Non-local Isotopic Approximation of Nonsingular Surfaces
Long Lin, Chee Yap and Jihun Yu

Courant Institute of Mathematical Sciences
New York University
New York, NY 10012 USA
{1lin,yap, jihun}@cs.nyu.edu

Abstract

ABSTRACT: We consider the problem of approximating nonsingular surfaces which are implicitly represented by equations of
the form f(z,y, z) = 0. Our correctness criterion is isotopy of the approximate surface to the exact surface. We focus on methods
based on domain subdivision using numerical primitives. Such methods are practical and has adaptive and local complexity.
Previously, Snyder (1992) and Plantinga-Vegter (2004) have introduced techniques based on parametrizability and non-local isotopy,
respectively. In our previous work (SoCG 2009), we synthesized these two techniques into a highly efficient and practical algorithm
for curves. In this paper, we extend our approach to surfaces. The extension is by no means routine: the correctness arguments
and analysis are considerably more complex. Unlike the 2-D case, a new phenomenon arises in which local rules for constructing
surfaces are no longer sufficient.

We treat two important extensions, to exploit anisotropic subdivision and to allow arbitrary geometry for the region-of-interest
(ROI). Anisotropy means that we allow boxes to be split into 2, 4 or 8 subboxes with bounded aspect ratio. Using ROI allows our
algorithms to be extremely "local”, and anisotropy increases their adaptivity.

Our algorithms are relatively easy to implement, as the underlying primitives are based on interval arithmetic and exact BigFloat
numbers. We report on very encouraging preliminary experimental results.

Key words: Mesh Generation, Surface Approximation, Isotopy, Parametrizability, Subdivision Algorithms, Interval Methods, Topological

Correctness, Exact Numerical Algorithms.

1. Introduction

A basic problem in areas such as physics simulation, com-
puter graphics and geometric modeling is that of computing
approximations of curves and surfaces from implicit defini-
tions. Typically, the surface is represented by an equation,
f(z,y,2) = 0 as illustrated in Figure 1. We assume the
approximation is a triangulated surface, also known as a
mesh. The recent book edited by Boissonnat and Teillaud
[4] provides an algorithmic perspective for this general area;
chapter 6 in particular is a survey of meshing algorithms.

The approximate surface or mesh must satisfy two basic
requirements: topological correctness and geometric accu-
racy. For instance, in Figure 1(c) is produced by our algo-
rithm with only topological correctness as stopping crite-
rion. For some applications, this is sufficient. But if one de-
sires geometric accuracy as well, this can be further refined
as in Figure 1(a), where the error bound is € = 0.25. Gen-
erally, the problem of ensuring topologically correctness is
more challenging than refinement.

Preprint submitted to Elsevier

Formally, the mesh generation problem (“meshing
problem” for short) is this: given a region-of-interest (ROI)
Ry C R3, an error bound ¢ > 0, a surface S implicitly
represented by an equation f(x,y, z) = 0, to find a piecewise
linear e-approzimation G of S restricted to Ry.

Geometric accuracy in G means that the Hausdorff dis-
tance between G and S N Ry is at most e. Topological cor-
rectness means the surface G should be isotopic to S in
the interior of Ry, and also on the boundary dRy; we de-
note this by “G ~ S (mod Ry)”. We focus on guaranteeing
topological correctness by means of numerical techniques.
Numerical methods have many advantages: they tend to
have adaptive complexity, are efficient in practice and easy
to implement. Numerical methods are more general than
algebraic ones since hey are applicable to non-algebraic
functions such as frequently arise in mathematical analysis.
But numerical methods traditionally do not offer topolog-
ical guarantees, and so this is our main challenge.

Throughout this paper, we fix the function f : R® —
R, the surface S:= f~1(0) and region-of-interest Ry C R3.

3 April 2012

(a) Cxyze

(c) Cxyz

(d) Rect-2

Fig. 1. Approximation of tangled cube f(z,y, z) = z* — 522 + y* — 5y + 2* — 522 = —10.

The region Ry is a nice region (see below) represented by an
octree, and f is nonsingular in Ry. Unless otherwise noted,
we assume € = oo (i.e., we focus on isotopy, with no concern
for geometric accuracy). For the algorithms of this paper,
it is easy refine to any desired € once we have the correct
isotopy.

1.1. Subdivision Algorithms.

Our main algorithmic paradigm is (domain) subdivi-
sion where an initial axes-parallel box By C R3 is repeat-
edly subdivided into smaller boxes, forming an octree T
rooted at By. Each non-leaf of T' can have 2, 4 or 8 children,
corresponding to half-, quarter- or full-splits of boxes into
congruent subboxes. The leaves of T' provide a partition of
By into boxes, and to subdivide T means to split its leaves.
All algorithms in this paper are viewed as instances of the
following:

Generic Subdivision Algorithm:
INPUT: AN OCTREE T REPRESENTING A REGION By
1. Subdivision Phase:

Keep subdividing 7" until some stopping criterion holds.
II. Refinement Phase:

Further subdivide T until some refinement criterion holds.
I1I. Construction Phase:

Construct the approximation G from the refined tree T'.

The conceptual question is: what kind of stopping and re-
finement criteria do we need in order to ensure that the Con-
struction Phase has sufficient information to construct an
isotopic approximation G ¢ This question is ill-formed un-
less we constrain the Construction Phase. The well-known
Marching Cubes [16] gives us a clue: for each leaf box B,
the Marching Cubes algorithm computes a small surface
patch G C B based only on the signs of f at the corners of
B. This is O(1) work per leaf, and G is defined to be union
of all these patches Gp. Such a Construction Phase is said
to be MC-like (“Marching Cubes like”). But it is well-
known that the Marching Cubes could not ensure correct
isotopy. The achievement of Plantinga & Vegter (PV) [19]
is that, by using the “small normal variation predicate”,
they could ensure correct isotopy with a MC-like construc-
tion. Theirs is the first topologically correct algorithm for
meshing of nonsingular surfaces based on numerical prim-
itives. In contrast, the construction phase in Snyder’s al-

gorithm [25] is not MC-like, but requires highly nontriv-
ial processing (e.g., root isolation). In [15,14], we charac-
terize the PV approach as exploiting “non-local isotopy”.
We show that the stopping criterion of PV can be weak-
ened to the parametrizability predicate of Snyder, leading
to greatly improved efficiency. Our previous result was only
for curves; in this paper, we will extend it to surfaces. As
we shall see, the extension to surfaces is far from routine,
requiring new ideas in the algorithm as well as in its cor-
rectness proofs. For instance, a new phenomenon arises in
the Construction Phase in which local rules are no longer
sufficient.

The Marching Cube literature has a slightly form of the
input function, where it is typically assumed that f(z,y,)
is the trilinear interpolation of the set of f-values at a given
uniform grid. Our approach can also be applied to such
kinds of input functions (see remarks after Lemma 1 below).

The algorithms in this line of research are very practical
for two reasons: first, it is based on the easily implementable
subdivision paradigm. Second, all our primitives are explic-
itly numerical (no hidden implementation gaps). We stress
this point because many algorithms in the literature on
“exact algorithms” have primitives that are impractical for
exact implementation. Our numerical primitives are based
on two simple foundations: (a) interval methods [18,20],
and (b) BigFloats, some software implementation of dyadic
numbers. Moreover, machine arithmetic can be exploited
in two ways: first, it can replace BigFloats when machine
precision suffices (taking care to detect overflows which in-
dicate the need for higher precision). In fact all the exam-
ples in this paper are run at machine precision. Second,
they can be used as filters to speed up BigFloats. See [15]
for further discussion. We have implemented our algorithm
and preliminary evidence suggests that our algorithms can
be much more efficient than previous algorithms.

1.2. Our Contribution and Overview of Paper.

Our general contribution is the further development of
non-local isotopy analysis. In Section 2, we review this con-
cept. Our main technical contribution is a new exact, effi-
cient and practical algorithm for isotopic surface approxi-
mation. We describe a sequence of three increasingly sophis-
ticated algorithms: Regularized Cxyz (Section 4), Bal-
anced Cxyz (Section 5), and Rectangular Cxyz (Sec-

tion 6). Each has independent interest, but is also useful
in our development: we reduce the correctness of each al-
gorithm to that of the previous one. Because of space lim-
itation, we only briefly touch on another important topic,
allowing input region-of-interest (ROI) with arbitrary ge-
ometry as represented by a suitable octree. Section 7 con-
tains our experimental results, and we conclude in Section
8. All proofs and additional experimental data are found in
the thesis of Lin [14]. The thesis and the code sources are
downloadable from [10].

2. Related Work

We broadly classify approaches to mesh generation into
three categories: algebraic, geometric, and numerical. Al-
gebraic approaches [1,23,9,24], exploit tools such as cylin-
drical algebraic decomposition (CAD), resultants, and ma-
nipulation of algebraic numbers ([4, Chapter 3] reviews
these technique). These tools are exact, but the algorithms
may be slow with non-adaptive complexity. A promising
direction to remedy this is to combine symbolic with nu-
meric methods [11]. The geometric approaches [26,5,7,3]
postulate some abstract computational model where geo-
metric primitives such as ray shooting are available, and
algorithms based on these primitives are constructed. Im-
plementing these abstract models can be an issue (e.g., ray
shooting returns points with algebraic coordinates, which
may be unsuitable for implementation). The numerical ap-
proaches [16,19,17,21,27,28] are based on numerical ap-
proximations, evaluation and derivatives of function, and
interval methods. It is the most pragmatic of the three ap-
proaches. Its advantages include having adaptive and local
complexity, and relative ease of implementation. Guaran-
teeing topological correctness is the traditional weakness of
this approach. The non-local isotopy idea of this paper can
be exploited in other applications: recently we constructed
a new subdivision method for complex root isolation [22]
that has proved very efficient [12,13]. To motivate the gen-
eral approach of our paper, we review four particular sub-
division algorithms: Marching Cubes [16], Snyder’s Algo-
rithm [25], Plantinga & Vegter’s (PV) Algorithm [19], and
our Cxy Algorithm (in 2-D) [15]. We use the framework of
the Generic Subdivision Algorithm in the introduction.

2.1. Marching Cubes.

Marching Cubes is one of the most popular subdivision
algorithms for surface reconstruction. The stopping crite-
rion for its Subdivision Phase is “box has width < €” for
some arbitrary € > 0. In the Construction Phase, we deter-
mine the sign of the function f at the corners of each leaf
box B of T'. Up to rotational symmetry, reflection and in-
terchange of signs, the possible sign types are given in Fig-
ure 2. Note that Marching Cube has 15 cases ([8, Fig. 1]),
but cases 11 and 14 are mirror reflections, corresponding
to our Type 4c.

Type0 Typel Type2a Type2b ¥ Type*2¢

Type3a Type3h Type*3c Typeda Typedb
L
Typedc Type' 4¢ Type*de Type*4f

Fig. 2. The 14 Sign Types of f at box corners: only 10 may arise
under Cyy.» Predicate

If an edge of B has different signs at its two corners, we
introduce a vertex in the middle of the edge. We then con-
nect pairs of vertices on faces of B by arcs. Some possibili-
ties for these arc types are illustrated in Figure 3 (our fig-
ure shows only those types that can arise in our algorithm).
Note that Sign Types 2b, 3b and 4d each gives rise to two
arc types, and they are topologically distinct. This “ambi-
guity” will be one of our main correctness concerns. Once
the arcs are fixed, we can introduce a triangulated surface
patch G in B such that G intersects boundary of B with
the given arc type. The union G = | Jz G p of these patches
constitutes an approximation of S. We say S intersects box
B cleanly if (i) it does not pass through a corner of B, (ii)
intersects any edge of B at most at one point and this inter-
section (if any) must be transversal, and (iii) intersects any
face of B is an open curve and not in a loop (this includes
the case of a degenerate loop with just one tangent point).

Type0 Typel Type2a Type2b(ii

- , os@ [@
Type3a Type3b(i) ¢ ype3b(ii Typeda Type4b

Typede Typedd(i) ypedd(ii

Fig. 3. The 13 Arc Types under Czy. Predicate.

LEMMA 1 Let the surface S intersect a box B cleanly. Then
the intersection of S with the boundary 0B corresponds to
one of the 13 arc types in Figure 3. Moreover, each arc type
uniquely determines the isotopy of the surface patch SN B.

This lemma follows by case analysis. These 13 cases
should be contrasted with Chernyaev’s famous 33 cases in
his analysis of Marching Cube [8]. It highlights the differ-
ence in our approaches: the assumption of clean intersec-
tion in this lemma is exploiting isotopy. In general, S does

not intersect B cleanly, but there is a “vertex avoiding”
isotopy of S which does cleanly intersect B. Eventually,
our main result shows that by subdivision, our algorithm
only need to form surface patches corresponding to these
13 cases, rather than Chernyaev’s 33.

2.2. Parametrizability of Snyder.

A key paper towards ensuring correct topology in sub-
division algorithms is Snyder [25]. He introduced interval
methods to determine the correct topology within each sub-
division box B. Snyder’s stopping criterion is “S N B is
parametrizable”. This means that surface patch SN B is
the graph of some function g(i, j) in two coordinate direc-
tions 4, j € {x,y, z}. This condition can be detected using
interval arithmetic: we call this the Cy,,(B) predicate be-
low. Snyder is then able to construct a triangulated sur-
face patch G C B with the property Gg ~ S (mod B).
His algorithm is recursive in dimension: to construct Gp,
recursively solve the 2-D problem of computing the topol-
ogy of S M F on each face F' of B. In turn, this requires
solving the 1-D problem of root isolation along the edges
of F. There are two issues. First, the algorithm may not
terminate if S intersects the boundary of B tangentially at
isolated points [2, p. 195]. Second, G can have arbitrary
combinatorial complexity, and thus is not MC-like.

2.3. Non-local Isotopy of Plantinga & Vegter

The second key paper is from Plantinga & Vegter [19]:
instead of parametrizability, they introduce two simple cri-
teria for termination of subdivision: the exclusion predi-
cate Cy(B) and the small normal variation predicate
C1(B) (see below for the definitions of Cy and C}). The
predicate Cy(B) implies that the angle between two gradi-
ent vectors of f in B is less than 90 degrees, and in partic-
ular it implies that S N B is parametrizable. Snyder con-
structs the local isotopy of the surface in each box B. In a
radical departure from Snyder, they no longer require that
Gp be isotopic to S N B. Remarkably, this approach also
solves the two issues of Snyder. We view non-local isotopy
very favorably because enforcing local isotopy is considered
wasteful (after all, subdivision boxes are artifacts of the al-
gorithm, not inherent in topology of S).

2.4. Our Synthesis.

Our paper [15] is a synthesis of the parametrizability ap-
proach of Snyder with the non-local isotopy of PV. We only
treated curves. Basically, we want to run the PV algorithm
but replacing the C; predicate with parametrizability. It
turns out that this is justifiable provided we take care to
disambiguate certain configurations by subdivisions. Our
motivation is that using Cy is an overkill for isotopy (though
C1 has other uses, including controlling normal deviation
and refinement). Experiments confirm our expectation: our
synthesis is more efficient than either approach separately.

3. Preliminaries

For any set S C R, let S denote the set of all closed
intervals with endpoints in S. We mainly use S = R and
S = Fwhere F:={m2" : m,n € Z} denote the set of dyadic
numbers (BigFloats). A box (or d-box) is any element of
OR? (= (OR)Y). Usually, d = 1,2,3. If f : R — R is
any function, then a function of the form Of : OF¢ — OF
is called a box function for f if for all B, B; € OF, we
have (1) (inclusion) f(B) COf(B), and (2) (convergence)
if lim; s B; = p € R, then lim; .. 0f(B;) = f(p).

Note that using in-
. ki terval arithmetic, it is
" o very easy to construct
fror box functions when f
is a polynomial. For a
box B = H';:l I;, let
w(B) = min{_, w(I;)
denote the width of
B, where w(I) denotes the width of an interval. The 0-, 1-
and 2-dimensional features of a box are called its corners,
edges, and faces. For ¢ € {x,y,z}, an i-face is a face
that is normal to the i-direction We also name each face
of a box as ‘front’, ‘back’, ‘top’, ‘bottom’, etc, using the
convention in Figure 4.

By an infinitesimal perturbation, we may assume that f
has positive or negative signs at box corners (never the zero
sign). Viewing signs (4 or —) as colors, we can talk about
edges and boxes being monochromatic or bichromatic.
As in Section 2, we introduce vertices in the middle of
bichromatic edges. In our implemented code, we use linear
interpolation to improve the quality of the meshes. On a
face, we will introduce arcs connecting pairs of vertices
(this need not be uniquely determined, as we saw). Finally,
for each box B, we introduce a collection of triangles to
form a triangulated patch G g such that G gNIB is precisely
these vertices and arcs. Thus, we use the corner/edge/face
terminology for boxes, but reserve the vertex/arc/triangle
terminology for the triangulated mesh.

bottom

X

Fig. 4. Box face conventions.

3.1. Octrees.

We assume that each leaf of our octrees is labeled as “in”

or “out”. A leaf box B is called an in-box if it is labeled
”in”; similarly for an out-box. The set of all the in-boxes
of T is called the box-complex defined by 7. The union
of all in-boxes is denoted R(T), the region represented
by T. Following [6], a set of the form R(T) is called a nice
region. Such regions are closed subsets of R3, but could
be disconnected with holes and cavities. Two boxes of an
octree are neighbors of each other if they have disjoint
interiors but they share an open face (i.e., the relative in-
terior of the face of one of the two boxes). We say they are
edge-neighbors if they share an open line segment. Note
that neighbors are automatically edge-neighbors, but the
converse may not hold.

3.2. Box Predicates for Subdivision.

The stopping criterion of the Subdivision Phase (see
Introduction) is based on two box predicates: an exclu-
sion predicate C,,+(B) and an inclusion predicate
Cin(B). Subdivision Phase ends when each in-box B sat-
isfies Cout(B) or Cj, (B). The in-boxes of T' fall into three
mutually exclusive types:

1. Discarded Boxes: these satisfy Cy;

2. Candidate Boxes: these do not satisfy C\¢, but an an-
cestor satisfies Cjj,.

3. Inconclusive boxes: do not satisfy Cyyr or Cyp,.

If B satisfies C;,, but not C\,¢, then the above definition
implies B is a candidate box (since B is an ancestor of it-
self). Discarded boxes will no longer be considered. When-
ever we split a candidate box, we always check if each sub-
boxes satisfy C,¢: if 0, it is discarded; otherwise it remains
a candidate box. After the Subdivision Phase, no incon-
clusive boxes remain. For the Refinement Phase, we only
split candidate boxes. The following list contains various
instantiations for C,,; and Cj, used in this paper:

Co(B) :0¢lf(B)
C(B) :0¢0f(B)
Cuyz(B) : Cz(B) Vv Cy(B)V C:(B)
ci(B) :0¢ Of(B)*+ Ofy(B)? + Uf(B))?

(Small Normal Variation)

(Exclusion)
(z-Monotonicity)
(Parametrizability) (1)

Note that f., fy, f. refers to partial derivatives of f.
Clearly, if Cy(B) holds, then SN B is empty. So we use Cj
as the exclusion predicate C,,; in all our algorithms. For
Snyder’s and Cxyz Algorithms, Cj, = Cyy., and for PV
Algorithm, C;,, = C1.

4. Regularized Cxyz Algorithm

An octree is “regular” if every leaf is at the same level,
as in Marching Cubes. So the “Regularized Algorithm”
amounts to enforcing this regularity during the Refinement
Phase. In our Regularized Cxyz Algorithm, we can relax
this requirement: we only require that two candidate boxes
who are edge-neighbors must have the same width. The
correctness of the Regularized Cxyz Algorithm is far from
trivial. Its analysis will be critical for extension to subse-
quent algorithms. This tact of going through the regular-
ized case follows [19,15].

The algorithm only perform full-splits, and recall that
its inclusion predicate C, is Cyy.. This completely defines
its Subdivision Phase. The Refinement Phase is defined
by the rule that we split a candidate box B if it has an
edge-neighbor that is a candidate box of smaller width.
At the end of this process, any two edge-neighbors that
are both candidates would have the same width. The rest
of this section will focus on the Construction Phase, and
correctness proof.

At this juncture, we insert a concept that will be useful in
subsequent analysis. At the end of the Subdivision Phase,
each candidate box B in the octree is known to satisfy C; (B)
for some i € {x,y, z}. We arbitrarily pick one of these i’s
and call it the known monotone direction (“monotone
direction” for short) for B. In subsequent computation,
when we split B, the candidate descendants of B will inherit
this monotone direction. This direction is stored with B by
our algorithm since some decisions will depend on it.

4.1. Sign Types, Arc Types and Surface Types
under the C,,, Predicate

Of the 14 possible sign types of f at box corners shown
in Figure 2, only 10 can arise under the Cxyz predicate.
The 4 excluded cases are indicated by asterisks: Types
*2¢, *3c, *4e, *4f. As usual, we introduce vertices in the
middle of bichromatic edges, and connect pairs of vertices
on each face by arcs. The 10 sign types give rise to 13 arc
types in Figure 3. Lemma 1 asserts that these arc types
give rise to unique surface type within each box, shown
in yellow in Figure 3.

4.2. Counter Example to the Neighborly
Connection Rule.

In 2-D, we can apply the above method to construct a
surface in each box, without consideration of other boxes
[15]. But now, there are two choices of arc connections when
a face has 4 vertices: we call these alternating faces. In
Figure 2, these faces are colored pink, as in Types (2b), (3b)
and (4d). This implies that constructing surface patches
in each box must (at least) be neighborly, meaning that
two boxes sharing an alternating face must agree on which
choice of arcs to make. Alternating faces arise even under
the C predicate of PV Algorithm. They showed any neigh-
borly choice will lead to a correct surface, which is rather
non-intuitive. For our Cy,, predicate, neighborly choices
alone is insufficient: Figure 5 gives a counter example.

(;\)’ g (b)

Fig. 5. Neighborly choice of arc patterns is insufficient for correctness.

In Figure 5(a), the arc connections are neighborly. The
two boxes satisfy C, but the triangulated surface deter-
mined by the indicated arc connections violate the C, con-
dition. Using a different arc connection, we obtain the tri-
angulated surface in Figure 5(b) (this one is consistent with
the C,, condition). Extending this example (using the phe-
nomenon of “blocks” below) we see that a choice in one
box can force the choice of boxes arbitrarily far away. E.g.,
Figure 5(c).

4.3. Alternating Faces (AF) Rule.

For alternating faces, we provide the following globally
consistent rule for connecting arcs: RULE: the arcs will
be line segments that are parallel to one of the three vec-
tors: (1,1,0),(1,0,1), (0,1, 1), depending whether the alter-
nating face is an z-, y- or x-face (respectively). E.g., for
an alternating z-face we will connect its four vertices with
line segments that are parallel to the vector (0,1, 1), as in
Type 2b(ii), and not as in Type 2b(i) of Figure 3. Call this
the Alternating Faces Rule (AF Rule for short). With
this rule, we have now completely specified the Regular-
ized Cxyz Algorithm. See Appendix A.4 for the correctness
proof of Regularized Cxyz algorithm.

5. Balanced Cxyz Algorithm

We now extend the Regularized Cxyz Algorithm to the
Balance Cxyz Algorithm. This extension aims at reducing
the number of unnecessary splits. The idea is to allow the
widths of edge neighbors to differ by a factor of < 2; this is
called “balancing”. The tradeoff is that we are faced with
more involved connection rules and correctness analysis.
The Subdivision Phase is the same as in the regularized
case. For the Refinement Phase, we need some notation.
Let i € {z,y,z}. An edge of a box is an i-edge if it is
parallel to the i-axis. The i-width of a box is the length
of its i-edges. An octree is i-balanced if for all pairs of
candidate boxes B, B’ which are edge-neighbors, then the i-
widths of B and B’ is within a factor of 2 of each other. The
octree is balanced if it is i-balanced for all i = z, y, z. This
general definition will be used later for the Rectangular
Cxyz Algorithm. For now, we only do full splits and we can
use w(B) as the definition of width.

In the rest of the Balanced Cxyz Algorithm, all our
queues will be minimum priority queues. The comparison
criterion for these queues is w(B) for each box B. The Re-
finement Phase has three sub-phases:

Refinement Phase:

1. Ty < Balance(T1)

2. For each candidate box in Tl’7 introduce vertices in the
middle of bichromatic edges.

3. Ty < Disambiguate(T})

The first sub-phase Balance(T:) amounts to splitting
any candidate box B that has an edge-neighbor of width
> 2w(B). At the end of this sub-phase, we say the octree
is “balanced”. The third sub-phase is based on the concept
of ambiguity which we next introduce.

5.1. Disambiguation Sub-phase

We want to call certain boxes “ambiguous” if there is not
enough information to do a MC-like construction, and this
is resolved by splitting the ambiguous box. This may in turn
cause new boxes to become ambiguous. In the following we
will identify three kinds of ambiguity.

Let us indicate the issues that arise if we simply replace
(7 in the Balanced PV Algorithm by Cy,.. Consider an
horizontally-stretched hyperboloid as in Figure 6 (a1). We
run the Balanced Algorithm on this hyperboloid, and the
Subdivision Phase terminates with the 10 boxes shown in
Figure 6 (ag). Clearly, both of the two larger boxes (B
and Bs) satisfy C,.. The output graph obtained by our con-
nection rules (in the Regularized Algorithm) is the yellow
polytope G seen in Figure 6(az). Since G forms a closed sur-
face, it is clearly wrong. An error occurred in box B; (and
also B3) where S N By is a tube while G N By is a planar
surface. If we had split By, we would have discovered this
error. We say By (resp., Bs) has “3D ambiguity”. A simi-
lar problem is seen in Figure 6(b1), corresponding to “2D
ambiguity” in each of the boxes By, B3, B4, Bg. Suppose B
satisfies Cy. Then we say B has 3D ambiguity if the inte-
rior of its top or bottom faces has four vertices. We say B
has 2D ambiguity if one or more of its vertical faces has
exactly two vertices on the same edge. Note that this edge
is not a vertical edge because Cy,(B) is satisfied.

L) L]
i v A

B By By

AB) AB) | By

Fig. 6. Examples of 2D and 3D ambiguity.

This definition is modified accordingly if B satisfies C
or C,. In Figure 6(al), the ambiguous boxes satisfies C,. In
Figure 6(b1), the ambiguous boxes might satisfy C, or C,.

We now describe the third kind of ambiguity. Its moti-
vation will be become clearer in the Construction Phase
below. Let i € {x,y, 2} be the monotone direction of a box
B. We say B has an alternating ambiguity if it properly
contains the i-face F' of its neighbor, and this F' is alter-
nating.

Finally, a box B is said to be ambiguous if it is 2D, 3D
or alternating ambiguous.

LEMMA 2 If we split an ambiguous box B into 8 subboxes,
none of these subboxes will be ambiguous.

Nevertheless, splitting of ambiguous boxes might induce
its edge-neighbors to become ambiguous and also cause the
octree to be unbalanced. The re-balance procedure is very
local, we only need to propagate the “modified” boxes. We
will next describe the Construction Phase for the Balanced
Cxyz Algorithm.

5.2. Construction Phase

Let F be a face of some box B. Our first goal is to con-
nect the vertices on F' by arcs. Let B’ be a neighbor of B

that shares part of F' as a common face. There are two pos-
sibilities: If B’ N B = F, then B’ has width at least that
of B. This is the case we are interested in: call F' active
in this case. Otherwise, F' is inactive; this means B’ must
have width that is half that of B. We are not interested
in inactive F' because we would have processed the faces
of B’ before B, and in particular, any vertex in F would
have been processed. Henceforth, we will only focus on arc
connections for active faces.

Recall that at the end of the Refinement Phase, we have
an octree T in which all the bichromatic edges have a ver-
tex in its middle. Our goal is to connect pairs of these ver-
tices into arcs. Define an arc loop to be a closed curve
comprising of such arcs on the boundary of a box B. The
Construction Phase has three steps:

Construction Phase:
Let @ be a priority queue of the candidate boxes in T5.
While (Q is non-empty)
Remove a box B from Q
1. Arc connect the vertices on the active faces of B
2. Group the arcs on B’s boundary into arc loops
3. Triangulate the arc loops on the boundary of B

Steps 2 and 3 are straightforward. In the following, we
will describe how to implement Step 1.

5.3. Sign Types of Active Faces

Note that each edge of an active face can have at most
two vertices. There might be a neighbor B’ of B that shares
an edge with an active F. If B’ has smaller width than B,
then a corner of B’ would be the midpoint of an edge of
F'. Therefore, in considering sign types of F', we need to
consider signs of such midpoints. There can be up to 8 signs
on the boundary of F. The possible Sign Types of such
faces are enumerated in Figure 7 — there are 13 in number.
The sign type of F' will uniquely determine the vertices that
are introduced into F' (as illustrated in Figure 7).

(6a)* (6b)* (6c)* ®)*

Fig. 7. Sign Types of active faces.

5.4. Arc Types of Active Faces

Let I be an active face, and suppose F' bounds two boxes
B and B’, i.e., F = BN B’. The rule for arc connection

in F depends on whether F' is (known to be) “parametriz-
able” or not. Let us define this concept. We say F' is known
parametrizable if F' is parallel to the monotone direc-
tion of B or B’. Otherwise, I is said to be not known
parametrizable.

Assume B is a C,, box. Then the four faces of B which are
parallel to the y-direction are clearly known parametrizable
faces. It follows from our analysis for curves [15] that each
of these faces can have at most 4 vertices. So B can have at
most 16 vertices on its edges. Indeed, it is easy to see that
16 vertices can arise. Our connection rule for the known
parametrizable faces can follow the rules given in [15]. For
reference, call this the parametrizable face rule which
is reproduced in Figure 8.

It remains to
give the connec-
tion rule for the
case where F'is not
known parametriz-
able. In the Regu-
larized Algorithm,
the arc connec-
tions on F' may be

Fig. 8. Parametrizable Face Rules. arbitrary, as long
as we ensure block-wise consistency. But the Balanced
Cxyz Algorithm needs a new approach.

We define the term i-block (i € {z,y,z}) for the bal-
anced octree Th. For definiteness, let i = y. A y-block B
is a sequence By, ..., B; of candidate boxes of T5 such that
(1) the bottom face of Bj is the top face of Bjyq for j =
1,...,t—1;(2) the monotone direction for each B; is y; and
(3) the block is maximal. Note that this implies that all the
boxes in a block have the same width. The width of the
block is defined as the width of any B;. Also the end faces
of B refers to the top face of B; and bottom face of B;.

Recall that every candidate box in our octree T has been
assigned or inherited a monotone direction from the Subdi-
vision Phase. This partitions the set of candidate boxes of
T5 into blocks as defined above. All the boundary faces of
a block can be connected using the above Parametrizable
Face Rule, except for the end faces which is addressed in
the next lemma.

LEMMA 3 Let F be an active end face of a block.

(a) If F is not known parametrizable, then it has at most 2
vertices.

(b) If F is known parametrizable, then F has at most 4
vertices. When there are 4 vertices, the sign types are one of
Figure 7(4b), (4c) and (4d). These can be connected using
the Parametrizable Face Rule.

The correctness of above lemma depends on the fact that
we have resolved alternating ambiguities in the Refinement
Phase. The only faces whose connection rule remains unde-
cided after the above discussion are those in the interior of
blocks. We know from previous counter examples that there
is a need for global consistency, but it cannot be solved us-
ing a simple fixed rule like the AF Rule. Our solution is as
follows:

(1) if all but one face remains unconnected, we can con-
nect this face in a safe way (i.e., one which will not lead to
contradiction). This connection rule will be known as the
“Matching Rule”.

(2) in any candidate box, at most two opposite faces cannot
be connected by the Parametrizable Face Rule.

To “process” a box B in the present context means to
connect all the vertices on the faces of B. We can now pro-
cess B as follows: if (1) holds, we can process B by using
the Matching Rule to connect its remaining unconnected
face. Otherwise (2) holds, and we search in any one of the
two directions of the block containing B, looking at neigh-
boring boxes By, Bs, ... until we find a box By that satis-
fies (1). Then we apply the Matching Rule to B; for i =
k.,k—1,...,1. Thus each B; is processed, and B can now
be processed using the Matching Rule.

)

Fig. 9. Examples of matching rules ((i), (ii), (iii) and (iv)) and
propagation rules ((v)—(v’)—(v”)) to connect vertices.

Let us now define the Matching Rule for a candi-
date box B with parametrization direction y. Assume
that B’s top face, as well as the other four faces parallel
to y-direction, have been connected. Then the Match-
ing Rule tells us how to connect the bottom face F'. Let
V1, V2, ..., Vo, be the vertices on the boundary of F'. Note
that m < 4. The Matching Rule tells us to introduce the
arc (v;,v;) if there exists a path of arcs on the boundary
of B from v; to v;. Note that this rule yields a unique
way to connect all the vertices on F'. Figure 9 illustrates
this Matching Rule. The correctness proof of the Balanced
Cxyz Algorithm follows the same structure as that of the
Regularized Cxyz Algorithm: See Appendix A.5 for the
correctness proof of Balanced Cxyz algorithm.

6. Rectangular Cxyz Algorithm — Exploiting
Anisotropy

The ability to have partial splits (i.e., half-splits or
quarter-splits) can be highly advantageous. We design an
algorithm called Rectangular Cxyz Algorithm to ex-
ploit this. A technique from the 2-D version [15] can be

applied here, though the details are considerably more
complicated. To ensure termination, we must fix some
arbitrary upper bound p > 1 on the aspect ratio of any
inconclusive box. The aspect ratio of a box is the ratio
of the lengths of the longest edge to shortest edge. Please
refer to [14] and Appendix A.2 for details.

7. Experimental Results

Our algorithms are implemented in Java on the Eclipse
Platform. All examples are run on an Intel Core2 Duo Mo-
bile Processor T2500 (2.0Ghz, 667FSB, 2MB shared L2
Cache) and 2.0Gb of RAM. We use the default Java heap
memory 256MB (some runs result in OutOfMemoryError
(OME)). We plan to convert the Java codes to C++ for
distribution with our open source Core Library. We im-
plemented four algorithms: PV, Balanced Cxyz, Balanced
Cxyz with epsilon precision, and Rectangular Cxyz. These
are abbreviated as PV, Cxyz, Cxyze, and Rect-n (where n
is the maximum aspect ratio). Table 1 lists 11 examples of
our tests. Figure 10 visualizes the surfaces of Eg2, Eg3, Eg6
and Eg7. Table 2 compares the number of boxes and timings
(in ms) among Cxyz, PV, and Rect-n (n = 2,4,8, 16, 32).
The percentages represent the relative number of boxes and
the relative timing, with Cxyz as 100%. See Appendix A.1
for additional images.

(1) Cxyz is at least as good as PV, and is significantly
faster than PV in most examples. In Eg8b(4), Cxyz is 7.5
times faster than PV. In Eg8b(6), Cxyz spends 1.3 sec-
onds to construct the mesh, compared to PV which spends
more than 70 seconds and runs out of memory. Rect is the
fastest in both Eg8b(4) and Eg8b(6): Rect-2 spends 141 ms
for Eg8b(4), and 172 ms for Eg8b(6). The only exception
is Eg8a where Cxyz and PV produce the same number of
boxes, and spend the same amount of time. In Eg8b(2),
we use the same function as Eg8a, but with an asymmetric
original box. Cxyz is twice as fast as PV. Also note that
in the Eg3, Cxyz and PV also produce the same number
of boxes, but Cxyz is faster than PV because the compu-
tational cost for the C predicate is bigger than the C, .
predicate.

(2) Rect can be significantly faster than Cxyz, but the
performance of Rect is inconsistent. In Eg3, Rect-32 takes
11.8% of Cxyz’s time; and in Eg8b(6), Rect-2 takes 12.8% of
Cxyz’s time. The input surface for these examples are very
long and thin, allowing Rect to take advantage of larger as-
pect ratios. The results show that although Rect produces
fewer boxes than Cxyz in all examples but Eg8b(2), never-
theless, the running time of Rect is not always faster than
Cxyz (as in Eg2 with a “squarish” input surface). This is
because Rect must spend more time checking splitting cri-
teria, and processing boxes in 3 directions.

(3) Increasing the maximum aspect ratio n in Rect does
not necessarily improve the performance of the algorithm.
In Eg3, increasing the maximum aspect ratio directly im-
proves the performance of Rect; but in Eg8b(6), it has an

||Curve name Equation f(z,y,z) =0 |Original Box |
Egl tangle cube 2t — 502 4 y? —5y? 4+ 2% — 522 + 10 [(—8,—8,—-8),(8,8,8)]

Eg2 chair (22 + y% + 22 — 23.75)%2 — 0.8((z — 5)% — 222)((2 + 5)2 — 2¢?) [(—8, -8, —8), (8,8,8)]

Eg3 quartic cylinder|y?z? 4+ y222 + 0.01z2 4+ 0.01z% — 0.01 [(—8, —8, —8), (8, 8, 8)]

Egd quartic cylinder|y?(z — 1)2 + y2(z — 1)2 4 0.01(z — 1) + 0.01(z — 1)% — 0.2002 (=5, =5, —5), (7,7, 7)]

Eg5 quartic cylinder|y?(z — 1)2 + y2(z — 1)% + 0.01(z — 1)2 + 0.01(z — 1) — 1.0002 [(—12, —12, —12), (14, 14, 14)]
Eg6 shrek —at — oyt — 2t a(2? + 22?2 4 y? 4 2222 + 22 + 22y?) — 20.78462yz — 10|[(—8, —8, —8), (8, 8, 8)]

Eg7 tritrumpet 822 4+ 6xy? — 22° + 322 + 3y2 — 0.9 [(—8, —8, —8), (8, 8, 8)]

Eg8a eclipse z? +10%y% + 10222 — 1 [(—8, —8, —8), (8, 8, 8)]
Eg8b(n) (n = 2,4, 6)||eclipse 22 +10%y% 410722 — 1 (-7, —-7,-7),(8,8,8)]
Table 1

Equations and input boxes of examples

/
/
/

(a) Eg2:chair

(b) Eg3:quartic cylinder

(c) Eg6:shrek

(d) Eg7:tritrumpet

Fig. 10. Approximation of various examples in Table 1.

opposite effect. This is because increasing the maximum
aspect ratio might cause the boxes to “over split” in one
direction, which is also the reason for the inconsistency of
Rect. Another example for over-splitting in Rect is Eg2,
where Rect-n spends more time than Cxyz. Figure A.7 in
Appendix shows the resulting boxes, meshes, and details
by running Cxyz, Rect-8, and Rect-32 on Eg2.

(4) We also ran our algorithm on the high order polyno-
mial f(x,y,z) = 2300 + 4300 4 2300 1 = (0. To construct
a correct mesh, Cxyz uses 188 ms; PV uses 219 ms; Rect-
2 uses 296 ms and Rect-4 uses 375 ms. This shows that
subdivision algorithms can perform well when the input
function is a high degree polynomial. On the other hand,
starting from Rect-8, there are overflow/underflow errors.
This problem can be resolved if we use a library like our
Core Library.

8. Conclusion

This paper introduces new algorithms for the isotopic
approximation of implicit surfaces. Our algorithms are rel-
ative simple, efficient and easy to implement. A main idea
is to exploit parametrizability (as in Snyder) and nonlo-
cal isotopy (as in Plantinga & Vegter), and we further ex-
tend this idea to anisotropic subdivision. Our comparison
with three algorithms (PV, Balanced Cxyz, and Rectan-
gular Cxyz) show that our Cxyz Algorithm is consistently
more efficient than PV and the Rectangular Cxyz Algo-
rithm can exhibit significant speedup. But the precise way
to exploit anisotropy remains a research problem. The ma-
jor open problem is to extend this work to higher dimen-
sions. It is a challenge to find faster methods for surface
refinement. Finally two general open problems are the ef-

fective treatment of singularity using numerical methods,
and the complexity analysis of subdivision algorithms.

|Equation||CXyz

|PV

|Rect—2

|R,ectf4

Rect-8

|R,ect716

|Rect—32 |

BEgl 2584 / 391 198% / 184% |42% / 148%|50% / 168%|66% / 200%|81% / 236% [103% / 288%

Eg2 26104 / 4516 |406% / 349% |51% / 163%|76% / 236%|98% / 302%|118% / 372%|141% / 451%

Eg3 35792 / 3437 [100% / 112% |33% / 82% |18% / 47% [9% / 28% (6% / 17% |3% / 12%

Eg4 80662 / 10282 |OME~gosce. |54% / 174%|41% / 129%|34% / 105%|36% / 115% |33% / 103%

Egb 134163 / 17187|OM Exgosec. [48% / 205%|28% / 86% |23% / 71% [21% / 65% |20% / 61%

Eg6 31144 / 4046 |319% / 296% (44% / 134%|52% / 171%|62% / 208%|70% / 255% |77% / 283%

Eg7 1688 / 328 172% / 128% |47% / 109%|50% / 119%|61% / 129%|74% | 138% |98% / 176%

Eg8a 400 / 94 100% / 100% |44% / 133%|50% / 149%|58% / 166%|68% / 166% |80% / 183%

Egs8b(2) ||274 / 125 789% / 200% [54% / 87% |56% / 87% |72% / 100%|82% / 112% [102% / 112%

Eg8b(4) |[1247 / 203 1774% /| 754%|28% / 69% |34% / 69% |39% / T7% |44% / 85% |53% / 100%

Eg8b(6) |[15226 / 1343 |OMEx70scc. 5% / 13% (5% / 14% |6% / 15% |6% / 15% |7% / 16%

Table 2

Cxyz vs. PV vs. Rect-n

References isotopy approach. Discrete and Comp. Geom., 45(4):760-795,
2011. Special Conference Issue based on 25th ACM Symp. on

[1] Saugata Basu, Richard Pollack, and Marie-Frangoise Roy. Comp.Geom, 2009. . .

Algorithms in Real Algebraic Geometry. Algorithms and [16] W E. Lore.nsen and H. E. Cline. .Marchlng‘ cubes: A

high resolution 3D surface construction algorithm. In

Computation in Mathematics. Springer, 2003.

J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, and
G. Vegter. Meshing of surfaces. In Boissonnat and Teillaud [4].
Chapter 5.

J-D. Boissonnat and S. Oudot. Provably good sampling and
meshing of surfaces. Graphical Models, 67(5):405-451, 2005.
J.-D. Boissonnat and M. Teillaud, Effective
Computational Geometry for Curves and Surfaces. Springer,
2006.

Jean-Daniel Boissonnat, David Cohen-Steiner, and Gert Vegter.
Isotopic implicit surfaces meshing. In ACM Symp. Theory of
Comput., pages 301-309, 2004.

M. Burr, S.W. Choi, B. Galehouse, and C. Yap. Complete
subdivision algorithms, II: Isotopic meshing of singular algebraic
curves. In 83th Int’l Symp. Symbolic and Alge. Comp.
(ISSAC’08), pages 8794, 2008. Hagenberg, Austria. Jul 20-
23, 2008. See Special Issue of ISSAC 2008 in JSC. Also, in
arXiv:1102.5463.

S.-W. Cheng, T K. Dey, E.A. Ramos, and T. Ray. Sampling and
meshing a surface with guaranteed topology and geometry. In
Proc. 20th ACM Symp. on Comp. Geom., pages 280—289, 2004.
Marching cubes 33: Construction of

2]

3]

(4] editors.

[6]

7]

[8] Evgeni V. Chernyaev.
topologically correct isosurfaces. Technical report, Institute for
High Energy Physics, 142284, Protvino, Moscow Region, Russia,
1995.

Arno Eigenwillig, Lutz Kettner, Elmar Schmer, and Nicola

Wolpert. Complete, exact, and efficient computations with cubic

curves. In 20th ACM Symp. on Comp. Geom., pages 409 — 418,

2004. Brooklyn, New York, USA, Jun 08 — 11.

Exact Geometric Computation homepage,

FAQs, downloads, documentation and links

http://cs.nyu.edu/exact/.

[11] H. Hong. An efficient method for analyzing the topology of
plane real algebraic curves. Mathematics and Computers in
Simulation, 42:571-582, 1996.

[12] Narayan Kamath. Subdivision algorithms for complex root
isolation: Empirical comparisons. Master’s thesis, Oxford
University, Oxford Computing Laboratory, August 2010.

[13] Narayan Kamath, Irina Voiculescu, and Chee Yap. Empirical
study of an evaluation-based subdivision algorithm for complex
root isolation. In 4th Intl. Workshop on Symbolic-Numeric
Computation (SNC), pages 155-164, 2011.

[14] Long Lin. Adaptive Isotopic Approzimation of Nonsingular
Curves and Surfaces. Ph.D. thesis, New York University,
September 2011.

[15] Long Lin and Chee Yap. Adaptive isotopic approximation
of nonsingular curves: the parameterizability and nonlocal

Since 1996.
from URL

[10]

10

Maureen C. Stone, editor, Computer Graphics (SIGGRAPH 87
Proceedings), volume 21, pages 163-169, July 1987.

[17] Ralph Martin, Huahao Shou, Irina Voiculescu, Adrian Bowyer,
and Guojin Wang. Comparison of interval methods for plotting
algebraic curves. Computer Aided Geometric Design, 19(7):553—
587, 2002.

[18] Ramon E. Moore. Interval Analysis. Prentice Hall, Englewood
Cliffs, NJ, 1966.

[19] Simon Plantinga and Gert Vegter. Isotopic approximation of
implicit curves and surfaces. In Proc. Furographics Symposium
on Geometry Processing, pages 245-254, New York, 2004. ACM
Press.

[20] Helmut Ratschek and Jon Rokne. Computer Methods for the
Range of Functions. Horwood Publishing Limited, Chichester,
West Sussex, UK, 1984.

[21] Helmut Ratschek and Jon G. Rokne. SCCI-hybrid methods for
2d curve tracing. Int’l J. Image Graphics, 5(3):447-480, 2005.

[22] Michael Sagraloff and Chee K. Yap. A simple but exact and
efficient algorithm for complex root isolation. In loannis Z.
Emiris, editor, 36th Int’l Symp. Symbolic and Alge. Comp.
(ISSAC’11), pages 353-360, 2011. June 8-11, San Jose,
California.

(23] Elmar Schoemer and Nicola Wolpert. An exact and efficient
approach for computing a cell in an arrangement of quadrics.
Comput. Geometry: Theory and Appl., 33:65-97, 2006.

[24] Raimund Seidel and Nicola Wolpert. On the exact computation
of the topology of real algebraic curves. In Proc. 21st ACM
Symp. on Comp. Geom., pages 107-116, 2005. Pisa, Italy.

[25] J. M. Snyder. Interval analysis for computer graphics.
SIGGRAPH Comput. Graphics, 26(2):121-130, 1992.

[26] Barton T. Stander and John C. Hart. Guaranteeing the topology
of an implicit surface polygonalization for interactive meshing.
In Proc. 24th Computer Graphics and Interactive Techniques,
pages 279-286, 1997.

[27] Gabriel Taubin. Distance approximations for rasterizing implicit
curves. ACM Transactions on Graphics, 13(1):3-42, 1994.

(28] Gabriel Taubin. Rasterizing algebraic curves and surfaces. IEEE
Computer Graphics and Applications, 14(2):14-23, 1994.

Appendix A. Appendix

In this appendix, we provide details of the correctness
proofs. Correctness is nontrivial because our exploitation
of non-local isotopy forces us to do global arguments. Most
of the proofs are included here, but the omitted ones may
be found in Lin’s Thesis [14,10]. First, we show more figures
from our experiments.

A.1. More Examples

This section illustrates the surfaces for Eg.2 to Eg.7 in
Table 1 using Cxyze, PV, Cxyz and Rect-n. n is selected in
a way that Rect-n is the fastest among all Rect algorithms.

(a) Cxyz

(b) Rect-8 (c) Rect-32

Fig. A.7. Boxes, meshes, and details of Eg2 using Cxyz, Rect-8
and Rect-32. Note that the triangles are elongated as the maximum
aspect ratio increases.

A.2. Rectangular Cxyz Algorithm

The ability to have partial splits (i.e., half-splits or
quarter-splits) can be highly advantageous. We design such
an algorithm, known as the Rectangular Cxyz Algorithm.
A technique from the Rectangular Cxy Algorithm [15] can
be applied (the implementation details are considerably
more complicated). To ensure termination, we must fix
some arbitrary upper bound p > 1 on the aspect ratio of
any inconclusive box. The aspect ratio of a box is the ra-
tio of the lengths of the longest edge to shortest edge. For
the Subdivision Phase, we test each box B as follows. We
go through the following list of predicates which amounts
to checking Cy or Cy. on the whole, half-, quarter- parts
of B. This list of of predicates is given as (A.1) in the
Appendix.

11

Lo :

Cout : Co(B)
Cin : Cayz(B)
Ly :

Cout : Co(B1234), Co(Bsers), Co(Bi27s), Co(B3ase), Co(B14ss), Co(B2367)

Cin : Cryz(B1234), Cryz(Bser8), Cryz(B1278),
Cryz(B34s6), Coyz(B14sg), Coy-(B2367)
Lo :
Cout : Co(B12), Co(Bsa), Co(Bse), Co(Brs), Co(Bia), Co(B23),
Co(Bs7), Co(Bsg), Co(Bis), Co(Bar), Co(B3s), Co(Bas)

C’Ln : Czyz (312)7 Czyz(BS4)7 Czyz(BS(i)y Czyz(B78)7 Czyz(Bl4)7 Czyz(B23)7
Czyz(B67)7 Czyz (B58)7 Czyz(BIS)7 Czyz(B27)7 Czyz(BSG)y Czyz(B45)

(A.1)
In this list, the subboxes of B are labeled using some fixed
convention! for labeling the 8 orthants of the coordinate
system. This list has three sublists (Lo, L1, L2). If a condi-
tion in Ly is verified we tag B as an in- or out-box, accord-
ingly. If a condition in Ly (Lg) is verified, we half- (quarter-
) split to produce a child that satisfies that condition, and
tag that child accordingly. If no condition is verified, we
do a full-split. Finally, for balancing, we balance in the z-,
y- and z-directions independently. This could create pairs
(B, B’) of neighboring boxes where BN B = F but F' is a
proper subface of B and of B’. We half-split either B or B’
to make F' a face of a subbox. Now, F' would be active, and
this allows our former analysis to work. The Disambigua-
tion Sub-phase and Construction Phase are unchanged.

A.3. Owverview of Correctness Proof

In this section, we will give an overview of the correct-
ness proof, both for the regularized algorithm and the bal-
anced algorithm. They have a common structure, but we
will point out differences.

Correctness means that the output graph G is isotopic to
S in the input region R(Ty), denoted G ~ S (mod R(Tp)).
Let T be the final octree produced by the algorithm.

The proof consists of two major steps. First we show
the existence of a surface S that is isotopic to S via an
isotopy that respects the vertices of T'. This means that the
intermediate surfaces of the isotopy does not intersect the
vertices of T'. We denote this relation by “S ~ S (mod T')”.
Moreover, this surface S has some nice properties relative
to T', namely, S should intersect all the segments and faces
of T'in a “clean” way. Here, “segment” means any edge of a
box that does not have a corner in its interior. To intersect
a face “cleanly” means S does not intersect the face in any

L Unlike the 2-D case, there to be
versally accepted convention for this. See,
http://godplaysdice.blogspot.com/2007/09/convention-for-
quadrantoctantorthant.html. We will use the gray code to label
successive orthants, starting from 1 = 000,2 = 001,3 = 011,4 =
010,5 =110,6 = 111,7 = 101, 8 = 100.

uni-
e.g.,

seems no

(d) Rect-2

Fig. A.1. Approximation of Eg2: chair f(x,y,2) = (22 + y? + 22 — 23.75)2 — 0.8((z — 5)? — 222)((z + 5)%2 — 2y3) = 0.

Pl

a) Cxyze (b) PV (c Cxyz) Rect-32

Fig. A.2. Approximation of Eg3: quartic cylinder f(z,y,2) = y?z2 + %22 + 0.0122 + 0.0122 — 0.01 = 0.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Fig. A.3. Approximation of Eg6: shrek f(z,y,2) = —a* — y* — 2% + 4(2? + y222 + % + 2222 + 22 + 22 — 20.7846zyz — 10 = 0.
\ } %A ‘ o A | \ = '

U Y ¢

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

p
/
\
Py
4

Fig. A.4. Approximation of Eg7: tritrumpet f(x,vy, z) = 822 4 6xy? — 223 + 322 + 3y%> — 0.9 = 0.

>

a) Cxyz) Rect-32
Fig. A.5. Approximation of Eg4: quartic cylinderl f(z,y,z) = y%(z — 1)? + y?(z — 1)? + 0.01(x — 1)2 + 0.01(z — 1)2 — 0.2002 = 0.

loop. To intersect a segment “cleanly” means S intersects will give a conceptual process to remove loops and remove

it at most once. To show the existence of such an S, we pairs of intersections on segments. But we need to define a

12

a) Cxyz

Fig. A.6. Approximation of Eg5: quartic cylinder2 f(z,y, z) = y%(z — 1)2 + y2(z — 1)2

) Rect-2) Rect-4

> o

) Rect-8

) Rect-32

+0.01(z — 1)2 4+ 0.01(z — 1)? — 0.1002 = 0.

e e e

) Rect-16) Rect-32

(a) Rect-2 (b) Rect-4

(c) Rect-8

(d) Rect-16 (e) Rect-32

Fig. A.8. (a)-(e): Approximations of quartic cylinderl f(z,y,2) = y?(z — 1)2 + y%(2 — 1)? + 0.01(z — 1)2 4 0.01(2 — 1)? — 0.2002 = 0 using
Rect-n (n = 2,4, 8,16, 32). (f)-(j): Local topology preservation in the squared area of the approximations.

partial order on loops and pairs and to show that we can
remove minimal elements of this partial order repeatedly.
When this partial order is empty, the surface is clean.

It turns out that to define this partial order, we need to
maintain some monotonicity property of the surface (not
the underlying function that defines the surface). Here we
see a major difference between the regularized and the bal-
anced case: in the former, we could remove all the loops
before the pairs, and so we can define a separate partial or-
der on loops, and on pairs. In the latter, we need to define
a single partial order on their union.

A maximal set of boxes that are connected by alternating
faces is called an alternating block. The second major
step is to show that G ~ § within each alternating block of
T. Finally, we can conclude that G ~ S ~ S (mod R(T)).

A.4. Correctness of Regularized Cxyz Algorithm

We address the correctness of the Regularized Cxyz Al-
gorithm. The proof is subtle, and harder than the 2D Reg-
ularized Cxy Algorithm or the 3D Regularized PV Algo-
rithm. Our previous 2D proof for Cxy does not seem easy
to generalize to 3D, so we use a different approach. This
proof will form the basis for proving the correctness of the
Balanced Cxyz Algorithm in the next section.

13

Let T be an octree. We say S intersects the boundary
of R(T) generically if:
— For each boundary face F', the surface S intersects F'
transversally, and does not pass through any corner of F'.
The set SN F is a finite collection of a finite set of closed
loops and/or open curves. By an open curve, we mean
one that has two distinct endpoints. The loops lie in the
interior of F', and the open curves terminate transversally
on the edges of F.
First, we will prove the termination of the subdivision
phase. Let Ty denote the octree representation of the orig-
inal nice region Ry.:
LEMMA 4 If S = f~1(0) intersects the boundary of R(Tp)
generically, and if f has no singularities in R(Ty), then the
subdivision phase will terminate.

PROOF. If the subdivision phase does not terminate,
then there is an infinite decreasing sequence of boxes By D
By D - - such that each Cy(B;) and Cyy»(B;) fail. Thus:

0€ Of(B:) NOf.(B;) NOf,(B;) NOf.(B:)). (A2

The boxes B; must converge? to some point p € R(Tp) as
1 — oo. Since f is a box function for f, we conclude that

2 The existence of p depends only on the existence of a bound r on
the maximum aspect ratio — so this proof applies in the more general
setting of Rectangular Cxyz Algorithm later.

— f(p). Then (A.2) implies 0 = f(p) = f.(p)
f=(p). Thus, f has a singular point in R(Tp).

0f(B:)
fy(p) =

From now on, let T" be the octree at the termination
of the Regularized Cxyz Algorithm, and G be the graph
constructed by our rules from 7.

A.5. Monotone Surfaces

Let S C R? be a continuous surface, B C R? be a rect-
angular box and ¢ € {x,y, z}. An i-line is a straight line
that is parallel to the i-axis.

We say S is i-graph-like in B if [SNBNL| < 1 for every
i-line L. We say S is i-monotone in B if it is i-graph-like
and we can assign a plus or negative sign to each connected
component of B\ S so that adjacent components have dif-
ferent signs and for each i-line L that is directed in the in-
creasing i-direction, the line L never pass from a negative
region to a positive region. In 2D case, we can similarly
define i-monotone on the faces F' of B. 2D examples of
graph-like and monotone cases are shown in Figure A.9.
Note that L may keep the same sign as it passes through
F/S, or it may change from a positive to a negative region.

Uigry

’ --./%u/‘”+

Fig. A.9. (a) SN B is graph-like in B but not monotone, (b) SN B
is monotone.

Here is an alternative characterization of --monotone:
LEMMA 5 Let B =1, x I, x I,. Then f is z-monotone in
B iff there is a continuous function ¢ : I, x I, — I, such
that the graph gr(¢) = {(x,y, ¢(x,y)) : (x,y) € L, x I} of
o is equal to S in the interior of B, i.e.,

gr(¢) Nint(B) = S Nint(B).

The easy proof is omitted. Note that if (z,y) € I, x I,
and (z,y, ¢(x,y)) ¢ S then ¢(x,y) must be either max I,
or min I,. The continuity of the function ¢ is necessary to
ensure monotonicity.

We simply say “graph-like” or “monotone” if 7 is under-
stood from the context. For specificity, we usually let ¢ =
y in illustrations. These definitions also make sense in 2D
where S is a curve and B is a planar rectangle.

LEMMA 6 Suppose S = f=1(0) where f : R® — R. For any
bozr B, if%(p) =% 0 for allp € B then S isi-monotone in B.

14

This lemma shows the origin of our monotonicity con-
cept, and the proof of it is immediate. Next, suppose T'is the
octree produced by our regularized Cxyz algorithm on the
input function f. Then for each box B in T" which is inter-
sected by S = f~1(0), there is a directioni = ip € {z,vy, 2}
such that S is i-monotonein B. Let i : T — {z,y, z} denote
this (canonical) direction. Hence for each candidate box
B € T, we have a fixed direction ¢, where S is --monotone
in B.

S is monotone in 7' if S is i-monotone in each box B
in T for some i € {z,y,z}. Let S and S be two surfaces.
We say S preserves the monotonicity of S in 7' if for any
candidate box B in T', if S is i-monotone in B, then S is
also ¢-monotone on B.

In our proof, we will begin with a surface that is mono-
tone in all the candidate boxes in 7', and we will repeatedly
modify S to some S which preserves the monotonicity of .S
in T'. What is important is that we can basically “forget”
about the original function f as we do this modification,
and we do not have to produce a suitable f with the prop-
erty that f~1(0) = S.

Relative to a surface S, an edge F is dirty if [SN E| >
2 or S intersects F tangentially, and a face F is dirty if
SN F contains a loop (i.e., closed curve) or S intersects F'
tangentially. The opposite of dirty is clean. A surface S is
clean if every edge and face of T' is clean relative to S.

For the correctness® of our algorithm, we must mod-
ify our algorithm to do special “boundary processing” so
that T is clean relative to S on the boundary faces. This
processing amounts doing root isolation on the edges on
OR(T), followed by the 2D Cxy algorithm on the boundary
of R(T). These 1D and 2D processing are performed by
splitting boxes in the octree. Boundary processing in the
Cxyz Algorithm is similar to the Cxy Algorithm. For the
following part, we will assume that the surface .S intersects
OR(T) cleanly.

Note that for a box B, S N B might be comprised of sev-
eral connected components, but one can prove that (in the
Regularized Cxyz algorithm) all these components must
belong to the same (global) component of S N R(T'). Note
that each component of S can give rise to zero, one, or more
components of SN R(T).

q1. Partial Order on Pairs We fix the usual octree
T and f that defines the surface S = f~1(0). Let P(9)
denote the set of all pairs of points {p, ¢} such that there
is an edge E of T, {p,q} € E NS and the segment [p, ¢
intersects S in an even number of points. Note that the
definition of pair in Cryz Algorithm is more general than the
definition of convergent pair in Czy Algorithm. We assume
that P(.9) is a finite set. We also regard the empty set @ as
a special element of P(5); all other pairs are called non-

3 All our correctness is up to an infinitesimal perturbation of f. It
means that our algorithms miss tangential intersections of SN R(T),
when these components only occur on the boundary of R(T). On
the other hand, tangential intersections of S N R(T) in the interior
of R(T') are excluded by explicit assumption.

empty pairs. We say P(.59) is trivial if its only member is
Q.

Fig. A.10. (a) Pairs on edge E, (b) {p,q} >~ {p’,q¢'}, (c) {p,q} = O

Example: Figure A.10(a) shows an edge E with 5 inter-
section points with S. There are 6 pairs on F given by

{al, (12}, {ag, 0,3}, {ag, (14}, {a4, 0,5}, {al, (14}, {ag, 0,5}.

In general, an edge with n intersection points with S de-
termines p(n) pairs where p(0) = 0 and for n > 1, p(n) =
pn — 1) + [(n—1)/2]. So p(1) = 0,p(2) = 1,p(3) =
2,p(4) =4,p(5) = 6.

We define a relationship between pairs of P(S). For any
face F' of T', we consider the connected curve components of
FNS. Ifois apoint in SNAOF, let C, denote the connected
component of F'N S that has o as one endpoint. Given two
pairs {p, ¢}, {p’, ¢'}, we define the relation

{p,q} - {9/, ¢} (mod F) (A.3)

if d(p,q) > d(p’,q’) and F has two opposite edges, E and E’
such that {p,q} C F and {p’,¢'} C E’, and the connected
components of SN F' has this property: Cp, = C}y and Cy =
Cy . Further define

{p,q} = O(mod F) (A.4)

if {p,q} C OF and C, = C,. Both the relations (A.3) and
(A.4) are illustrated in Figure A.10(b,c).

For pairs A, B € P(S), define the relation A > B if there
exists a face F' such that A > B(mod F'). Let > denote the
reflexive transitive closure of >: P > @ iff P = @ or there
is a finite sequence of pairs where P = Py = P, > --- >
P.=0Q.

LEMMA 7 The relation (P(S),>) is a partial ordering on
P(S)

PROOF. We check three properties. Let A, B, C' € P(S5).
Reflexivity: A = A (by definition). Symmetry: A > B and
B = Aimplies A = B. This is true if A or B is equal to O.
Otherwise, if A # B, we see that A = B implies d(A4) >
d(B). Similarly, B = Aimplies d(B) > d(A), contradiction.

Transitivity: A = B > C implies A > C'. This follows from
the definition of +.

If A = B, we say B is “smaller” than A and we are
interested in minimal elements in this partial order.

Intuitively, © is the unique minima in P(S). Towards
proving this result, we need a useful property of our octree
T:
LEMMA 8 () Let S be a surface which is monotone in T,
and E be any non-boundary edge of T such that |S N E| >
2. Assume (wlog) that E is parallel to the z-axis, and the
four faces bounded by E are Fy,F_,,Fy and F_,, as in
Figure A.10(d). Then either S is xz-monotone on Fy UF_,
or S is y-monotone on Fy, U F_,.

PROOF. Suppose S is not z-monotone on F_ . Consider
the box B lying above F_,. Since S cannot be z-monotone
in B (because E intersects S in more than one point) and it
cannot be z-monotone (since S is not z-monotone on F_,),
we conclude that S must be y-monotone in B. The same
reasoning implies that S must be y-monotone in the box
B’ below F_,. This concludes that S must be y-monotone
on Iy UF_,.

LEMMA 9 The empty set @ € P(S) is the unique minimal
element of P(S).
See [14] Lemma 23 for the proof of this lemma.

A.6. Cleansing Strategy

We are going to transform S to another surface S that
is clean relative to T'. We do this by transforming S iso-
topically to S. A difficult problem in this transformation
is that it is very hard to keep track of the nice properties
of the original f with respect to T'. For instance, we know
that each candidate box B of T' must satisfy C,_(B). We
first overview the cleansing processes:

(i) First, we clean all faces. Here we can exploit the orig-
inal property of f. Because f is monotone in some
coordinate direction in each box B, there cannot be
loops in two adjacent faces of B. Moreover, the set of
all such loops has a natural nesting partial order in
each coordinate direction.

(ii) Next, assuming all the faces are clean, we can clean
edges. Actually, we cannot clean an entire edge at
once, but we remove pairs from P(S), one pair at a
time. Let S = Sy and we construct a new surface ;41
from S; by removing one pair. The fact that P(S;41)
is a proper subset of P(S;) allows us to preserve the
partial order that is induced from the original P(S) =
P(Sp). We show that each pair removal does not in-
troduce any loop. So, at the end of this process, we
have a surface Si that is clean, and isotopic to S.

We next give details of these cleansing routines.

92. Cleaning Faces Consider the set of loops of S in

faces of our octree T'. Denote this set by £(.S), and as before,

introduce an artificial element @ in £(S5). We say L£(S) is
trivial if its only member is (). We also assume that £(.5)
is a finite set.

Let L, L’ be two distinct loops of £(.5), and they lie on the
boundary of a common box B. Let C, denote the connected
component of SN B that is bounded by L. Wlog, let f be y-
monotone in B. This implies that L and L’ can only lie on
y-faces of B. These two y-faces can be distinct or the same.
We write L > L'(mod B) if C, = C, and the y-projection
of L' is contained in the interior of the y-projection of L
(by y-projection, we mean the projection onto the y = 0
plane). Note that either L = L’ or L' > L must occur be-
cause f is y-monotone in B. This ensures that we have a
global partial ordering on £(.5). This global property is de-
rived from our original function f, and is critical for our
proof. We must carry some of this information along in the
induction, even after we have transformed f. Also, observe
that the partial ordering can be naturally partitioned into
three subrelations £(S) = L,(S) U L, (S) U L.(S), corre-
sponding to the three coordinate directions.

Note that there can be several loops L) (i = 1,2,...)
such that L = L®. These L") can lie in the same face as
L or in the opposite face. A fundamental property of this
relation is this:

LEMMA 10 () For each loop L', there is at most one L such
that L = L'.

PROOF. Say these loops lie on y-faces. If L
L'(mod B), then the y-projection of L’ is in the inte-
rior of the y-projection of L. Moreover, the component
Cr C B NS projects into the interior of L. If Ly > L’ for
some loop Ly, then we see that Cr, = Cr, and Ly = L.

In the special case where the boundary of Cf, is con-
nected, then we have dCp = L. In this case, we write
L > O(mod B). This produces a partial order on the
set of all loops (treating) as a special loop). Moreover,
@ is the unique minimum in this partial order. If L >
?(mod B), we call C, C B a cap. Our transformation
for loops amounts to repeated removing caps. Initially, let
So = S. We will define a sequence of surfaces, Sy, S, ...
such that the loops £, (S;+1) is a proper subset of £,(.S;)
for each i.

Let L = @ in £,(S;) lies in the face F and suppose B’ is
another box that is bounded by F'. We can easily define a
(B U B’)-isotopy to transform S; to S;y1 in which L does
not occur in £,(S;41), but all the other loops of L£,(S;)
remains. Of course, if L’ > L in £,(S;), the removal of L
may induce the new relation L' > @ in £, (Si+1).

Eventually, £, (S;) becomes trivial and contains only @.
We can independently repeat this argument on £,,(.S;) and
L.(S;). All faces are clean when £(S) is empty.

A.7. Semi-loops and Bases

We now have clean faces. To discuss the cleansing of

16

edges, we need some additional concepts. Suppose F' is a
face and the surface intersects I’ in a number of curves,
including loops (i.e., curve components with no endpoints).
A non-loop curve component C' whose two endpoints lie on
the same edge E of F'is called a semi-loop (E.g., C'on F),+
or C" on F,4 in Figure A.11). If p, ¢ are the two endpoints of
C, we call the line segment [p, ¢] C E the base of the semi-
loop C'. Suppose F’ is another face that is bounded by F,
and F' has another semi-loop C’ sharing the same base as
C'. Then we say C' and C” are linked by this base. Suppose
C, C" are linked semi-loops, there are two possibilities: they
could be coplanar (Figure A.11, C’ and C”) or they may
lie on a pair of perpendicular planes (Figure A.11, C' and
C"). In general, a base can be shared by up to 4 semi-loops.
The next lemma shows that this will not happen.
LEMMA 11 (NO FOURSOMES) Let S be a surface
which is monotone inT. Then at most 3 semi-loops can be
linked together.

See [14] Lemma 25 for the proof of this lemma. RE-
MARK: in subsequent transformation of S, “NO FOUR-
SOMES” property will be preserved (as we will see).

4
b

C
C/Z@C’ Fay

o

F,

Fig. A.11. Impossibility of 4-linked semi-loops.

LEMMA 12 (NO HOLES) Let S be the surface after the
face cleaning process (note that S is monotone in T'). Let
C,C" C S be linked semi-loops on the boundary of B. Let
P C SN B be a surface patch in B (i.e., P is a connected
component of SN B). If CUC’ CIP, then 0P = CUC".
In other words, P is topologically a disc.

PROOF. Let B be the box containing C' and C’ in Fig-
ure A.11. S must be monotone in x or y-direction in B.
Wlog, let us assume that S is monotone in y-direction in
B. Since P is converging in y+ direction, the projection of
P Nnint(B) onto Fy4 must lie within C’. Also, SN B con-
tains no loop on the faces of B. So we can conclude that P
is a topological disc and 0P = C U C".

In other words, this lemma says that P cannot contain
any holes as illustrated in Figure A.12.

From the proof of Lemma 12, and the fact that a con-
nected subset of an i-block can be viewed as a rectangular
box in which S is monotone in i-direction, it is easy to see
that the following lemma is also correct:

LEMMA 13 (NO HOLES 1) Let B be a connected subset
of ani-block, and S be a surface that is monotone inT which
intersects the faces of B € B cleanly. Let C C SNI(UpepB)

Fig. A.12. Examples of holes.

be a closed curve, and P C SN B be a connected component.
IfC C 0P, then OP = C'. In other words, P is topologically
a disc.

REMARK: in subsequent transformation of S, this prop-
erty will also be preserved (as we will see).

A.8. Cleaning Edges via Base Removal Operations

Let us retain the notations of Figure A.10 relative to
an edge E containing a pair {p,¢}. We call a pair {p, ¢}
penultimate minimum (or {p,q} =. @) if for any pair
P,{p,q} = Pimplies P = @.1f {p, ¢} > O and for exactly
i of the faces F € {Fy, F_,, F,, F_,}, {p,q} = O(mod F),
then we say {p,q} =; ©. Note that if {p,q} »; O, then
i > 1. In other words, {p, ¢} >0 @ is not possible. We call a
base b = [p, q] a penultimate minimum base if {p, ¢} is a
penultimate minimum pair. Clearly, penultimate minimum
base is a base of some semi-loops.

We will remove one penultimate minimum pair in P(S)
each time. Let S = Sy = f~1(0) and suppose we construct
a new surface S;+; from S; by removing one pair from
P(S;). The fact that P(S;+1) is a proper subset of P(S;)
allows us to preserve the partial order that is induced from
the original P(S) = P(Sp). Our removing of penultimate
minimum pairs will not change the partial order in P(S). In
each step P(S;) = P(Si+1) N{{pi, ¢;}} where {pi, ¢;} is the
penultimate minimum pair which we remove at step i. The
removing only creates new relations of the form {p, ¢} = @
where {p,q} = {p',¢'} in P(S;).

The next lemma shows that if a base b = [p, ¢] is a penul-
timate minimum base and {p, ¢} »2 @, then the two linked
semi-loops must lie on a pair of perpendicular planes:
LEMMA 14 () Let S be a surface that is monotone in T,
and {p,q} be a pair of SNT. Consider two distinct faces
Fy and F, in Figure A.10 where {s,v} C {z,—x,y,—y}.
If {p,q} =2 @ where {p,q} = O(modF) and {p,q} >
O(mod F,), then {s,v} # {x, —x} and {s,v} # {y, —y}.

PROOF. If {p,q} > O(modF,) and > O(mod F_,),
and curves Cp,Cqy € SN (F_y U F,) are the connected
components that passes through p and ¢, then C), and Cj,
must be different components in F_, U F,,. Since {p, ¢} is
a penultimate minimum pair, S can not be y-monotone in
Fy,UF_,. From Lemma 8, we know that S is z-monotone in
F, U F_,, which contradicts the fact that [p, q] is the base
of two coplanar linked semi-loops on F, U F_,.

Suppose P =; 0 where P is a pair. We already noted that
t = 0is not possible. From Lemma 11, if we can preserve the
monotonicity of S during the surface transformation (which
will be proven later), then ¢ = 4 is also impossible. So the
only possibilities for 4 is 1,2 and 3. Because of Lemma 14, a
penultimate minimum base b could have three possibilities,
as shown in Figure A.13(I), (II) and (III). Note that if b is
not a penultimate minimum base, Figure A.13(/11") might
arise.

Let b be a penultimate minimum base for some semi-
loop. To “remove” b means to simultaneously remove all
the semi-loops that share the base b. Since there are only
three possibilities, so there are three distinct base removal
operations. This is shown in Figure A.13. In Figure A.13
(I) — (I’), we push down the part of semi-loop component
to form a “tunnel” below the edge E. In Figure A.13 (1) —
(II'), we push the topological disc component bounded by
the two semi-loops in both z— and y— directions to elim-
inate it. In Figure A.13 (III) — (III'), we push down
the topological disc component bounded by the three semi-
loops to remove the it. Note that these operations are well-
defined: this depends on the fact that in each box B that
contains a pair of linked semi-loops C and C”, the surface
patch bounded by C' U C’ is a topological disc (i.e., the
"NO HOLES” property in Lemma 12 holds as long as we
preserve the monotonicity of the surface during our opera-
tions, which will be proven in the following part).

Fig. A.13. Three Base Removal Operations.

We next describe some properties that our transforma-
tion preserves. Let T be an octree and Vi be the set of all
corners of the boxes in T'. Let S,S’ be two surfaces. We
say S is compatible with S’ (respect to T') iff there exist
an isotopy I : R? x [0,1] — R3, s.t. I(+,0) is the identity;
I1(S,1) =5 and ¥Vt € [0,1], I(S,t) NV = 0.

LEMMA 15 () The face cleaning operations and the base
removal operations preserve the compatibility of S in T .

PROOF. The correctness of this lemma is based on the
nature of our operations: we never transform the surface
“across” any corners in 7.

LEMMA 16 (SURFACE MONOTONICITY PRESERVATION)
Base removal operations preserve the monotonicity of S in
T.

See [14] Lemma 30 for the proof of this lemma.

The next example shows that if we remove the bases in
arbitrary order, we might create holes within the boxes.
Let b1 be the smallest base in the box B in Figure A.14(I).
Assume S is y-monotone in B, since our operation preserves
the monotonicity, we have the length of b3 is less than the
length of b4.. If we remove the bases in arbitrary order, we
might remove bl and b4 before b2 and b3, which results in
a hole as shown in Figure A.14(T).

bl

Fig. A.14. Removing bases in arbitrary order might create holes.

LEMMA 17 () The face cleaning operations do not induce
new dirty faces, and the base removal operations do mot
induce new dirty edges and dirty faces.

PROOF. 1t is clear that the face cleaning operations do
not induce new dirty faces, and the base removal operations
do not induce new dirty edges. We will show that the base
removal operations do not induce new dirty faces. Let R
be a base removal operation which removes a penultimate
minimum pair b and induces a new loop [on a face F'. Then
before the operation, | was a semi-loop with the base b.
This contradicts the fact that R removed all the semi-loops
that share the same base b.

The above base removal process halts only when P(.5) is
empty. At this point, all faces and edges are clean relative to
T'. From the analysis above, we have the following theorem:
THEOREM 18 () Let T be the octree produced by our Regu-
larized Cryz Algorithm. There E|§, s.t.

(1) S ~ S(mod R(T)).

(2) S is compatible with S respect to T

(3) S intersects T cleanly.

(4) S preserves the monotonicity of S within each candidate

box of T'.

PROOF. Wefirst clean the faces, then we clean the edges.
From Lemma 15, Lemma 16 and Lemma 17, and the fact

18

that each operation is an isotopic transformation, the re-
sulting S satisfies all the properties in this theorem.

THEOREM 19 Let G be the mesh we construct by the Reg-
ularized Cryz Algorithm, then G ~ S(mod R(T)).

PROOF. Based on the construction phase of our algo-
rithm, for each alternating block B, S N d(UB) “agrees”
with G N O(UB). From Lemma 13, we know that S is iso-
topic to G within each block. So G ~ S(mod R(T)). From
Theorem 18, we have G ~ S ~ S(mod R(T)).

A.9. Correctness of Balanced Cxyz Algorithm

Let T be the octree produced by our Balanced Cxyz Al-
gorithm. Similar to the correctness proof of the Regular-
ized Cxyz Algorithm, we will first transform the input sur-
face S = f71(0) to another surface S which has some nice
properties.

In the correctness proof of the Regularized Cxyz Algo-
rithm, we separately defined the partial orders for loops and
pairs of S in 7. In the Balanced Cxyz Algorithm, we need
to define the partial order for the combination of all loops
and pairs. The reason is that a loop might be “blocked”
by pairs (an example is shown in Figure A.15(I)), and we
need to remove the pairs first in order to remove the loop.
Also, a pair might be “blocked” by loops ,as shown in Fig-
ure A.15(IT) (we do not have such problem in the Regu-
larized Cxyz Algorithm since the loops are removed before
pairs).

(1

Fig. A.15. Partial order between a loop and a pair.

We define the new partial order for the set of P(S)UL(S),
where P(S) is the set of all pairs of S NT, and £L(S) is
the set of all loops of SNT (see 1 and §2). The partial
order between loops and between pairs are the same as the
partial order defined in the Regularized Cxyz Algorithm:
let <pC P(S) x P(S) be the partial order defined for pairs,
and <7 C L(S)x L(S) be the partial order defined for loops.
We need to define a partial order on the set P(S) U L(S).

Let B be a box with monotone direction y. Let L be
a loop on the bottom face of B and {p,q} be a pair on
the top face of B. If the y-projection of {p, ¢} is contained
within the y-projection of L, we say {p,q} < L (as shown
in Figure A.15(I)). In order to remove L, we need to remove
{p, q} first. We can similarly define such relations in x and

z directions. Let <prC P(S) x L(S) be all the relations
so defined. Similarly, we can define <;pC L(S) x P(S):
let {p,q} be a pair, and K be a semi-loop whose base is
[p, q]. If there exist a loop L which lies in the same box B
as K, and the i-projection of L (for some i € {z,y, z}) lies
in the interior of the i-projection of K, we say L < {p, ¢}
(as shown in Figure A.15(IT)).

I '
I '
o adl S
LU oAl VI
I N
I e '
I S '
I - '
I e '
['
ra T
! |
/
R EEEEEEEEE B
L L
F7/ i S
Y '
,_b,!\ '
. L
T 1
h 1
[l '
i '
i '
i '
i '
,-‘\ \L '
I '
L '
U [fmm————— =]
U i
F//,‘\ |
i I
waw !
T
I I
\\\ I
W I
i I
ks I
N I
! — ! —
I I
I -\ I
| S~ |
D il et
Sl T |-
v ﬂ Pri
S ©
By P 1~

Fig. A.16. Example of a loop in <p U <y U <py U <pp.

In the Regularized Cxyz Algorithm, we removed all loops
before we remove pairs. But in the Balanced Cxyz Algo-
rithm, we are forced to intermix pair removal with loop re-
moval because of the relations in <py, and <7 p. However,
if we look at the relation <p U <y U <pr, U <rp, we do
not obtain a partial order on P(S)UL(S) (see Figure A.16:
the green points form pairs, and the arrows show the mono-
tone direction of the boxes. It is possible that L < P <
... = P < L, which forms a loop).

Our solution is to define a partial order based only on

<pBal'==<p U <1, U <pr. This is clearly a partial order on
P(S)UL(S).
LeEMMA 20 (DAG) The partial order relationship <pai
forms a DAG G, where the pairs and loops are the nodes of
G)p and the partial order relations are the (directed) edges
of Gyp.

Why is this a solution? As usual, we plan to inductively
remove elements from P(S) U L(S), which are minimal rel-
ative to <pq;. The possible complication arises when we
want to remove a pair {p, ¢} where L < p {p,q} for some
loop L. It turns out, we can remove {p, ¢} without first re-
moving L provided that we generalize our previous base
removal operation as follows: to remove a pair {p,q}, we
will remove all semi-loops K whose base is [p, q]. There are
two possible situations: (A) If there is a loop L s.t. L <rp
{p, ¢}, then we know that [p,¢] is the base of a semi-loop
K where the i-projection of L (for some i € {x,y, z}) lies

19

Fig. A.17. Universal Base Removal Operations.

in the interior of K. In this case, we transform the surface
S so that {p, q} is removed from P(S), and a new loop K’
appears in £(5). And moreover, L. < K’ €<. See Fig-
ure A.17 (ITx) — (IT+") and (I11x) — (I11+") for the il-
lustration of this operation. Note that there might be more
than one such loops L. (B) If no such loop L exists, then
the operation is defined as in the Regularized Cxyz Algo-
rithm. Similar to the proof of Lemma 16, we can prove that
those two generalized operations also preserve the surface
monotonicity of S in 7. Based on the correctness analysis
in the Regularized Cxyz Algorithm, we have the following
(similar) theorem for the Balanced Cxyz Algorithm:
THEOREM 21 () Let T be the octree produced by our Bal-
anced Cryz Algorithm. There Elg, s.t.

(1) S ~ S(mod R(T)).

(2) S is compatible with S respect to T'.

(3) S intersects T cleanly.

(4) S preserves the monotonicity of S within each candidate
box of T

PROOF. The correctness of this theorem follows from the
analysis of the face cleaning and edge cleaning processes.

In the Regularized Cxyz Algorithm, we proved Lemma 13.
We have a similar result in the balanced algorithm:
LEMMA 22 (NO HOLES 2) Let S be the surface described
in Theorem 21 and B be a connected subset of an i-block.
Let C be a closed curve which is the intersection of S with
0(UBgep). Let P C SN B be a surface patch in B (i.e., P is
a connected component ofgﬁ B).IfC C 9P, then P = C.
In other words, P is topologically a disc.

PROOF. The correctness of this lemma follows from the
facts that SNB is monotone in B, and .S intersects B cleanly.
The proof is similar to the proof of Lemma 12.

From Lemma 22, it is easy to see that SN B is a set of
topological discs for each candidate box B.
THEOREM 23 The mesh G constructed by our Balanced
Czyz Algorithm is isotopic to S within each i-block B of T'.
In other words, G ~ S ~ S(mod R(T)).

PROOF. From Theorem 21, it is easy to see that S in-
tersects the boundary of B cleanly. Our construction rule
guarantees that G N 9(UB) “agrees” with S N I(UB). And
each connected component of G N B is a topological disc.
So based on Lemma 22, we have G N B ~ SN B.

20

