
Pi is in Log Space

Preliminary Version

Chee Yap∗

Courant Institute, New York University

June 22, 2010

Abstract

We say that a real number α is in Log space if its n-th bit (n ∈ Z)
can be computed in O(log |n|) space. We show that π = 3.14159 · · · is
in Log space. This implies that π is in the complexity class SC. The
latter result has been conjectured by Lipton, and widely assumed to be
true from the work of Bailey, Borwein and Plouffe (BBP) and others.
Our result extends to other constants such as log 2 or π

2 that also possess
two essential ingredients: they have BBP-like series and have bounded
irrationality measures.

1 Introduction

Computing approximations of mathematical constants such as π = 3.14159 · · ·
has been a quest from antiquity. With the advent of modern computing, and for
about two decades from the 1970s to 1990s, the algorithms of choice for comput-
ing π to very high precision have been based on the arithmetic-geometric mean
(AGM) from Salamin and Brent (1975). From the 1990s, a new class of algo-
rithms were introduced by Rabinowitz and Wagon [7]. They are called “spigot
algorithms” because such algorithms can start “dripping output digits” in the
midst of the larger computation. The dripped digits are not re-used, so theoret-
ically such algorithms may only use sublinear space, an important property if
we want to compute ultra-billion digits. Gibbons [4] introduced a bit-streaming
paradigm for spigot algorithms that avoided any prior commitment as to the
ultimate number of desired digits. The most famous of the spigot algorithms
is the BBP algorithm [1] which has the further property it can compute the
n-th digit without computing the first n − 1 digits. If one wants to compute
all the first n digits of π, then AGM algorithms are asymptotically faster than
any spigot algorithm, but the tradeoff is that AGM algorithms must use at least
linear space. A spigot algorithm made possible the current record high precision
for computing π (2.7 trillion digits by Bellard (2009) [9]).

∗Visiting Oxford University Computing Lab, 2009-2010

1

The key property of spigot algorithms is that they use small space. Formally,
it is claimed that BBP-like algorithms can compute the n-th bit of constants such
as π in time polynomial in n, and in space poly-logarithmic in n. In complexity
theory, algorithms with such complexity bounds are called SC algorithms.
Decision problems with SC algorithms constitute the complexity class SC. Thus
it is claimed that “π is in the class SC” [1, 2]. But some researchers have noticed
that this claim is non-obvious and unproven. We refer to a blog by Lipton [6]
who posed the status of π in SC as an open problem. In this paper, we will
resolve this question for π and other constants.

The BBP algorithm [1] is based on the following remarkable series for π:

π =

∞∑

k=0

1

(16)k

(
4

8k + 1
−

2

8k + 4
−

1

8k + 5
−

1

8k + 6

)
=

∑

k≥0

(16)−kϕ(k) (1)

where ϕ(k) = 120k2+151k+47
512k4+1024k3+712k2+194k+15 is a fixed rational function. See [2] for

a simple proof. Why should such a series allow us to compute the n-th bit of
π without obtaining the first n bits? Intuitively, it is the denominator of 16k

in the k-th term. But the issue is more subtle, and the original BBP paper ac-
knowledged it as follows: “There is always a possible ambiguity when computing
a digit string base b in distinguishing a sequence of digits a(b − 1)(b − 1)(b − 1)
from (a + 1)000. In this particular case, we consider either representation as
an acceptable computation. In practice this problem does not arise.” Lipton
rightly pointed out that such a claim is a fudge. The real issue (as we will see)
is the number m of terms beyond the n-th term that must be examined in order
to determine the n-th bit. If m cannot be bounded in terms of n, then the
BBP algorithm (suitably adjusted to avoid any fudge) is only recursive with no
complexity bounds, much less in SC.

2 Computing bits of Pi-like Constants

We will show that π is in the complexity class SC. In fact, we prove a stronger
and more general result: any real constant α that (like π) possesses two general
ingredients can be computed in logarithmic space. The first ingredient is the
existence of a BBP-like series, analogous to the BBP series (1). The second
ingredient is that α must possess a finite irrationality measure. The use of BBP-
like series is widely expected ever since [1]. The use of irrationality measure was
anticipated by Lipton [6] although it has never been formally exploited in this
context. Such measures are well-known in Transcendental Number Theory [3].

We fix a real constant α > 0 in this section. Let the binary expansion of α
be given by

α =
∞∑

k=−m

αk2−k

where αk ∈ {0, 1} and α−m = 1. Call αk the k-th bit of α, and msb(α) := m
is its most significant bit position. E.g., msb(2k) = −k, msb(π) = 1,

2

msb(0.1) = 4. Moreover, if k < msb(α) then αk = 0. The n-th (lower)
approximation of α is

⌊α⌋n :=

n∑

k=−m

αk2−k.

The usual floor function ⌊α⌋ corresponds to ⌊α⌋0. We may write
α = (α−mα−m+1 · · ·α0 . α1α2 · · ·)2 for the binary notation for α. For instance,
if α = π = 3.14159 · · · then

π = (11.001001 · · ·)2 = (π−1π0 . π1π2π3 · · ·)2

For irrational α, its n-th bit is uniquely defined; otherwise, we achieve unique-
ness by proscribing a suffix of all 1’s in the binary notation. These definitions
yield the identity:

2mα = (1.α−m+1α−m+2 · · ·)2 where m = msb(α). (2)

A constant K > 0 is called an irrationality measure of α if the inequality

0 <

∣∣∣∣α −
p

q

∣∣∣∣ ≤
1

qK
(3)

holds for finitely many pairs (p, q) of positive integers. The infimum of all such
K’s, denoted µ(α), is called the irrationality measure of α. Let N(K) ≥ 2
denote a constant such that for all q ≥ N(K), the inequality (3) fails. For our
proof, any finite K will do. In case α = π, there is a long history of improving
bounds for µ(π) by Hata and others [5]. The current record is µ(π) ≤ 7.6804
from Salikhov [8].

Besides the requirement µ(α) < ∞, the other ingredient is a suitable series
for α. Let the constant α have a series of the form

α =

∞∑

k=0

tk = Sn + Rn (4)

where we have split the series into a finite sum Sn :=
∑n

k=0 tk, and a remainder
series Rn :=

∑∞

k=n+1 tk. We say the series (4) is BBP-like if each term tk is a
rational number of the form

tk = 2−kc p(k)

q(k)
(5)

where p(k), q(k) are fixed polynomials with integer coefficients, and c ≥ 1 is an
integer. Clearly, the BBP series (1) is BBP-like.

We can now state the main result of this section:

Theorem 1. For any positive real number α, if α has a finite irrationality
measure K and a BBP-like series, then we can decide its n-th bit αn in O(log |n|)
space.

3

Constants such as log 2 and π2 also have BBP-like series [1, 2]. They have
bounded irrationality measures: µ(log 2) ≤ 3.575 (Marcovecchio, 2009), µ(π2) ≤
5.442 (Rhin and Viola, 1996). Thus:

Corollary 2. Let α ∈
{
π, π2, log 2

}
. We can decide the n-th bit of α in time

in O(log |n|) space.

¶1. Some Bounds. In the rest of this section, we will prove Theorem 1
through a series of lemmas. We fix an irrationality measure K and the BBP-
like series (4)–(5) for α. Without loss of generality, we assume α is irrational;
the only effect of this assumption is that the inequality |α − (p/q)| > 0 in (3)
becomes automatic.

The following is immediate:

Lemma 3. In the BBP-like series (4)–(5), the remainder series Rn satisfies

|Rn| < 2−nc+D lg n (6)

for some constant D > 0 (lg = log2).

Remark that in the case of (1) for π, we have the sharper bound

0 < Rn <
1

15
16−n < 2−4n−3.

A standard notation for the fractional part of α is {α} = α − ⌊α⌋. We
generalize this notation: for any n ∈ Z,

{α}n := {2nα} . (7)

Clearly, {α}n ∈ [0, 1) and {α}0 = {α}. Here is the connection between {α}n

and ⌊α⌋n:

{α}n = 2nα − ⌊2nα⌋

= 2n (α − ⌊α⌋n)

= (0.αn+1αn+2 · · ·)2.

This last equality shows:

αn = 1 ⇐⇒ {α}n−1 ≥ 1/2. (8)

Lemma 4. Let 2n ≥ N(K) and ǫn := 2−(K−1)n−2.
(a) αn = 1 if and only if {α}n−1 ∈ (1

2 + 2ǫn, 1 − 2ǫn).

(b) αn = 0 if and only if {α}n−1 ∈ (2ǫn, 1
2 − 2ǫn).

Proof. By definition of K, for all p ∈ Z, |α − p2−n| > 2−Kn, i.e.,
∣∣∣2n−1α −

p

2

∣∣∣ > 2−(K−1)n−1 = 2ǫn. (9)

This is equivalent to (a) and (b). Q.E.D.

In the next two lemmas, we choose m be a sufficiently large value as a
function of n.

4

Lemma 5. Assume n and ǫn as in the previous lemma. Choose m large enough
so that mc − D lg m ≥ Kn + 1.
(a’) αn = 1 if and only if {Sm}n−1 ∈ (1

2 + ǫn, 1 − ǫn).

(b’) αn = 0 if and only if {Sm}n−1 ∈ (ǫn, 1
2 − ǫn).

Proof. By the previous lemma, αn = 1 iff {α}n−1 ∈ (1
2 + 2ǫn, 1 − 2ǫn).

Writing α = Sm + Rm, we see that

{α}n−1 =
{
2n−1Sm + 2n−1Rm

}
= {Sm}n−1 + 2n−1Rm

holds, provided 2n−1|Rm| ≤ 2ǫ. This proviso follows from Lemma 3:

2n−1|Rm| ≤ 2n−12−mc+D lg m ≤ 2−(K−1)n−2 = ǫn

by our choice of m. Then (a’),(b’) are equivalent to (a),(b), in Lemma 4.
Q.E.D.

Let tik,n denote the i-th bit of
{
2n−1tk

}
:

{
2n−1tk

}
= (0.t1k,nt2k,nt3k,n · · ·)2.

We use the first m bits to define the number

t̃mk,n := (0.t1k,nt2k,nt3k,n · · · tmk,n)2 (10)

Thus, t̃mn,k is the m-th approximation of
{
2n−1tk

}
.

Consider the sum

Sn
m :=

m∑

k=0

t̃mk . (11)

Note that {Sn
m} is an approximation of {Sm}n−1.

Lemma 6. Let 2n ≥ N(8) and choose m ≥ 2 such that m − lg(m + 1) ≥
(K − 1)n + 2, and assume D ≥ 2.
(a”) αn = 1 if and only if {Sn

m} ≥ 1
2 .

(b”) αn = 0 if and only if {Sn
m} < 1

2 .

Proof. We note that our assumption m − lg(m + 1) ≥ (K − 1)n + 2 implies
the corresponding condition

mc − D lg m ≥ Kn + 1

in Lemma 5 (use the fact that c ≥ 1,D ≥ 2,m ≥ 2). Hence Lemma 5 implies
that {Sm}n−1 > 1

2 + ǫn or {Sm}n−1 < 1
2 − ǫn. Consider the sum

Tn
m :=

m∑

k=0

{
2n−1tk

}
. (12)

Clearly, {Sm}n−1 = {Tn
m}, and hence {Tn

m} > 1
2 +ǫn or {Tn

m} < 1
2−ǫn. The sum

Sn
m in (11) is an approximation of Tn

m. The difference Tn
m −Sn

m, is non-negative

5

and upper bounded by 2−m(m + 1) = 2−m+lg(m+1). By our assumption on m,
this is at most 2−(K−1)n−2 = ǫn. Hence {Sn

m} > 1
2 or {Sn

m} < 1
2 , corresponding

to αn = 1 or αn = 0 (resp.). In particular, {Sn
m} cannot be equal to 1

2 . Thus
{Sn

m} ≥ 1
2 iff {Sn

m} > 1
2 . This concludes our proof. Q.E.D.

Note that we could also have written condition (b”) as “α = 0 iff {Sn
m} ≤ 1

2”.
Although it is not wrong, it would appear confusing in combination with (a”).
In our application, it will be slightly easier to use (a”) because we only need to
check that first bit of {Sn

m} is 1 to conclude that {Sn
m} ≥ 1

2 .

¶2. The Algorithm. Our problem of computing αn is now reduced to de-
ciding the predicate

{Sn
m} ≥

1

2
. (13)

Conceptually, we organize the data in the sum Sn
m in the following (m + 1)×m

bit-array An
m:

An
m =




t10,n t20,n t30,n · · · tm0,n

t11,n t21,n t31,n · · · tm1,n

...
t1m,n t2m,n t3m,n · · · tmm,n


 (14)

The k-th row represents the binary number t̃mk,n = (0.t1k,nt2k,n · · · tmk,n)2, and
so Sn

m is just the sum of the values in the m+1 rows. We say this is conceptual
because we cannot afford to store this matrix. Instead, we generate each entry
in Log space:

Lemma 7. We can generate tik,n (the i-th bit of
{
2n−1tk

}
) in O(log N) space

where N = n + k + i.

Proof. We have tk = 2−kcp(k)/q(k), and it is easy to compute p(k) and q(k)
in O(log k) space. Let ci be the i-th bit of p(k)/q(k).

CLAIM: We can compute ci in O(log(k + i)) space. To see this, note that
ci = 1 iff

{
2i−1p(k)/q(k)

}
≥ 1

2 . We consider two cases.
(a) i ≥ 1: Note that we can compute Pi := 2i−1|p(k)|mod |q(k)| in O(log(k+i))
space. Then ci = 1 iff 2Pi ≥ |q(k)|.
(b) i ≤ 0: Note that 2−i > |p(k)| implies 2i−1p(k)/q(k) < 1/2 and so ci = 0.
This can be checked in O(log k) space. If 2−i ≤ |p(k)|, then −i ≤ C log k for
some C > 0. Then

{
2i−1p(k)/q(k)

}
= Pi/Qi where Qi = 2−i+1|q(k)| and

Pi = |p(k)|modQi. Both Qi, Pi can be computed O(log k) space. Then ci = 1
iff 2Pi ≥ Qi. This establishes our claim.

Now the desired ith bit in this lemma, tik,n, is just ci+kc−n+1 since 2n−1tk =

2n−1+kcp(k)/q(k). Using the claim, tik,n can be generated in O(log(k + i + (n−
1 + kc))) = O(log(n + k + i)) space. Q.E.D.

6

¶3. Proof of Theorem 1. It remains to decide (13) in Log space. Let
the sum of the j-th column of the matrix An

m be sj . We compute Sn
m by the

obvious algorithm: starting from j = m down to j = 1, we compute sj , and
then add the carry cj . Initially, cm = 0. In the j-th step, we can compute
the j-th bit of Sn

m as (sj + cj)mod 2. But we are not interested in this bit, as
we only want to generate the carry cj−1 for the next column using the formula
cj−1 = ⌊(sj + cj)/2⌋. When we reach j = 1, the predicate (13) is decided with
the equivalence: Sn

m ≥ 1
2 iff (s1 + c1)mod 2 = 1 (i.e., s1 + c1 is odd).

We bound the storage used by this algorithm. The space to store the sj ’s
is O(log n) since 0 ≤ sj ≤ m + 1. The same bound holds for the cj ’s, since a
geometric series yields the bound 0 ≤ cj < 2(m + 1). Since we did not store
the matrix An

m, we must account for the space used to generate each entry: by
Lemma 7, the space to generate tik,n is O(log(n + k + i)). Since k, i ≤ m, this
space is O(log(n + m)). But the constraint on m in Lemma 6 allows a choice
m = O(n). To be concrete, we may choose m = max {7, 2(K − 1)n + 4}. This
completes the proof.

3 Remarks

• Our Log-space algorithm for π is unlike the original BPP algorithm.
Therefore the “SC status” of the original BBP-like algorithms remains
open.

• We have assumed base 2 in the above development. If π has a BBP-like
series in base d, then again our result extends to showing that π in base
d is in DL. In the most interesting case of d = 10, extensive search for
BBP-like series has been unsuccessful. Hence it is not known if π in base
d belongs to SC.

• There are highly non-constructive aspects in the concept of irrationality
measure (3). Although we have an explicit K, we do not know bounds
on the “finitely number” M = M(K) of pairs p, q that are exceptions to
the inequality (3). To bound M , we only need to bound the number of
distinct q’s since there can be at most one value of p for each q ≥ 2. But
even if we know M , we still do not know N = N(K), which bounds the
exceptional values of q. These non-constructive features do not detract
from our application of irrationality measures in showing Theorem 1. But
it does mean that some implicit constants in the big-Oh notation for the
complexity of our algorithm for π are unknown.

4 Acknowledgment

I would like to thank Joel Ouaknine and Ben Worrell for helpful discussions,
and especially for bringing Lipton’s blog and the question of π to my attention.

7

References

[1] D. Bailey, P. Borwein, and S. Plouffe. On the rapid computation of various
polylogarithmic constants. Mathematics of Computation, 66(218):903–913,
1997.

[2] D. J. Broadhurst. Polylogarithmic ladders, hypergeometric series and the
ten millionth digits of ζ(3) and ζ(5). arXiv:math.CA/9803067, March 1998.

[3] N. Fel’dman and Y. V. Nesterenko. Number Theory IV: Transcendental
Numbers, volume 44 of Encyclopaedia of Mathematical Sciences. Springer-
Verlag, Berlin, 1998. Translated from Russian by N. Koblitz.

[4] J. Gibbons. An unbounded spigot algorithm for the digits of pi. Amer.
Math. Monthly, 113(4):318–328, 2006.

[5] M. Hata. Improvement in the irrationality measures of π and π2. Proc.
Japan. Acad. Ser. A Math. Sci., 68:283–286, 1992.

[6] R. J. Lipton. Cook’s Class containts Pi, March 15 2009. Blog at
http://rjlipton.wordpress.com/2009/03/15/cooks-class-contains-pi/.

[7] S. Rabinowitz and S. Wagon. A spigot algorithm for the digits of pi. Amer.
Math. Monthly, 102:195–203, 1995.

[8] V. K. Salikhov. On the irrationality measure of pi. Usp. Mat. Nauk, 63:163–
164, 2008. English transl. in Russ. Math. Surv 63, 570-572, 2008.

[9] Wikipedia. Numerical approximations of π, 2010.
http://en.wikipedia.org/wiki/Numerical approximations of pi.

8

