complexity theory of such Zero Problems. See also the recent paper [17].

2. It is generally challenging to remove all Zero Problems. A prime example is the PV-type algorithms [39].
Such algorithms are based on the Marching Cube paradigm, and require the exact sign evaluation of a
function at the corners of subdivision boxes. How do we soften this?

3. Interval methods are central to all our algorithms. We would like to develop interval methods in more
abstract spaces than Euclidean ones. Are normed vector spaces or metric spaces the natural home for
such extensions? As usual, we need good problems on which to cut our teeth.

4. Path planning in very high dimensions is an open problem. An example of a currently out-of-reach path
planning problem: a planar snake with 10 joints. The configuration space is R2 × (S1)10. This requires
new paradigms, but we believe they can be built upon a subdivision framework.

5. Path planning is only the simplest of motion planning problems. What do soft-ε algorithms mean in
non-holonomic planning, or kino-dynamic planning? A good problem is to try subdivision in state space:
imagine a point robot in the plane amidst obstacles. Its state or coordinates are (x, y, ẋ, ẏ) representing
position and velocity. We want to plan a minimum time trajectory from some start to goal states, subject
to acceleration bounds.

6. The notion of natural root clusters suggests other applications and extensions. How do we cluster matrix
eigenvalues? It seems that other considerations come into play: the invariant subspaces associated with
eigenvalues should play a role in defining “natural clusters of eigenvalues”.

7. Complexity analysis of subdivision is largely open. The case of univariate zeros is reasonably well-
understood, but there are many open problems even for zero-dimensional problems in higher dimensions.
A key tool is continuous amortization [13], but recently Cucker et al. [17] initiated a Smale-type average
case analysis for subdivision algorithms.

Acknowledgements

The author is deeply grateful for the feedback and bug reports from Michael Burr, Matthew England, Rémi
Imbach, Juan Xu and Bo Huang.



15References

1. Abbott, J.: Quadratic interval refinement for real roots. ACM Commun. Comput. Algebra 48(1/2), 3–12 (Jul
2014). https://doi.org/10.1145/2644288.2644291, http://doi.acm.org/10.1145/2644288.2644291

2. Agrawal, A., Requicha, A.: A paradigm for the robust design of algorithms for geometric modeling. Computer
Graphics Forum 13(3), C/33–44 (1994), 15th Annual Conference and Exhibition. EUROGRAPHICS’94

3. Becker, R.: The Bolzano Method to Isolate the Real Roots of a Bitstream Polynomial. Bachelor thesis, University
of Saarland, Saarbruecken, Germany (May 2012)

4. Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity analysis of root clustering for a complex
polynomial. In: 41st Int’l Symp. Symbolic and Alge. Comp. pp. 71–78 (2016), iSSAC 2016. July 20-22, Wilfrid
Laurier University, Waterloo, Canada.

5. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algorithm for complex root isolation
based on Pellet test and Newton iteration. J. Symbolic Computation 86, 51–96 (May-June 2018)

6. Bennett, H., Papadopoulou, E., Yap, C.: Planar minimization diagrams via subdivision with applications to
anisotropic Voronoi diagrams. Eurographics Symposium on Geometric Processing 35(5) (2016), sGP 2016, Berlin,
Germany. June 20-24, 2016.

7. Bennett, H., Yap, C.: Amortized analysis of smooth quadtrees in all dimensions. Comput. Geometry: Theory and
Appl. 63, 20–39 (2017), also, in Proceedings SWAT 2014.

8. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications.
Springer-Verlag, Berlin, revised 3rd edition edn. (2008)

9. Boissonnat, J.D., Teillaud, M. (eds.): Effective Computational Geometry for Curves and Surfaces. Springer (2007)
10. Brauße, F., Collins, P., Kanig, J., Kim, S., Konečný, M., Lee, G., Müller, N., Neumann, E., Park, S., Preining,

N., Ziegler, M.: Semantics, logic, and verification of “exact real computation” (2019)
11. Brent, R.P.: Algorithms for minimization without derivatives. Prentice Hall, Englewood Cliffs, NJ (1973)
12. Burr, M., Krahmer, F.: SqFreeEVAL: An (almost) optimal real-root isolation algorithm. J. Symbolic Computation

47(2), 153–166 (2012)
13. Burr, M., Krahmer, F., Yap, C.: Continuous amortization: A non-probabilistic adaptive analysis technique. Elec-

tronic Colloquium on Computational Complexity (ECCC) TR09(136) (December 2009), http://eccc.hpi-web.
de/report/2009/136/

14. Burr, M.A.: Continuous amortization and extensions: With applications to bisection-based root isolation. J.
Symb. Comput. 77, 78–126 (2016). https://doi.org/10.1016/j.jsc.2016.01.007, http://dx.doi.org/10.1016/j.
jsc.2016.01.007

15. Burr, M.A., Gao, S., Tsigaridas, E.: The complexity of an adaptive subdivision method for approximating real
curves. In: 42Int’l Symp. Symbolic and Alge. Comp. (ISSAC). pp. 61–68. ISSAC ’17, ACM, New York, NY, USA
(2017). https://doi.org/10.1145/3087604.3087654, http://doi.acm.org/10.1145/3087604.3087654

16. Burr, M.A., Gao, S., Tsigaridas, E.: The complexity of subdivision for diameter-distance tests. J. Symbolic
Computation (2019), to appear.

17. Cucker, F., Ergür, A.A., Tonelli-Cueto, J.: Plantinga-vegter algorithm takes average polynomial time.
arXiv:1901.09234 [cs.CG] (2019)

18. Du, Z., Eleftheriou, M., Moreira, J., Yap, C.: Hypergeometric functions in exact geometric computation. In:
V.Brattka, M.Schoeder, K.Weihrauch (eds.) Proc. 5th Workshop on Computability and Complexity in Analysis.
pp. 55–66 (2002), malaga, Spain, July 12-13, 2002. In Electronic Notes in Theoretical Computer Science, 66:1
(2002), http://www.elsevier.nl/locate/entcs/volume66.html.

19. Du, Z., Yap, C.: Uniform complexity of approximating hypergeometric functions with absolute error. In: Pae, S.,
Park, H. (eds.) Proc. 7th Asian Symp. on Computer Math. (ASCM 2005). pp. 246–249 (2006)

20. Emiris, I.Z., Pan, V.Y., Tsigaridas, E.P.: Algebraic algorithms. In: Gonzalez, T., Diaz-Herrera, J., Tucker, A.
(eds.) Computing Handbook, 3rd Edition: Computer Science and Software Engineering, pp. 10: 1–30. Chapman
and Hall/CRC (2014)

21. Higham, N.J.: Accuracy and stability of numerical algorithms. Society for Industrial and Applied Mathematics,
Philadelphia, second edn. (2002)

22. Hsu, C.H., Chiang, Y.J., Yap, C.: Rods and rings: Soft subdivision planner for Rˆ3 x Sˆ2. In: Proc. 35th Int’l
Symp. on Comp. Geom.(SoCG 2019) (June 18-21, 2019), to appear. CG Week 2019, Portland Oregon. Also in
arXiv:1903.09416.

23. Hsu, C.H., Chiang, Y.J., Yap, C.: Rods and rings: Soft subdivision planner for Rˆ3 x Sˆ2. In: Proc. 35th Int’l
Symp. on Comp. Geom.(SoCG 2019) [22], to appear. CG Week 2019, Portland Oregon. Also in arXiv:1903.09416.

24. Imbach, R., Pan, V., Yap, C.: Implementation of a near-optimal complex root clustering algorithm. In: Proc. Int’l
Congress on Mathematical Software. LNCS, vol. 10931, pp. 235–244. Springer (2018), 6th ICMS, Notre Dame
University. July 24-27, 2018.

25. Imbach, R., Pouget, M., Yap, C.: Effective subdivision algorithm for isolating zeros of real systems of equations,
with complexity analysis (2019), to appear, 21st CASC, Moscow

https://doi.org/10.1145/2644288.2644291
http://doi.acm.org/10.1145/2644288.2644291
http://eccc.hpi-web.de/report/2009/136/
http://eccc.hpi-web.de/report/2009/136/
https://doi.org/10.1016/j.jsc.2016.01.007
http://dx.doi.org/10.1016/j.jsc.2016.01.007
http://dx.doi.org/10.1016/j.jsc.2016.01.007
https://doi.org/10.1145/3087604.3087654
http://doi.acm.org/10.1145/3087604.3087654


1626. Kearfott, R.B.: Rigorous global search: continuous problems, vol. 13. Springer Science & Business Media (2013)
27. Kerber, M., Sagraloff, M.: Efficient real root approximation. In: Schost, É., Emiris, I.Z. (eds.) ISSAC. pp. 209–216.

ACM (2011)
28. Kincaid, D., Cheney, W.: Numerical Analysis: Mathematics of Scientific Computing. Brooks/Cole, 3rd edn. (2002)
29. Ko, K.I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science, Birkhäuser, Boston

(1991)
30. Lien, J.M., Sharma, V., Vegter, G., Yap, C.: Isotopic arrangement of simple curves: An exact numerical approach

based on subdivision. In: Hong, H., Yap, C. (eds.) Mathematical Software – ICMS 2014. vol. LNCS 8592, pp.
277–282. Springer (2014), seoul, Korea, Aug 5-9, 2014

31. Lin, L., Yap, C.: Adaptive isotopic approximation of nonsingular curves: the parameterizability and nonlocal
isotopy approach. Discrete and Comp. Geom. 45(4), 760–795 (2011)

32. Lin, L., Yap, C., Yu, J.: Non-local isotopic approximation of nonsingular surfaces. Computer-Aided Design 45(2),
451–462 (Oct 2012), symp. on Solid and Physical Modeling (SPM). U. of Burgundy, Dijon, France, Oct 29-31,
2012.

33. Mehlhorn, K., Schirra, S.: Exact computation with leda real – theory and geometric applications. In: Alefeld, G.,
Rohn, J., Rump, S., Yamamoto, T. (eds.) Symbolic Algebraic Methods and Verification Methods. pp. 163–172.
Springer-Verlag, Vienna (2001)

34. Moore, R.E.: Interval Analysis. Prentice Hall, Englewood Cliffs, NJ (1966)
35. Ó’Dúnlaing, C., Yap, C.K.: A “retraction” method for planning the motion of a disc. J. Algorithms 6, 104–111

(1985), also, Chapter 6 in Planning, Geometry, and Complexity, eds. Schwartz, Sharir and Hopcroft, Ablex Pub.
Corp., Norwood, NJ. 1987.

36. Pedersen, P.: Counting real zeros. In: Proc. Conf. Algebraic Algorithms and Error Correcting codes. pp. 318–332.
No. 539 in LNCS, Springer-Verlag (1991)

37. Pedersen, P.: Counting Real Zeros. Ph.D. thesis, New York University (1991), also, Courant Institute Computer
Science Technical Report 545 (Robotics Report R243)

38. Pedersen, P., Roy, M.F., Szpirglas, A.: Counting real zeros in the multivariate case. In: Eyssette, F., Galligo, A.
(eds.) Computational Algebraic Geometry, Progress in Mathematics, vol. 109. Birkhäuser, Boston, MA (1993)

39. Plantinga, S., Vegter, G.: Isotopic approximation of implicit curves and surfaces. In: Proc. Eurographics Sympo-
sium on Geometry Processing. pp. 245–254. ACM Press, New York (2004)

40. Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer-Verlag (1985)
41. Riley, K., Hopson, M., Bence, S.: Mathematical Methods for Physics and Engineering. Cambridge University

Press, third edn. (2006)
42. Sagraloff, M., Yap, C.K.: A simple but exact and efficient algorithm for complex root isolation. In: Emiris, I.Z.

(ed.) 36th Int’l Symp. Symbolic and Alge. Comp. pp. 353–360 (2011), june 8-11, San Jose, California.
43. Sagraloff, M., Yap, C.K.: An efficient exact subdivision algorithm for isolating complex roots of a polynomial and

its complexity analysis (July 2009), submitted. Full paper from http://cs.nyu.edu/exact/ or http://www.mpi-
inf.mpg.de/˜msagralo/

44. Schuurman, P., Woeginger, G.: Approximation schemes: A tutorial. In: Möhring, R., Potts, C., Schulz, A., Woeg-
inger, G., Wolsey, L. (eds.) Lectures in Scheduling (2007), to appear.

45. Sharma, V., Yap, C.: Near optimal tree size bounds on a simple real root isolation algorithm. In: 37th Int’l Symp.
Symbolic and Alge. Comp.(ISSAC’12). pp. 319 – 326 (2012), jul 22-25, 2012. Grenoble, France.

46. Sharma, V., Yap, C.K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J., Tóth, C. (eds.) Hand-
book of Discrete and Computational Geometry, chap. 45, pp. 1189–1224. Chapman & Hall/CRC, Boca Raton,
FL, 3rd edn. (2017)

47. Snyder, J.: Generative Modeling for Computer Graphics and CAD. Symbolic Shape Design Using Interval Anal-
ysis. Academic Press Professional, Inc., San Diego, CA, USA (1992)

48. Trefethen, L.N., Bau, D.: Numerical linear algebra. Society for Industrial and Applied Mathematics, Philadelphia
(1997)

49. Ueberhuber, C.W.: Numerical Computation 2: Methods, Software, and Analysis. Springer, Berlin (1997)
50. Wang, C., Chiang, Y.J., Yap, C.: On soft predicates in subdivision motion planning. Comput. Geometry: Theory

and Appl. (Special Issue for SoCG’13) 48(8), 589–605 (Sep 2015)
51. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)
52. Xu, J., Yap, C.: Effective subdivision algorithm for isolating zeros of real systems of equations, with complexity

analysis. In: 44th Int’l Symp. Symbolic and Alge. Comp. (2019), jul 15-18. Beihang University, Beijing.
53. Yap, C., Sagraloff, M., Sharma, V.: Analytic root clustering: A complete algorithm using soft zero tests. In: The

Nature of Computation. Logic, Algorithms, Applications. LNCS, vol. 7921, pp. 434–444. Springer (2013)
54. Yap, C., Sagraloff, M., Sharma, V.: Analytic root clustering: A complete algorithm using soft zero tests. In: The

Nature of Computation. Logic, Algorithms, Applications [53], pp. 434–444
55. Yap, C.: Soft subdivision search and motion planning, II: Axiomatics. In: Frontiers in Algorithmics. Lecture Notes

in Comp. Sci., vol. 9130, pp. 7–22. Springer (2015), plenary talk at 9th FAW. Guilin, China. Aug. 3-5, 2015.



1756. Yap, C., Luo, Z., Hsu, C.H.: Resolution-exact planner for thick non-crossing 2-link robots. In: Proc. 12th
Intl. Workshop on Algorithmic Foundations of Robotics (WAFR ’16) (2016), dec. 13-16, 2016, San Francisco.
The appendix in the full paper (and arXiv from http://cs.nyu.edu/exact/ (and arXiv:1704.05123 [cs.CG])
contains proofs and additional experimental data.

57. Yap, C.K.: On guaranteed accuracy computation. In: Chen, F., Wang, D. (eds.) Geometric Computation, chap. 12,
pp. 322–373. World Scientific Publishing Co., Singapore (2004)

58. Yap, C.K.: In praise of numerical computation. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms,
LNCS, vol. 5760, pp. 308–407. Springer-Verlag (2009)

59. Yu, J., Yap, C., Du, Z., Pion, S., Bronnimann, H.: Core 2: A library for Exact Numeric Computation in Geometry
and Algebra. In: 3rd Proc. Int’l Congress on Mathematical Software (ICMS). pp. 121–141. Springer (2010), kobe,
Japan. Sep 13-17, 2010. LNCS No. 6327.


	XXX: Lecture Notes in Computer Science
	1 Introduction
	1.1 From Zero Problems to Predicates

	2 Two Illustrative Classes of Problems
	3 Effectivity of the Subdivision Framework
	4 Numerical Precision in Subdivision Framework
	5 On Oracle Objects
	5.1 Soft Tests
	5.2 Whence Number Oracles?
	5.3 Cluster Oracles

	6 Conclusion and Open Problems


