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Abstract. We develop a probabilistic test for the vanishing of radical
expressions, that is, expressions involving the four rational operations
(+,—, X, =) and square root extraction. This extends the well-known
Schwartz’s probabilistic test for the vanishing of polynomials. The prob-
abilistic test forms the basis of a new theorem prover for conjectures
about ruler & compass constructions. Our implementation uses the Core
Library which can perform exact comparison for radical expressions.
Some experimental results are presented.

1 Introduction

Several approaches to proving theorems in Elementary Geometry using con-
structive methods in Computer Algebra were proposed in the 1980s [7]. These
were much more successful than earlier approaches based on purely logical or
axiomatic approaches. Thus, Kutzler, Stifter [14] and Kapur [12] proposed meth-
ods based on Grébner Bases. Carra and Gallo [1, 8] devised a method using the
dimension underlying the algebraic variety. Hong [11] introduced semi-numerical
methods (“proof by example” techniques) based on gap theorems. An acclaimed
approach in this area is due to Wu [21, 23, 22] who applied the concept of charac-
teristic sets to geometric theorem proving. Extensive experimentation with Wu’s
method were reported by Chou [3, 5].

All these algebraic approaches begin by translating the geometric statements
into algebraic ones. A proposed geometry theorem (also called a conjecture) is
translated algebraically into two parts: a system H of multivariate polynomials
called the hypothesis, and a single polynomial T" called the thesis. The conjecture
is true if the vanishing of the hypothesis system implies the vanishing of the thesis
polynomial. From the viewpoint of algebraic geometry, proving the conjecture
amounts to showing that Var(H) C Var(T) where Var(S) is the algebraic
variety defined by a set S of polynomials. This basic formulation must be refined
in order to handle degeneracy conditions.
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Wu’s “basic method” computes the pseudo-remainder of the polynomial the-
sis with respect to the Wu-Ritt extended characteristic set of the hypotheses sys-
tem. If the pseudo-remainder vanishes, then the conjecture is true provided the
initials of the extended characteristic set do not vanish. Wu’s basic method has
been successfully used to prove many classical and some new theorems in plane
analytic geometry. The basic method fails if the variety Var(H) is reducible.
To handle this, Wu’s “complete method” begins by decomposing Var(H) into
irreducible components and applying the basic method to each component. A
drawback in Wu’s method is that it works with an algebraically closed field.
In particular, it is not a complete method for the real algebraic varieties. The
present paper addresses a special case of real algebraic varieties.

Grébner bases methods can be doubly exponential in the worst case [17,
24]. The complexity for Wu’s method is somewhat better but remains an issue.
To circumvent the high complexity, we investigate probabilistic methods [20]
combined with “proof by example” techniques [11]. In probabilistic theorem
proving, we do not prove the validity of a conjecture in the classical sense.
Instead, we either prove the invalidity of a conjecture (by showing a counter
example) or else classify the conjecture as “true with the high probability 1 —&”.
This latter classification must be properly understood since, classically, it is
nonsense to say that a theorem is true with some probability. What is meant
is that, relative to a set of experiments we conduct, the probability that the
conjecture is false and we failed to discover this, is less than e.

An interesting approach along these lines was given by Carra, Gallo and
Gennaro [2]. They applied the Schwartz-Zippel [20, 27] probabilistic test for the
vanishing of pseudo-remainders in Wu’s method. They considered conjectures in
the classical setting of ruler €4 compass constructions. Such conjectures are ex-
amined by testing the vanishing of Wu’s pseudo-remainder for randomly chosen
examples. Each example is specified by a random choice of values for its param-
eters. The random choices come from some suitable test set whose cardinality
depends on the degree of the pseudo-remainder. The extended characteristic set
as well as the pseudo-remainder are computed. If the pseudo-remainder is zero,
then the example is successful; otherwise, as in Wu’s method, further investiga-
tion is called for. While implementing their method, one of us (D.T.) discovered
a serious efficiency issue. The degree of the pseudo-remainder is very high: if the
conjecture involves C ruler & compass construction steps, then, the degree of
the pseudo-remainder in [2] (following [9, 10]) has the following bound:

D =20 coe?)

The cardinality of the test set is 2D, which is too large in practice. This bound
applies to the test for “generic truth”. For “universal truth”, D can be improved
to 2P-3°+! where P is the number of points in the construction. Unfortunately,
practically no classical theorems are universal truths.

Summary of New Results. (1) We develop an extension of the Schwartz-
Zippel probabilistic zero test. While the Schwartz-Zippel test is applicable to



polynomials, we treat radical expressions by admitting the additional operations
of division and square-roots. This adds considerable complexity to the proofs.
Furthermore, for efficiency considerations, we use straight line programs to rep-
resent radical expressions. The asymptotic time complexity of our probabilistic
test is a low-order polynomial. Since radical expressions are common in many
applications, we expect this new test to be generally useful.

(2) We address the problem of computer proofs of geometric conjectures
about ruler & compass constructions. The zero test of radical expressions is tailor
fitted for this problem. Moreover, we combine randomness with the numerical
approach of Hong to give additional efficiency. Thus, our approach appears to
be intrinsically more efficient than previous general approaches (e.g., Wu’s or
Grobner bases).

(3) Our prover is implemented using the Core library [15,13,19]. This is
an unexpected application of our library, which was designed as a general C++-
package to support the Exact Geometric Computation [26,25] approach to ro-
bust algorithms. Preliminary experimental results are quite promising. We ex-
pect further improvements by fine-tuning our library for this specific application.
Our prover is currently distributed with version 1.3 of the Core library (Aug.
15, 2000) and available from http://cs.nyu.edu/exact/core/.

Overview. The paper is organized as follows: Section 2 gives an overview of
geometric conjectures about ruler & compass constructions. Section 3 gives our
extension of Schwartz’s probabilistic test to radical expressions. Section 4 ad-
dresses the application of our new probabilistic test to theorem proving. We
conclude in Section 5.

2 Theorem Proving for Ruler & Compass Constructions

We follow the algebraic approach which has been well-summarized by Chou
[5]. Ruler & compass operations may be seen as constructing lengths, points,
lines and circles, collectively called geometric objects. A collection of such geo-
metric objects will be called a geometric scene. We consider geometric scenes
that are constructed incrementally using ruler & compass operations. The al-
gebraic analogue of constructing a geometric object O amounts to introducing
a pair of variables (z,y) and corresponding polynomial equations h;(z,y, z,...)
(i =1,2,...) that must be satisfied if (z,y) lies on O. Here, h; may involve other
variables z, ..., from previously constructed objects. We shall classify the vari-
ables introduced by our constructions into two sorts: independent and dependent
variables. For short, the independent variables will be called parameters. It is
instructive to give a concrete example (Figure 1 from [5]).

Example 1 (Pascal’s Theorem). Let A, B, C, D, F and E be six points on a
circle centered at O. Let P = AB(\DF, Q@ = BC(\FE and S = CD() EA.
Show that P, ) and S are collinear.



Let A = (0)0)7 0 = (’Uq,O), B = (xl)UQ)a ¢ = (l‘z,Ug), D = (1‘3,U4),
F = (v4,us5), E = (v5,us), P = (27,76), @ = (79, 28), and S = (211, %10). This

Fig. 1. Pascal’s Theorem.

gives the following equations for the hypotheses.

| Equation | Geometry | Remark
hy 2% —2uizy +ul =0 OA = OB]| Introduces z1, us
hy : x5 — 2uizs +ul =0 OA = OC| Introduces zs, us
hs : 22 — 2uiz3 +ui =0 OA = OD]| Introduces z3, u4
hy 25 — 2uizg +u =0 OA = OF]| Introduces x4, us
hs : 22 — 2uyzs +u =0 OA = OF)]| Introduces x5, ug
hg : (us = ua)w7 + (=24 + 23)a6+ [P € DF] | Introduces g, <7
Uy — usx3 =0
hy tusxy —x126 =0 [P € AB] | Constrains xg, 27
(ug —us)xy + (—25 + 24) T8+
hg : s — gty = 0 [Q € FE] | Introduces zg, xg
. (’LL3 — ’LLQ)JJQ + (—1'2 + $1)$8+ .
ho : MoTs — usy = 0 [@Q € BC] | Constrains zg, zg
hio : ugr11 — 5210 =0 [S € AE] | Introduces 19, z11
(w4 —us)z11 + (—23 + 22)T10+ .
hi1 : s — sy = 0 [S € CD] | Constrains z9, 13

The conclusion that P, @, S are collinear can be translated into the following

polynomial:

g = (zg — wg)x11 + (—T9 + T7)T10 + TT9 — T7T3 = 0.




In general, we get a system of polynomial equations, hy = hy = --- = hy =
0 where h; € Rlug,...,Um,T1,...,2,] (R is the field of real numbers), the
u1, ..., Uy, are parameters, and the z1, ..., z, are dependent variables. The con-
jecture has the form:

Vu,x)[hy =hs=---=hy=0 = g¢g=0] (1)

where u = (u1,...,up), X = (21,...,2,) and g = g(u, x) € Ru, x].

Degeneracy and Generic Truth. A theorem of the form (1) is called a uni-
versal truth. It turns out that the classical notion of theoremhood is more sub-
tle, and this led Wu to formulate the notion of generic truth. We formalize it
as follows: let Aq,..., Ag be predicates on the variables u,x. We call each A;
a non-degeneracy condition. The conjecture (1) is generically true relative to

(Ar,.o o AGYif
(Vu,X)[Al,AQ,...,Ak,hl =hy=:-=hy=0 = gzO]. (2)

Classical ruler-and-compass theorems are indeterminate in that they do not ex-
plicitly specify the degenerate conditions. Hence part of “proving a classical the-
orem” involves discovering a suitable set of non-degeneracy conditions. Hopefully
the set is minimal is some sense (but not necessarily unique). The simplest kind
of non-degeneracy condition has the form

A:d#0

where d is a polynomial. Call this the first kind of non-degeneracy condition. The
degree of the A is equal to the total degree of d. If each A; has degree d;, then
the degree of {Ay,..., A} is Ele d;. Typical examples of the first kind of non-
degeneracy may require two points to be distinct or two lines to be non-parallel.
It is easy to see that both have degree 2.

Example 1 (continued). The non-degeneracy conditions require the intersection
points P, S and () be not at infinity. Equivalently, the following pairs of lines
are not parallel: {AB,DF}, {BC,FE}, {CD,EA}. So the degree of these non-
degeneracy conditions is 6.

Second Kind of Degeneracy. The second kind of non-degeneracy condition
arises for theorems in the real field. For example, when we define a point by the
intersection of two circles, we require that these two circles intersect. Or, when
we define three collinear points A, B and C, we may require B to lie between
the other two points. Such non-degeneracy conditions have the form

A:d>0
where d is a polynomial. We can modify this condition using a well-known trick:

A 3z, d—22=0



where z is a new variable. The existential quantifier on z can be pulled out as
a prenex universal quantifier. Thus, we can formulate the conjecture as

(Vu,x,z) (AH = T).

In practice, there may be other ways to handle this: in the Pascal example, such
non-degeneracies demand that the parameters u; (for j = 2,3,4,5,6) satisfy
|uj| < |ui|. Our prover can handle non-degeneracy conditions of the second kind
when put in this form. Indeed, in all the examples we looked at in [5], such a
formulation is possible.

Reduction to Radical Expressions. In a ruler & compass construction, each
dependent variable is a radical function of the previously introduced variables.
As exemplified by Pascal’s Theorem, all the dependent variables are introduced
either (i) singly by a single equation (e.g., z; is introduced by h; = 0) or (ii)
in pairs by two equations (e.g., xg,z7 are introduced by hg = hy = 0). As all
equations are at most quadratic, the z;’s can be replaced by radical expres-
sions involving the u;’s. Let G = G(u) be the radical expression after such a
substitution into g(u,x). The universal truth conjecture (1) now says

(Vu)[G = 0],

with an analogous statement for generic truth. Another issue arises: each radical
is determined only up to a + sign. Hence, if there are r radicals in G, we must
replace G = 0 by the system of 2" radical expressions, G; = Gy = --- = Ga» =0,
in which each of the 2" possible sign combinations are used. If a single function
G*(u) is desired, we can use G* = Z?; G?. The appearance of “2"” in this
expression may be disturbing from a complexity viewpoint. Several observations
suggest that this is not serious in practice. First, r is typically small (r = 5 in
Pascal’s theorem). Next, we can reduce the number of summands in G* from
the worst case of 2" terms. There are two ways this can happen: (A) Symmetries
in the problem may arise so that many of the G;’s can be omitted. (B) Certain
sign combinations may be excluded by the nature of the construction and/or
theorem so that G* may represent a sum of less than 2" radical expressions.
In particular, using (A) and (B), we can always omit half of the summands in
standard geometric theorems. Thus, 2" "' terms suffice in G*.

Example 2 (Butterfly Theorem). We illustrate the reduction in the number of
terms in G* using the Butterfly Theorem in [5, Example 2.4, p. 9]. The theorem
concerns 4 co-circular points A, B,C and D. Let O be the center of this circle
and F be the intersection of AC' and BD. The points A, B,C,D,E form a
“butterfly”. If the line perpendicular to OF and passing through E intersects
the lines AD and BC at G and F (respectively), then the theorem says that
segments EF and EG have the same length. There are 3 quadratic equations
in formulating this theorem (so r = 3). In the construction described by Chou,
the point E is placed at the origin (0,0) and O is placed at (u1,0). A is freely
placed at (us2,us3). The point C is now completely determined, and has two



possible solutions. In one solution, C' and A coincide, and the nature of the
theorem excludes this case. Next, the points B is freely chosen on the circle (and
this introduces one parameter). Again there are two possible solutions. But it
is clear by symmetry that we can arbitrarily choose one of them without loss of
generality. Therefore, G* only needs two terms (corresponding to choosing the
2 solutions for D). ]

The fact that our prover can address theorems about real geometry is illus-
trated by the following simple example.

Example 3 (Triangle Bisectors). Let A, B, C' be three non-linear points, and
D be the intersection point of the angle bisectors of ZA and ZB in the triangle
AABC. We want to prove that D must be on the bisector of ZC' in AABC.

A B

Fig. 2. Coincidence of three angle bisectors.

Let A = (0,0), B = (u1,0), C = (ua,u3), D = (x4,25). This gives the
following equations for the hypotheses.

| Equation | Geometry | Remark |
hy:z? —u?=0,21 >0 z; = |AB Introduces z;
ho a3 —u3 —uj =0,29 >0 zy = ||AC Introduces x5
hs 23 — (u1 —uz)? —ui =0,23 > 0| [z3 = ||BC|| Introduces x5

hy : (x1us — xaur)zs + 21uzzs =0 |[D € bisector(£A)]| Constrains x4, x5

hs - [(ug —u1)wy +urzs](2s — ug) + [D € bisector(/B)]
Ti1U3T5 = 0

Constrains x4, x5

The conclusion that D is on the bisector of angle ZC' can be formulated as
the following thesis:

g = (x4 — x2) (w122 — uaws + usws) — (5 — x3)(r3 — x2)uz =0

The formulation explicitly introduces inequalities for x1,xs,z3 to pick the
internal angle bisectors. When regarded as a complex theorem, no such inequal-
ities are allowed. In this case, each “bisector” can refer to either the internal
or external bisector of an angle, so there are a total of 8 = 23 choices for these
bisectors. The “thesis” is true for exactly four of these choices, which also means



that the theorem is false in complex geometry. Let G(u) be the radical expres-
sion after eliminating the dependent variables from g. The 8 choices of bisectors
correspond to different assignment of signs to the three radicals in G(u). Our
prover can be used to test the validity of each choice. [ |

3 Randomized Zero Testing for Radical Expressions

3.1 Straight Line Programs

We need to generalize expressions to straight line programs (SLP). A SLP = is
a sequence of steps where each step is an assignment to a new programming
variable. The ith step of a SLP has one of the forms

Zi < Ti oY, (OE {+7_7X7+}) (3)

where z; is a newly introduced programming variable, z; and y; are either real
constants, input variables or programming variables introduced in some earlier
steps. Alternatively, we call an input variable an independent variable (or, pa-
rameter) and a programming variable a dependent variable. These z; and y; are
said to be wused in the i¢th step. The last introduced variable is called the main
variable and it is never used. In general, a SLP can have branching steps. But
this possibility is not considered in this paper.

An expression is a SLP where, with the exception of the main variable, each
programming variable is used exactly once. Underlying each SLP is a labeled and
ordered dag (directed acyclic graph) defined in the obvious way: each node corre-
sponds to a constant or variable in the SLP. We often use the terms “nodes” and
“variables” interchangeably. For the steps in (4) (resp., (3)), we introduce edges
that are directed from z; (resp., z; and y;) to z;. We use standard graph-theoretic
terminology to talk about this dag: sinks, sources, predecessor/successor nodes,
etc. If (u,v) is an edge of the dag, we call u the predecessor of v, and call v the
successor of u. The nodes labeled by input variables or constants are source nodes
while the non-source are labeled by programming variables. The sources may be
called leaves in case the dag is a tree. The non-source nodes are associated with
an operation (£, X, +,/-) — so we may speak of “radical nodes”, “multiplication
nodes”, etc. Variables that are not used correspond to sink nodes in the dag. The
main variable corresponds to a sink node which we call root. The radical depth of
a node wu is the maximum number of radical nodes in a path from u to any root
node, inclusive of the end points. Thus, if u is a radical node, then the radical
depth of u is at least 1. For each node w, its induced dag is the subdag comprising
all the nodes that can reach u along a path. A SLP is said to be rooted if the
root is the unique sink. The dags corresponding to expressions are ordered trees
(hence rooted). Our SLP’s are assumed rooted unless otherwise noted.

Values. Let u = (uy,...,u;) be the input variables. For each variable « in
a SLP 7, we inductively define its value to be an appropriate element val,(u)



in an algebraic extension of Q(u). The extension is obtained by adjunction of
square roots. The value of 7 is the value of its main variable. More precisely, let
Qo = Q(u) and define the tower of extensions defined by 7 to be

Qo CQR1CQ2C---CQ, (5)

where Q; := Q;_1(y/a;) and the ith square-root in 7 has operand a;; € @Q;—1. A
SLP 7 is also said to compute a collection V' C @, of values provided each v € V
is the value of some variable in 7.

Rational Degrees. Let x be a node in a SLP w. We define the rational degree
rdeg, (z) of = (the subscript 7 is usually dropped). We need some auxiliary no-
tions. For any node or variable z, let RAD(z) denote the set of radical nodes in
the subdag of 7 rooted at . Write RAD(z, y) for RAD(x) \ RAD(y) (set differ-
ence). Also let p(z) := |RAD(z)| and p(z,y) := | RAD(z,y)|. We will inductively
define rdeg(z) to be a pair of natural numbers (a,b) € N?, but usually write it
as “a : b”. These two numbers are the “upper” and “lower” degrees of z and
denoted udeg(z) and ldeg(x). Thus,

rdeg(z) = udeg(z) : ldeg(z).

Assuming rdeg(z) = a, : b, and rdeg(y) = ay : by, we inductively define rdeg(z)
using the table:

|z ] udeg(z) | ldeg(z) |
constant |0 0

parameter|1 0

Xy az2p(y,z) + ay2p(z,y) meP(y,fv) + bygp(z,y)

Ty az2°) 4 by2p(m’y) b, 2/ 4 ay2p(x7y)

r+y max(a,2°W ) + b,20@) b, 20WT) 4 g, 20@V))[p, 20W7) 4 p, 20(2:)

\/.’1_5 Qg bx

The rational degree of the SLP 7 is defined to be a : b where a = max, udeg(z),

b = max, ldeg(x), and z ranges over the nodes in 7. Note that if 7 is division-free,
then ldeg(z) = 0 for all x.

Alternative Approach. It is useful to have an alternative approach to rdeg
which does not involve p(z,y) or p(y,z). In particular, we define rdeg,(z) =
udeg, (z) : 1deg, (z) inductively using the following table: as before, we assume
rdeg,(z) = ay : by and rdeg,(y) = ay : by.

| 2z | udeg, () |ldeg, (2)]
constant 0 0
parameter 1 0
Xy Qg + Gy by + by
Ty a; + by by +ay
rty max{a, + by, b, + a,}| b, + b,




Notice that these degrees are no longer natural numbers but binary fractions.
The following lemma gives the connection between the two definitions of rdeg.

Lemma 1. For any variable z in a SLP, we have

udeg(z) = 2°¢) udeg, (2), ldeg(z) = 2°(*) 1deg, (2).

3.2 Equivalent Transformations

Two variables (resp. SLP’s) are said to be equivalent if they have the same
value. Transformations of an SLP that do not change its value are called equiv-
alent transformations (but the set of computed values may change). Equivalent
transformations may change the rational degree, as when applying the distribu-
tive law:

z(z +y) = 2z + 2y. (6)

It is easy to verify that the rational degree of the left-hand side is at most that
of the right-hand side. We next show that the rational degree is preserved in the
absence of division (but allowing radicals):

Lemma 2. If 7 is division-free, then the transformation (6) preserves rdeg of
w. In particular,
rdeg(z(z + y)) = rdeg(zz + zy).

Proof. We only need to consider the upper degrees. With udeg(z) = a,, etc, as
before, we have

udeg(z(z +y)) = 20(2y:2) g 4 9p(22y) max{aIQ"(y’z), ayQP(z’y)}
while

udeg(zz + zy) = max{a,, 2% a,,2029)}
= max{(a,2°(*?) + ,2°(5:2))20G0:22) (g 20(1:2) 4 g 2p(=0))90(20.20)Y

The lemma follows if we now verify the following:

RAD(zy, z) = RAD(z,2) W RAD(zy, zx),

RAD(zy, z) = RAD(y, z)  RAD(zz, zy),

RAD(z,zy) W RAD(y,z) = RAD(z,2) ¥ RAD(zy, 2x),
) = (z,9) ( )

RAD(z,zy) W RAD(z,y

Our notation here, AW B, refers to disjoint union of the sets A and B. Let us
only prove the first equation: the RHS is equivalent to RAD(z, z) ¥ RAD(y, zz).
We may verify that the union is indeed disjoint, and equal to RAD(zy, z). The
other equations can be proved similarly. We omit the details here. [ |

Next, we show that applying the associative laws for multiplication and addition
does not affect rational degree. This follows from the following general result:



Lemma 3. Let x; be variables in m and r; = |RAD(zq,...,zx) \ RAD(z;)|.
Then

k

k
rdeg(H x;) = Z rdeg(x;)2"™
i=1

i=1

k k
k . .
udeg(z x;) = nlglzalx{udeg(a:i)Q i+ Z ldeg(z;)2™7 }
i=1 j=1.5#

k k
ldeg(z x;) = Zldeg(a:iﬂ”
=1 i=1

The above lemma justifies a generalization of SLP’s in which we allow addi-
tion nodes and multiplication nodes to take an arbitrary number of arguments.
These are called “sum” or ) -nodes, and “product” or [[-nodes, respectively.
Such an SLP is called a generalized SLP. A path in a generalized SLP dag is
said to be alternating if along the path, no two consecutive nodes are ) -nodes
and no two consecutive nodes are [[-nodes. The SLP is alternating if every path
is alternating. Clearly, any SLP can be made alternating without changing its
rational degree. We can eliminating any non-alternating path in the SLP by
aggregating the consecutive additions (or multiplications) using the > (or [])
operations. This process will terminate because each elimination reduces the
number if nodes in a SLP.

3.3 Preparation

A SLP in which the last three steps has the form

T < Jweo
Y4 T XWR
24— Y twy

is said to be prepared (or in prepared form). Here w4, wp,wc are variables or
constants. Thus z is the main variable, and z is the last radical variable to be
introduced. Intuitively, the radical  has been brought up as close to the root
as possible, in preparation for a transformation (to be introduced) to remove
the radical. We also call x the prepared variable. If the values of wa,wp,wo
are given by the expressions A, B, C' (resp.) then the value of z is given by the
expression

A+ BVC.

Note special forms of this expression when A =0 or B = 1, or both. If the SLP
has no square roots, it is considered prepared already. Our goal is to prepare a
given SLP, and to bound the resulting rational degree.



Let us now prepare a radical node Ay with radical depth 1. Assume the SLP
is division-free. Let A,,, By, be expressions (n > 0). The expressions E,,, for n > 0
is defined inductively as follows: Ey = Ag X By, and for n > 1,

E, = (En—l + An)Bn = ((En—Q + An—l)Bn—l + An)Bn =

To show the dependence of E, on the A,’s and B,,’s, we may also write E, =
E, (Ao, Bo, A1, By,...,A,, By,). Viewed as a tree, E,, is essentially a single al-
ternating path from the root down to Ag. This path is left-branching only and
the root is a x-node. Also write: B :=[]j_, Bj-

Lemma 4. For n > 1, the expression E, (Ao, Bo,...,An, Byn) is equivalent to
the expression

E;L ::(AO X B(n)) + Enfl(AlaBla R Ana Bn)
Moreover, if Ey, is division-free, then rdeg(E,) = rdeg(FE.).
Proof. Proof by induction. When n =1,

E1 :(Ao XBo)+A1) XBl
:(AOXBox.Bl)+A1 XBl.

Assume that this lemma is held for n < k, then for n = k + 1,

Eyp1 = (B + Agt1) X Beya
= ((A4g x B(k)) + Ep_1(A1,By, ..., Ak, B) + Agy1) X Braa
= (Ao X B(k+1)) + Ek(Al,Bl, Ceey Ak+1, Bk+1).

Thus we know the equivalence of this transformation is held for any n € N.
In both cases, we only apply the distributive and associative laws, which do
not change the rational degree when E,, is division free. ]

This is illustrated in the case n = 2 by Figure 3. Note that the variable Ag
is prepared in EJ,. Actually, E,, in this lemma can be a generalized SLP so that
the A;, Bi’s need not be distinct and the nodes can be ) - and [[-nodes. Then
there is a corresponding equivalent SLP E!; this is the version that we will use
in the next theorem.

We address the problem of multiple uses of a node. A node u is used k times
if there are k distinct paths from the root to u. If a radical node u of radical
depth 1 is used k times, then if we judiciously apply the previous lemma k times,
each time eliminating one “use” of u, we obtain:

Theorem 1. Suppose 7 is a division-free SLP and w is a radical node in w with
radical depth of 1. Then we can transform w into an equivalent SLP 7' such that
udeg(m) = udeg(n'). Moreover, either no node in 7' has the value val,(u) or
else, there is a node u' in © with the following properties:



Fig. 3. The Transformation Es — FEj.

1. u' is the prepared variable in 7'
2. u' is the unique node in ©' with value val,(u).

Proof. We may assume that 7 is a generalized, alternating SLP. Fix any path p
from u to the root and we may assume that this alternating sum-product path
has the same form as the path from Ag to the root of E,, in lemma 4. We then
apply the previous lemma in which u now plays the role of the node Ag in E,.
This collapses the path p to length 2, as in the lemma and the resulting SLP is
in a prepared form E' = u x A + B. If the variable u is used in A and/or B,
then we can repeat this process for another path p' (if any) in A or B. We can
repeat this process for the subexpressions A and/or B, if they contain references
to the node u as well. There are two cases:

1. u is used in A, then A is transformed to A’ = u x A; + B; and E' =
ux B1+(A1u?+ B). Remember that u is a square root and thus the expression
u? effectively eliminates the square root operation here;

2. u is used in B, then B is transformed to B’ = u x Ay + B> and E' =
u X (A+A2)+B2

In both cases, we can see that E’ is still in a prepared form. We keep this process
until there is no use of u except the one that is in the prepared position and has
a unique path to the root with length 2. Since there must be a finite number
of uses of u, this iterative process will eventually terminate. At that point, the
resulting SLP 7’ has the desired form: 7’ is prepared and u is the main prepared
variable. It is also clear that if there are other nodes with the same value as u,
they can also be merged with u by the same process. Hence, u will be the unique
node with value val, (u).

Note that we apply the commutative, associative and distributive laws in
these transformations. The commutative and associative transformations do not
change the rational degree. Since 7 is division free, Lemma 2 tells us that the dis-
tributive transformation preserves the rational degree too. Therefore, the prepa-
ration transformation does not change the rational degree of . ]



We say that 7' is obtained by the process of “preparing” u in .

3.4 Main Result

Let m be a SLP whose value is V = V(u) € Q, (see (5)). We define the real
function f; : R™ — R where fr(ai,...,an) is the value of the main variable in
7 when we evaluate each dependent variable at a = (a4, ..., a,) € R™, following
7w in a step-by-step fashion. The domain of f, comprises those a € R™ where
fr(a) is defined. Similarly, we define an associated real function fy : R™ — R
Note that the domain of f. is always a subset of fi. The following example
shows that it may be a proper subset: let 7 compute the value V = 2?2_01 xt
using Horner’s rule, and let 7' compute the same V' using the formula V' = “”;:11

Then 7 and 7’ are equivalent, but (1) = n while 7(1) is undefined. The domain
of 7 (and V') is R but the domain of 7’ is R — {1}.

Theorem 2. Suppose V = V(u) is the non-zero value of a rooted division-free
SLP w. Then there exists a non-zero polynomial P(u) such that Zero(V) C
Zero(P) with deg P(u) < udeg(r).

Proof. We show the existence of the polynomial P(u) by induction on the num-
ber r of square roots in . For r = 0, the result holds because V is already a
polynomial of degree udeg(n).

Assume r > 0 and let u be a radical node of radical depth 1 in 7. We
prepare u, leading to an equivalent SLP (which we still call 7). The udeg of 7
is unchanged by this transformation. If C' is the value of u, then the value of 7
can be written as

V=A4+BJVC

where A, B, C belongs to Q,—1 (recall that values of programming variable in-
troduced before the rth root extraction belongs to the field @,_1, by definition
of @r—1). If B =0 then V = A and the result is true by the inductive hypothesis
applied to A (which has < r — 1 square roots). Otherwise, by applying some
further (obvious) transformations, we transform 7 to some #’ whose value is

V' = A? - B%C. (7)

Note that 7’ has < r — 1 square-roots. If V' = 0 then 0 = V' = (A + BVC)(A —
B+V/(). Since @, is a UFD and V = A+ Bv/C # 0 (by assumption), we conclude
that A—BVC =0,ie.,VC =A/B€Q, 1. ThusV = A+ BV/C =2A. Then V
can be computed by some SLP with < r — 1 square-roots, and the result follows
by inductive hypothesis.

So assume V' # 0. By induction, Zero(V') = Zero(A% — B2C) C Zero(P)
for some P with deg(P) < udeg(V'). Since Zero(V) C Zero(V'), it remains to
show that udeg(V") < udeg(V'). We have

udeg(V) = udeg(4 + BVC)
= max{udeg(4)2/(BVC:A) ydeg(BVC)2(4BVOY



> max{udeg(A)QHp(Bzc’A), [udeg(B)Qp(‘/aB) + udeg(C)Qp(B“/a)] 2p(A7BZO)}

udeg(B?)
2

max{udeg(A2)2"(BQC’A), [udeg(B2)2"(C’B2) + udeg(C)2p(B2’C)] 2"(‘42’320)}
= udeg(4% — B2C) = udeg(V").

= max{2 udeg(A)Q"(BQC’A), [ 9l+n(C,B?) +udeg(0)2"(32’0)] 2,,(,4,1320)}

Y%

3.5 Presence of Division

What if the SLP is not division-free? Note that the presence of division is very
common. For instance, when we intersect two lines in the construction, it gives
rise to an expression with division. There is a well-known transformation to
move all divisions towards the root, merging them as we go. An instance of this
transformation is

A A AB'+ A'B

B"H T BB

Unfortunately, the number of radical nodes may be doubled because if we move
a division node past a radical node, we obtain two radical nodes:

\/%i % (8)

Hence we give two versions of this transformation in the following lemma: in
version (i) we do not move any division node past a radical node, and in version
(ii) we remove all but at most one division node.

Lemma 5 (Elimination of Division). Let 7 be a rooted SLP.

(i) There is an equivalent SLP 7' in which each division node is either the root
of © or the child of a radical node. Moreover, rdeg(r') = rdeg(w) and 7' has the
same number of radical nodes as .

(ii) There is an equivalent SLP ©"" with only one division node which is also the
root. In this case rdeg(n") < 2" rdeg(r).

The proof of (ii) exploits the alternative definition of udeg(u). Because the jus-
tification of the alternative definition is long, we only refer to the details in
[15].

The value of the SLP 7' has the form A/B where A, B are division-free.
Intuitively, to check if A/B = 0, we check if A = 0 subject to B # 0. Since A
is division-free, we may apply main theorem (see next Section). This effectively
amounts to doubling the number of square roots to prove a theorem involving
division.



3.6 Improved Square Root Transformation

It turns out that we can exploit another trick motivated by [18] in order to avoid
the doubling of the number of square roots. Instead of (8), we use the following
transformation to extract division out of square roots:

2 @ if udeg(A) > udeg(B),
5= 9)

\/% if udeg(A4) < udeg(B).
Suppose our transformations for eliminating divisions, using the new rule (9),
transform an arbitrary expression z into U(z)/L(z) where U(z), L(z) are divi-
sion free. Let u, and ¢, denote the udeg(U(z)) and udeg(L(z)). To exploit the
advantages of this new rule, we now give an explicit set of inductive rules for

computing u, and £,:

Lz | U | L. |

constant 0 0

parameter 1 0

T Xy Ug + Uy lp +1y

Ty Uy + 1y le + uy

rty max{u, + 1,1z +uy} Iy + 1y
%(uw+lw): (uz > 12); | e, (ug > 1z);

VT Ug, (uo <lp).| 2(us +1a), (ua <la).

Note that [18] only uses one of two clauses in (9) unconditionally. But the
effect of using the two conditional clauses is that the resulting bound u is never
worse than 2" udeg(z), which is the bound in Lemma 5. The proofs may be found
in [15].

4 Proving by Random Examples

We show how to use our main result to prove theorems about ruler & compass
constructions. According to Section 2, this amounts to verifying if a radical
expression G*(u) is identically zero (subject to non-degeneracy conditions). Let
m(u) be the natural SLP which computes the values of all the dependent variables
in a ruler & compass construction, and whose value is the polynomial thesis
G*(u). We give a simple upper estimate on the rdeg of each node in 7.

Each “stage” of our construction introduces new points, lines or circles. Let
us now be more precise: assume that our system maintains three kinds of geo-
metric objects: points, lines and circles. These are constructed as follows:

— Points: There are three cases. Case 0: We can introduce an arbitrary point,
P. Then P.x and P.y are free variables (i.e., parameters). Case 1: We can
introduce an arbitrary point, P on an existing line L or circle C'. We may
specify either P.x or P.y to be a parameter. The other coordinate is therefore



a dependent variable, constrained by an equation. Case 2: We can introduce
a point P that arises from the intersection of a line/circle with another
line/circle. In this case, P.x and P.y are both dependent variables constrained
by a pair of simultaneous equations. There is a variation of Case 2, which
arises when at least one of the two intersecting objects is a circle. In this
case, we allow the user to obtain both the points of intersection’.

— Lines: Given two existing points, we can construct the line through them.

— Circles: Given three points P, Q, R, we can construct the circle centered at
P of radius equal to the distance between ) and R. As a special case, if P
is equal to @) or R, we can just use two arguments for this construction.

Lemma 6. If the dependent variable x is introduced at stage i , then rdeg, (z) <
85", i.e., udeg,(z) < 85, ldeg,(z) < 85,

Proof. Proof by induction. Let Sy be the set of objects (points, lines, etc.) avail-
able after k construction stages. This lemma is trivially true when & = 0 because
Sp is empty.

Let r, = 85*. By the induction hypothesis, we assume that the coordinate
(e.g., for points) or coefficient (e.g., in a line or circle equation) variables for all
the objects in Sy have rational degrees at most ry.

Let us first consider the construction of lines and circles. Recall that in our
system, a line refers to one that is constructed by linking two points in Sj; while
a circle means one that is constructed with the center in S, and the radius being
the length of some segment between two points in Sj. We represent a line by a
linear equation azx + by 4+ ¢ = 0. It is easily verified that the rational degrees of
a, b and ¢ are at most 2r, 2r; and 6rg, respectively. Similarly, we represent a
circle by an equation in the form of (z — a)? + (y — b)? = ¢ where the rational
degrees of a,b and ¢ are at most ri,r and 4r, respectively.

Next, we consider the construction of points. As discussed above, we can have
one of the three types of construction (Cases 0, 1, 2) in stage (k + 1). Case 0 is
trivial because all the parameters have the rational degree 1 : 0. Case 1 can be
viewed as a simplified Case 2. In the following, we focus on the more interesting
Case 2 constructions.

There are three possible constructions in a Case 2 stage.

First, we consider the intersection of two lines Ly : a1z + byy + ¢; = 0 and
Lo s asx + boy + co = 0 where a’s, b’s and ¢’s can be at most ;. We obtain the
intersection point (x,y) of these two lines as follows,

ciby — b1 craz — craq

a1by — azby ’ azby — arby ’

From the definition (see Section 3.1), the rational degrees for z and y are at
most 8r.

! It should be possible to allow the user to pick one of the two points using some
criteria, but we defer this to a future paper on implementation. This additional
power is sometimes needed in ruler-and-compass theorems.



Next, let us consider the intersection of a line L : a1x + byy + ¢; = 0 and a
circle C : (z —az2)?+ (y — b2)? = c3. We eliminate y and get a quadratic equation
for = as follows:

2
(1+ 500" + (=205 + 255 + b))z + (5 + b)* + a3 = ) = 0.
by b1 by b1
Let A, B and C be the three coefficients in the above equation. It can be shown
that the rational degrees of them can at most be 4ry, 67, and 107 respectively.
From the above equations, we get z = =BEVBZ-4AC Vf:_‘mc and y = —%1“1. Thus,
rdeg, (z) < 23ry and rdeg,(y) < 267.

Thirdly, we consider the intersection of two circles: C : (z—ay)?+(y—b1)? =
c? and Cy : (z — az)? + (y — b2)? = . We subtract them first to obtain a linear
equation first. Then by arguments similar to those used for the intersection of a
line and a circle, we can show that the rational degrees for z and y are at most
69r; and 857y, respectively.

Therefore, we know that rdeg,(z) < 85 for all the nodes at the stage i. ®

REMARK: The constant 85 in the above lemma is clearly very conservative.
This bound can be refined, for example, by classifying the stages into the various
types of construction.

Corollary 1. Let the thesis polynomial be g(u, x) with deg(g) = d, and G(u) be
any of the 2" radical expressions derived from g(u,x) by eliminating dependent
variables. Then rdeg, (G) < td2"85% where g(u,x) has t terms and k is the
number of construction stages.

Proof. For Lemma, 6, we know that the rational degrees for all the dependent
and independent variables are at most 85%. The thesis G has t terms with total
degree at most d. By the inductive definitions of rational degrees, we know that
rdeg, (G) < td2"85F. [ |

Assume an incremental construction with m parameters, n dependent vari-
ables, k stages, and r quadratic equations. Note that ¢ is at most (m+;+d).
Moreover, d < 2 in most classical geometric theorems. In our implementation,
instead of relying on this crude upper bound, we actually compute the actual
bounds on rdeg to achieve better performance. By applying Lemma 5(ii) to =,
we obtain 7" with one division at the root, and rdeg(#’") < 2" rdeg(r). Now the
value of 7' (which is G*) has the form A/B where A, B are division-free. More-
over, rdeg,. (G*) < td2?"85*. Clearly, Zero(A/B) C Zero(A). Without loss of
generality, assume A # 0. By our main theorem, Zero(A) C Zero(P) for some
polynomial P of degree < td22785*. Then we invoke a simple form of Schwartz’s
lemma:

Fact 1. Let P(u) be a non-zero polynomial of degree at most D. If each a;
(i=1,...,m) is randomly chosen from a finite set S C R. Then the probability
that P(ay,...,ay) =0 is at most D/|S]|.



If we randomly pick the values a = (a1, ...,a,) € S™, and |S| = td2°+2785% (for
any ¢ > 1) then the “error probability” of our procedure is given by Pr{A(a) =
0} < Pr{P(a) =0} < 2 °. This constitutes our probabilistic verification of the
universal truth of “G*(u) =0”.

An alternative to testing G*(u) = 0 is viewing the problem as testing the
simultaneous vanishing of a set of polynomial G:={Gi(u),...,Ga(u)}. This
reduces the complexity in two ways:

— The root bound (which determines the precision necessary to numerically
determine the sign of radical expressions in the Core Library) is smaller.
— The size of the test set S is smaller.

We also have a further choice when testing G: we can randomly choose some
G; to test for its vanishing, or we can choose to randomly test all the G;’s for
their vanishing. However, the random choice of GG; does not seem to be the most
efficient way to test a theorem.

Degeneracies of the First Kind. We now address the generic truth of
“G*(u) = 0”. The notion of “error probability” becomes an interesting issue.
First consider only non-degeneracy conditions of the first kind, A : § # 0. For
simplicity, assume the ith ruler & compass construction step introduces exactly
one such condition, §; # 0, of degree < 2. Since there are k stages of construc-
tion, the non-degeneracy condition becomes 6* := 316 - - - §, # 0. The degree of
0* is thus at most 2k.

There are two natural models of what it means to have an “error probability”
< 27¢% (A) The “strict model” says that our sample space is now restricted to
S™\ {a:d(a) = 0}. (B) Alternatively, we can say that the sample space is still
S™ but the theorem is trivially true at S™ N{a:d(a) = 0}. Given a finite test
set S, the possible zeros of * (i.e., degenerate configurations) in S™ is at most
22" udeg(6*)|S|™ . With a large enough test set S, we can make the probability
that degenerate cases are chosen in the test (i.e., 22" udeg(d*)/|S|) arbitrarily
small. We adopt the model A in the next theorem:

Theorem 3. Conjectures about ruler & compass constructions with s non-dege-
nerate conditions of the first kind can be verified with error probability < 27°¢
in time polynomial in the parameters 2",2° k, c,1g(t) and lg(d), where r is the
number of square roots in the thesis radical expression G(u), k is the number
of construction stages, t is the number of monomials in the thesis polynomial
g(u,x), and d is the total degree of g.

Proof. Each construction introduces a constant number of new operations into
the final radical thesis expression G*(a). Thus, the cost to construct the the-
sis expressions G*(a) is bound by O(k). Next, let us consider the complex-
ity in verifying G(a) for some sample configuration a = (ay,as,...a,;) ran-
domly chosen from a finite test set S with a cardinality of 22"+¢85*¢d. From
the discussion above, we know that the failure probability of this test is at most



27¢. Without loss of generality, we can assume all the elements in S are in-
tegers. So the bit length of each instance value is bounded by L = 1g(|S|) =
O(r + ¢ + lg(t) + 1g(d) + k). In our root bound based approach to determine
the exact sign of an algebraic expression [16], the number of bits which need to
compute in the verification is bounded by O(pL2%"), where p is the total num-
ber of operations in G* which is bounded by O(k). It is known that the time
complexity of arithmetic operations among multiple precision numbers are no
more than O(¢%) where £ is the bit length of operands. We have a total of 27
radical thesis expressions to verify. So the complexity to verify the vanishing of
G*, when exact arithmetic is employed, is polynomial in 2", k, ¢, lg(¢) and 1g(d).

In presence of s non-degeneracy conditions of the first kind, let A(u) be the
product of all of them. It is a radical expression in u. By our main theorems, the
number of zeros of A in S™, N, is polynomial in 2% and 2". In the worst case,
we may meet at most IV degenerate cases before we get the first non-degenerate
one. So the worst case complexity for our complete method is polynomial in
27,28 k,e,1g(t) and lg(d). [ |

Degeneracies of the Second Kind. As noted, degeneracies of the second
kind can often be reduced to simple constraints on the domains of the param-
eters, possibly depending on the values of other parameters. For instance, we
noted that in Pascal’s Theorem, the parameters u; (1 = 2,...,6) must satisfy
|u;| < |u1|. Our prover can handle such degeneracies by exploiting the following
more general form of fact 1: define the generalized degree of p(x1,...,x,) to be
(di,...,d,) where the degree of p is d; when viewed as a polynomial in z; and
its leading coefficient inductively has generalized degree (ds,...,d,). Suppose
Si,...,Sy are finite sets of real numbers, then it can be shown that if we choose
(u1,-..,uy) randomly from S; X Sy x - - - X Sy, the probability that p is non-zero
and p(u1,...,u,) =0 is at most

dl dn
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The main extra complexity caused by this version of our prover is that we
need to evaluate the parameters at rational values (instead of just at integer
values).

The current implementation does not handle the second kind of degeneracy in
the above way, but we plan to rectify this in the future. Instead, it detects when
an example a € S™ is degenerate, discards it and generates another example,
etc. Under probability model (A) above, this means that we do not have an 4
priori bound on the running time, but the error probability is correct. Of course,
under model (B), there is no need to generate another example; but this does
not seem like a reasonable model.

Degenerate Ruler-and-Compass Constructions. Certain theorems amount
to detecting the validity of construction steps. We give a simple example from



[6] of a theorem true in real geometry but false in the complex geometry. The
construction amounts to picking two points P;(0,0) and P>(u,0) where u is a
free parameter. Also let P; be the midpoint of P;P,, and P, the midpoint of
P, P;. Let L be the bisector of the segment P; Py, and C be the circle centered
at P; with radius Py Py. Let Ps be the intersection of L and C. The thesis is
P, = P, or equivalently v = 0. This conjecture is true in real geometry, but it is
false in the complex plane because v = 1/—1 is a solution. This is an interesting
example because the thesis does not depend on the construction at all. It is an
indirect way of asserting the validity of the construction steps. In implementing
a prover that takes inputs from the user, we need to guard against being asked
to prove such theorems. This amounts to an extreme form of the second kind of
degeneracy.

Timing. The following table lists some theorems from Chou [5]. However, the
last row (Tri-Bisector theorem) is the real geometry example from Section 2. The
timings are for two values of ¢ (this means the probability of error is at most
27¢). We also arbitrarily “perturb” the hypothesis of each theorem by randomly
changing one coefficient of one of the input polynomials, and report their timings
as well. These are all false theorems, naturally. Our tests were performed on a
Sun UltraSPARC-IIi (440 MHz, 512 MB). The times are all in seconds, and
represent the average of 6 runs each. The prover uses Core Library, Version 1.3.
Actually, the library is directly modified so that we compute the exact rational
degrees of the expressions (rather than use the estimates of the Lemma 6). For
comparison, we include the timings reported by Chou [5] using the approaches of
Wu and of Grobner Bases. The final column in the table gives the page number
in Chou’s book [5].

[No.|JTHEOREM  [|c = 10[c = 20]PERTURBED|CHAR SET|GROBNER|PAGE]

1 |Pappus 0.020| 0.020 0.007 1.52 33.32| 100
2 |Pappus Point|| 0.110{ 0.113 0.023 4.87 67.62| 100
3 |Pappus-dual || 0.020| 0.020 0.013 1.45 25.53| 111
4  |Nehring 8.300| 8.390 0.107 4.15 159.3| 115
5 |Chou-46 0.070| 0.073 0.020 88.13 37.65 124
6 |Ceva 0.030| 0.033 0.017 1.12 3.47| 264
7  |Simson 193.22(262.49 0.023 1.22 5.02| 240
8 |Pascal 1715.8(2991.6 0.037 29.6| >14400f 103
9 |Tri-Bisector |[20.027|38.350 0.010 - - -

Let r be the number of square roots in the radical expression representing a
theorem. If r = 0, we say the theorem is linear. A large part? of the 512 theorems
in Chou’s book are linear. Only the last two theorems (Simson and Pascal) in
the above list are non-linear, with » = 1 and r = 5, respectively. Evidently non-
linear theorems represent a challenge for our current system. Recall that there

2 The theorems in Chou’s book include an original list of 366 theorems from [4], of
which 219 are reported to be linear [5, p. 12].



are 2" (or 2"~! by symmetry) possible sign assignments to the radicals in G(u).
Our prover has three verification modes: (1) random mode, (2) exhaustive mode,
and (3) specified mode. These correspond, respectively, to testing (1) a random
sign assignment, (2) all sign assignments and (3) a user-specified assignment. For
linear theorems, these modes are irrelevant. In the above table, we test Simson’s
theorem in the exhaustive mode, Pascal’s theorem in the random mode and Tri-
bisector in the specified mode. So our timing for Pascal’s theorem should really
be multiplied by 2* = 16.

It is interesting to note that we have never observed a single wrong conclu-
sion from our probabilistic tests — all true theorems are reported as true, and
all perturbed theorems are reported as false. In some sense, that is not surpris-
ing because the probabilistic bounds based on Schwartz’s lemma seem overly
conservative in all real situations.

The running times for linear theorems are pretty consistent across different
runs. However, for the non-linear theorems, the timing can show much more
variation. This is not unexpected since the running time depends on the bit size
of the random example. A more prominent behavior comes from the clustering of
times around certain values. For instance, for Simson (¢ = 20), the times cluster
around 10 seconds and around 70 seconds. This “multimodal” behavior of the
timings are again seen in Pascal. This can be attributed to the random choice
of signs for the radicals in non-linear theorems. This may also account for the
curious relative times for Simson ¢ = 10 and ¢ = 20.

The performance of our library is critically dependent of good root bounds
(an area of research that we are actively working on [16]). It should be possible
to exploit prover-specific techniques to improve the speed, but this has not been
done. There are several issues to bear in mind when comparing our method with
Wu’s method:

— Chou’s timings would look considerably better using hardware available to-
day.

— The actual theorems proved by Wu’s method are not strictly comparable to
ours in two important aspects: Wu’s method proves theorems about complex
geometry while ours is about real geometry. On the other hand, Chou’s
algorithm is deterministic while ours is probabilistic.

— Our method is extremely effective for discarding wrong or perturbed con-
jectures. It is unclear if Wu’s method will be much faster for perturbed
theorems, since the algorithm would still have to execute the same basic
steps. The ability to quickly reject false theorems is extremely useful in ap-
plications where the user has many conjectures to check but most of the
conjectures are likely to be false.

— One of the strengths of Wu’s methods (as compared to Grobner bases, say)
is its ability to discover non-degeneracy conditions. A similar capability is
embedded in our approach — this simply amounts to detecting when a con-
struction step is ill-defined.



5 Final Remarks

In this paper, we have developed a generalization of the Schwartz-Zippel ran-
domized zero test for the class of radical expressions. Such a test is expected to
have many applications as radical expressions are quite common. Here, we focus
on their use in proving theorems about ruler & compass constructions. Some
features of our prover are:

— It proves theorems about real (rather than complex) geometry, under the
limitation that there is no inequalities appearing in the thesis.

It is probabilistic, so that speed can be traded-off against error probability.
— It detects wrong conjectures very quickly.

It is extremely effective for linear theorems (the majority of the theorems in
[5)).

It exploits the special nature of ruler & compass constructions.

Because of the last feature, our approach may ultimately prove to be more
efficient for this class of problems than other more general techniques. However,
our results so far have not been conclusive in the case of non-linear theorems.
The following are some open problems:

— Improve our zero test for straight line programs that involve division.

— Develop techniques to make our approach faster for non-linear theorems.

— Extend our randomized techniques to theorems that have inequalities in the
theses. This seems to call for radically new ideas.

Acknowledgments. Daniela Tulone would like to acknowledge Alfredo Ferro and
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