
Path Planning for Simple Robots
using Soft Subdivision Search∗

Ching-Hsiang Hsu, John Paul Ryan, and Chee Yap

Department of Computer Science
Courant Institute of Mathematical Sciences
New York University
New York, NY USA
{john.ryan,chhsu,chee.yap}@nyu.edu

Abstract
The concept of ε-exact path planning is a theoretically sound alternative to the standard exact
algorithms, and provides much stronger guarantees than probabilistic or sampling algorithms. It
opens the way for the introduction of soft predicates in the context of subdivision algorithm.
Taking a leaf from the great success of the Probabilistic Road Map (PRM) framework, we
formulate an analogous framework for subdivision, called Soft Subdivision Search (SSS). In
this video, we illustrate the SSS framework for a trio of simple planar robots: disc, triangle and
2-links. These robots have, respectively, 2, 3 and 4 degrees of freedom. Our 2-link robot can also
avoid self-crossing. These algorithms operate in realtime and are relatively easy to implement.

1998 ACM Subject Classification F2.2 Geometrical problems and computations, I.2.9 Au-
tonomous vehicles

Keywords and phrases Path Planning, Configuration Space, Soft Predicates, Resolution Exact-
ness, Subdivision Search

Digital Object Identifier 10.4230/LIPIcs.SoCG.2016.68

1 Introduction

Path Planning is a fundamental task in robotics [4, 1]. There are three main approaches:
first, we have the Exact Approach which can, in principle, solve any algebraic planning prob-
lem. But practitioners tend to implement exact algorithms using machine approximations;
then it is no longer clear what the guarantees of exact algorithms mean. The book [2] shows
how path planning (Section 9.3), among other exact algorithms of computational geometry,
may be implemented exactly (Section 1.3). Exact algorithms are impractical except for the
simplest cases. Another approach is based on sampling: we refer to Probabilistic Road
Map (PRM) [3] as the main representative. This Sampling Approach has dominated the
field in the last twenty years, but its central problem is inability to halting (couched as
“narrow passage problem”). Finally, we have the Subdivision Approach. This is the oldest
among the three approaches, and remains popular with practitioners: our work falls un-
der this category. In [6, 7, 8], we introduced the concept of resolution-exactness as the
theoretical foundation for path planning that side-steps exact computation. This opens the
way for the introduction of soft predicates, replacing the usual predicates that control the
logic of all geometric algorithms (e.g., [2]).

∗ This work was partially supported by NSF Grant #CCF-1423228.

© C.-H. Hsu and J.P. Ryan and C. Yap;
licensed under Creative Commons License CC-BY

32nd International Symposium on Computational Geometry (SoCG 2016).
Editors: Sándor Fekete and Anna Lubiw; Article No. 68; pp. 68:1–68:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.68
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

68:2 Path Planning for Simple Robots

Subdivision methods share with Sampling methods many advantages over Exact meth-
ods. They both lead to algorithms that are easy to implement and to modify. Imple-
mentability is highly valued in a practical area like robotics. Modifiability is also important
in practice because we typically deploy such algorithms in systems where non-algorithmic
considerations must be accounted for. Both methods allow the possibility of discovering
paths before the entire free configuration space has been fully explored.

This video is a demonstration of these properties. Specifically:

(a) Our algorithms are resolution-exact: in particular, it will halt on all inputs. When it
returns NO-PATH, it guarantees there is no path of a certain specified clearance.

(b) Our algorithms are real-time: there is no pre-processing of the inputs, nor any implicit
parameter selections (unlike PRM which need some additional parameters).

(c) The flexibility of our framework is seen in its ability to support a variety of global search
search strategies. We implemented these strategies: random, Breadth First Search
(BFS), Greedy Best First (GBF), “Voronoi heuristic”.

(d) The same framework supports three distinct robots (disc, triangle, 2-link). Moreover,
each of these robots is parameterizable: we can freely change the radius r0 of the disc,
the lengths (a, b, c) of the triangle, the lengths (`1, `2) of the two links.

(e) The performance of our algorithms is adaptive (not controlled by the worst case complex-
ity). It can easily handle arbitrarily complex environments, e.g., environments involving
hundreds of triangles.

Limitations. Our current software is implemented using standard machine double pre-
cision. It is not hard to extend our software to allow arbitrary precision by incorporating any
standard big-float number package (this is especially easy within our Core Library [9]). It
is well-known that such a step would take a performance hit. Thus our experimental claims
are all based on machine precision computation, within the “normal limits” of experimental
validation. What are these normal limits? Typically, the physical environment lies in a 512
square (or cube) domain. Thus our claim of “realtime performance” is within such limits.
This is consistent with current practice in robotics algorithms. In a future work, we plan
to carry out the error analysis to show the extent to which our results can be guaranteed
with machine precision. Although the 3 robots in this video fall within our SSS framework,
they remain separate pieces of software. In the future, we plan to create a common SSS
framework in which all 3 robots (among others) could be supported.

2 FindPath using Soft Subdivision Search

Here we briefly summarize the SSS Framework [7]. Assume a fixed robot R0 in physical
space Rk (typically k = 2, 3) with configuration space Cspace = Cspace(R0). In this video
review, we will see three kinds of robots R0 as illustrated in Figure 1: their configuration
spaces have 2, 3 and 4 (respectively) degrees of freedom.

Figure 1 Three simple robots

C.-H. Hsu and J.P. Ryan and C. Yap 68:3

Our demos will show two kinds of 2-link robot, depending on whether we allow or forbid
the 2 links to cross each other. A configuration may be given by (x, y, θ1, θ2) ∈ R2 × T 2 =
Cspace (T 2 = S1 × S1 is the torus). Non-crossing means that θ1 = θ2 is forbidden. More
generally, we can forbid a band |θ1 − θ2| ≤ δ. This geometry is interesting since such bands
do not disconnect the torus, and seems novel.

The (exact) path planning problem for R0 is this: given any polyhedral obstacle
set Ω ⊆ Rk, and start and goal configurations A,B ∈ Cspace(R0), to find an Ω-avoiding
path from A to B if one exists, and return NO-PATH otherwise. In resolution-exact path
planning, we are given two additional input: a resolution ε > 0 and a region-of-interest
B0 ⊆ Cspace(R0). There is a constant K > 1 independent of the inputs such that the
algorithm always halts and either outputs NO-PATH or output an Ω-avoiding path, subject
to:

(P1) If all Ω-avoiding paths in B0 have clearance < ε/K, it must return NO-PATH.
(P2) If there exists an Ω-avoiding path in B0 with clearance > Kε, it must return a path.
Note that (P1) and (P2) do not cover all possibilities: if the maximum clearance of an
Ω-avoiding path is in the gap (ε/K,Kε), our algorithm’s output need not be deterministic.

Fix an obstacle set Ω ⊆ Rk. We define the clearance of a configuration γ ∈ Cspace to
be the separation between robot in the “pose” γ and Ω. If the clearance is positive, we say
γ is free. The free space Cfree = Cfree(R0,Ω) comprises all such free configurations. We
say γ is semi-free if it is on the boundary of Cfree.

The search for path is restricted to B0, which will be recursively split into subboxes
B ⊆ B0. We focus on box predicates C̃ : B 7→ {FREE, STUCK, MIXED}. The box predicate C̃
is conservative if

{
C̃(B) = FREE implies B ⊆ Cfree

C̃(B) = STUCK implies B ∩ Cfree = ∅

A maximally conservative predicate is trivial — it always outputs MIXED. A minimally
conservative predicate is called exact — it outputs FREE or STUCK whenever possible. We
say C̃ is convergent if for any monotone sequence {Bi : i ≥ 0} that converges to a point
p = limi→∞ Bi, we have C̃(Bi) = C(p) for i large enough. Here, C(p) denotes the exact
predicate with C(p) = MIXED iff p is semifree. We say C̃ is a soft predicate if it is
conservative and convergent. The design of soft predicates is of considerable interest, and
illustrated in [6, 8]; there, we further show how soft predicates with the additional property
of effectivity leads to resolution-exact path planners, called SSS planners. Briefly, the
main loop of SSS planners is controlled by a priority queue Q containing MIXED boxes. While
Q is non-empty, we remove a box B from Q, subdivide B into children, classify them and
put the MIXED boxes back into Q. We maintain the connected components of all the free
boxes using the well-known Union-Find data structure; two boxes are unioned if they are
adjacent. More precisely, the SSS planner has three plug-in subroutines:
(S1) A soft predicate C̃(B).
(S2) A global search strategy to determine the priority of boxes in Q: this is encoded in

the Q.getNext() method which returns a box from Q. Correctness of SSS does not
depend on the global strategy.

(S3) A subroutine Expand(B) that could fail: first, remove B from Q. If B has width < ε,
then Expand(B) fails. Otherwise, we subdivide B into a set Split(B) with two or more
subboxes. For each B′ ∈ Split(B), we compute C̃(B′). If C̃(B′) = FREE, we add B′

into a Union-Find structure, and union B′ with each adjacent box B′′ already in the
structure. If C̃(B′) = MIXED, we put B′ into Q.

Finally, we put together these 3 subroutines. Let Box(α) denote a smallest subdivision box
that contains α. We can keep track of Box(α) and Box(β).

SoCG 2016

68:4 Path Planning for Simple Robots

SSS FindPath:
Input: Configurations α, β, tolerance ε > 0, box B0 ⊆ Cspace.
Output: Either path from α to β, or NO-PATH.

Initialize Q = {B0}.
1. While (Box(α) 6= FREE)

If (Expand(Box(α)) fails), Return(NO-PATH).
2. While (Box(β) 6= FREE)

If (Expand(Box(β)) fails), Return(NO-PATH).
3. While (Find(Box(α)) 6= Find(Box(β)))

If Q is empty, Return(NO-PATH)
Expand(Q.getNext())

4. Compute a channel P from Box(α) to Box(β).
Return a path in this channel.

The channel in Step 4 is a sequence (B1, . . . , Bm) of free boxes where Bi, Bi+1 are adja-
cent. The expansion technique for our 2-link robot is non-standard in order to achieve our
performance (see [5]).

Acknowledgments The original software for the disc and triangle robot was implemented
as part of Cong Wang’s PhD thesis and reported in [6]. The 2-link robot was implemented
in Luo’s Masters thesis and reported in [5]. The original graphics was written in OpenGL
2.1 using GLUT/GLUI libraries. In the summer of 2015, Bryant Curto and John Ryan
(supported by a departmental Undergraduate Summer Research Fellowship) re-implemented
the disc and 2-link software in the Qt IDE (OpenGL 4.x) resulting in much faster graphics.
Ching-Hsiang Hsu re-implemented the triangle software in Qt.

References
1 H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and

S. Thrun. Principles of Robot Motion. MIT Press, Boston, 2005.
2 Dan Halperin, Efi Fogel, and Ron Wein. CGAL Arrangements and Their Applications.

Springer-Verlag, Berlin and Heidelberg, 2012.
3 Lydia Kavraki, P. Švestka, Claude Latombe, and Mark Overmars. Probabilistic roadmaps

for path planning in high-dimensional configuration spaces. IEEE Trans. Robotics and
Automation, 12(4):566–580, 1996.

4 Steven M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, 2006.
5 Zhongdi Luo, Yi-Jen Chiang, Jyh-Ming Lien, and Chee Yap. Resolution exact algorithms

for link robots. In Proc. 11th Intl. Workshop on Algorithmic Foundations of Robotics
(WAFR), vol. 107 of Springer Tracts in Advanced Robotics (STAR), pp. 353–370, 2015.

6 Cong Wang, Yi-Jen Chiang, and Chee Yap. On Soft Predicates in Subdivision Motion
Planning. Comput. Geometry: Theory and Appl., 48(8):589–605, September 2015.

7 Chee K. Yap. Soft Subdivision Search in Motion Planning. In A. Aladren et al., editor,
Proceedings, 1st Workshop on Robotics Challenge and Vision (RCV 2013), 2013. Best
Paper Award. In arXiv:1402.3213.

8 Chee K. Yap. Soft Subdivision Search and Motion Planning, II: Axiomatics. In Frontiers
in Algorithmics, volume 9130 of Lecture Notes in Comp.Sci., pages 7–22. Springer, 2015.
Invited. 9th FAW. Guilin, China. Aug 3-5, 2015.

9 Jihun Yu, Chee Yap, Zilin Du, Sylvain Pion, and Herve Bronnimann. Core 2: A library for
Exact Numeric Computation in Geometry and Algebra. In Proc. 3rd ICMS, pages 121–141.
Springer, 2010. LNCS No. 6327.

	Introduction
	FindPath using Soft Subdivision Search

