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Abstra
t. We develop a probabilisti
 test for the vanishing of radi
al

expressions, that is, expressions involving the four rational operations

(+;�;�;�) and square root extra
tion. This extends the well-known

S
hwartz's probabilisti
 test for the vanishing of polynomials. The prob-

abilisti
 test forms the basis of a new theorem prover for 
onje
tures

about ruler & 
ompass 
onstru
tions. Our implementation uses the Core

Library whi
h 
an perform exa
t 
omparison for radi
al expressions.

Some experimental results are presented.

1 Introdu
tion

Several approa
hes to proving theorems in Elementary Geometry using 
on-

stru
tive methods in Computer Algebra were proposed in the 1980s [7℄. These

were mu
h more su

essful than earlier approa
hes based on purely logi
al or

axiomati
 approa
hes. Thus, Kutzler, Stifter [14℄ and Kapur [12℄ proposed meth-

ods based on Gr�obner Bases. Carr�a and Gallo [1, 8℄ devised a method using the

dimension underlying the algebrai
 variety. Hong [11℄ introdu
ed semi-numeri
al

methods (\proof by example" te
hniques) based on gap theorems. An a

laimed

approa
h in this area is due to Wu [21, 23, 22℄ who applied the 
on
ept of 
hara
-

teristi
 sets to geometri
 theorem proving. Extensive experimentation with Wu's

method were reported by Chou [3, 5℄.

All these algebrai
 approa
hes begin by translating the geometri
 statements

into algebrai
 ones. A proposed geometry theorem (also 
alled a 
onje
ture) is

translated algebrai
ally into two parts: a system H of multivariate polynomials


alled the hypothesis, and a single polynomial T 
alled the thesis. The 
onje
ture

is true if the vanishing of the hypothesis system implies the vanishing of the thesis

polynomial. From the viewpoint of algebrai
 geometry, proving the 
onje
ture

amounts to showing that V ar(H) � V ar(T ) where V ar(S) is the algebrai


variety de�ned by a set S of polynomials. This basi
 formulation must be re�ned

in order to handle degenera
y 
onditions.

?

This work was performed while Daniela Tulone was at NYU.

??

This work is supported in part by NSF Grant #CCR 9402464



Wu's \basi
 method" 
omputes the pseudo-remainder of the polynomial the-

sis with respe
t to the Wu-Ritt extended 
hara
teristi
 set of the hypotheses sys-

tem. If the pseudo-remainder vanishes, then the 
onje
ture is true provided the

initials of the extended 
hara
teristi
 set do not vanish. Wu's basi
 method has

been su

essfully used to prove many 
lassi
al and some new theorems in plane

analyti
 geometry. The basi
 method fails if the variety V ar(H) is redu
ible.

To handle this, Wu's \
omplete method" begins by de
omposing V ar(H) into

irredu
ible 
omponents and applying the basi
 method to ea
h 
omponent. A

drawba
k in Wu's method is that it works with an algebrai
ally 
losed �eld.

In parti
ular, it is not a 
omplete method for the real algebrai
 varieties. The

present paper addresses a spe
ial 
ase of real algebrai
 varieties.

Gr�obner bases methods 
an be doubly exponential in the worst 
ase [17,

24℄. The 
omplexity for Wu's method is somewhat better but remains an issue.

To 
ir
umvent the high 
omplexity, we investigate probabilisti
 methods [20℄


ombined with \proof by example" te
hniques [11℄. In probabilisti
 theorem

proving, we do not prove the validity of a 
onje
ture in the 
lassi
al sense.

Instead, we either prove the invalidity of a 
onje
ture (by showing a 
ounter

example) or else 
lassify the 
onje
ture as \true with the high probability 1�"".

This latter 
lassi�
ation must be properly understood sin
e, 
lassi
ally, it is

nonsense to say that a theorem is true with some probability. What is meant

is that, relative to a set of experiments we 
ondu
t, the probability that the


onje
ture is false and we failed to dis
over this, is less than ".

An interesting approa
h along these lines was given by Carr�a, Gallo and

Gennaro [2℄. They applied the S
hwartz-Zippel [20, 27℄ probabilisti
 test for the

vanishing of pseudo-remainders in Wu's method. They 
onsidered 
onje
tures in

the 
lassi
al setting of ruler & 
ompass 
onstru
tions. Su
h 
onje
tures are ex-

amined by testing the vanishing of Wu's pseudo-remainder for randomly 
hosen

examples. Ea
h example is spe
i�ed by a random 
hoi
e of values for its param-

eters. The random 
hoi
es 
ome from some suitable test set whose 
ardinality

depends on the degree of the pseudo-remainder. The extended 
hara
teristi
 set

as well as the pseudo-remainder are 
omputed. If the pseudo-remainder is zero,

then the example is su

essful; otherwise, as in Wu's method, further investiga-

tion is 
alled for. While implementing their method, one of us (D.T.) dis
overed

a serious eÆ
ien
y issue. The degree of the pseudo-remainder is very high: if the


onje
ture involves C ruler & 
ompass 
onstru
tion steps, then, the degree of

the pseudo-remainder in [2℄ (following [9, 10℄) has the following bound:

D = 2

O(C

3

)

C

O(C

2

)

:

The 
ardinality of the test set is 2D, whi
h is too large in pra
ti
e. This bound

applies to the test for \generi
 truth". For \universal truth", D 
an be improved

to 2P �3

C+1

where P is the number of points in the 
onstru
tion. Unfortunately,

pra
ti
ally no 
lassi
al theorems are universal truths.

Summary of New Results. (1) We develop an extension of the S
hwartz-

Zippel probabilisti
 zero test. While the S
hwartz-Zippel test is appli
able to



polynomials, we treat radi
al expressions by admitting the additional operations

of division and square-roots. This adds 
onsiderable 
omplexity to the proofs.

Furthermore, for eÆ
ien
y 
onsiderations, we use straight line programs to rep-

resent radi
al expressions. The asymptoti
 time 
omplexity of our probabilisti


test is a low-order polynomial. Sin
e radi
al expressions are 
ommon in many

appli
ations, we expe
t this new test to be generally useful.

(2) We address the problem of 
omputer proofs of geometri
 
onje
tures

about ruler & 
ompass 
onstru
tions. The zero test of radi
al expressions is tailor

�tted for this problem. Moreover, we 
ombine randomness with the numeri
al

approa
h of Hong to give additional eÆ
ien
y. Thus, our approa
h appears to

be intrinsi
ally more eÆ
ient than previous general approa
hes (e.g., Wu's or

Gr�obner bases).

(3) Our prover is implemented using the Core library [15, 13, 19℄. This is

an unexpe
ted appli
ation of our library, whi
h was designed as a general C++-

pa
kage to support the Exa
t Geometri
 Computation [26, 25℄ approa
h to ro-

bust algorithms. Preliminary experimental results are quite promising. We ex-

pe
t further improvements by �ne-tuning our library for this spe
i�
 appli
ation.

Our prover is 
urrently distributed with version 1.3 of the Core library (Aug.

15, 2000) and available from http://
s.nyu.edu/exa
t/
ore/.

Overview. The paper is organized as follows: Se
tion 2 gives an overview of

geometri
 
onje
tures about ruler & 
ompass 
onstru
tions. Se
tion 3 gives our

extension of S
hwartz's probabilisti
 test to radi
al expressions. Se
tion 4 ad-

dresses the appli
ation of our new probabilisti
 test to theorem proving. We


on
lude in Se
tion 5.

2 Theorem Proving for Ruler & Compass Constru
tions

We follow the algebrai
 approa
h whi
h has been well-summarized by Chou

[5℄. Ruler & 
ompass operations may be seen as 
onstru
ting lengths, points,

lines and 
ir
les, 
olle
tively 
alled geometri
 obje
ts. A 
olle
tion of su
h geo-

metri
 obje
ts will be 
alled a geometri
 s
ene. We 
onsider geometri
 s
enes

that are 
onstru
ted in
rementally using ruler & 
ompass operations. The al-

gebrai
 analogue of 
onstru
ting a geometri
 obje
t O amounts to introdu
ing

a pair of variables (x; y) and 
orresponding polynomial equations h

i

(x; y; z; : : :)

(i = 1; 2; : : :) that must be satis�ed if (x; y) lies on O. Here, h

i

may involve other

variables z; : : :, from previously 
onstru
ted obje
ts. We shall 
lassify the vari-

ables introdu
ed by our 
onstru
tions into two sorts: independent and dependent

variables. For short, the independent variables will be 
alled parameters. It is

instru
tive to give a 
on
rete example (Figure 1 from [5℄).

Example 1 (Pas
al's Theorem). Let A, B, C, D, F and E be six points on a


ir
le 
entered at O. Let P = AB

T

DF , Q = BC

T

FE and S = CD

T

EA.

Show that P , Q and S are 
ollinear.
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Fig. 1. Pas
al's Theorem.

Let A = (0; 0), O = (u

1

; 0), B = (x

1

; u

2

), C = (x

2

; u

3

), D = (x

3

; u

4

),

F = (x

4

; u

5

), E = (x

5

; u

6

), P = (x

7

; x

6

), Q = (x

9

; x

8

), and S = (x

11

; x

10

). This

gives the following equations for the hypotheses.

Equation Geometry Remark

h

1

: x

2

1

� 2u

1

x

1

+ u

2

2

= 0 [OA � OB℄ Introdu
es x

1

; u

2

h

2

: x

2

2

� 2u

1

x

2

+ u

2

3

= 0 [OA � OC℄ Introdu
es x

2

; u

3

h

3

: x

2

3

� 2u

1

x

3

+ u

2

4

= 0 [OA � OD℄ Introdu
es x

3

; u

4

h

4

: x

2

4

� 2u

1

x

4

+ u

2

5

= 0 [OA � OF ℄ Introdu
es x

4

; u

5

h

5

: x

2

5

� 2u

1

x

5

+ u

2

6

= 0 [OA � OE℄ Introdu
es x

5

; u

6

h

6

:

(u

5

� u

4

)x

7

+ (�x

4

+ x

3

)x

6

+

u

4

x

4

� u

5

x

3

= 0

[P 2 DF ℄ Introdu
es x

6

; x

7

h

7

: u

2

x

7

� x

1

x

6

= 0 [P 2 AB℄ Constrains x

6

; x

7

h

8

:

(u

6

� u

5

)x

9

+ (�x

5

+ x

4

)x

8

+

u

5

x

5

� u

6

x

4

= 0

[Q 2 FE℄ Introdu
es x

8

; x

9

h

9

:

(u

3

� u

2

)x

9

+ (�x

2

+ x

1

)x

8

+

u

2

x

2

� u

3

x

1

= 0

[Q 2 BC℄ Constrains x

8

; x

9

h

10

: u

6

x

11

� x

5

x

10

= 0 [S 2 AE℄ Introdu
es x

10

; x

11

h

11

:

(u

4

� u

3

)x

11

+ (�x

3

+ x

2

)x

10

+

u

3

x

3

� u

4

x

2

= 0

[S 2 CD℄ Constrains x

10

; x

11

The 
on
lusion that P;Q; S are 
ollinear 
an be translated into the following

polynomial:

g = (x

8

� x

6

)x

11

+ (�x

9

+ x

7

)x

10

+ x

6

x

9

� x

7

x

8

= 0:



In general, we get a system of polynomial equations, h

1

= h

2

= � � � = h

`

=

0 where h

i

2 R[u

1

; : : : ; u

m

; x

1

; : : : ; x

n

℄ (R is the �eld of real numbers), the

u

1

; : : : ; u

m

are parameters, and the x

1

; : : : ; x

n

are dependent variables. The 
on-

je
ture has the form:

(8u;x)[h

1

= h

2

= � � � = h

`

= 0 ) g = 0℄ (1)

where u = (u

1

; : : : ; u

m

), x = (x

1

; : : : ; x

n

) and g = g(u;x) 2 R[u;x℄.

Degenera
y and Generi
 Truth. A theorem of the form (1) is 
alled a uni-

versal truth. It turns out that the 
lassi
al notion of theoremhood is more sub-

tle, and this led Wu to formulate the notion of generi
 truth. We formalize it

as follows: let �

1

; : : : ; �

k

be predi
ates on the variables u;x. We 
all ea
h �

i

a non-degenera
y 
ondition. The 
onje
ture (1) is generi
ally true relative to

f�

1

; : : : ; �

k

g if

(8u;x)[�

1

; �

2

; : : : ; �

k

; h

1

= h

2

= � � � = h

`

= 0 ) g = 0℄: (2)

Classi
al ruler-and-
ompass theorems are indeterminate in that they do not ex-

pli
itly spe
ify the degenerate 
onditions. Hen
e part of \proving a 
lassi
al the-

orem" involves dis
overing a suitable set of non-degenera
y 
onditions. Hopefully

the set is minimal is some sense (but not ne
essarily unique). The simplest kind

of non-degenera
y 
ondition has the form

� : d 6= 0

where d is a polynomial. Call this the �rst kind of non-degenera
y 
ondition. The

degree of the � is equal to the total degree of d. If ea
h �

i

has degree d

i

, then

the degree of f�

1

; : : : ; �

k

g is

P

k

i=1

d

i

. Typi
al examples of the �rst kind of non-

degenera
y may require two points to be distin
t or two lines to be non-parallel.

It is easy to see that both have degree 2.

Example 1 (
ontinued). The non-degenera
y 
onditions require the interse
tion

points P; S and Q be not at in�nity. Equivalently, the following pairs of lines

are not parallel: fAB;DFg, fBC;FEg, fCD;EAg. So the degree of these non-

degenera
y 
onditions is 6.

Se
ond Kind of Degenera
y. The se
ond kind of non-degenera
y 
ondition

arises for theorems in the real �eld. For example, when we de�ne a point by the

interse
tion of two 
ir
les, we require that these two 
ir
les interse
t. Or, when

we de�ne three 
ollinear points A;B and C, we may require B to lie between

the other two points. Su
h non-degenera
y 
onditions have the form

� : d � 0

where d is a polynomial. We 
an modify this 
ondition using a well-known tri
k:

�

0

: 9z; d� z

2

= 0



where z is a new variable. The existential quanti�er on z 
an be pulled out as

a prenex universal quanti�er. Thus, we 
an formulate the 
onje
ture as

(8u;x; z) (�

0

; H ) T ):

In pra
ti
e, there may be other ways to handle this: in the Pas
al example, su
h

non-degenera
ies demand that the parameters u

j

(for j = 2; 3; 4; 5; 6) satisfy

ju

j

j � ju

1

j. Our prover 
an handle non-degenera
y 
onditions of the se
ond kind

when put in this form. Indeed, in all the examples we looked at in [5℄, su
h a

formulation is possible.

Redu
tion to Radi
al Expressions. In a ruler & 
ompass 
onstru
tion, ea
h

dependent variable is a radi
al fun
tion of the previously introdu
ed variables.

As exempli�ed by Pas
al's Theorem, all the dependent variables are introdu
ed

either (i) singly by a single equation (e.g., x

1

is introdu
ed by h

1

= 0) or (ii)

in pairs by two equations (e.g., x

6

; x

7

are introdu
ed by h

6

= h

7

= 0). As all

equations are at most quadrati
, the x

i

's 
an be repla
ed by radi
al expres-

sions involving the u

j

's. Let G = G(u) be the radi
al expression after su
h a

substitution into g(u;x). The universal truth 
onje
ture (1) now says

(8u)[G = 0℄;

with an analogous statement for generi
 truth. Another issue arises: ea
h radi
al

is determined only up to a � sign. Hen
e, if there are r radi
als in G, we must

repla
e G = 0 by the system of 2

r

radi
al expressions, G

1

= G

2

= � � � = G

2

r

= 0,

in whi
h ea
h of the 2

r

possible sign 
ombinations are used. If a single fun
tion

G

�

(u) is desired, we 
an use G

�

=

P

2

r

i=1

G

2

i

. The appearan
e of \2

r

" in this

expression may be disturbing from a 
omplexity viewpoint. Several observations

suggest that this is not serious in pra
ti
e. First, r is typi
ally small (r = 5 in

Pas
al's theorem). Next, we 
an redu
e the number of summands in G

�

from

the worst 
ase of 2

r

terms. There are two ways this 
an happen: (A) Symmetries

in the problem may arise so that many of the G

i

's 
an be omitted. (B) Certain

sign 
ombinations may be ex
luded by the nature of the 
onstru
tion and/or

theorem so that G

�

may represent a sum of less than 2

r

radi
al expressions.

In parti
ular, using (A) and (B), we 
an always omit half of the summands in

standard geometri
 theorems. Thus, 2

r�1

terms suÆ
e in G

�

.

Example 2 (Butter
y Theorem). We illustrate the redu
tion in the number of

terms in G

�

using the Butter
y Theorem in [5, Example 2.4, p. 9℄. The theorem


on
erns 4 
o-
ir
ular points A;B;C and D. Let O be the 
enter of this 
ir
le

and E be the interse
tion of AC and BD. The points A;B;C;D;E form a

\butter
y". If the line perpendi
ular to OE and passing through E interse
ts

the lines AD and BC at G and F (respe
tively), then the theorem says that

segments EF and EG have the same length. There are 3 quadrati
 equations

in formulating this theorem (so r = 3). In the 
onstru
tion des
ribed by Chou,

the point E is pla
ed at the origin (0; 0) and O is pla
ed at (u

1

; 0). A is freely

pla
ed at (u

2

; u

3

). The point C is now 
ompletely determined, and has two



possible solutions. In one solution, C and A 
oin
ide, and the nature of the

theorem ex
ludes this 
ase. Next, the points B is freely 
hosen on the 
ir
le (and

this introdu
es one parameter). Again there are two possible solutions. But it

is 
lear by symmetry that we 
an arbitrarily 
hoose one of them without loss of

generality. Therefore, G

�

only needs two terms (
orresponding to 
hoosing the

2 solutions for D).

The fa
t that our prover 
an address theorems about real geometry is illus-

trated by the following simple example.

Example 3 (Triangle Bise
tors). Let A, B, C be three non-linear points, and

D be the interse
tion point of the angle bise
tors of \A and \B in the triangle

4ABC . We want to prove that D must be on the bise
tor of \C in 4ABC .

A B

C

D

Fig. 2. Coin
iden
e of three angle bise
tors.

Let A = (0; 0), B = (u

1

; 0), C = (u

2

; u

3

), D = (x

4

; x

5

). This gives the

following equations for the hypotheses.

Equation Geometry Remark

h

1

: x

2

1

� u

2

1

= 0; x

1

� 0 [x

1

� kABk℄ Introdu
es x

1

h

2

: x

2

2

� u

2

2

� u

2

3

= 0; x

2

� 0 [x

2

� kACk℄ Introdu
es x

2

h

3

: x

2

3

� (u

1

� u

2

)

2

� u

2

3

= 0; x

3

� 0 [x

3

� kBCk℄ Introdu
es x

3

h

4

: (x

1

u

2

� x

2

u

1

)x

4

+ x

1

u

3

x

5

= 0 [D 2 bise
tor(\A)℄ Constrains x

4

; x

5

h

5

:

[(u

2

� u

1

)x

1

+ u

1

x

3

℄(x

4

� u

1

) +

x

1

u

3

x

5

= 0

[D 2 bise
tor (\B)℄ Constrains x

4

; x

5

The 
on
lusion that D is on the bise
tor of angle \C 
an be formulated as

the following thesis:

g = (x

4

� x

2

)(u

1

x

2

� u

2

x

2

+ u

2

x

3

)� (x

5

� x

3

)(x

3

� x

2

)u

3

= 0

The formulation expli
itly introdu
es inequalities for x

1

; x

2

; x

3

to pi
k the

internal angle bise
tors. When regarded as a 
omplex theorem, no su
h inequal-

ities are allowed. In this 
ase, ea
h \bise
tor" 
an refer to either the internal

or external bise
tor of an angle, so there are a total of 8 = 2

3


hoi
es for these

bise
tors. The \thesis" is true for exa
tly four of these 
hoi
es, whi
h also means



that the theorem is false in 
omplex geometry. Let G(u) be the radi
al expres-

sion after eliminating the dependent variables from g. The 8 
hoi
es of bise
tors


orrespond to di�erent assignment of signs to the three radi
als in G(u). Our

prover 
an be used to test the validity of ea
h 
hoi
e.

3 Randomized Zero Testing for Radi
al Expressions

3.1 Straight Line Programs

We need to generalize expressions to straight line programs (SLP). A SLP � is

a sequen
e of steps where ea
h step is an assignment to a new programming

variable. The ith step of a SLP has one of the forms

z

i

 x

i

Æ y

i

; (Æ 2 f+;�;�;�g) (3)

z

i

 

p

x

i

(4)

where z

i

is a newly introdu
ed programming variable, x

i

and y

i

are either real


onstants, input variables or programming variables introdu
ed in some earlier

steps. Alternatively, we 
all an input variable an independent variable (or, pa-

rameter) and a programming variable a dependent variable. These x

i

and y

i

are

said to be used in the ith step. The last introdu
ed variable is 
alled the main

variable and it is never used. In general, a SLP 
an have bran
hing steps. But

this possibility is not 
onsidered in this paper.

An expression is a SLP where, with the ex
eption of the main variable, ea
h

programming variable is used exa
tly on
e. Underlying ea
h SLP is a labeled and

ordered dag (dire
ted a
y
li
 graph) de�ned in the obvious way: ea
h node 
orre-

sponds to a 
onstant or variable in the SLP. We often use the terms \nodes" and

\variables" inter
hangeably. For the steps in (4) (resp., (3)), we introdu
e edges

that are dire
ted from x

i

(resp., x

i

and y

i

) to z

i

. We use standard graph-theoreti


terminology to talk about this dag: sinks, sour
es, prede
essor/su

essor nodes,

et
. If (u; v) is an edge of the dag, we 
all u the prede
essor of v, and 
all v the

su

essor of u. The nodes labeled by input variables or 
onstants are sour
e nodes

while the non-sour
e are labeled by programming variables. The sour
es may be


alled leaves in 
ase the dag is a tree. The non-sour
e nodes are asso
iated with

an operation (�;�;�;

p

�) { so we may speak of \radi
al nodes", \multipli
ation

nodes", et
. Variables that are not used 
orrespond to sink nodes in the dag. The

main variable 
orresponds to a sink node whi
h we 
all root. The radi
al depth of

a node u is the maximum number of radi
al nodes in a path from u to any root

node, in
lusive of the end points. Thus, if u is a radi
al node, then the radi
al

depth of u is at least 1. For ea
h node u, its indu
ed dag is the subdag 
omprising

all the nodes that 
an rea
h u along a path. A SLP is said to be rooted if the

root is the unique sink. The dags 
orresponding to expressions are ordered trees

(hen
e rooted). Our SLP's are assumed rooted unless otherwise noted.

Values. Let u = (u

1

; : : : ; u

m

) be the input variables. For ea
h variable u in

a SLP �, we indu
tively de�ne its value to be an appropriate element val

�

(u)



in an algebrai
 extension of Q(u). The extension is obtained by adjun
tion of

square roots. The value of � is the value of its main variable. More pre
isely, let

Q

0

= Q(u) and de�ne the tower of extensions de�ned by � to be

Q

0

� Q

1

� Q

2

� � � � � Q

r

(5)

where Q

i

:=Q

i�1

(

p

�

i

) and the ith square-root in � has operand �

i

2 Q

i�1

. A

SLP � is also said to 
ompute a 
olle
tion V � Q

r

of values provided ea
h v 2 V

is the value of some variable in �.

Rational Degrees. Let x be a node in a SLP �. We de�ne the rational degree

rdeg

�

(x) of x (the subs
ript � is usually dropped). We need some auxiliary no-

tions. For any node or variable x, let RAD(x) denote the set of radi
al nodes in

the subdag of � rooted at x. Write RAD(x; y) for RAD(x) nRAD(y) (set di�er-

en
e). Also let �(x) := jRAD(x)j and �(x; y) := jRAD(x; y)j. We will indu
tively

de�ne rdeg(x) to be a pair of natural numbers (a; b) 2 N

2

, but usually write it

as \a : b". These two numbers are the \upper" and \lower" degrees of x and

denoted udeg(x) and ldeg(x). Thus,

rdeg(x) = udeg(x) : ldeg(x):

Assuming rdeg(x) = a

x

: b

x

and rdeg(y) = a

y

: b

y

, we indu
tively de�ne rdeg(z)

using the table:

z udeg(z) ldeg(z)


onstant 0 0

parameter 1 0

x� y a

x

2

�(y;x)

+ a

y

2

�(x;y)

b

x

2

�(y;x)

+ b

y

2

�(x;y)

x� y a

x

2

�(y;x)

+ b

y

2

�(x;y)

b

x

2

�(y;x)

+ a

y

2

�(x;y)

x� y max(a

x

2

�(y;x)

+ b

y

2

�(x;y)

; b

x

2

�(y;x)

+ a

y

2

�(x;y)

) b

x

2

�(y;x)

+ b

y

2

�(x;y)

p

x a

x

b

x

The rational degree of the SLP � is de�ned to be a : b where a = max

x

udeg(x),

b = max

x

ldeg(x), and x ranges over the nodes in �. Note that if � is division-free,

then ldeg(x) = 0 for all x.

Alternative Approa
h. It is useful to have an alternative approa
h to rdeg

whi
h does not involve �(x; y) or �(y; x). In parti
ular, we de�ne rdeg

2

(z) =

udeg

2

(z) : ldeg

2

(z) indu
tively using the following table: as before, we assume

rdeg

2

(x) = a

x

: b

x

and rdeg

2

(y) = a

y

: b

y

.

z udeg

2

(z) ldeg

2

(z)


onstant 0 0

parameter 1 0

x� y a

x

+ a

y

b

x

+ b

y

x� y a

x

+ b

y

b

x

+ a

y

x� y maxfa

x

+ b

y

; b

x

+ a

y

g b

x

+ b

y

p

x

a

x

2

b

x

2



Noti
e that these degrees are no longer natural numbers but binary fra
tions.

The following lemma gives the 
onne
tion between the two de�nitions of rdeg.

Lemma 1. For any variable z in a SLP, we have

udeg(z) = 2

�(z)

udeg

2

(z); ldeg(z) = 2

�(z)

ldeg

2

(z):

3.2 Equivalent Transformations

Two variables (resp. SLP's) are said to be equivalent if they have the same

value. Transformations of an SLP that do not 
hange its value are 
alled equiv-

alent transformations (but the set of 
omputed values may 
hange). Equivalent

transformations may 
hange the rational degree, as when applying the distribu-

tive law:

z(x+ y)) zx+ zy: (6)

It is easy to verify that the rational degree of the left-hand side is at most that

of the right-hand side. We next show that the rational degree is preserved in the

absen
e of division (but allowing radi
als):

Lemma 2. If � is division-free, then the transformation (6) preserves rdeg of

�. In parti
ular,

rdeg(z(x+ y)) = rdeg(zx+ zy):

Proof. We only need to 
onsider the upper degrees. With udeg(x) = a

x

, et
, as

before, we have

udeg(z(x+ y)) = 2

�(xy;z)

a

z

+ 2

�(z;xy)

maxfa

x

2

�(y;x)

; a

y

2

�(x;y)

g

while

udeg(zx+ zy) = maxfa

zx

2

�(zy;zx)

; a

zy

2

�(zx;zy)

g

= maxf(a

z

2

�(x;z)

+ a

x

2

�(z;x)

)2

�(zy;zx)

; (a

z

2

�(y;z)

+ a

y

2

�(z;y)

)2

�(zx;zy)

g:

The lemma follows if we now verify the following:

RAD(xy; z) = RAD(x; z) ℄ RAD(zy; zx);

RAD(xy; z) = RAD(y; z) ℄ RAD(zx; zy);

RAD(z; xy) ℄ RAD(y; x) = RAD(z; x) ℄ RAD(zy; zx);

RAD(z; xy) ℄ RAD(x; y) = RAD(z; y) ℄ RAD(zx; zy):

Our notation here, A ℄ B, refers to disjoint union of the sets A and B. Let us

only prove the �rst equation: the RHS is equivalent to RAD(x; z)℄RAD(y; zx).

We may verify that the union is indeed disjoint, and equal to RAD(xy; z). The

other equations 
an be proved similarly. We omit the details here.

Next, we show that applying the asso
iative laws for multipli
ation and addition

does not a�e
t rational degree. This follows from the following general result:



Lemma 3. Let x

i

be variables in � and r

i

= jRAD(x

1

; : : : ; x

k

) n RAD(x

i

)j.

Then

rdeg(

k

Y

i=1

x

i

) =

k

X

i=1

rdeg(x

i

)2

r

i

udeg(

k

X

i=1

x

i

) =

k

max

i=1

fudeg(x

i

)2

r

i

+

k

X

j=1;j 6=i

ldeg(x

j

)2

r

j

g

ldeg(

k

X

i=1

x

i

) =

k

X

i=1

ldeg(x

i

)2

r

i

The above lemma justi�es a generalization of SLP's in whi
h we allow addi-

tion nodes and multipli
ation nodes to take an arbitrary number of arguments.

These are 
alled \sum" or

P

-nodes, and \produ
t" or

Q

-nodes, respe
tively.

Su
h an SLP is 
alled a generalized SLP. A path in a generalized SLP dag is

said to be alternating if along the path, no two 
onse
utive nodes are

P

-nodes

and no two 
onse
utive nodes are

Q

-nodes. The SLP is alternating if every path

is alternating. Clearly, any SLP 
an be made alternating without 
hanging its

rational degree. We 
an eliminating any non-alternating path in the SLP by

aggregating the 
onse
utive additions (or multipli
ations) using the

P

(or

Q

)

operations. This pro
ess will terminate be
ause ea
h elimination redu
es the

number if nodes in a SLP.

3.3 Preparation

A SLP in whi
h the last three steps has the form

� � �

x 

p

w

C

y  x� w

B

z  y + w

A

is said to be prepared (or in prepared form). Here w

A

; w

B

; w

C

are variables or


onstants. Thus z is the main variable, and x is the last radi
al variable to be

introdu
ed. Intuitively, the radi
al x has been brought up as 
lose to the root

as possible, in preparation for a transformation (to be introdu
ed) to remove

the radi
al. We also 
all x the prepared variable. If the values of w

A

; w

B

; w

C

are given by the expressions A;B;C (resp.) then the value of z is given by the

expression

A+ B

p

C:

Note spe
ial forms of this expression when A = 0 or B = 1, or both. If the SLP

has no square roots, it is 
onsidered prepared already. Our goal is to prepare a

given SLP, and to bound the resulting rational degree.



Let us now prepare a radi
al node A

0

with radi
al depth 1. Assume the SLP

is division-free. Let A

n

; B

n

be expressions (n � 0). The expressions E

n

, for n � 0

is de�ned indu
tively as follows: E

0

= A

0

�B

0

, and for n � 1,

E

n

= (E

n�1

+A

n

)B

n

= ((E

n�2

+A

n�1

)B

n�1

+A

n

)B

n

= � � � :

To show the dependen
e of E

n

on the A

n

's and B

n

's, we may also write E

n

=

E

n

(A

0

; B

0

; A

1

; B

1

; : : : ; A

n

; B

n

). Viewed as a tree, E

n

is essentially a single al-

ternating path from the root down to A

0

. This path is left-bran
hing only and

the root is a �-node. Also write: B

(n)

:=

Q

n

j=0

B

j

.

Lemma 4. For n � 1, the expression E

n

(A

0

; B

0

; : : : ; A

n

; B

n

) is equivalent to

the expression

E

0

n

:=(A

0

�B

(n)

) +E

n�1

(A

1

; B

1

; : : : ; A

n

; B

n

)

Moreover, if E

n

is division-free, then rdeg(E

n

) = rdeg(E

0

n

).

Proof. Proof by indu
tion. When n = 1,

E

1

= (A

0

�B

0

) +A

1

)�B

1

= (A

0

�B

0

�B

1

) +A

1

�B

1

:

Assume that this lemma is held for n � k, then for n = k + 1,

E

k+1

= (E

k

+A

k+1

)�B

k+1

= ((A

0

�B

(k)

) +E

k�1

(A

1

; B

1

; : : : ; A

k

; B

k

) +A

k+1

)�B

k+1

= (A

0

�B

(k+1)

) +E

k

(A

1

; B

1

; : : : ; A

k+1

; B

k+1

):

Thus we know the equivalen
e of this transformation is held for any n 2 N.

In both 
ases, we only apply the distributive and asso
iative laws, whi
h do

not 
hange the rational degree when E

n

is division free.

This is illustrated in the 
ase n = 2 by Figure 3. Note that the variable A

0

is prepared in E

0

n

. A
tually, E

n

in this lemma 
an be a generalized SLP so that

the A

i

; B

i

's need not be distin
t and the nodes 
an be

P

- and

Q

-nodes. Then

there is a 
orresponding equivalent SLP E

0

n

; this is the version that we will use

in the next theorem.

We address the problem of multiple uses of a node. A node u is used k times

if there are k distin
t paths from the root to u. If a radi
al node u of radi
al

depth 1 is used k times, then if we judi
iously apply the previous lemma k times,

ea
h time eliminating one \use" of u, we obtain:

Theorem 1. Suppose � is a division-free SLP and u is a radi
al node in � with

radi
al depth of 1. Then we 
an transform � into an equivalent SLP �

0

su
h that

udeg(�) = udeg(�

0

). Moreover, either no node in �

0

has the value val

�

(u) or

else, there is a node u

0

in �

0

with the following properties:



B

0

A

1

�

+

A

2

B

1

B

2

+

�

�

B

1

B

2

�

�

A

0

A

0

B

0

A

1

A

2

B

1

B

2

+

�

�

+

�

Fig. 3. The Transformation E

2

7! E

0

2

.

1. u

0

is the prepared variable in �

0

2. u

0

is the unique node in �

0

with value val

�

(u).

Proof. We may assume that � is a generalized, alternating SLP. Fix any path p

from u to the root and we may assume that this alternating sum-produ
t path

has the same form as the path from A

0

to the root of E

n

in lemma 4. We then

apply the previous lemma in whi
h u now plays the role of the node A

0

in E

n

.

This 
ollapses the path p to length 2, as in the lemma and the resulting SLP is

in a prepared form E

0

= u � A + B. If the variable u is used in A and/or B,

then we 
an repeat this pro
ess for another path p

0

(if any) in A or B. We 
an

repeat this pro
ess for the subexpressions A and/or B, if they 
ontain referen
es

to the node u as well. There are two 
ases:

1. u is used in A, then A is transformed to A

0

= u � A

1

+ B

1

and E

0

=

u�B

1

+(A

1

u

2

+B). Remember that u is a square root and thus the expression

u

2

e�e
tively eliminates the square root operation here;

2. u is used in B, then B is transformed to B

0

= u � A

2

+ B

2

and E

0

=

u� (A+A

2

) +B

2

.

In both 
ases, we 
an see that E

0

is still in a prepared form. We keep this pro
ess

until there is no use of u ex
ept the one that is in the prepared position and has

a unique path to the root with length 2. Sin
e there must be a �nite number

of uses of u, this iterative pro
ess will eventually terminate. At that point, the

resulting SLP �

0

has the desired form: �

0

is prepared and u is the main prepared

variable. It is also 
lear that if there are other nodes with the same value as u,

they 
an also be merged with u by the same pro
ess. Hen
e, u will be the unique

node with value val

�

(u).

Note that we apply the 
ommutative, asso
iative and distributive laws in

these transformations. The 
ommutative and asso
iative transformations do not


hange the rational degree. Sin
e � is division free, Lemma 2 tells us that the dis-

tributive transformation preserves the rational degree too. Therefore, the prepa-

ration transformation does not 
hange the rational degree of �.



We say that �

0

is obtained by the pro
ess of \preparing" u in �.

3.4 Main Result

Let � be a SLP whose value is V = V (u) 2 Q

r

(see (5)). We de�ne the real

fun
tion f

�

: R

m

! R where f

�

(a

1

; : : : ; a

m

) is the value of the main variable in

� when we evaluate ea
h dependent variable at a = (a

1

; : : : ; a

m

) 2 R

m

, following

� in a step-by-step fashion. The domain of f

�


omprises those a 2 R

m

where

f

�

(a) is de�ned. Similarly, we de�ne an asso
iated real fun
tion f

V

: R

m

! R.

Note that the domain of f

�

is always a subset of f

V

. The following example

shows that it may be a proper subset: let � 
ompute the value V =

P

n�1

i=0

x

i

using Horner's rule, and let �

0


ompute the same V using the formula V =

x

n

�1

x�1

.

Then � and �

0

are equivalent, but �(1) = n while �

0

(1) is unde�ned. The domain

of � (and V ) is R but the domain of �

0

is R � f1g.

Theorem 2. Suppose V = V (u) is the non-zero value of a rooted division-free

SLP �. Then there exists a non-zero polynomial P (u) su
h that Zero(V ) �

Zero(P ) with degP (u) � udeg(�).

Proof. We show the existen
e of the polynomial P (u) by indu
tion on the num-

ber r of square roots in �. For r = 0, the result holds be
ause V is already a

polynomial of degree udeg(�).

Assume r > 0 and let u be a radi
al node of radi
al depth 1 in �. We

prepare u, leading to an equivalent SLP (whi
h we still 
all �). The udeg of �

is un
hanged by this transformation. If C is the value of u, then the value of �


an be written as

V = A+B

p

C

where A;B;C belongs to Q

r�1

(re
all that values of programming variable in-

trodu
ed before the rth root extra
tion belongs to the �eld Q

r�1

, by de�nition

of Q

r�1

). If B = 0 then V = A and the result is true by the indu
tive hypothesis

applied to A (whi
h has � r � 1 square roots). Otherwise, by applying some

further (obvious) transformations, we transform � to some �

0

whose value is

V

0

= A

2

�B

2

C: (7)

Note that �

0

has � r� 1 square-roots. If V

0

= 0 then 0 = V

0

= (A+B

p

C)(A�

B

p

C). Sin
e Q

r

is a UFD and V = A+B

p

C 6= 0 (by assumption), we 
on
lude

that A�B

p

C = 0, i.e.,

p

C = A=B 2 Q

r�1

. Thus V = A+B

p

C = 2A. Then V


an be 
omputed by some SLP with � r� 1 square-roots, and the result follows

by indu
tive hypothesis.

So assume V

0

6= 0. By indu
tion, Zero(V

0

) = Zero(A

2

� B

2

C) � Zero(P )

for some P with deg(P ) � udeg(V

0

). Sin
e Zero(V ) � Zero(V

0

), it remains to

show that udeg(V

0

) � udeg(V ). We have

udeg(V ) = udeg(A+B

p

C)

= maxfudeg(A)2

�(B

p

C;A)

; udeg(B

p

C)2

�(A;B

p

C)

g



� maxfudeg(A)2

1+�(B

2

C;A)

;

h

udeg(B)2

�(

p

C;B)

+ udeg(C)2

�(B;

p

C)

i

2

�(A;B

2

C)

g

= maxf2 udeg(A)2

�(B

2

C;A)

;

�

udeg(B

2

)

2

2

1+�(C;B

2

)

+udeg(C)2

�(B

2

;C)

�

2

�(A;B

2

C)

g

� maxfudeg(A

2

)2

�(B

2

C;A)

;

h

udeg(B

2

)2

�(C;B

2

)

+ udeg(C)2

�(B

2

;C)

i

2

�(A

2

;B

2

C)

g

= udeg(A

2

�B

2

C) = udeg(V

0

):

3.5 Presen
e of Division

What if the SLP is not division-free? Note that the presen
e of division is very


ommon. For instan
e, when we interse
t two lines in the 
onstru
tion, it gives

rise to an expression with division. There is a well-known transformation to

move all divisions towards the root, merging them as we go. An instan
e of this

transformation is

A

B

+

A

0

B

0

)

AB

0

+A

0

B

BB

0

:

Unfortunately, the number of radi
al nodes may be doubled be
ause if we move

a division node past a radi
al node, we obtain two radi
al nodes:

r

A

B

)

p

A

p

B

: (8)

Hen
e we give two versions of this transformation in the following lemma: in

version (i) we do not move any division node past a radi
al node, and in version

(ii) we remove all but at most one division node.

Lemma 5 (Elimination of Division). Let � be a rooted SLP.

(i) There is an equivalent SLP �

0

in whi
h ea
h division node is either the root

of � or the 
hild of a radi
al node. Moreover, rdeg(�

0

) = rdeg(�) and �

0

has the

same number of radi
al nodes as �.

(ii) There is an equivalent SLP �

00

with only one division node whi
h is also the

root. In this 
ase rdeg(�

00

) � 2

r

rdeg(�).

The proof of (ii) exploits the alternative de�nition of udeg(u). Be
ause the jus-

ti�
ation of the alternative de�nition is long, we only refer to the details in

[15℄.

The value of the SLP �

00

has the form A=B where A;B are division-free.

Intuitively, to 
he
k if A=B = 0, we 
he
k if A = 0 subje
t to B 6= 0. Sin
e A

is division-free, we may apply main theorem (see next Se
tion). This e�e
tively

amounts to doubling the number of square roots to prove a theorem involving

division.



3.6 Improved Square Root Transformation

It turns out that we 
an exploit another tri
k motivated by [18℄ in order to avoid

the doubling of the number of square roots. Instead of (8), we use the following

transformation to extra
t division out of square roots:

r

A

B

)

8

>

<

>

:

p

AB

B

if udeg(A) � udeg(B);

A

p

AB

if udeg(A) < udeg(B):

(9)

Suppose our transformations for eliminating divisions, using the new rule (9),

transform an arbitrary expression z into U(z)=L(z) where U(z); L(z) are divi-

sion free. Let u

z

and `

z

denote the udeg(U(z)) and udeg(L(z)). To exploit the

advantages of this new rule, we now give an expli
it set of indu
tive rules for


omputing u

z

and `

z

:

z u

z

l

z


onstant 0 0

parameter 1 0

x� y u

x

+ u

y

l

x

+ l

y

x� y u

x

+ l

y

l

x

+ u

y

x� y maxfu

x

+ l

y

; l

x

+ u

y

g l

x

+ l

y

p

x

1

2

(u

x

+ l

x

); (u

x

� l

x

);

u

x

; (u

x

< l

x

):

l

x

; (u

x

� l

x

);

1

2

(u

x

+ l

x

); (u

x

< l

x

):

Note that [18℄ only uses one of two 
lauses in (9) un
onditionally. But the

e�e
t of using the two 
onditional 
lauses is that the resulting bound u

z

is never

worse than 2

r

udeg(z), whi
h is the bound in Lemma 5. The proofs may be found

in [15℄.

4 Proving by Random Examples

We show how to use our main result to prove theorems about ruler & 
ompass


onstru
tions. A

ording to Se
tion 2, this amounts to verifying if a radi
al

expression G

�

(u) is identi
ally zero (subje
t to non-degenera
y 
onditions). Let

�(u) be the natural SLP whi
h 
omputes the values of all the dependent variables

in a ruler & 
ompass 
onstru
tion, and whose value is the polynomial thesis

G

�

(u). We give a simple upper estimate on the rdeg of ea
h node in �.

Ea
h \stage" of our 
onstru
tion introdu
es new points, lines or 
ir
les. Let

us now be more pre
ise: assume that our system maintains three kinds of geo-

metri
 obje
ts: points, lines and 
ir
les. These are 
onstru
ted as follows:

{ Points: There are three 
ases. Case 0: We 
an introdu
e an arbitrary point,

P . Then P:x and P:y are free variables (i.e., parameters). Case 1: We 
an

introdu
e an arbitrary point, P on an existing line L or 
ir
le C. We may

spe
ify either P:x or P:y to be a parameter. The other 
oordinate is therefore



a dependent variable, 
onstrained by an equation. Case 2: We 
an introdu
e

a point P that arises from the interse
tion of a line/
ir
le with another

line/
ir
le. In this 
ase, P:x and P:y are both dependent variables 
onstrained

by a pair of simultaneous equations. There is a variation of Case 2, whi
h

arises when at least one of the two interse
ting obje
ts is a 
ir
le. In this


ase, we allow the user to obtain both the points of interse
tion

1

.

{ Lines: Given two existing points, we 
an 
onstru
t the line through them.

{ Cir
les: Given three points P;Q;R, we 
an 
onstru
t the 
ir
le 
entered at

P of radius equal to the distan
e between Q and R. As a spe
ial 
ase, if P

is equal to Q or R, we 
an just use two arguments for this 
onstru
tion.

Lemma 6. If the dependent variable x is introdu
ed at stage i , then rdeg

2

(x) �

85

i

, i.e., udeg

2

(x) � 85

i

, ldeg

2

(x) � 85

i

.

Proof. Proof by indu
tion. Let S

k

be the set of obje
ts (points, lines, et
.) avail-

able after k 
onstru
tion stages. This lemma is trivially true when k = 0 be
ause

S

0

is empty.

Let r

k

= 85

k

. By the indu
tion hypothesis, we assume that the 
oordinate

(e.g., for points) or 
oeÆ
ient (e.g., in a line or 
ir
le equation) variables for all

the obje
ts in S

k

have rational degrees at most r

k

.

Let us �rst 
onsider the 
onstru
tion of lines and 
ir
les. Re
all that in our

system, a line refers to one that is 
onstru
ted by linking two points in S

k

; while

a 
ir
le means one that is 
onstru
ted with the 
enter in S

k

and the radius being

the length of some segment between two points in S

k

. We represent a line by a

linear equation ax+ by + 
 = 0. It is easily veri�ed that the rational degrees of

a, b and 
 are at most 2r

k

; 2r

k

and 6r

k

, respe
tively. Similarly, we represent a


ir
le by an equation in the form of (x� a)

2

+ (y � b)

2

= 


2

where the rational

degrees of a; b and 
 are at most r

k

; r

k

and 4r

k

, respe
tively.

Next, we 
onsider the 
onstru
tion of points. As dis
ussed above, we 
an have

one of the three types of 
onstru
tion (Cases 0, 1, 2) in stage (k + 1). Case 0 is

trivial be
ause all the parameters have the rational degree 1 : 0. Case 1 
an be

viewed as a simpli�ed Case 2. In the following, we fo
us on the more interesting

Case 2 
onstru
tions.

There are three possible 
onstru
tions in a Case 2 stage.

First, we 
onsider the interse
tion of two lines L

1

: a

1

x + b

1

y + 


1

= 0 and

L

2

: a

2

x+ b

2

y + 


2

= 0 where a's, b's and 
's 
an be at most r

k

. We obtain the

interse
tion point (x; y) of these two lines as follows,

(




1

b

2

� 


2

b

1

a

1

b

2

� a

2

b

1

;




1

a

2

� 


2

a

1

a

2

b

1

� a

1

b

2

):

From the de�nition (see Se
tion 3.1), the rational degrees for x and y are at

most 8r

k

.

1

It should be possible to allow the user to pi
k one of the two points using some


riteria, but we defer this to a future paper on implementation. This additional

power is sometimes needed in ruler-and-
ompass theorems.



Next, let us 
onsider the interse
tion of a line L : a

1

x + b

1

y + 


1

= 0 and a


ir
le C : (x�a

2

)

2

+(y� b

2

)

2

= 


2

2

. We eliminate y and get a quadrati
 equation

for x as follows:

(1 +

a

2

1

b

2

1

)x

2

+ (�2a

2

+ 2

a

1

b

1

(




1

b

1

+ b

2

))x + ((




1

b

1

+ b

2

)

2

+ a

2

2

� 


2

2

) = 0:

Let A;B and C be the three 
oeÆ
ients in the above equation. It 
an be shown

that the rational degrees of them 
an at most be 4r

k

, 6r

k

and 10r

k

respe
tively.

From the above equations, we get x =

�B�

p

B

2

�4AC

2A

and y = �

a

1

x+


1

b

1

. Thus,

rdeg

2

(x) � 23r

k

and rdeg

2

(y) � 26r

k

.

Thirdly, we 
onsider the interse
tion of two 
ir
les: C

1

: (x�a

1

)

2

+(y�b

1

)

2

=




2

1

and C

2

: (x� a

2

)

2

+ (y � b

2

)

2

= 


2

2

. We subtra
t them �rst to obtain a linear

equation �rst. Then by arguments similar to those used for the interse
tion of a

line and a 
ir
le, we 
an show that the rational degrees for x and y are at most

69r

k

and 85r

k

, respe
tively.

Therefore, we know that rdeg

2

(x) � 85

i

for all the nodes at the stage i.

REMARK: The 
onstant 85 in the above lemma is 
learly very 
onservative.

This bound 
an be re�ned, for example, by 
lassifying the stages into the various

types of 
onstru
tion.

Corollary 1. Let the thesis polynomial be g(u;x) with deg(g) = d, and G(u) be

any of the 2

r

radi
al expressions derived from g(u;x) by eliminating dependent

variables. Then rdeg

�

(G) � td2

r

85

k

where g(u;x) has t terms and k is the

number of 
onstru
tion stages.

Proof. For Lemma 6, we know that the rational degrees for all the dependent

and independent variables are at most 85

k

. The thesis G has t terms with total

degree at most d. By the indu
tive de�nitions of rational degrees, we know that

rdeg

�

(G) � td2

r

85

k

.

Assume an in
remental 
onstru
tion with m parameters, n dependent vari-

ables, k stages, and r quadrati
 equations. Note that t is at most

�

m+n+d

d

�

.

Moreover, d � 2 in most 
lassi
al geometri
 theorems. In our implementation,

instead of relying on this 
rude upper bound, we a
tually 
ompute the a
tual

bounds on rdeg to a
hieve better performan
e. By applying Lemma 5(ii) to �,

we obtain �

00

with one division at the root, and rdeg(�

00

) � 2

r

rdeg(�). Now the

value of �

00

(whi
h is G

�

) has the form A=B where A;B are division-free. More-

over, rdeg

�

00

(G

�

) � td2

2r

85

k

. Clearly, Zero(A=B) � Zero(A). Without loss of

generality, assume A 6= 0. By our main theorem, Zero(A) � Zero(P ) for some

polynomial P of degree � td2

2r

85

k

. Then we invoke a simple form of S
hwartz's

lemma:

Fa
t 1. Let P (u) be a non-zero polynomial of degree at most D. If ea
h a

i

(i = 1; : : : ;m) is randomly 
hosen from a �nite set S � R. Then the probability

that P (a

1

; : : : ; a

m

) = 0 is at most D=jSj.



If we randomly pi
k the values a = (a

1

; : : : ; a

m

) 2 S

m

, and jSj = td2


+2r

85

k

(for

any 
 � 1) then the \error probability" of our pro
edure is given by PrfA(a) =

0g � PrfP (a) = 0g � 2

�


. This 
onstitutes our probabilisti
 veri�
ation of the

universal truth of \G

�

(u) = 0".

An alternative to testing G

�

(u) = 0 is viewing the problem as testing the

simultaneous vanishing of a set of polynomial G :=fG

1

(u); : : : ; G

2

r

(u)g. This

redu
es the 
omplexity in two ways:

{ The root bound (whi
h determines the pre
ision ne
essary to numeri
ally

determine the sign of radi
al expressions in the Core Library) is smaller.

{ The size of the test set S is smaller.

We also have a further 
hoi
e when testing G: we 
an randomly 
hoose some

G

i

to test for its vanishing, or we 
an 
hoose to randomly test all the G

i

's for

their vanishing. However, the random 
hoi
e of G

i

does not seem to be the most

eÆ
ient way to test a theorem.

Degenera
ies of the First Kind. We now address the generi
 truth of

\G

�

(u) = 0". The notion of \error probability" be
omes an interesting issue.

First 
onsider only non-degenera
y 
onditions of the �rst kind, � : Æ 6= 0. For

simpli
ity, assume the ith ruler & 
ompass 
onstru
tion step introdu
es exa
tly

one su
h 
ondition, Æ

i

6= 0, of degree � 2. Sin
e there are k stages of 
onstru
-

tion, the non-degenera
y 
ondition be
omes Æ

�

:= Æ

1

Æ

2

� � � Æ

k

6= 0. The degree of

Æ

�

is thus at most 2k.

There are two natural models of what it means to have an \error probability"

� 2

�


: (A) The \stri
t model" says that our sample spa
e is now restri
ted to

S

m

n fa : Æ(a) = 0g. (B) Alternatively, we 
an say that the sample spa
e is still

S

m

but the theorem is trivially true at S

m

\ fa : Æ(a) = 0g. Given a �nite test

set S, the possible zeros of Æ

�

(i.e., degenerate 
on�gurations) in S

m

is at most

2

2r

udeg(Æ

�

)jSj

m�1

. With a large enough test set S, we 
an make the probability

that degenerate 
ases are 
hosen in the test (i.e., 2

2r

udeg(Æ

�

)=jSj) arbitrarily

small. We adopt the model A in the next theorem:

Theorem 3. Conje
tures about ruler & 
ompass 
onstru
tions with s non-dege-

nerate 
onditions of the �rst kind 
an be veri�ed with error probability � 2

�


in time polynomial in the parameters 2

r

; 2

s

; k; 
; lg(t) and lg(d), where r is the

number of square roots in the thesis radi
al expression G(u), k is the number

of 
onstru
tion stages, t is the number of monomials in the thesis polynomial

g(u;x), and d is the total degree of g.

Proof. Ea
h 
onstru
tion introdu
es a 
onstant number of new operations into

the �nal radi
al thesis expression G

�

(a). Thus, the 
ost to 
onstru
t the the-

sis expressions G

�

(a) is bound by O(k). Next, let us 
onsider the 
omplex-

ity in verifying G(a) for some sample 
on�guration a = (a

1

; a

2

; : : : a

m

) ran-

domly 
hosen from a �nite test set S with a 
ardinality of 2

2r+


85

k

td. From

the dis
ussion above, we know that the failure probability of this test is at most



2

�


. Without loss of generality, we 
an assume all the elements in S are in-

tegers. So the bit length of ea
h instan
e value is bounded by L = lg(jSj) =

O(r + 
 + lg(t) + lg(d) + k). In our root bound based approa
h to determine

the exa
t sign of an algebrai
 expression [16℄, the number of bits whi
h need to


ompute in the veri�
ation is bounded by O(pL2

2r

), where p is the total num-

ber of operations in G

�

whi
h is bounded by O(k). It is known that the time


omplexity of arithmeti
 operations among multiple pre
ision numbers are no

more than O(`

2

) where ` is the bit length of operands. We have a total of 2

r

radi
al thesis expressions to verify. So the 
omplexity to verify the vanishing of

G

�

, when exa
t arithmeti
 is employed, is polynomial in 2

r

; k; 
; lg(t) and lg(d).

In presen
e of s non-degenera
y 
onditions of the �rst kind, let �(u) be the

produ
t of all of them. It is a radi
al expression in u. By our main theorems, the

number of zeros of � in S

m

, N , is polynomial in 2

s

and 2

r

. In the worst 
ase,

we may meet at most N degenerate 
ases before we get the �rst non-degenerate

one. So the worst 
ase 
omplexity for our 
omplete method is polynomial in

2

r

; 2

s

; k; 
; lg(t) and lg(d).

Degenera
ies of the Se
ond Kind. As noted, degenera
ies of the se
ond

kind 
an often be redu
ed to simple 
onstraints on the domains of the param-

eters, possibly depending on the values of other parameters. For instan
e, we

noted that in Pas
al's Theorem, the parameters u

i

(i = 2; : : : ; 6) must satisfy

ju

i

j � ju

1

j. Our prover 
an handle su
h degenera
ies by exploiting the following

more general form of fa
t 1: de�ne the generalized degree of p(x

1

; : : : ; x

n

) to be

(d

1

; : : : ; d

n

) where the degree of p is d

1

when viewed as a polynomial in x

1

and

its leading 
oeÆ
ient indu
tively has generalized degree (d

2

; : : : ; d

n

). Suppose

S

1

; : : : ; S

n

are �nite sets of real numbers, then it 
an be shown that if we 
hoose

(u

1

; : : : ; u

n

) randomly from S

1

�S

2

�� � ��S

n

, the probability that p is non-zero

and p(u

1

; : : : ; u

n

) = 0 is at most

d

1

jS

1

j

+ � � �+

d

n

jS

n

j

:

The main extra 
omplexity 
aused by this version of our prover is that we

need to evaluate the parameters at rational values (instead of just at integer

values).

The 
urrent implementation does not handle the se
ond kind of degenera
y in

the above way, but we plan to re
tify this in the future. Instead, it dete
ts when

an example a 2 S

m

is degenerate, dis
ards it and generates another example,

et
. Under probability model (A) above, this means that we do not have an �a

priori bound on the running time, but the error probability is 
orre
t. Of 
ourse,

under model (B), there is no need to generate another example; but this does

not seem like a reasonable model.

Degenerate Ruler-and-Compass Constru
tions. Certain theorems amount

to dete
ting the validity of 
onstru
tion steps. We give a simple example from



[6℄ of a theorem true in real geometry but false in the 
omplex geometry. The


onstru
tion amounts to pi
king two points P

1

(0; 0) and P

2

(u; 0) where u is a

free parameter. Also let P

3

be the midpoint of P

1

P

2

, and P

4

the midpoint of

P

1

P

3

. Let L be the bise
tor of the segment P

1

P

2

, and C be the 
ir
le 
entered

at P

1

with radius P

1

P

4

. Let P

5

be the interse
tion of L and C. The thesis is

P

1

= P

2

or equivalently u = 0. This 
onje
ture is true in real geometry, but it is

false in the 
omplex plane be
ause u =

p

�1 is a solution. This is an interesting

example be
ause the thesis does not depend on the 
onstru
tion at all. It is an

indire
t way of asserting the validity of the 
onstru
tion steps. In implementing

a prover that takes inputs from the user, we need to guard against being asked

to prove su
h theorems. This amounts to an extreme form of the se
ond kind of

degenera
y.

Timing. The following table lists some theorems from Chou [5℄. However, the

last row (Tri-Bise
tor theorem) is the real geometry example from Se
tion 2. The

timings are for two values of 
 (this means the probability of error is at most

2

�


). We also arbitrarily \perturb" the hypothesis of ea
h theorem by randomly


hanging one 
oeÆ
ient of one of the input polynomials, and report their timings

as well. These are all false theorems, naturally. Our tests were performed on a

Sun UltraSPARC-IIi (440 MHz, 512 MB). The times are all in se
onds, and

represent the average of 6 runs ea
h. The prover uses Core Library, Version 1.3.

A
tually, the library is dire
tly modi�ed so that we 
ompute the exa
t rational

degrees of the expressions (rather than use the estimates of the Lemma 6). For


omparison, we in
lude the timings reported by Chou [5℄ using the approa
hes of

Wu and of Gr�obner Bases. The �nal 
olumn in the table gives the page number

in Chou's book [5℄.

No. Theorem 
 = 10 
 = 20 Perturbed Char Set Gr

�

obner Page

1 Pappus 0.020 0.020 0.007 1.52 33.32 100

2 Pappus Point 0.110 0.113 0.023 4.87 67.62 100

3 Pappus-dual 0.020 0.020 0.013 1.45 25.53 111

4 Nehring 8.300 8.390 0.107 4.15 159.3 115

5 Chou-46 0.070 0.073 0.020 88.13 37.65 124

6 Ceva 0.030 0.033 0.017 1.12 3.47 264

7 Simson 193.22 262.49 0.023 1.22 5.02 240

8 Pas
al 1715.8 2991.6 0.037 29.6 >14400 103

9 Tri-Bise
tor 20.027 38.350 0.010 { { {

Let r be the number of square roots in the radi
al expression representing a

theorem. If r = 0, we say the theorem is linear. A large part

2

of the 512 theorems

in Chou's book are linear. Only the last two theorems (Simson and Pas
al) in

the above list are non-linear, with r = 1 and r = 5, respe
tively. Evidently non-

linear theorems represent a 
hallenge for our 
urrent system. Re
all that there

2

The theorems in Chou's book in
lude an original list of 366 theorems from [4℄, of

whi
h 219 are reported to be linear [5, p. 12℄.



are 2

r

(or 2

r�1

by symmetry) possible sign assignments to the radi
als in G(u).

Our prover has three veri�
ation modes: (1) random mode, (2) exhaustive mode,

and (3) spe
i�ed mode. These 
orrespond, respe
tively, to testing (1) a random

sign assignment, (2) all sign assignments and (3) a user-spe
i�ed assignment. For

linear theorems, these modes are irrelevant. In the above table, we test Simson's

theorem in the exhaustive mode, Pas
al's theorem in the random mode and Tri-

bise
tor in the spe
i�ed mode. So our timing for Pas
al's theorem should really

be multiplied by 2

4

= 16.

It is interesting to note that we have never observed a single wrong 
on
lu-

sion from our probabilisti
 tests { all true theorems are reported as true, and

all perturbed theorems are reported as false. In some sense, that is not surpris-

ing be
ause the probabilisti
 bounds based on S
hwartz's lemma seem overly


onservative in all real situations.

The running times for linear theorems are pretty 
onsistent a
ross di�erent

runs. However, for the non-linear theorems, the timing 
an show mu
h more

variation. This is not unexpe
ted sin
e the running time depends on the bit size

of the random example. A more prominent behavior 
omes from the 
lustering of

times around 
ertain values. For instan
e, for Simson (
 = 20), the times 
luster

around 10 se
onds and around 70 se
onds. This \multimodal" behavior of the

timings are again seen in Pas
al. This 
an be attributed to the random 
hoi
e

of signs for the radi
als in non-linear theorems. This may also a

ount for the


urious relative times for Simson 
 = 10 and 
 = 20.

The performan
e of our library is 
riti
ally dependent of good root bounds

(an area of resear
h that we are a
tively working on [16℄). It should be possible

to exploit prover-spe
i�
 te
hniques to improve the speed, but this has not been

done. There are several issues to bear in mind when 
omparing our method with

Wu's method:

{ Chou's timings would look 
onsiderably better using hardware available to-

day.

{ The a
tual theorems proved by Wu's method are not stri
tly 
omparable to

ours in two important aspe
ts: Wu's method proves theorems about 
omplex

geometry while ours is about real geometry. On the other hand, Chou's

algorithm is deterministi
 while ours is probabilisti
.

{ Our method is extremely e�e
tive for dis
arding wrong or perturbed 
on-

je
tures. It is un
lear if Wu's method will be mu
h faster for perturbed

theorems, sin
e the algorithm would still have to exe
ute the same basi


steps. The ability to qui
kly reje
t false theorems is extremely useful in ap-

pli
ations where the user has many 
onje
tures to 
he
k but most of the


onje
tures are likely to be false.

{ One of the strengths of Wu's methods (as 
ompared to Gr�obner bases, say)

is its ability to dis
over non-degenera
y 
onditions. A similar 
apability is

embedded in our approa
h { this simply amounts to dete
ting when a 
on-

stru
tion step is ill-de�ned.



5 Final Remarks

In this paper, we have developed a generalization of the S
hwartz-Zippel ran-

domized zero test for the 
lass of radi
al expressions. Su
h a test is expe
ted to

have many appli
ations as radi
al expressions are quite 
ommon. Here, we fo
us

on their use in proving theorems about ruler & 
ompass 
onstru
tions. Some

features of our prover are:

{ It proves theorems about real (rather than 
omplex) geometry, under the

limitation that there is no inequalities appearing in the thesis.

{ It is probabilisti
, so that speed 
an be traded-o� against error probability.

{ It dete
ts wrong 
onje
tures very qui
kly.

{ It is extremely e�e
tive for linear theorems (the majority of the theorems in

[5℄).

{ It exploits the spe
ial nature of ruler & 
ompass 
onstru
tions.

Be
ause of the last feature, our approa
h may ultimately prove to be more

eÆ
ient for this 
lass of problems than other more general te
hniques. However,

our results so far have not been 
on
lusive in the 
ase of non-linear theorems.

The following are some open problems:

{ Improve our zero test for straight line programs that involve division.

{ Develop te
hniques to make our approa
h faster for non-linear theorems.

{ Extend our randomized te
hniques to theorems that have inequalities in the

theses. This seems to 
all for radi
ally new ideas.
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