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This document is structured as follows:

• Section A contains three illustrating examples mentioned in the text of the paper.

• Section B contains descriptions of the benchmark problems used in Section 4 of the paper.

For the convenience of the reader while navigating between the main paper and the Supplementary
materials, we recall that SIAN, software written in MAPLE, has the following input-output specification.

Input. A system Σ of the form 
ẋxx = fff (xxx,µµµ,uuu),
yyy = ggg(xxx,µµµ,uuu),
xxx(0) = xxx∗,

(1)

where

• xxx is a vector of state variables,

• uuu is a vector of input (control) variables to be chosen by an experimenter,

• yyy is a vector of output variables,

• µµµ and xxx∗ are vectors of unknown scalar parameters and unknown initial conditions, respectively,

• fff and ggg are vectors of rational functions in xxx, µµµ, and uuu with complex coefficients (other types of
functions can also be handled, see Section A.2)

and a real number 0 < p < 1, the user-specified probability of correctness of the result. That is, SIAN is a
Monte Carlo randomized algorithm, see [11, Chapter 1.2].

Output. For every θ ∈ µµµ∪ xxx∗, the program assigns one of the following labels:

• Globally identifiable: for almost every solution of (1), every solution of (1) with the same uuu-
component and yyy-component has the same value of θ.

• Locally but not globally identifiable: for almost every solution of (1), among the solutions of (1)
with the same uuu-component and yyy-component, there are only finitely many possible values of θ.

• Not identifiable: for almost every solution of (1), among the solutions of (1) with the same uuu-
component and yyy-component, there are infinitely many possible values of θ.

The assigned labels are correct with probability at least p.
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A Illustrating examples

A.1 Chemical reaction

Purpose of the example

• to show that locally but not globally identifiable parameters appear even in small systems arising in
real-life systems;

• to illustrate how one could take into account the possibility of having some of the parameters

– unknown at the stage of creating the model but

– become directly known (measured) while performing the experiment.

System and discussion. Consider the following consecutive reaction scheme with three species A, B,
and C:

A k1−→ B k2−→C.

Then the amounts xA,xB, and xC of species evolve according to the following system of differential equations
ẋA =−k1xA,

ẋB = k1xA− k2xB,

ẋC = k2xB.

(2)

We assume that, in the experiment, we can observe the amount xC and a combination εAxA + εBxB + εCxC

(where εA, εB, and εC are parameters), which may represent absorbance, conductivity, or ligand release [13,
p. 701]. This gives two outputs y1 = xC and y2 = εAxA + εBxB + εCxC.

In addition to this, we are also given [13, p. 701] that the values of the parameters εA and εC will become
known at the experiment stage but are unknown at the modeling stage. We can encode this within our
framework by considering εA and εC as observable functions (outputs) with zero derivative. In total, we
arrive at the following system: 

ẋA =−k1xA,

ẋB = k1xA− k2xB,

ẋC = k2xB,

ε̇A = 0,
ε̇C = 0,
y1 = xC,

y2 = εAxA + εBxB + εCxC,

y3 = εA,

y4 = εC,

(3)

where xxx = (xA,xB,xC,εA,εC), yyy = (y1,y2,y3,y4), µµµ = (k1,k2,εB), and xxx∗ = (x∗A,x
∗
B,x
∗
C,ε
∗
A,ε
∗
C).

Results Our software outputs that all the parameters µµµ and initial values xxx∗ are locally identifiable, but
only x∗C,ε

∗
A, and ε∗C are globally identifiable. In fact, one can show that the set {k1,k2} can be always found

but any of these two numbers can be either k1 or k2 [13, Equation (1.3)]. In the literature, this phenomenon
is referred to as slow-fast ambiguity.
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Source code: https://github.com/pogudingleb/SIAN/blob/master/examples/SlowFast.mpl.

Remark Applying SIAN to 

ẋA =−k1xA,

ẋB = k1xA− k2xB,

ẋC = k2xB,

y1 = xC,

y2 = εAxA + εBxB + εCxC,

one can show that the assumption that εA and εC can be measured separately is redundant: they both are
globally identifiable even just from y1 and y2.

A.2 Ruminal lipolysis

Purpose of the example is to show how one can handle the case in which the right-hand side of some of
the equations is not a rational function of the parameters.

System and discussion. The following model of ruminal lipolysis was considered in [10, Equations (1-5)],
and its identifiability was discussed in [12, Supplementary Material S2].

ẋ1 =− k1x1
k2+x1

e−k3t ,

ẋ2 =
2k1x1

3(k2+x1)
e−k3t − k4x2,

ẋ3 =
1
2 k4x2− k4x3,

ẋ4 =
k1x1

3(k2+x1)
e−k3t + 1

2 k4x2 + k4x3,

y1 = x1,

y2 = x2 + x3,

y3 = x4,

(4)

where xxx = (x1,x2,x3,x4), yyy = (y1,y2,y3), µµµ = (k1,k2,k3,k4), and xxx∗ = (x∗1,x
∗
2,x
∗
3,x
∗
4).

The right-hand side of some of the equations involve an exponential function. Let us denote k1e−k3t by
x5. By replacing all occurences of k1e−k3t by x5 and adding an extra equation ẋ5 =−k3x5, system (4) can be
written using just rational functions as follows

ẋ1 =− x1x5
k2+x1

,

ẋ2 =
2x1x5

3(k2+x1)
− k4x2,

ẋ3 =
1
2 k4x2− k4x3,

ẋ4 =
x1x5

3(k2+x1)
+ 1

2 k4x2 + k4x3,

ẋ5 =−k3x5,

y1 = x1,

y2 = x2 + x3,

y3 = x4,

(5)

where xxx = (x1,x2,x3,x4,x5), yyy = (y1,y2,y3), µµµ = (k2,k3,k4), and xxx∗ = (x∗1,x
∗
2,x
∗
3,x
∗
4,k1).

Models (4) and (5) have the same set µµµ∪xxx∗ with the only difference that k1 has been moved from µµµ to xxx∗.
One can see that in the sense of identifiability models (4) and (5) are equivalent. Similar change of variables
is possible in many cases when the right-hand side of some of the equations is not a rational function (see
also Section A.3).
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Results All the parameters and initial conditions of (5) (and, consequently, (4)) are globally identifiable.

Source code: https://github.com/pogudingleb/SIAN/blob/master/examples/Lipolysis.mpl.

A.3 Goodwin oscillator

Purpose of the example

• to show that locally but not globally identifiable parameters appear even in small systems arising in
real-life systems;

• to show how one can handle the case in which the right-hand side of some of the equations is not a
rational function of the parameters.

System and discussion The following model describes the oscillations in enzyme kinetics [6] and has
been already used as a benchmark for software for identifiability analysis in [3, Case 1].

ẋ1 =−bx1 +
a

A+xσ
3
,

ẋ2 = αx1−βx2,

ẋ3 = γx2−δx3,

y1 = x1,

(6)

where xxx = (x1,x2,x3), uuu =∅, yyy = (y1), µµµ = (a,A,b,α,β,γ,δ,σ), xxx∗ = (x∗1,x
∗
2,x
∗
3).

To bring system (6) to the form (1), we introduce a new parameter c and a new state variable x4 defined
by

c =
A
a
, x4 =

xσ
3
a
. (7)

Then the first equation in (6) can be rewritten as ẋ1 =−bx1 +
1

c+x4
, and an equation for x4 can be derived as

follows

ẋ4 =
1
a

σẋ3xσ−1
3 = σ

xσ
3
a
· ẋ3

x3
= σx4

γx2−δx3

x3
.

Thus, we can rewrite (6) using just rational functions as

ẋ1 =−bx1 +
1

c+x4
,

ẋ2 = αx1−βx2,

ẋ3 = γx2−δx3,

ẋ4 = σx4
γx2−δx3

x3
,

y1 = x1.

(8)

Here we have

• xxx = (x1,x2,x3,x4),

• uuu =∅,

• yyy = (y1),

• µµµ = (b,c,α,β,γ,δ,σ),
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• xxx∗ = (x∗1,x
∗
2,x
∗
3,x
∗
4).

Our computations show that in the system (8)

• b,c,σ,x∗1, and x∗4 are globally identifiable,

• β and δ are locally but not globally identifiable,

• and α,γ,x∗2, and x∗3 are non-identifiable.

Now we recall that, from (7), we have

c =
A
a

and x∗4 =
(x∗3)

σ

a
.

If a were locally identifiable, then the global identifiability of x∗4 and σ would imply that x∗3 is locally identi-
fiable. Therefore, since x∗3 is non-identifiable , a is non-identifiable. Together with the global identifiability
of c, the non-identifiability of a yields the non-identifiability of A. To sum up, the result of our identifiability
analysis of (6) is the following:

• b,σ, and x∗1 are globally identifiable,

• β and δ are locally but not globally identifiable,

• and a,A,α,γ,x∗2, and x∗3 are non-identifiable.

Once it is known that one of the parameters is not globally identifiable, one might want to understand
where does the non-uniqueness come from and what to do about it. Possible options include:

• Among the possible parameter values, all but one violate some extra constraints coming from biology
and can simply be discarded at the data fitting stage.

• The non-uniqueness of the parameter value might arise from a flaw in the model that should be reme-
died by redesigning the model.

• The non-uniqueness has its own biological meaning, for example, it might indicate the existence of
several distinct “regimes” of the model (see, for example, Section A.1). This biological meaning can
be further used to identify the value of the parameter uniquely.

A natural step towards understanding the nature of the non-uniqueness of a parameter is to find a change
of variables and parameters that leaves the outputs unchanged but changes the value of the parameter. In
the case of locally but not globally identifiable parameters β and δ in (8), one such change of variables and
parameters is the following:

x1→ x1, x2→ x2 +
β−δ

γ
x3, x3→ x3, x4→ x4, b→ b,

c→ c, α→ α, β→ δ, γ→ γ, δ→ β, σ→ σ.

(9)

One can verify that (9) preserves the output of (8) by a direct computation. Below we show one way to
derive (9) using our software.

1. From the intermediate results of the computation done by SIAN, we can extract that the pair of values
{β,δ} is identifiable but it is impossible, based on the observations, to find out which of these two
numbers is the value of β and which one of them is the value of δ.
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2. We try to find which of the state variables and/or parameters can be assumed to be known without
making β and δ globally identifiable. Using SIAN, one can verify (in a couple of seconds) that adding
extra outputs y2 = x3, y3 = α, and y4 = γ does not make β and γ globally identifiable.

3. Thus, there exists a change of variables and parameters that swaps β and δ and leaves everything
except for β,δ, and x2 unchanged. We can find the new function x̃2 by looking at the third equation
in (8) before and after the change of variables and parameters

ẋ3 = γx2−δx3,

ẋ3 = γx̃2−βx3.

A direct computation shows that

x̃2 = x2 +
β−δ

γ
x3.

Thus, we arrive at (9).

Results

• b,σ, and x∗1 are globally identifiable,

• β and δ are locally but not globally identifiable,

• and a,A,α,γ,x∗2, and x∗3 are non-identifiable.

Source code: https://github.com/pogudingleb/SIAN/blob/master/examples/Goodwin.mpl.

B Benchmarks

Section 4 of the paper compares performance of SIAN, GenSSI 2.0, COMBOS, and DAISY. For the
convenience of the reader, we reproduce the table with the runtimes (see Table 1). The purpose of this
section is to describe the used benchmark problems. The source files of the benchmark problems for
GenSSI 2.0, COMBOS, and DAISY are available in the Supplementary Data at https://cs.nyu.edu/~pogudin/
SupplementaryData.zip.

Table 1: Runtimes (in minutes) on benchmark problems

Example GenSSI 2.0 COMBOS DAISY SIAN
Chemical Reaction (B.1) ∗ ∗∗ > 6,000 < 1
HIV (B.2) > 12,000 ∗∗ > 6,600 < 1
SIRS w/ forcing (B.3) > 12,000 ∗∗ > 6,600 < 1
Cholera (B.4) ∗ 85 30 3
Protein complex (B.5) > 12,000 ∗∗ > 6,600 47
Pharmacokinetics (B.6) > 12,000 ∗∗ > 7,800 962

∗: GenSSI 2.0 returns “Warning: Unable to find explicit solution.”
∗∗: COMBOS returns “Model may have been entered incorrectly or cannot be solved with COMBOS algorithms.”

All the results presented in the rest of the section are computed with probability of correctness p = 0.99.
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Remark Interestingly, the most time consuming benchmark problem B.6 is not the one with the largest
number of equations or parameters. For example, it is much smaller than B.5. In general, we have found
that it is hard to tell in advance how the runtime will change with the size of the input system increasing
because the “hardness” of a system for our algorithm is likely determined more by its structure rather then
by its size.

B.1 Chemical Reaction

System The following system of ODEs corresponds to a chemical reaction network [4, Eq. 3.4], which is
a reduced fully processive, n-site phosphorylation network.

ẋ1 =−µ1x1x2 +µ2x4 +µ4x6,

ẋ2 =−µ1x1x2 +µ2x4 +µ3x4,

ẋ3 = µ3x4 +µ5x6−µ6x3x5,

ẋ4 = µ1x1x2−µ2x4−µ3x4,

ẋ5 = µ4x6 +µ5x6−µ6x3x5,

ẋ6 =−µ4x6−µ5x6 +µ6x3x5,

y1 = x2,

y2 = x3

Here we have

• xxx = (x1,x2,x3,x4,x5,x6),

• uuu =∅,

• yyy = (y1,y2),

• µµµ = (µ1,µ2,µ3,µ4,µ5,µ6),

• xxx∗ = (x∗1,x
∗
2,x
∗
3,x
∗
4,x
∗
5,x
∗
6).

Source code

• SIAN: https://github.com/pogudingleb/SIAN/blob/master/examples/ChemicalReactionNetwork.mpl.

• DAISY: file DAISY/ChemicalReactionNetwork.txt in the Supplementary Data.

• COMBOS: file COMBOS/ChemicalReactionNetwork.txt in the Supplementary Data.

• GenSSI 2.0: file GenSSI2/CRN.m in the Supplementary Data.

Result All the parameters µµµ and initial conditions xxx∗ are globally identifiable.
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B.2 HIV

System Consider the following model of HIV [14, Equation (6)] that describes immune impairment dy-
namics. 

ẋ = λ−dx−βxv,
ẏ = βxv−ay,
v̇ = ky−uv,
ẇ = czyw− c∗q∗ yw−bw,
ż = cqyw−hz,
y1 = w,
y2 = z.

Here we have

• xxx = (x,y,v,w,z),

• uuu =∅,

• yyy = (y1,y2),

• µµµ = (β,λ,a,c,d,h,k,q,u),

• xxx∗ = (x∗,y∗,v∗,w∗,z∗).

Source code

• SIAN: https://github.com/pogudingleb/SIAN/blob/master/examples/HIV2.mpl.

• DAISY: file DAISY/HIV2.txt in the Supplementary Data.

• COMBOS: file COMBOS/HIV2.txt in the Supplementary Data.

• GenSSI 2.0: file GenSSI2/HIV2.m in the Supplementary Data.

Results a,b,d,h,q,u,w∗ and z∗ are globally identifiable, β,λ,c,k,x∗,y∗ and v∗ are non-identifiable.

B.3 SIRS with forcing

System The following model is an extension of the SIRS model that incorporates the seasonal nature of
transmission of RSV [2, Equations (7-11)].

ṡ = µ−µs−b0(1+b1x1)is+gr,
i̇ = b0(1+b1x1)is− (ν+µ)i,
ṙ = νi− (µ+g)r,
ẋ1 =−Mx2,

ẋ2 = Mx1,

y1 = i,
y2 = r.

Here we have
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• xxx = (s, i,r,x1,x2),

• uuu =∅,

• yyy = (y1,y2),

• µµµ = (µ,ν,b0,b1,g,M),

• xxx∗ = (s∗, i∗,r∗,x∗1,x
∗
2).

Source code

• SIAN: https://github.com/pogudingleb/SIAN/blob/master/examples/SIRSForced.mpl.

• DAISY: file DAISY/SIRSForced.txt in the Supplementary Data.

• COMBOS: file COMBOS/SIRSForced.txt in the Supplementary Data.

• GenSSI 2.0: file GenSSI2/SIRSForced.m in the Supplementary Data.

Results b0,g,µ,ν,s∗, i∗,r∗ are globally identifiable, M is locally identifiable, but not globally identifiable,
and b1,x∗1,x

∗
2 are non-identifiable.

B.4 Cholera

System The following version of SIWR is an extension of the SIR model, see [8, Eq. 3]:

ṡ = µ−βIsi−βW sw−µs+αr,
i̇ = βW sw+βIsi− γi−µi,
ẇ = ξ(i−w),
ṙ = γi−µr−αr,
y1 = κi,
y2 = s+ i+ r,

where s, i, and r stand for the fractions of the population that are susceptible, infectious, and recovered,
respectively. The variable w represents the concentration of the bacteria in the environment. Here we have

• xxx = (s, i,w,r),

• uuu =∅,

• yyy = (y1,y2),

• µµµ = (µ,βI,βW ,α,γ,ξ,κ),

• xxx∗ = (s∗, i∗,w∗,r∗).

Source code

• SIAN: https://github.com/pogudingleb/SIAN/blob/master/examples/Cholera.mpl.

• DAISY: file DAISY/Cholera.txt in the Supplementary Data.

• COMBOS: file COMBOS/Cholera.txt in the Supplementary Data.

• GenSSI 2.0: file GenSSI2/Cholera.m in the Supplementary Data.
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Result All the parameters µµµ and initial conditions xxx∗ are globally identifiable.

B.5 Protein Complex (NFκB)

Consider the model of NFκB regulatory module proposed in [9] (see also [1] and [3, Case 6]) defined by the
following system [3, Equation 27]

ẋ1 = kprod− kdegx1− k1x1u,
ẋ2 =−k3x2− kdegx2−a2x2x10 + t1x4−a3x2x13 + t2x5 +(k1x1− k2x2x8)u,
ẋ3 = k3x2− kdegx3 + k2x2x8u,
ẋ4 = a2x2x10− t1x4,

ẋ5 = a3x2x13− t2x5,

ẋ6 = c6ax13−a1x6x10 + t2x5− i1x6,

ẋ7 = i1kvx6−a1x11x7,

ẋ8 = c4x9− c5x8,

ẋ9 = c2 + c1x7− c3x9,

ẋ10 =−a2x2x10−a1x10x6 + c4ax12− c5ax10− i1ax10 + e1ax11,

ẋ11 =−a1x11x7 + i1akvx10− e1akvx11,

ẋ12 = c2a + c1ax7− c3ax12,

ẋ13 = a1x10x6− c6ax13−a3x2x13 + e2ax14,

ẋ14 = a1x11x7− e2akvx14,

ẋ15 = c2c + c1cx7− c3cx15,

y1 = x2,

y2 = x10 + x13,

y3 = x9,

y4 = x1 + x2 + x3,

y5 = x7,

y6 = x12

(10)

The values of all the parameters except t1, t2,c3a,c4a,c5,k1,k2,k3,kprod ,kdeg, i1,e2a, i1a are known from the
existing literature (see [1, Table 1]). Here we have

• x = (x1,x2, . . . ,x15),

• u = (u),

• y = (y1,y2, . . . ,y6),

• µ = t1, t2,c3a,c4a,c5,k1,k2,k3,kprod ,kdeg, i1,e2a, i1a,

• x∗ = (x∗1,x
∗
2, . . . ,x

∗
15).

Source code

• SIAN: https://github.com/pogudingleb/SIAN/blob/master/examples/NFkB.mpl.

• DAISY: file DAISY/NFkB.txt in the Supplementary Data.
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• COMBOS: file COMBOS/NFkB.txt in the Supplementary Data.

• GenSSI 2.0: file GenSSI2/NFkB.m in the Supplementary Data.

Result All the parameters µµµ and initial values xxx∗ except x∗15 are globally identifiable. x∗15 is non-identifiable.

B.6 Pharmacokinetics

System This is a simplified version of a model arising in pharmacokinetics [5]:

ẋ1 = a(x2− x1)− kaVmx1
kcka+kcx3+kax1

,

ẋ2 = a(x1− x2),

ẋ3 = b1(x4− x3)− kcVmx3
kcka+kcx3+kax1

,

ẋ4 = b2(x3− x4),

y = x1.

(11)

Here we have

• xxx = (x1,x2,x3,x4),

• uuu =∅,

• yyy = (y),

• µµµ = (a,b1,b2,ka,kc,Vm),

• xxx∗ = (x∗1,x
∗
2,x
∗
3,x
∗
4).

Source code

• SIAN: https://github.com/pogudingleb/SIAN/blob/master/examples/Pharm.mpl.

• DAISY: file DAISY/Pharm.txt in the Supplementary Data.

• COMBOS: file COMBOS/Pharm.txt in the Supplementary Data.

• GenSSI 2.0: file GenSSI2/Pharmacokinetics.m in the Supplementary Data.

Result All the parameters µµµ and initial values xxx∗ are globally identifiable.

C Informal outline of the algorithm

The following is an informal outline of the algorithm used by SIAN. This algorithm is described with all
details and proofs in [7] and is summarized in [7, Section 5] as follows (we provide the summary from [7]
here for the convenience of the reader):

1. Computes enough terms of the Taylor expansion of the output functions to produce a system of poly-
nomial equations that carries all information about identifiability.

2. Truncates the system by removing redundant equations. The redundant equations are determined
using [7, Theorem 1 & Proposition 3].
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3. Using random sampling of the parameter values, we pick a random instance of the identification
problem. The size of the sampling range coming [7, Theorem 2] ensures that, with the required
probability, the picked instance will be representative in the sense that it will have the same set of
globally identifiable parameters as a generic instance.

4. We check identifiability in the picked instance and return the result.
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