
Amortized Analysis of Smooth Box Subdivisions in All Dimensions

Huck Bennett ∗ Chee Yap †

January 27, 2014

Abstract1

Quadtrees are a well-known data structure for representing geometric data in the plane, and2

naturally generalize to higher dimensions. A basic operation is to expand the tree by splitting3

any given leaf. A quadtree is smooth if any two adjacent leaf boxes differ by at most one in4

height. In this paper, we analyze quadtrees that maintain smoothness with each split operation.5

Our main result shows that the smooth-split operation has an amortized cost of O(1) time for6

quadtrees of any fixed dimension D. We also present examples demonstrating the ineffectiveness7

of related models in order to motivate our approach, and prove a related lower bound.8

1 Introduction9

Quadtrees [dBCvKO08, FB74, Sam90b] are a well-known data structure for representing geometric10

data in two dimensions. In this case there exists a natural one-to-one correspondence between11

quadtree nodes v and boxes B in the underlying subdivision which allows us to refer to boxes and12

nodes interchangeably. Here we consider the extension to an aligned subdivision of a D-dimensional13

box in which an internal node is a box with 2D congruent subboxes. We refer the reader to Chapter14

14 in [dBCvKO08] whose nomenclature we largely follow.15

Two boxes (or nodes in a quadtree) are adjacent if the boxes share a (D−1)-dimensional facet,16

but have disjoint interiors. The neighbors of a box B are those leaf boxes adjacent to B. We17

follow [Moo92] in calling a quadtree smooth if any two adjacent leaf boxes differ by at most one in18

height. Other sources use the term balanced to refer to this condition, which we avoid in order to19

avoid conflation with the standard meaning of balanced trees in computer science.20

A basic operation is a split of a leaf box B, written split(B). This divides B into 2D congruent21

subboxes which become its children (B is no longer a leaf). A split operation is a useful abstraction22

of many common operations performed on quadtrees including point insertion and mesh refinement.23

Our quadtrees support two operations: ssplit and neighbor query. Define a smooth split24

operation or ssplit(B) to be split(B) followed by a smooth of the resulting tree. A neighbor25

query neighbor query(B, d) returns a neighbor of B in direction d at least as large as B but of26

minimal size. The neighbor returned by neighbor query(B, d) is unique if it exists (it may not27

if B is on the boundary of the subdivision). Neighbor queries are useful in quadtree applications28

such as motion planning [WCY13].29

The motivation for using smooth quadtrees comes from multiple domains including good mesh30

generation [dBCvKO08, BEG94] and motion planning [WCY13]. One advantage is that a given31

∗Department of Computer Science, Courant Institute, New York University. hbennett@cs.nyu.edu
†Department of Computer Science, Courant Institute, New York University. yap@cs.nyu.edu

1

Algorithm 1: Smooth Split (ssplit)

Input: Smooth quadtree T , Leaf v ∈ T to split
Output: Smooth quadtree T ′

split(v)
foreach v′ ∈ v.neighbors \ v.siblings do

if v′.depth < v.depth then

ssplit(v′)
end

end

unsplit box has O(1) neighbors, meaning that by associating a constant number of neighbor pointers1

with each box we can perform neighbor query operations in O(1) time. This contrasts with the2

O(h) time operation in basic quadtrees that involves traversing to the nearest common ancestor.3

1.1 Our Results4

In this paper we present and analyze a quadtree variant that we call a dynamically smoothed5

quadtree that maintains smoothness as an invariant between splits, allowing for performing the6

neighbor query operation in O(1) time. This variant has been proposed before such as in Exercise7

14.8 in [dBCvKO08], although to the best of our knowledge bounds on the complexity of smooth8

splits have never been studied rigorously.9

The primary contribution of this paper is a proof that amortized O(1) additional split operations10

is sufficient for each smooth split operation in quadtrees of any fixed dimension. We prove this11

result as Theorem 22 in section 3.5 in Appendix B, and give a more elementary (but similar) proof12

of the 2-dimensional case section 2.2. More formally Theorem 22 shows,13

Theorem 1. Starting from an initially trivial subdivision consisting of one box, the total cost of14

any sequence of smooth splits ssplit(B1), . . . , ssplit(Bn) is O(n). Thus the amortized cost of a15

smooth split is O(1).16

Additionally, we give counterexamples motivating our data structure and analysis. We first show17

that without smoothing we cannot achieve an amortized O(1) cost for both splits and neighbor18

queries. Second, we address a claim made in [LSS13b] that smoothness can be restored in worst-case19

O(1) time in a related quadtree model in the appendix.20

We also address the question of the constant in the O(1) amortized bound on the number of21

splits per smooth split, and particularly the dependence on dimension (we generally consider the22

dimension to be fixed). In addition to the O(2D(D + 1)!) upper bound that we get from the proof23

of Theorem 22, we also prove a lower bound of Ω(2D(D + 1)) in Appendix C, Theorem 28.24

1.2 Data Structure25

Table 1 compares the cost of standard operations on quadtrees. We use n to denote the number26

of nodes in and h the height of a quadtree T . We achieve improvements to the neighbor query27

and smooth operations at the cost of split requiring amortized rather than worst-case O(1) time.28

The O(1) time bounds for the ssplit and split operations are for the local operations – when29

2

Smooth quadtrees Basic quadtrees

neighbor query O(1) O(h)
ssplit/split Amortized O(1) O(1)

smooth (Maintained as invariant) O((h+ 1)n)
Space used O(n) O(n)

Table 1: Comparison of operations with basic quadtrees in fixed dimension. All costs are worst-case
except for splitting smooth quadtrees.

the algorithm already has a pointer to the box it wishes to split such as the scenario described1

in [WCY13]. Traversing from the root to obtain this pointer takes time O(h).2

Algorithm 1 shows the simplicity of the algorithm for performing smooth splits: simply recur-3

sively check whether any neighbors of a node need to be split to regain smoothness. Nevertheless,4

the analysis of the algorithm is subtle.5

1.3 Related Work6

The following theorem is a well-known result, saying that an arbitrary quadtree can be smoothed7

using O(n) splits and O((h + 1)n) time:8

Fact 1 (Theorem 14.4 in [dBCvKO08], Theorem 3 in [Moo95]). Let T be a quadtree with n9

nodes and of height h. Then the smooth version of T has O(n) nodes and can be constructed in10

O((h+ 1)n) time.11

Fact 1 gives a bound for monolithic tree smoothing, the operation that we call smooth in Table 1.12

It says that given an arbitrary quadtree we can smooth it all at once in O(n) time. Here we study13

dynamic tree smoothing in which we smooth the tree after each split, instead of performing an14

arbitrary number of splits before smoothing.15

Intuitively a single splitting operation does not unsmooth a quadtree much, so only a few16

additional splits should be required to resmooth a tree after one split. To show this formally one17

might try applying the analysis given by Fact 1 to a sequence of smooth splits18

ssplit(B1), . . . , ssplit(Bn). However that analysis does not consider any measure of how smooth19

the starting tree is, and only gives a worst-case linear time bound of O(i) for smoothing after the ith20

split in a sequence split(B1), . . . split(Bn) where split(B1) is applied to the root. This analysis21

shows that a sequence of smooth splits ssplit(B1), . . . , ssplit(Bn) requires
∑n

i=1O(i) = O(n2)22

time for an amortized bound of O(n) which is then no better than the worst-case bound.23

We note that Theorem 1 proves a stronger bound than Fact 1 on the number of splits required24

to smooth a quadtree. This is because Theorem 1 shows that only O(n) additional smooth splits25

are needed to maintain smoothness in any sequence of n splits. Therefore, after n (non-smooth)26

splits, we could still perform these O(n) smooth splits to achieve smoothness.27

1.3.1 Other Results28

In recent work Löffler et al. [LSS13b] recognize that maintaining smoothness “could cause a linear29

‘cascade’ of cells needing to be split.” This cascading behavior – what we define formally in terms30

of forcing chains – is the focus of our analysis and main result. They claim an O(1) worst-case31

algorithm for performing smooth splits in a related quadtree model, but there are problems with32

3

their presented algorithm which we address in this paper, and which make their result unsuitable1

for our setting.2

Moore [Moo92, Moo95] proves that “monolithic” smoothing of arbitrary quadtrees requires3

O(n) splits. Although this result seems to have been known earlier, in [Moo95] Moore reproves4

this result in basic quadtrees using a gadget called a “barrier”, and then extends the result to5

generalizations of quadtrees including triangular quadtrees, higher degree quadtrees, and higher6

dimensional quadtrees. Fact 1 states this result in the standard setting.7

In [dBRS12], de Berg et al. study refinement of compressed quadtrees. They consider a re-8

finement T1 of a quadtree T0 to be extension of T0 in which all boxes that were in T0 have O(1)9

neighbors in T1. This is a relaxation of the notion of balancing both in terms of the precise number10

of neighbors that a box may have (which is simply assumed to be bounded, but not by a particular11

constant) and in the sense that boxes in T1 need not be smooth with respect to each other. The12

authors prove that a refinement of a compressed quadtree may be performed in O(n) time, where n13

is the size of the quadtree. This result has a similar flavor to the well-known “monolithic” balancing14

result described in Fact 1.15

Amortized analysis of quadtree operations has appeared in previous work. Park and Mount [PM12]16

introduce the splay quadtree, in which they use amortized analysis to analyze the cost of a sequence17

of data accesses in a quadtree whose smoothness is dynamically updated using rotations in a similar18

manner to standard splay trees. Overmars and van Leeuwen [OvL82] analyze dynamic quadtrees,19

studying the amortized (what they call average-case) cost of insertions into quadtrees.20

Recently Sheehy [She] proposed extending results in his previous work on optimal mesh sizes [She12]21

to prove the efficient balancing results presented in this paper. Essential future work involves study-22

ing the continuous techniques used in this approach, and determining whether it is both viable and23

leads to better bounds than those given by the combinatorial approach.24

1.4 Motivation for Approach25

The motivation for studying the quadtree model presented in this paper comes from the ineffective-26

ness of other natural models to support both efficient neighbor query and split operations. We27

make this notion rigorous by examining two attempts to achieve this, and show that they fail in our28

setting. First, we analyze what happens if we use our model but without smoothing. Additionally29

in the appendix we discuss a paper [LSS13b] that claims a related result.30

1.4.1 Neighbor Pointers without Smoothing31

Suppose that we maintain neighbor pointers to minimal neighbors of equal or greater size in an32

unsmoothed subdivision. The following result gives an amortized O(log n) lower bound on the33

complexity of a split in this model:34

Lemma 2. Let B1 denote the root box. In the worst case, a sequence of n splits split(B1), . . . , split(Bn)35

has complexity Ω(n log n).36

Proof. We refer to the setup shown in Figure 1, where the boxes are first subdivided as shown on37

the left, and then further subdivided as shown on the right where the boxes on the boundary of38

the halves are at depth k + 1 in the quadtree.39

After an initial split, each half requires
∑k

i=1 2
i = 2k+1 − 2 additional splits. The total number40

of splits is therefore n = 1 + 2(2k+1 − 2) = 2k+2 − 3 ⇒ n = Θ(2k).41

4

Figure 1: A sequence of splits leading to an unsmooth subdivision (left) and a sequence of matching
splits that requires amortized log n pointer updates between boxes on opposite sides of the dotted
center line per split (shown in red, right)

For the lower bound we consider only updates to the pointers straddling the vertical center line in1

the second splitting phase, as shown by the red boxes. For each splitting level i, we must update 2k−i
2

pointers in each of 2i boxes. We therefore must update
∑k

i=1 2
i2k−i =

∑k
i=1 2

k = k2k = Θ(n log n)3

pointers.4

The failure of this attempt and the strategy for worst-case O(1) balancing given in the appendix5

to give efficient, correct algorithms for both split and neighbor query operations provides evi-6

dence that a balancing algorithm achieving worst-case O(1) time per split would have to be more7

sophisticated and non-localized.8

2 2-Dimensional Case9

We start with an elementary, self-contained proof of Theorem 1 for 2-dimensional quadtrees that10

develops most of the essential ideas for the d-dimensional case.11

2.1 Definitions12

Suppose that a box B is adjacent to a box B′ and B.depth > B′.depth. In that case, we say that13

B forces B′ or B=⇒B′. The forcing terminology comes from our main application, the analysis14

of smoothing: suppose B,B′ belongs to a subdivision S. If we split B, then we are forced to15

split B′ and possibly other boxes in order to smooth the resulting subdivision. More precisely, let16

B.depth − B′.depth = k ≥ 1. Then we must split B′ and recursively split exactly k − 1 proper17

descendants of B′ in order to maintain smoothness in S. Of course if S was originally smooth, then18

no child of B′ needs to be further split. We will mostly deal with the case where S is originally19

smooth and in this case we always have k = 1.20

A forcing chain B1=⇒B2 · · ·=⇒Bn is a sequence of boxes B1, . . . , Bn such that Bi=⇒Bi+1 for21

every i ∈ [n− 1]. Call B1 the head of this chain.22

We write B
d

=⇒B′ if B=⇒B′ and B′ is a d-thern neighbor of B. Here a direction d is specified23

by a standard normal unit vector ui or its negation −ui. We write ∗=⇒B if there exists B′ such24

that B′=⇒B, and similarly write B=⇒∗ if there exists B′ such that B=⇒B′. Lastly, we denote25

the parent of a box B as p(B), and the kth ancestor of a box as pk(B).26

5

∆Φ1 = 0 ∆Φ2 = 3 ∆Φ3 = −1

Figure 2: Example of the three cases presented in Equation 3. We consider the change each split
has on Φ(v), where v corresponds to the outer red box in each case.

2.1.1 Potential Function1

We define the following potential function for a node v ∈ T :2

Φ(v) =

{
0 if no children of v have been split
of unsplit children of v otherwise

(1)

We also extend this definition to give a potential function for the quadtree:3

Φ(T) =
∑

v∈T

Φ(v) (2)

We note that Φ(v) = 0 if either all or none of the children of v are split. Furthermore, if v4

is itself a leaf then Φ(v) = 0 vacuously. It follows that only parents of leaf nodes have non-zero5

contribution to the potential Φ(T). Furthermore, splitting a box changes the potential of at most6

one node (its parent).7

Let T be a quadtree, and T ′ be the quadtree resulting from splitting a leaf v. Splitting v does8

not change the potential of v, but changes the potential of the parent p(v) of v by either 3 if p(v)9

had no split children or −1 if p(v) had other split children. A leaf v always has a parent except in10

the degenerate case where v is the root of the tree. We then get the following:11

∆Φ = Φ(T ′)− Φ(T) =





0 If v is the root of T
3 If v has no split siblings
−1 If v has a split sibling

(3)

Because the first case only occurs on the first split, in which case only a single box splits12

and ∆Φ = 0, it suffices to consider the last two cases for our analysis. Note that we may write13

∃v′ p(v) = p2(v′) to formalize “v has a split sibling.”14

2.2 Lemmas15

The following sequence of lemmas leads to the proof of Theorem 1.16

Lemma 3. There are at most two chains caused by splitting a box B.17

Proof. We get an immediate upper bound of 2 on the number of chains that can be headed by a18

box B1 since a box will never force in the direction of an adjacent sibling of which every box has19

two. Furthermore, we show that ∗=⇒Bi implies that there exists at most one box Bi+1 such that20

Bi=⇒Bi+1. Since the head B1 of a splitting chain Bi is the only box in a splitting chain which may21

6

Bi Bi

Case I Case II

Figure 3: Case I: p(Bi−1) is a sibling of Bi and Case II: p(Bi−1) is not a sibling of Bi. Neighbors
of B other than Bi−1 which must be split to at least the level of Bi are colored gray. Boxes which
necessarily exist assuming that the subdivision is smooth are outlined with dotted lines.

not be forced itself, this will imply that there are at most two splitting chains caused by splitting1

a box B1.2

We immediately have ∗
d

=⇒Bi ⇒ Bi 6
−d
=⇒∗ since a box cannot simulatenousely have smaller and3

larger neighbors in the same direction. There are then 3 other directions Bi may force in. We4

consider two cases, as shown in Figure 3:5

• Case I, (p(Bi−1) is a sibling of Bi): The dotted outer box must be split in order to be smooth6

with respect to Bi−1. A box in one of the remaining directions is a sibling Bi, while a box7

in another is a child of the dotted box (both shown in gray). These must both be split to at8

least the level of Bi, leaving a single possibility for Bi+1.9

• Case II, (p(Bi−1) is not a sibling of Bi): Boxes in two of the possible three remaining directions10

are siblings of Bi (shown in gray) and must therefore be split to at least the depth of Bi,11

leaving a single possibility for Bi+1.12

13

Lemma 4. Assume a smooth quadtree in which ∗
d

=⇒B1=⇒B2 for some d. Then ∗
d

=⇒B2. In other14

words, if B1 is d-forced and B1 forces B2, then B2 is d-forced (not necessarily by B1).15

Proof. We again refer to Figure 3, and evaluate each case separately:16

• Case I, (p(Bi−1 is a sibling of Bi): Here Bi−1
d

=⇒Bi
d

=⇒Bi+1 so the claim trivially holds.17

• Case II, (p(Bi−1 is not a sibling of Bi): We have assumed that Bi−1
d

=⇒Bi
d′
=⇒Bi+1 where18

d 6= d′. In this case, either Bi−1 or its d′-thern sibling must have the dotted box (call it B′
i)19

as its d′-thern neighbor. However, the dotted box must be a −d-thern neighbor of Bi+1, but20

of greater depth. Therefore B′
i

d
=⇒Bi+1 and the claim holds.21

22

7

B0

B1

B2

Figure 4: Assuming B0
d

=⇒B1
d

=⇒B2 the dotted boxes must exist. Therefore the parent of B0 must
be split and a sibling of B1.

By transitivity we conclude:1

Corollary 5. If B1
d

=⇒B2=⇒· · ·=⇒Bn then Bi is d-forced for i ≥ 2.2

The following additional corollary says that a split chain may go in at most two directions:3

Corollary 6. Given a split chain B1
d1=⇒B2

d2=⇒· · ·
dn−1

=⇒Bn, we have that |{di : i ∈ [n − 1]}| ≤ 2.4

Proof. We have that ∗
d

=⇒B ⇒ B 6
d

=⇒B, meaning that a box may force in at most two directions.5

However, Lemma 4 shows that ∗
d

=⇒Bi=⇒Bi+1 ⇒ ∗
d

=⇒Bi+1, meaning that a box in a forcing chain6

is always forced in all of the directions as its predecessors. Therefore, if Bi is forced in two directions7

then Bj is also forced in the same two directions for all j > i, and cannot force in any additional8

directions.9

10

Lemma 7. If for some boxes B1, B2, B3 we have B1
d

=⇒B2
d

=⇒B3 then B2 has a split sibling.11

Proof. Figure 4 shows the idea behind Lemma 7. Because B1
d

=⇒B2 we have that B1 is a d-thern12

child of its parent, meaning that its (d+ 2)-thern neighbor of the same size is also its sibling.13

Furthermore, because B0
d

=⇒B1, we have that B0 is a (d + 2)-thern neighbor of B1. Because14

B0 has side length exactly half that of B1, it follows that p(B0) and B1 are siblings. Furthermore,15

because p(B0) has children it is clearly split.16

Lemma 8 (Main Lemma). At most 3 nodes in a split chain B1
d1=⇒B2

d2=⇒· · ·
dm−1

=⇒Bm have no split17

siblings.18

Proof. We combine Corollaries 5 and 6 with Lemma 7 to prove the Main Lemma. IfBi−1
d

=⇒Bi
d

=⇒Bi+119

then Bi has a split sibling by Lemma 7.20

We characterize which boxes may not have this property, showing that B1, Bi, Bm may not have21

split siblings. Here Bi is the first box such that di 6= d1 in Bi
di=⇒Bi+1.22

Box B1 need not be forced from any direction, and Bn need not force in any direction, so23

Lemma 7 does not apply. Furthermore if the chain goes in two directions Bi exists and is d1-forced,24

but is not d1 forcing so again again 7 does not apply.25

To see that all other boxes must have split siblings we consider two cases:26

8

B1

B2

B3

B4

B
′

3

Figure 5: A split chain B1
d

=⇒B2
d

=⇒B3
d′
=⇒B4 of four nodes illustrating Lemma 8. Note that B1

and B3 have no split siblings, and B4 may also be the northwest child of its parent, and therefore
also may not have any split siblings. Box B2, on the other hand, satisfies Lemma 7. Furthermore,
B4 is d′-forced although not by B3.

• Case I, (1 < j < i): We have that Bj−1
d1=⇒Bj

d1=⇒Bj+1 by assumption that dj = d1 for all1

j < i. Therefore Lemma 7 applies to Bj .2

• Case II, (i < j < n): We have that Bj

dj
=⇒Bj+1 where dj ∈ {d1, di} since by Corollary 6 a3

split chain may go in at most two directions. Furthermore by Corollary 5 ∗
d1=⇒Bj and ∗

di=⇒Bj4

meaning that either ∗
d1=⇒Bj

d1=⇒Bj+1 or ∗
di=⇒Bj

di=⇒Bj+1. In either case Lemma 7 applies to5

Bj .6

7

We now give the proof of Theorem 1 using the main lemma:8

Proof of Theorem 1 in 2 dimensions. We fix the cost of a split costi = split(Bi) as 1. To prove a9

constant amortization bound, we need to show that there exists chargei = O(1) such that10

chargei ≥ costi+∆Φi (4)

holds for each smooth split operation ssplit(Bi). By equation 3 we have11

costi+∆Φi =

{
4 if vi has no split siblings
0 if vi has a split sibling

(5)

By Lemma 8 at most three boxes per split chain have no split siblings. Furthermore, by12

Lemma 3 a smooth split of a box B0 causes at most two split chains. It therefore suffices to charge13

4 · 3 · 2 = 24 = O(1) per smooth split operation.14

Remark 1. Although 24 is the best constant we can get for the upper bound on the amortized cost15

of a smooth split we conjecture that it is not tight.16

9

3 General Case1

In order to handle arbitrary dimensions, we will need to develop some notation and concepts. All2

missing proofs are in the Appendix.3

3.1 Basic Terminology.4

We give a brief summary of the concepts needed. The appendix contains more careful definitions.5

Here we rely on the intuitions that are well-known from quadtrees. We consider subdivision of the6

standard cube [−1, 1]D in D ≥ 1 dimensions. A subdivision tree T is a finite tree rooted at [−1, 1]D7

whose nodes are subboxes of [−1, 1]D , and where each internal node has 2D congruent children.8

The set leaves of T constitute a subdivision of [−1, 1]D. Nodes of T are also called “aligned boxes”,9

and every aligned box has a natural depth. Conversely, given any subdivision S of aligned boxes,10

there is a unique subdivision tree T(S).11

Let j = −1, 0, 1, . . . ,D. Two boxes B,B′ are j-adjacent if B ∩B′ is a j-dimensional box. Four12

special cases are noteworthy:13

• If they are D-adjacent, we say B and B′ overlap.14

• If they are (D − 1)-adjacent, we say they are neighbors.15

• 0-adjacency means they share a common corner only.16

• (−1)-adjacency means the boxes are disjoint.17

Fact 2. Let B,B′ be overlapping aligned boxes. Then either B ⊆ B′ or B′ ⊆ B.18

By an indicator we mean an element d ∈ {1, 0,−1}D. If d has exactly one non-zero component,19

we call it a direction indicator ; if it has no zero components, we call it a child indicator (we do not20

need child indicators in this paper, but it will be useful in coding these algorithms). Two directions21

d and d′ are opposite if d = −d′, and adjacent if d 6= d′ and they are not opposite. If B is a child22

of B′, then we write B ≺ B′, and write p(B) = B′. E.g., p2(B) is the grandparent of B.23

If B and B′ are (D−1)-adjacent, there is a unique direction indicator d such that B′ is adjacent24

to B in direction d, which we denote by B
d

−→B′. Moreover, B
d

−→B′ iff B′ −d
−→B. See Appendix25

for the formal definition of this relation.26

Given a box B, we can project and co-project it in one of D directions: let i ∈ {1, . . . ,D}.27

• (Projection) Proji(B) :=
∏D

j=1,j 6=i Ij be a (D − 1) dimensional box.28

• (Co-Projection) Coproji(B) := Ii denote the ith interval of B =
∏D

j=1 Ij.29

3.2 Forcing Chains30

Let S be a subdivision of the standard cube [−1, 1]D . We say S is smooth if any two neighboring31

boxes B,B′ in S differ in depth by at most 1. We are interested in maintaining smooth subdivisions.32

More precisely, if S is smooth, and we split a box in S, there is minimal set of additional boxes in33

S that must be split in order to maintain smoothness.34

If B
d

−→B′, and the depth(B) > depth(B′) then we denote this relationship by

B
d

=⇒B′.

10

We say B d-forces B′ (or simply, B forces B′). Intuitively it means that if B,B′ are boxes in1

a subdivision and we split B, then we are forced to split B′ if we want to make the subdivision2

smooth. Because we maintain smoothness as an invariant B=⇒B′ means depth(B) = 1+depth(B′).3

A sequence of such forcing relations4

C : B0
d1=⇒B1

d2=⇒B2 · · ·
dk=⇒Bk (6)

is called a chain with k links. The set {d1, . . . , dk} are the directions of C; we say C is monotone5

if its direction set does not contain any pair of opposite directions.6

The following lemma follows from the definition of forcing:7

Lemma 9 (Forcing). The forcing relationship B
d

=⇒B′ is equivalent to the following two conditions:8

(i) Projd(B) ≺ Projd(B
′)9

(ii) Coprojd(B)=⇒ Coprojd(B
′)10

Note that conditions (i) and (ii) refer to forcing and child relationships in dimensions D−1 and11

1, respectively.12

3.3 Analysis of 2-Link Chains13

In this part, we consider chains with 2-links: B=⇒B′=⇒B′′. There are two separate phenomena14

to understand. The first phenomenon already arise in one dimension (D = 1):15

(c) B
1

=⇒B′ 2
=⇒B′′

(b) B
1

=⇒B′ 1
=⇒B′′I I ′ I ′′

(a) I=⇒I ′=⇒I ′′

B′

B′′

B′

B′′

B′

B′′

B′
B′′

Figure 6: Analysis of 2-Link Chains

Lemma 10 (Single Direction). Suppose I=⇒I ′=⇒I ′′ holds for intervals in a smooth subdivision.16

Then p2(I) = p(I ′).17

We omit the easy proof, as illustrated by Figure 6(a). Note that we do not claim that p3(I) =18

p(I ′′) (this possibility is suggested by Figure 6(a), but it is not necessarily the case).19

It is useful to understand the idiom “p2(B) = p(B′)” as telling us that p(B) and B′ are siblings.20

We show that this works in higher dimensions as well, but we now need an addition condition.21

When D = 1, the fact that I=⇒I ′=⇒I ′′ implies that there is a direction d such that I
d

=⇒I ′
d

=⇒I ′′.22

In higher dimensions, we must explicitly specify this requirement.23

See Figure 6(b) which illustrates two cases in D = 2.24

Theorem 11 (Single Direction). Suppose B
d

=⇒B′ d
=⇒B′′ holds for boxes in a smooth subdivision.25

Then p2(B) = p(B′).26

11

The second phenomenon arises for D ≥ 2. Consider the chain

B
d

=⇒B′ d′
=⇒B′′

where d 6= d′. For D = 2, we have this lemma:1

Lemma 12 (Two Directions). Consider boxes in a smooth subdivision of [−1, 1]2. SupposeB
d

=⇒B′ d′
=⇒B′′

2

holds where d 6= d′. Then p2(B) 6= p(B′).3

We omit the elementary proof, which is illustrated in Figure 6(c). Two cases are illustrated by4

the figure: in both cases, we show B
1

=⇒B′ 2
=⇒B′′. In the first case, the subdivision is smooth and5

p2(B) 6= p(B′), confirming our lemma. In the second case, p2(B) = p(B′) but the subdivision is6

not smooth, thus confirming our lemma in the contrapositive.7

We extend this to arbitrary dimensions.8

Theorem 13 (Two Directions). Consider boxes in a smooth subdivision of [−1, 1]D (D ≥ 2).9

Suppose B
d

=⇒B′ d′
=⇒B′′ holds where d 6= d′. Then p2(B) 6= p(B′).10

The next result is a kind of commutative diagram argument. It’s proof will depend on the Two11

Directions result (Theorem 13). As usual, we prove the result in two dimensions first (see Figure 7).12

I ′

I

J

I ′′

J ′

J ′′

K

B
1

=⇒B′ 2
=⇒B′′

B′

B′′

B

A

A′

p
2(B) p(B′)

A′′

(b) (c)(a)

(A) d′

d′

d

d

B′′

d′

d

d
p
2(B) p(B′)

d′

A′′
A′ B′′

B′B

Figure 7: Commutative Diagram for Forcing

Lemma 14 (Commutative Diagram). Consider boxes in a smooth subdivision of [−1, 1]2. Suppose13

B
d

=⇒B′ d′
=⇒B′′ holds where d 6= d′. Then there exists a box A′ such that A′ d

=⇒B′′.14

This lemma is best understood in terms of a commutative diagram. It says that there exists15

some A where p(A) = p(B) and some A′ such that the relationships of (7) hold:16

A B′

A′ B′′

d′

d

d

d′ (7)

12

Theorem 15 (Commutative Diagram). Consider boxes in a smooth subdivision S of [−1, 1]D for1

D ≥ 2. Suppose B
d

=⇒B′ d′
=⇒B′′ holds for some d 6= d′. Then there exists a box A′ in S such that2

A′ d
=⇒B′′.3

3.4 Monotonicity in Smooth Subdivisions.4

Theorem 15 motivates the following notions for boxes in a subdivision S: for all B ∈ S, if there5

exists A ∈ S such that A
d

=⇒B then we say B is d-forced, and write ∗
d

=⇒B. Furthermore, let R(B)6

denote the set of directions d such that B is d-forced, and r(B) := |R(B)| is its cardinality. Note7

that 0 ≤ r(B) ≤ 2D. Similarly, we write B
d

=⇒∗ if there exists A ∈ S such that B
d

=⇒A, and let8

S(B) denote the set of directions d such that B
d

=⇒∗; let s(B) := |S(B)|. Clearly, 0 ≤ s(B) ≤ D.9

Note some smooth subdivision S is normally implied in the use of this notation. Only for10

emphasis do we explicitly mention S.11

Note that if A
d

=⇒B and B
−d
=⇒B′, then p2(A) ⊆ B′. This is impossible since A,B′ are boxes12

of a subdivision. In other words, d ∈ R(B) implies −d /∈ S(B), and conversely d ∈ S(B) implies13

−d /∈ R(B). Thus:14

R(B) ∩ −S(B) = ∅. (8)

The following follows directly from Theorem 15:15

Theorem 16. For boxes in a smooth subdivision, B=⇒B′ implies R(B) ⊆ R(B′) and hence16

r(B) ≤ r(B′).17

In a general subdivision, we could have non-monotone chains (i.e., a chain whose directions18

include both d and −d for some d). We show that smoothness implies monotone chains:19

Theorem 17. Chain in a smooth subdivision are monotone.20

Proof. Consider any chain as in (6). It follows from the above corollary that {d1, . . . , di} ⊆ R(Bi)21

for each i. It suffices to show that −di+1 /∈ R(Bi). Note that di+1 ⊆ S(Bi). Therefore (8) implies22

−di+1 /∈ R(Bi). Q.E.D.23

If A=⇒B and p2(A) = p(B), then p(A) is called a split adjacent sibling of B. The next lemma24

upper bounds s(B) when B has split adjacent siblings:25

Lemma 18.26

(i) If B has exactly one split adjacent sibling, then s(B) ≤ 1.27

(ii) If B has at least two split adjacent siblings, then s(B) = 0.28

The next result is critical. It shows that r(B) must increase whenever B can force in more than29

one direction:30

Lemma 19. Let B=⇒B′ in a smooth subdivision. If s(B) > 1 then r(B) < r(B′).31

The next lemma shows that as r(B) increases (up to D + 1), we can predict a corresponding32

decrease on s(B):33

Lemma 20. For any non-root, s(B) ≤





0 if r(B) > D, (CASE 0)
1 if r(B) = D, (CASE 1)
D − r(B) if r(B) < D. (CASE 2)

34

13

Let B ∈ S(T). The forcing graph F (B) of B is the directed acyclic graph rooted at B, whose1

maximal paths are all the maximal chains beginning at B. Note that the nodes in F (B) belong to2

S(T). Evidently, the smooth split of B amounts to splitting every node in F (B). Each node B′ in3

F (B) has s(B′) children; so B′ is a leaf (or sink) iff s(B′) = 0. If s(B′) > 1, we call B′ a branching4

node. Note that F (B) would be a tree rooted at B if all the maximal chains are disjoint except at5

B. However, in general, maximal chains can merge.6

Using the preceding two lemmas (Lemma 19 and Lemma 20) we can prove the following about7

F (B):8

Theorem 21. Let B be a box in a smooth subdivision. There are at most (D − r(B))! maximal9

paths in the forcing graph F (B) where we define x! = 1 for x ≤ 0.10

3.5 Potential of Subdivision Tree.11

We want to provided an amortized bound on the number of splits in a smooth split in a smooth12

subdivision S. Our amortization argument refers to the subdivision tree T = T(S) whose leaves13

constitute S. Define the potential Φ(T) of the subdivision tree T to be the sum of the potential14

Φ(B) of all the nodes B in T. The potential of node B is15

Φ(B) :=

{
0 if B has no split children,
of unsplit children of B otherwise.

(9)

Note that Φ(B) = 0 iff it has no split children or all its children are split. Otherwise, 1 ≤ Φ(B) ≤16

2D − 1. Intuitively, each unit of potential pays for the cost of a single split.17

For B ∈ S(T), let c(B) denote the number of nodes B′ in F (B) such that Φ(p(B′)) = 0. But18

Φ(p(B′)) = 0 iff p(B′) has no split children or all of its children is split. Since B′ is a leaf in T,19

Φ(p(B′)) = 0 implies that B′ has no split siblings. Thus, c(B) is counting the number of nodes in20

F (B) with no split siblings.21

Theorem 22 (Main Theorem). Starting from the initial box [−1, 1]D, a sequence of n smooth22

splits produces at most (2D(D+1)!)n splits. For fixed D, each smooth split produces an amortized23

O(1) splits.24

Proof. We use an amortization argument, generalizing the 2D argument. The smooth split of25

B amounts to splitting each node in its forcing tree F (B). Recall that c(B) is the number of nodes26

B′ ∈ F (B) with Φ(p(B′)) = 0.27

Claim: c(B) ≤ (D + 1)!.28

We know that there are at most D! maximal paths in F (B). So the claim follows if each
maximal chain

B = B0
d1=⇒B1

d2=⇒· · ·
dk=⇒Bk

has at most D + 1 indices i = 1, . . . , k such that Φ(p(Bi)) = 0. For such an i, we claim that29

r(Bi) < r(Bi+1). To show this, it suffices to prove that di+1 /∈ R(Bi) because di+1 ∈ R(Bi+1).30

Among the D adjacent siblings of Bi, there is one, say A, such that A
di+1

−→Bi. If di+1 ∈ R(Bi) then31

A′di+1
=⇒Bi for some child A′ of A. Since Φ(p(Bi)) = 0, A has not been split and so A′ does not exist.32

We have thus proved that r(Bi+1) > r(Bi). It follows that if there are ≥ D + 1 such indices, the33

D + 1-st index i has the property that r(Bi+1) ≥ D + 1. Then s(Bi+1) = 0 by Lemma 20. Hence34

Bi+1 must be the last node Bk in the chain. This proves our claim.35

14

The smooth split of B amounts to splitting each box B′ ∈ F (B). There are two cases of B′:1

(A) Φ(p(B′)) > 0. Then splitting B′ can be charged to the corresponding unit decrease in potential2

Φ(T), since Φ(p(B′)) decreases by one when B′ is split. (B) Φ(p(B′)) = 0. Then splitting of B′ will3

be charged 2D, corresponding to one unit for splitting B′ and 2D −1 units for increase in Φ(p(B′)).4

It follows that the total charge for the smooth split of B is at most 2Dc(B) ≤ 2D(D + 1)!, as5

claimed. Q.E.D.6

4 Conclusion7

We have given a combinatorial proof that for any fixed dimension the amortized cost of performing8

a smooth split is O(1). We did this by defining a suitable potential function based on the number9

of split siblings of a node, and by presenting a sequence of lemmas reasoning about how smooth10

splitting can propagate through the data structure.11

We leave open a number of questions about amortized balancing costs for related quadtree12

models, including different notions of neighbors and balance, and for different subdivisions such as13

the alternatives considered in [Moo95].14

In our model, we primarily leave open the tightening of our amortized cost upper bounds. In15

particular, we proved that a split can cause at most d! chains, but our best lower bound shows16

only d chains. We conjecture that a closer analysis would lead to a much better upper bound. In17

particular, using the strategy outlined by Sheehy may lead to better bounds.18

4.1 Acknowledgments19

We would like to thank Don Sheehy for helpful conversations at the Fall Workshop on Computa-20

tional Geometry (FWCG ’13) and his subsequent outline of a strategy for attacking our problem21

using continuous techniques. We would also like to thank Joe Simons for answering questions about22

his co-authored paper [LSS13b].23

15

References1

[BEG94] Marshall W. Bern, David Eppstein, and John R. Gilbert. Provably good mesh gen-2

eration. J. Comput. Syst. Sci., 48(3):384–409, 1994.3

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.4

Introduction to Algorithms (3. ed.). MIT Press, 2009.5

[dBCvKO08] Mark de Berg, Otfried Cheong, Mark van Kreveld, and Mark Overmars. Computa-6

tional Geometry: Algorithms and Applications. Springer, Third edition, 2008.7

[dBRS12] Mark de Berg, Marcel Roeloffzen, and Bettina Speckmann. Kinetic compressed8

quadtrees in the black-box model with applications to collision detection for low-9

density scenes. In Epstein and Ferragina [EF12], pages 383–394.10

[EF12] Leah Epstein and Paolo Ferragina, editors. Algorithms - ESA 2012 - 20th Annual Eu-11

ropean Symposium, Ljubljana, Slovenia, September 10-12, 2012. Proceedings, volume12

7501 of Lecture Notes in Computer Science. Springer, 2012.13

[FB74] Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure for retrieval14

on composite keys. Acta Inf., 4:1–9, 1974.15

[LSS13a] Maarten Löffler, Joe Simons, and Darren Strash. Dynamic planar point location with16

sub-logarithmic local updates. arXiv, abs/1204.4714, 2013.17

[LSS13b] Maarten Löffler, Joseph A. Simons, and Darren Strash. Dynamic planar point lo-18

cation with sub-logarithmic local updates. In Frank Dehne, Roberto Solis-Oba, and19

Jörg-Rüdiger Sack, editors, WADS, volume 8037 of Lecture Notes in Computer Sci-20

ence, pages 499–511. Springer, 2013.21

[Moo92] Doug Moore. Simplicial Mesh Generation with Applications. PhD thesis, Cornell22

University, 1992.23

[Moo95] Doug Moore. The cost of balancing generalized quadtrees. In Symposium on Solid24

Modeling and Applications, pages 305–312, 1995.25

[OvL82] Mark H. Overmars and Jan van Leeuwen. Dynamic multi-dimensional data structures26

based on quad- and k - d trees. Acta Inf., 17:267–285, 1982.27

[PM12] Eunhui Park and David M. Mount. A self-adjusting data structure for multidimen-28

sional point sets. In Epstein and Ferragina [EF12], pages 778–789.29

[Sam90a] Hanan Samet. Applications of spatial data structures - computer graphics, image30

processing, and GIS. Addison-Wesley, 1990.31

[Sam90b] Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,32

1990.33

[She] Donald R. Sheehy. private communication.34

[She12] Donald R. Sheehy. New Bounds on the Size of Optimal Meshes. Computer Graphics35

Forum, 31(5):1627–1635, 2012.36

16

[Sim] Joseph A. Simons. private communication.1

[WCY13] Cong Wang, Yi-Jen Chiang, and Chee Yap. On soft predicates in subdivision motion2

planning. In Proceedings of the twenty-ninth annual Symposium on Computational3

Geometry, SoCG ’13, pages 349–358, New York, NY, USA, 2013. ACM.4

17

Figure 8: A counterexample to the algorithm sketched in the proof of Lemma 2.2 in [LSS13a]. True
cells are shown in black, and B-cells in blue. After inserting the red points, the induced split of
neighboring B-cells causes some new B-cells (shown in red) to be only 8-smooth with respect to
their larger neighbors.

A Paper of Löffler et al. and Counterexample1

We may generalize the notion of smoothness as follows: following Löffler et al. [LSS13b], call two2

neighbors k-smooth if the diameter of the boxes differ by at most a factor of k. In two dimensions3

this is equivalent to having at most k neighbors in a given direction. We have used the term4

“smoothness” to denote 2-smoothness.5

A recent paper [LSS13b] claims that it is possible to maintain 4-smoothness in a related quadtree6

model in worst-case O(1) time per split (presented as Lemma 2.2). The authors make this claim7

for quadtrees that are used to store point data, that use compression, and that consider boxes8

to be neighbors even if they only share a vertex (rather than requiring an edge). The subtree9

rooted at a node v is compressed if only one of the children of v contains points. As we show in10

a counterexample and as the authors themselves first determined in private correspondence [Sim]11

the problem with their algorithm stems from the case where points are inserted into a compressed12

part of the quadtree.13

The extended version [LSS13a] of [LSS13b] contains a sketch of an algorithm that is intended14

to satisfy their assertion. It claims that after an insertion operation into a box B checking whether15

the neighbors of B are 2-smooth with respect to B (and splitting them if they are not) suffices to16

ensure that the entire tree is 4-smooth. The counterexample shown in Figure 8 demonstrates that17

the presented smoothing algorithm violates its stated invariants.18

The authors distinguish between two types of boxes. They define true boxes as those that would19

exist in any unsmooth quadtree. That is, the parent of a true box contains at least two points.20

They define B -boxes as those that are introduced only for smoothness. True boxes are required to21

be 2-smooth with respect to their neighbors, whereas B-boxes are only required to be 4-smooth.22

Suppose we insert a point into a box B. The algorithm for regaining smoothness after this insertion23

is not given rigorously, but amounts to first splitting as necessary B (if it already contains a point),24

and then splitting the neighbors of a box into which a point is inserted if necessary to regain25

smoothness.26

The quadtree and associated point data shown on the left in Figure 8 do not violate any required27

invariants, nor have any of its previous states – the true boxes (shown in black) are 2-smooth and28

the B-boxes (shown in blue) are 4-smooth with respect to their larger neighbors. After inserting the29

3 red points on the right, according to their algorithm the three neighboring B-cells must split again30

18

for local smoothness. Their algorithm does not consider splitting the neighbors of the neighbors,1

which would need to split to achieve global smoothness. This results in some of the new, smaller2

B-cells being only 8-smooth with respect to their neighbors, which violates the required global3

4-smoothness invariant.4

A fundamental problem seems to be inserting points into B-cells (i.e. compressed parts of the5

tree). After the insertion of the first red point into box A all of the siblings of A, which are 4-smooth6

B-cells, become true cells. However, the sketched algorithm only considers promoting a single box7

(the one into which a point is inserted) to true per operation. Therefore the siblings of A, which are8

only 4-smooth with respect to their larger neighbors violated a required invariant even after just9

the first insertion. This seems to be a fundamental problem since a point insertion into a highly10

compressed quadtree may change a box arbitrarily many adjacency steps away into a true cell.11

In private correspondence [Sim] the authors recognize compressed quadtrees as the primary12

issue. They prove a weaker claim, namely that it’s possible to restore smoothness in worst-case O(1)13

time if the quadtree does not need to compress. They also give a new algorithm which only handles14

inserting points into true cells, claiming that they “define [smoothness] on on uncompressed sub-15

trees, and consider the whole quadtree [smooth] if each compressed subtree is [smooth],” meaning16

that this claim and algorithm suffice for their applications.17

In this paper we consider the quadtree smooth only if all components are smooth with respect18

to each other, and allow for splits (and by proxy insertions) into arbitrary leaf boxes, including19

those originally created only for smoothness. It follows that the approach described by Löffler et al.20

approach does not work in our setting, and moreover that a similar approach is unlikely to work.21

This shows that our approach is robust: 4-balance and vertex neighbors, which are natural ways of22

tweaking our quadtree model, do not allow for a worst-case O(1)-time, local balancing algorithm.23

19

B Proofs for Upper Bound in Arbitrary Dimensions1

We define the necessary terminology for arbitrary dimensions.2

B.1 Boxes, adjacencies and neighbors3

We consider nice subsets of the Euclidean D-space R
D, for some D ≥ 1. The standard cube of4

dimension D is [−1, 1]D. Let TD
∞ be the infinite tree rooted at [−1, 1]D where each node in the tree5

is a box B ⊆ [−1, 1]D with exactly 2D congruent children whose interiors are pairwise disjoint, and6

whose union is equal to B. The nodes of TD
∞ are called aligned boxes. Every aligned box B has7

a natural depth(B) ≥ 0, corresponding to its depth in T
D
∞. The following is a useful fact about8

aligned boxes:9

Fact 3. Let D = d + d′ for some d, d′ ≥ 1. If B and B′ are boxes of Td
∞ and T

d′

∞ (respectively),10

both of depth equal to k ≥ 0, then B × B′ is a box of depth k in T
D
∞. Conversely, every aligned11

box of TD
∞ can be decomposed in this way.12

A (box) subdivision tree T is any finite subtree of TD
∞ that is rooted at [−1, 1]D where every13

internal node has 2D children. The set S(T) of leaves of T is called a (box) subdivision of the14

standard cube. Conversely, given any subdivision S of the standard cube into a set of aligned15

boxes, there is a unique subdivision tree T(S). When D = 2 (D = 3), T is usually called a quadtree16

(octree). Unless otherwise indicated, all boxes are aligned boxes (of various dimension ≤ D). Note17

that boxes are closed sets. Let j = −1, 0, 1, . . . ,D. Two boxes B,B′ are j-adjacent if B ∩ B′ is a18

j-dimensional box. Four special cases are noteworthy:19

• If they are D-adjacent, we say B and B′ overlap.20

• If they are (D − 1)-adjacent, we say they are neighbors.21

• 0-adjacency means they share a common corner only.22

• (−1)-adjacency means the boxes are disjoint.23

Fact 4. Let B,B′ be overlapping aligned boxes. Then either B ⊆ B′ or B′ ⊆ B.24

The above definitions extend naturally to these lower dimensional boxes. In particular: if B,B′
25

are boxes of dimension c ≤ D, we say they are neighbors if B ∩ B′ has dimension c − 1, and they26

overlap if B ∩B′ has dimension c.27

B.2 Indicators: Directions and Children28

Let an indicator be any element d in the set {−1, 0, 1}D. Call d is a child indicator if there are no29

0 components. E.g., d = (1,−1, 1) or d = (−1,−1,−1). Thus we can specify any non-root B as30

a d-child of its parent. Call d a direction indicator it has exactly one non-zero component. E.g.,31

d = (1, 0, 0) or d = (0,−1, 0). The opposite direction to d is just −d. E.g., the opposition direction32

of (1, 0, 0) is (−1, 0, 0). Two directions are adjacent if they are different but not opposites of each33

other. E.g., (1, 0, 0) and (0,±1, 0) are adjacent. Each box B at depth k has exactly 2D subboxes at34

depth k + 1, called its children. These children can be indexed by each of the 2D child indicators:35

if c is a child indicator, then the c-th child of B can be denoted by B[c]. If B is a c-th child of B′,36

we may write37

B ≺ B′ or B
c
≺ B. (10)

20

Let p(B) denote the parent of box B (this is well-defined except in the case B = [−1, 1]D). We can1

iterate this notation: p(p(B)) = p2(B) denote the grandparent of B. This notation generalizes to2

pn(B) for any n ≥ 0 where p0(B) = B and for n ≥ 1, pn(B) = p(pn−1(B)).3

B.3 Projections and Co-Projections along a direction.4

Given a box B, and i ∈ {1, . . . ,D}, then5

• (Projection) Proji(B) :=
∏D

j=1,j 6=i Ij be a (D − 1) dimensional box.6

• (Co-Projection) Coproji(B) := Ii denote the ith interval of B =
∏D

j=1 Ij.7

We define the indexed Cartesian product ⊗i such that any box B can be recovered from its corre-8

spond projection and co-projection:9

B = Coproj
i

(B)⊗i Proj
i

(B). (11)

CONVENTION: If d is a direction indicator with a non-zero i-th component, then we may write10

Projd(B) instead of Proji(B). This convention can be extended to co-projections: Coprojd(B)11

may be written instead of Coproji(B).12

B.4 d-Neighbors.13

Suppose B,B′ are neighbors. Then there is a unique direction d such that B′ is a “d-neighbor”14

of B. For D = 1, an interval B′ is a (+1)-neighbor of B is the left-end point of B′ equals the15

right-end point of B; equivalently, B is a (−1)-neighbor of B′. Suppose D > 1, and B,B′ are16

neighbors. Then there is some i ∈ {1, . . . ,D} such that I = Coproji(B) and I ′ = Coproji(B
′) are17

0-adjacent, and Proji(B) and Proji(B
′ are (D − 1)-adjacent. Thus I ′ is a (δ)-neighbor of I for18

some δ ∈ {−1,+1}. This defines a direction d whose ith component is equal to δ. We then call B′
19

a d-neighbor of B, and write20

B
d

−→B′ (12)

It follows from this definition that B
d

−→B′ iff B′ −d
−→B. We use the convention that, if the i-th21

component of d is 1 (resp., −1), then we can write B
i

−→B′ (resp., B
−i
−→B′) instead of B

d
−→B′.22

Theorem 11[Single Direction]. Suppose B
d

=⇒B′ d
=⇒B′′ holds for boxes in a smooth subdivi-23

sion. Then p2(B) = p(B′).24

Proof. Wlog, let d = (1, 0, . . . , 0). Then25

B = I × E

B′ = I ′ × E′

B′′ = I ′′ × E′′

where I=⇒I ′=⇒I ′′ and E ≺ E′ ≺ E′′. This implies that p(E) = E′ or26

p2(E) = p(E′) = E′′. (13)

By Lemma 10, we conclude that27

p2(I) = p(I ′). (14)

21

But (13) and (14) together imply

p2(I × E) = p(I ′ × E′)

which is what our theorem claims. Q.E.D.1

Theorem 13[Two Directions]. Consider boxes in a smooth subdivision of [−1, 1]D (D ≥ 2).2

Suppose B
d

=⇒B′ d′
=⇒B′′ holds where d 6= d′. Then p2(B) 6= p(B′).3

Proof. We know that d and d′ must be adjacent directions, and without loss of generality, let4

d = (1, 0, 0, . . . , 0) and d′ = (0, 1, 0, . . . , 0). We can thus write5

B = I × J × E

B′ = I ′ × J ′ × E′

B′′ = I ′′ × J ′′ × E′′

where the I’s and J ’s are intervals. From the premise B
1

=⇒B′ 2
=⇒B′′, we conclude that

I =⇒ I ′ ≺ I ′′,
J ≺ J ′ =⇒ J ′′,
E ≺ E′ ≺ E′′.

Therefore
(I × J)

1
=⇒(I ′ × J ′)

2
=⇒(I ′′ × J ′′)

and therefore Lemma 12 implies that

p2(I × J) 6= p(I ′ × J ′).

This implies
p2(B) 6= p(B′).

Q.E.D.6

Lemma 14[Commutative Diagram]. Consider boxes in a smooth subdivision of [−1, 1]2. Suppose7

B
d

=⇒B′ d′
=⇒B′′ holds where d 6= d′. Then there exists a box A′ such that A′ d

=⇒B′′.8

Proof. Let9

B = I × J

B′ = I ′ × J ′

B′′ = I ′′ × J ′′,

as illustrated by Figure 7(b). Wlog, let d = (1, 0) and d′ = (0, 1) so that

I =⇒ I ′ ≺ I ′′

J ≺ J ′ =⇒ J ′′.

According to Lemma 12, p2(B) 6= p(B′). And since B
d

=⇒B′, B ⊆ p2(B) and B′ ⊆ p(B′), we
conclude

p2(B)
d

−→p(B′).

22

Likewise, B′ d′
=⇒B′′ implies p(B′)

d′
−→B′′. Summarizing, we have shown that1

p2(B)
d

−→p(B′)
d′
−→B′′. (15)

Since p2(B), p(B′) and B′′ are all at the same depth, (15) implies

p2(I) −→ p(I ′) = I ′′

p2(J) = p(J ′) −→ J ′′

By an application of Fact 3, there is an aligned box A′′ = p2(I) × J ′′ at the depth of B′′ that2

completes (15) into the following commutative diagram:3

p2(B) p(B′)

A′′ B′′

d′

d

d

d′ (16)

As illustrated in Figure 7(b,c), the commutative diagram involves four adjacent boxes at the
same depth. From (16), we see that there is a box A in the subdivision with p(A) = p(B) and

A
d

=⇒B′, A
d′
−→A′′.

This last relationship would violate smoothness if A′′ belongs to our subdivision, since depth(A′′)−
depth(A) = 2. Hence there is a child A′ of A′ such that

A
d′
=⇒A′ d

=⇒B′′.

Moreover, A′ must belong to the subdivision because otherwise, if it split, it would have a child4

C
d

=⇒B′′, which would violate smoothness. We thus have the following commutative (forcing)5

diagram which establishes our lemma:6

A B′

A′ B′′

d′

d

d

d′ (17)

Q.E.D.7

Theorem 15[Commutative Diagram]. Consider boxes in a smooth subdivision S of [−1, 1]D for8

D ≥ 2. Suppose B
d

=⇒B′ d′
=⇒B′′ holds for some d 6= d′. Then there exists a box A′ in S such that9

A′ d
=⇒B′′.10

Proof. We claim that there is some A and A′ such that

A
d′
=⇒A′ d

=⇒B′′,

23

as illustrated in Figure 7(b) for D = 2.1

To do this construction of A and A′, let us assume wlog that d = (1, 0, 0, . . . , 0) and d′ =2

(0, 1, 0, . . . , 0). We can thus write3

B = I × J × E

B′ = I ′ × J ′ × E′

B′′ = I ′′ × J ′′ × E′′

where the I’s and J ’s are intervals. From the premise B
1

=⇒B′ 2
=⇒B′′, we conclude that

I =⇒ I ′ ≺ I ′′,
J ≺ J ′ =⇒ J ′′,
E ≺ E′ ≺ E′′.

Therefore,

I × J
d

=⇒ I ′ × J ′ d′
=⇒ I ′′ × J ′′,

and by Lemma 14, there exists Â such that

Â
d

=⇒I ′′ × J ′′.

Therefore,

Â× E′ d
=⇒I ′′ × J ′′ × E′′.

Our theorem follows by choosing A′ = Â× E′. Q.E.D.4

Lemma 18.5

(i) If B has exactly one split adjacent sibling, the s(B) ≤ 1.6

(ii) If B has at least two split adjacent siblings, then s(B) = 0.7

Proof. (i) By assumption, there is a direction d and box A such that such that A
d

=⇒B and8

p2(A) = p(B). By way of contradiction, assume s(B) ≥ 2. Then there is some d′ 6= d and B′ such9

that A
d

=⇒B
d′
=⇒B′. By Theorem 13, p2(A) 6= p(B), contradiction.10

(ii) By assumption, there are two directions d 6= d′ and boxes A,A′ such that A
d

=⇒B and A′ d′
=⇒B,11

and p2(A) = p2(A′) = p(B). By way of contradiction, assume s(B) > 0. Then there exists B′
12

such that B
d′′
=⇒B′ for some d′′. So d′′ 6= d or d′′ 6= d′. Wlog, suppose d′′ 6= d. Since A

d
=⇒B

d′′
=⇒B′,13

Theorem 15 implies that p2(A) 6= p(B), contradiction. Q.E.D.14

Lemma 19. Let B=⇒B′ in a smooth subdivision. If s(B) > 1 then r(B) < r(B′).15

Proof. Since s(B) > 1, there are two directions d, d′ such that B
d

=⇒∗ and B
d′
=⇒∗. Without16

loss of generality, let B
d

=⇒B′ and B
d′
=⇒A′ for some A′ in the subdivision. We already know17

that r(B) ≤ r(B′). Clearly, d ∈ R(B′). So the inequality r(B) < r(B′) follows if we show that18

d /∈ R(B). By way of contradiction, assume d ∈ R(B). So there exists a box A in the subdivision19

such that A
d

=⇒B
d

=⇒B′. By Theorem 11, p2(A) = p(B). However, we also have A
d

=⇒B
d′
=⇒A′. By20

Theorem 13, p2(A) 6= p(B). This is our contradiction. Q.E.D.21

24

Lemma 20. For any non-root, s(B) ≤





0 if r(B) > D, (CASE 0)
1 if r(B) = D, (CASE 1)
D − r(B) if r(B) < D. (CASE 2)

1

Proof. Since B is not the root (else we have a trivial subdivision), there are D sibling A1, . . . , AD2

and directions d1, . . . , dD such that Ai
di−→B. Clearly, S(B) ⊆ {d1, . . . , dD}.3

CASE 0: Suppose r(B) > D. There are two possibilities: if R(B)∩{d1, . . . , dD} has more than4

one element, then Lemma 18 implies s(B) = 0, as desired. Otherwise, R(B) ∩ {d1, . . . , dD} has5

exactly one element, say d1. This can only mean that r(B) = D + 1, and the other D elements in6

R(B) must be −d1, . . . ,−dD. This clearly implies s(B) = 0.7

CASE 1: Suppose r(B) = D. If R(B) ∩ {d1, . . . , dD} has one element, then Lemma 18 implies8

s(B) ≤ 1, as desired.9

CASE 2: Suppose r(B) < D. If R(B) contains at least one of the directions in {d1, . . . , dD} then10

s(B) ≤ 1, as desired. Otherwise, R(B) ∩ {d1, . . . , dD} is empty, and so R(B) ⊆ {−d1, . . . ,−dD}.11

Since S(B) ⊆ {−d1, . . . ,−dD} \R(B), we conclude that s(B) ≤ D − r(B), as desired. Q.E.D.12

Theorem 21. Let B be a box in a smooth subdivision. There are at most (D − r(B))! maximal13

paths in the forcing graph F (B) where we define x! = 1 for x ≤ 0.14

Proof. Write r for r(B). The result is true if r ≥ D − 1 or if there are no branching nodes. In15

these cases, F (B) consists of a single path, and (D − r)! = 1.16

So assume r ≤ D − 2 and there are branching nodes. There is a unique branching node17

B′ ∈ F (B) of minimum depth. Suppose B′ has children A1, . . . , As (s = s(B′)) in F (B). From18

Lemma 20, s ≤ D−r(B′) ≤ D−r, and Lemma 19, r(Ai) ≥ r(B′)+1 ≥ r+1. By induction on D−r,19

we may assume that in F (Ai) (i = 1, . . . , s) has at most k! maximal paths where k ≤ D − r(Ai) ≤20

D− r− 1. Thus the number of maximal paths in F (B) is ≤ s · k! ≤ (D− r)(D− r− 1)! ≤ (D− r)!.21

Q.E.D.22

We now prove the main result showing an amortized cost of 2D(D + 1)! = O(1) splits per23

smooth split. To complement this bound, Appendix D proves a lower bound of 2D(D + 1) on this24

amortized cost.25

Theorem 22. Starting from the initial box [−1, 1]D , a sequence of n smooth splits produces at26

most (2D(D + 1)!)n splits. For fixed D, each smooth split produces an amortized O(1) splits.27

Proof. We use an amortization argument, generalizing the 2D argument. The smooth split of28

B amounts to splitting each node in its forcing tree F (B). Recall that c(B) is the number of nodes29

B′ ∈ F (B) with Φ(p(B′)) = 0.30

Claim: c(B) ≤ (D + 1)!.31

We know that there are at most D! maximal paths in F (B). So the claim follows if each
maximal chain

B = B0
d1=⇒B1

d2=⇒· · ·
dk=⇒Bk

has at most D + 1 indices i = 1, . . . , k such that Φ(p(Bi)) = 0. For such an i, we claim that32

r(Bi) < r(Bi+1). To show this, it suffices to prove that di+1 /∈ R(Bi) because di+1 ∈ R(Bi+1).33

Among the D adjacent siblings of Bi, there is one, say A, such that A
di+1
−→Bi. If di+1 ∈ R(Bi) then34

A′di+1

=⇒Bi for some child A′ of A. Since Φ(p(Bi)) = 0, A has not been split and so A′ does not exist.35

We have thus proved that r(Bi+1) > r(Bi). It follows that if there are ≥ D + 1 such indices, the36

25

D + 1-st index i has the property that r(Bi+1) ≥ D + 1. Then s(Bi+1) = 0 by Lemma 20. Hence1

Bi+1 must be the last node Bk in the chain. This proves our claim.2

The smooth split of B amounts to splitting each box B′ ∈ F (B). There are two cases of B′:3

(A) Φ(p(B′)) > 0. Then splitting B′ can be charged to the corresponding unit decrease in potential4

Φ(T), since Φ(p(B′)) decreases by one when B′ is split. (B) Φ(p(B′)) = 0. Then splitting of B′ will5

be charged 2D, corresponding to one unit for splitting B′ and 2D −1 units for increase in Φ(p(B′)).6

It follows that the total charge for the smooth split of B is at most 2Dc(B) ≤ 2D(D + 1)!, as7

claimed. Q.E.D.8

26

C Exponential Lower Bound Construction1

We now give a construction to show that the exponential dependence on D is unavoidable. But we2

first give the bounds for D = 1 and D = 2 to build the intuition.3

¶1. Interval Trees For D = 1, we obtain the following tight bound:4

Lemma 23. Every sequence of n smooth splits starting from an initial interval has a total cost of5

≤ 4n. Moreover, the constant of 4 is optimal.6

The upper bound comes from the general potential argument. In this case, the potential of a7

node I (i.e., interval) of the interval tree is 1 if it has one split child, and one unsplit child. All8

other nodes has 0 potential. The smooth split of I0 induces a unique chain I0=⇒I1=⇒· · ·=⇒Ik,9

and we only need to charge the cost of splitting the first I1 and last interval Ik because the others10

can be paid for by a corresponding decrease in potential. The charge for I1 and Ik is ≤ 4 units11

(two units to do the splitting, and two units for possible increase in potential).12

To see that 4 is tight, consider the sequence of smooth splits on:13

I, I.(−e), I.(−e)e, I.(−e)e2 , . . . , I.(−e)en (18)

where e = (+1) is a child indicator. Each of these smooth splits (except for the first) will cause 214

splits, or 2n−O(1) overall. At the end of this sequence, we do two more smooth splits:15

I.(−e)en(−e), I.(e)(−e)ne. (19)

Each of these will cause about n more splits. This achieves 4n −O(1). This proves:16

Lemma 24. For interval trees (D = 1), any sequence of n smooth splits can cause at most 4n+O(1)17

splits. Moreover, there is a sequence of n+O(1) smooth splits that has 4n splits.18

¶2. Quadtrees We generalize the one dimensional example to D = 2:19

Let c = (1, 1) be the child indicator. Beginning with an initial box B, we will perform chain20

splits on the following sequence of boxes:21

B, B.(−c), B.(−c).c, B.(−c).c2, . . . , B.(−c).cn. (20)

This is illustrated in Figure 9, where the result of the third smooth split is illustrated in the22

transition from (b) to (c): notice that in this smooth split, four actual splits occur.23

Thus, in analogy to (18), we get 4n−O(1) splits using n smooth splits of (20).24

Next, we do the analogy of (19): if we smooth split B.(−c).cn.(−c), we will get 2n − O(1)25

splits in the box B.(−c). Likewise, we can do three other smooth splits to yield 2n − O(1) splits26

each. These are splits (respectively) of subboxes in B.c,B.c1, B.c2 – see Figure 9(a). This gives us27

4(2n−O(1)) = 8n−O(1) overall. Combined with the 4n−O(1), the overall number is 12n−O(1).28

As for upper bound, we apply the above general amortization bound to this case. We have at29

most two chains in a smooth split, and up to 5 of the splits are not accounted for, and we need to30

charge 4 units for each (3 units for increase in potential and 1 unit for the split). Thus the cost is31

20n for a sequence of n splits. This proves:32

Lemma 25. For quadtrees (D = 2), any sequence of n smooth splits can cause at most 20n+O(1)33

splits. Moreover, there is a sequence of n+O(1) smooth splits that causes 12n splits.34

27

CSplit(B[3, 1])

(a) (b) (c)

B[3, 1]

CSplit(B[3, 1, 1])

Figure 9: Smooth split in quadtrees (D = 2)

¶3. Arbitrary Dimensions The argument to be presented will be a direct generalization of1

the D = 2 case.2

Suppose B =
∏D

i=1[mi± r]. For any j = 1, . . . ,D, we can also write B in the form A⊗j [mj ± r]3

where A = Projj(B) =
(∏D

i=1,i 6=j [mi ± r]
)
.4

A child indicator c can be written as5

c =

D∑

i=1

di =

D∑

i=1

δiei (21)

where di = δiei with δi ∈ {−1, 1}. If B =
∏D

i=1[mi ± r], the c-th child of B is defined as6

B.c :=
D∏

i=1

[mi +
1

2
δi · r ±

1

2
· r]. (22)

If σ = c1c2 · · · cn is a sequence child indicators, then we inductively define B.σ as (B.σ′) · cn where7

σ′ = c1 · · · cn−1.8

Two child indicators c and c′ are said to be neighbors if c′ = c+2d for some direction indicator9

d. For any box B and child indicators c and c′, the following are equivalent:10

(a) B.c and B.c′ are neighbors.11

(b) c and c′ are neighbors as child indicators.12

(c) c′ = c+ 2d for some direction indicator d.13

These equivalences comes from the definitions of neighbor relationships. The next lemma shows14

the precise role of d in these neighbor relationships:15

Lemma 26. Let c and c+2d be child indicators for some direction indicator d, and B,B′ are aligned16

boxes.17

(R1) B.c
d

−→B.(c+ 2d). Equivalently, B.(c+ 2d)
−d
−→B.c.18

(R2) B
d

−→B′ implies B.(c+ 2d)
d

−→B′.19

(R3) B
d

−→B′ implies B
d

−→B′.c.20

28

Proof. (R1): Let c′ = c + 2d where d = δej (for some j = 1, . . . ,D and δ ∈ {−1,+1}). Using1

the notation of (22),2

B.c = Proj
j

(B.c)⊗j Coproj
j

(B.c)

= Proj
j

(B.c)⊗j [mj −
1

2
δj · r ±

1

2
· r]

B.c′ = Proj
j

(B.c′)⊗j Coproj
j

(B.c′)

= Proj
j

(B.c′)⊗j [mj +
1

2
δj · r ±

1

2
· r].

Since c′ = c+ 2d = c+ 2δej , we conclude that δ = δj and3

(I) Coprojj(B.c)
(δ)
−→ Coprojj(B.c′), and4

(II) Projj(B.c) = Projj(B.c′).5

From (I) and (II), we conclude that B.c
d

−→B.c′ (using Lemma 9). This conclusion is clearly6

equivalent to B.c′
−d
−→B.c.7

(R2-R3) in case D = 1 is easy to see: we have c+2d is a child indicator iff c = (−δ) and d = (δ)

for some δ ∈ {+1,−1}. Then for intervals I and I ′, if I
(δ)
−→I ′ then

I.(δ)
(δ)
−→I ′, I

(δ)
−→I ′.(−δ).

I.e.,

I.(c + 2d)
(δ)
−→I ′, I

(δ)
−→I ′.c.

(R2) for D ≥ 2: Say d = δej for some j = 1, . . . ,D and δ ∈ {+1,−1}. Then we have8

(a) Coprojj(B)
(δ)
=⇒ Coprojj(B

′), and9

(b) Projj(B) ⊆ Projj(B
′) or Projj(B

′) ⊆ Projj(B).10

Note that (b) is a consequence of B,B′ being aligned.11

(A) It follows from the case D = 1 that Coprojj(B.(c+ 2d))
(δ)
=⇒ Coprojj(B

′), and12

(B) Projj(B.(c+ 2d)) ⊆ Projj(B
′) or Projj(B

′) ⊆ Projj(B.(c+ 2d)).13

Moreover, (A) and (B) implies B.(c+ 2d))
d

=⇒B′. This proves (R2).14

(R3) for D ≥ 2: this is shown in the same way as (R2). Q.E.D.15

We can think of (R1)–(R3) as transformation rules.16

Lemma 27. Let c′ = c + 2d for some direction indicator d. For n > m ≥ 0, and any box B, we17

have the forcing relationships:18

(F1) B.c.(−c)n
d

=⇒B.c′.(−c′)m19

(F2) B.c.(c′)n
d

=⇒B.c′.cm20

Proof. Lemma 26(R1) shows that21

B.c
d

−→B.(c+ 2d). (23)

29

To show (F1), we observe that that −c has the form −c = −c′ + 2d. Therefore Lemma 26(R2)1

applied to (23) yields B.c.(−c)
d

−→B.(c+ 2d). Hence inductively, for all n ≥ 0:2

B.c.(−c)n
d

−→B.(c+ 2d). (24)

Again, Lemma 26(R3) shows that (−c− 2d) can be appended to the right hand side of (24), giving
us

B.c.(−c)n
d

−→B.(c+ 2d)(−c − 2d).

Hence inductively, for all m ≥ 0, we obtain3

B.c.(−c)n
d

−→B.(c+ 2d)(−c− 2d)m. (25)

When n > m, the depth of the left hand side is greater than the right hand side. Thus (25)
represents a forcing relationship:

B.c.(−c)n
d

=⇒B.(c+ 2d)(−c− 2d)m.

This proves (F1). (F2) is shown in the same way. Q.E.D.4

¶4. An Exponential Lower Bound. We want to see how the forcing relationships in Lemma 26(F1)5

are propagated as we perform the following sequence of n+2 smooth splits on the following boxes:6

B, B.(−c), B.(−c).c, B.(−c).c2 , . . . , B.(−c).cn. (26)

We may assume that n ≥ D. After the 2nd operation sSplit(B.(−c)), we have created forcing7

relationships of the form (F1), namely8

B.(−c).c
d

=⇒B.(−c1) (27)

for each neighbor c1 = c − 2d of c. This implies that the 3rd operation sSplit(B.(−c)c) would9

induce the split of B.(−c1).10

There are D such splits. However, new forcing relationships11

B.(−c).c2
d

=⇒B.(−c1).c1 (28)

are created. In other words, the forcing relationship (27) is sustained in (28), albeit at the “next12

level”. Moreover, we also see a forcing chain with two links: if c2 is a neighbor of c1 but not of c,13

then (28) is really the prefix of a longer chain:14

B.(−c).c2
d

=⇒B.(−c1).c1
d′
=⇒B.(−c2) (29)

where c2 = c1 − 2d′.15

To give a complete description to this phenomenon, let us consider the set of 2D children16

indicators, {−1,+1}D. Fix any c0 ∈ {−1,+1}D and consider the following DAG rooted at c0: the17

nodes at level i ≥ 0 of the DAG are those indicators c whose Hamming distance from c0 is exactly18

i. The edges of the DAG goes from c in level i to c′ in level i+ 1 iff c, c′ are neighbors. The DAG19

30

111

111

111111 111

111111111

Figure 10: Lattice of child indicators

is a lattice with top element c0 and bottom element −c0, as illustrated by Figure 10 (writing 11

instead of −1).2

Suppose (c0, c1, . . . , cD) is a path of length D in this lattice (so cD = −c0). It follows from the3

foregoing that, after m + 1 operations in (26), assuming m ≥ D, we obtain the following forcing4

chain with D links:5

B.(−c0).c
m
0 =⇒B.(−c1).c

m−1
1 =⇒B.(−c2).c

m−2
2 =⇒· · ·=⇒B.(−cD).c

m−D
D . (30)

Writing Bm for the box B.(−c0).c
m
0 , it follows that the size of the forcing graph F (Bm) is at least6

2D since there are 2D distinct boxes. Thus the m+ 2-nd smooth split will cause 2D splits.7

¶5. Stronger Lower Bound. The foregoing proves that the the amortized cost of each smooth8

split is at least 2D. The argument only exploit the forcing relationships of Lemma 26(F1). To push9

this lower bound a little further, we will need the forcing relationships of Lemma 26(F2).10

Theorem 28. For all n ≥ 1, there is a sequence of n+O(1) smooth splits that causes n(D+1)2D11

splits.12

Proof. We begin with a sequence of n+2 smooth splits on the boxes (26). For m ≥ D, we know13

that the m-th smooth split causes 2D splits.14

Next consider any child indicator c1, and look at the box B.c1. If the Hamming distance between15

c1 and c is h, then for m ≥ D, the m+ 2-nd smooth split causes B.(−c1) · c
m−h
1 to split (see (30)).16

We now want to exploit the potential that is stored up in the subbox B.(−c1).17

Consider B.(−c1). We have established that the sequence of smooth splits (26) causes the18

following smooth splits in subboxes of B.(−c1):19

B.(−c1), B.(−c1).c1, B.(−c1).c
2
1 , . . . , B.(−c1).c

m
1 (31)

for m = n − 2 − h. Next suppose c2 is any neighbor of c1, say c2 = c1 + 2d1. Then the smooth20

splits in (31) produces the following sequence of boxes:21

B.(−c1).c2, B.(−c1).c1.c2, B.(−c1).c
2
1.c2, , . . . , B.(−c1).c

m
1 .c2 (32)

Moreover, for any two consecutive boxes in (32), there is a forcing relationship:22

B.(−c1).c
k
1 .c2

d1−→B.(−c1).c
k−1
1 .c2, (k ≥ 1). (33)

31

To see this, we first note that (R1) applied to B′ = B.(−c1).c
k−1
1 implies

B.(−c1).c
k
1 = B′.c1

d1−→B′.c2 = B.(−c1).c
k−1
1 .c2

since c2 = c1 +2d1. Next, (R2) applied to B′.c1
d1−→B′.c2 implies that B′.c1.c2

d1−→B′.c2; this proves1

(33). By looking at the depths of both sides of (33), we conclude that it is actually a forcing2

relationship. This means that we can rewrite (32) in reverse as a forcing chain,3

B.(−c1).c
m
1 .c2

d1=⇒B.(−c1).c
m−1
1 .c2

d1=⇒B.(−c1).c
m−2
1 .c2,

d1=⇒ . . .
d1=⇒B.(−c1).c2. (34)

We need one final observation: Applying (R1) to B′ = B.(−c1).c
m−1
1 with c2 = c1 +2d1, we obtain

B.(−c1).c
m
1 = B′.c1

d1−→B′.c2 = B.(−c1).c
m−1
1 .c2

Next, applying (R2) to the previous relation with −c1 = −c2 + 2d1, we obtain

B.(−c1).c
m
1 (−c1)

d1=⇒B.(−c1).c
m−1
1 .c2.

It follows that if we smooth split this

B.(−c1).c
m
1 (−c1)

then we will cause D chain reactions for each c2 that is a neighbor of c1.4

Since there are 2D choices of c1, this will cause a sequence of D2D such chain reactions. Each5

chain is n−O(1) long. This completes our proof. Q.E.D.6

32

	Introduction
	Our Results
	Data Structure
	Related Work
	Other Results

	Motivation for Approach
	Neighbor Pointers without Smoothing

	2-Dimensional Case
	Definitions
	Potential Function

	Lemmas
	General Case
	Basic Terminology.
	Forcing Chains
	Analysis of 2-Link Chains
	Monotonicity in Smooth Subdivisions.
	Potential of Subdivision Tree.

	Conclusion
	Acknowledgments

	Paper of Löffler et al. and Counterexample
	Proofs for Upper Bound in Arbitrary Dimensions
	Boxes, adjacencies and neighbors
	

	Projections and Co-Projections along a direction.
	d-Neighbors.
	Exponential Lower Bound Construction

