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Abstract

We propose to design new algorithms for motion planning lemols using the well-
known Domain Subdivision paradigm, coupled with “soft” gieates. Unlike the tra-
ditional exact predicates in computational geometry, aunijpives are only exact in
the limit. We introduce the notion @ésolution-exact algorithmsin motion planning:
such an algorithm has an “accuracy” constant> 1, and takes an arbitrary input
“resolution” parametee > 0 such that: if there is a path with clearanke, it will
output a path with clearaneg K; if there are no paths with clearanegk, it reports
“no path”. Besides the focus on soft predicates, our framkatso admits a variety of
global search strategies including forms of the A* searahalso probabilistic search.

Our algorithms are practical, easy to implement, and haaptac complexity. Our
deterministic and probabilistic strategies can achiexand-only-if form of complete-
ness, unlike probabilistic completeness. We will give eghas of our approach, in-
cluding problems that currently have no complete exact riggm, complex robot
geometry and high-degree freedom robots. The approactd&wapplicable to other
related problems, illustrating what we call “humerical Gartational Geometry”.
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1 Introduction

A central problem of robotics is motion planning, P2, 23, 10]. In the early 80’s there was strong inter-
est in this problem among computational geometéfs 29). This period saw the introduction of strong
algorithmic techniques with complexity analysis, and theeéul investigation of the algebraic C-space. We
introduced the retraction method in, 30, 31, 35]. In a survey of algorithmic motion planning{], we
also established the universality of the retraction metAdds method is now commonly known as the road
map approach, popularized by Canfiy\who showed that its algebraic complexity is in single exgural
time. Typical of algorithms in Computational Geometry,db@xact motion planning algorithms assume a
computational model in which exact primitives are avaiaiol constant time. Implementing these primi-
tives exactly is non-trivial (certainly not constant timajvolving computation with algebraic numbers. In
the 90’s, interest shifted back to more practical techrsgeach as the well-knowprobabilistic roadmap
method (PRM) [20]. The idea is to compute a partial road map by random samplirige configuration
space. PRM offers a computational framework for a classgirithms. Moreover, maryvariants of the
basic framework have been developed. In an invited talkeatebent workshdpon open problems in mo-
tion planning, J.C. Latombe stated that the major open proladf suchSampling Methodsis that they do
not know how to terminate when there is no free path. In practtne would simply time-out the algorithm,
but this leads to issues such as the “Climber’s Dilemmia); p. 4] that arose in the work of Bretl (2005).
We call this thehalting problem of PRM, viewed as the ultimate form of what is popularly knoasithe
“Narrow Passage Problem?(), p. 216]. Latombe’s talk suggested promising approachasasiLazy PRM
[3]. An excellent account of the state of the art in motion plagris found in Choset et aiL[]].

In this paper, we turn to another pop-
ular approach42] for motion planning,
which we callSubdivision Methods The
general idea is to subdivide some bounded
domain By, typically a subset oR?. In
motion planning, the domain is a subset of
configuration space. In its simplest form,
the subdivision ofB; can be represented
as asubdivision tree which is a gener-
Figure 1: (a) Subdivision of a region (yellow). (b) Its Sulidi alization of bisection searchi(= 1) or
sion Tree guad-treesd = 2), as illustrated in Fig-

urel. An early reference for this approach
is Brooks and Lozano-Perez]] Some more recent subdivision references incluiig P, 41, 12, 24].
Manocha’s Group at UNC has been very active and highly ssfdeis producing practical subdivision
algorithms for a variety of tasks, many critical in motiomphing 34, 33]. Although domain subdivisions
are sometimes known as “cell decomposition” (e.¢2]), we reserve “cell decomposition” for methods of
partitioning configuration space into cells with finite camdtorial-algebraic description (e.g2d, 36]). In
contrast to such cells, the boxes in our subdivision neechaet any direct correlation to combinatorial
complexity of the problem. Such boxes are clearly relateti@solution”. But more “guided subdivision”
that takes into account combinatorial complexity are sag#, 42]. This “combinatorial-cum-resolution”
complexity leads to new complexity analysis that is not flidesn the traditional exact algorithms. Recent
examples of such complexity analysis are seen in our relatekl [27, 13, 32, 6].

91. Whatis New in This Paper. The most distinctive contribution of this paper is the esipintroduc-
tion of soft primitives into motion planning (and more generally, into SubdivisMathods). Briefly, soft
primitives are just suitable numerical approximations>aat (hard) primitives. Soft primitives are ideally
suited in a subject like motion planning where the standatin of exactness of computational geometry
makes little sense for robot sensors and mechanical syskatisave inherent accuracy limits. As we shall
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1 A partial list includes Expansive-Spaces Tree planner JER@pidly-exploring Random Tree planner (RRT), and Sangpli
Based Roadmap of Trees planner (SRT).

2 |ROS 2011 Workshop on Progress and Open Prdblems in Motiamni®lg, September 30, 2011, San Francisco.
http://ww. cse. unr. edu/ robotics/tc-apc/ws-iros2011.



show, the development of such primitives will lead to new thecadlif sound algorithms that are highly
practical. Based on the above work |, 13, 32, 6], we conjecture that these algorithms are also provably
efficient. Currently, it seems that practitioners have toose between sound algorithms that are not prac-
tical and heuristic methods that seems to work well in pcact\We stress that Subdivision Methods using
soft primitives are easy to implemestactly Implementing a primitive exactly does not mean the primiti
itself is exact; but it does means that our implemented #hgorwill not suffer from “implementation gaps”
that could render theoretical correctness/exactnessgiep worthless. This has been a bugbear of many
algorithms of computational geometry. The basis for ouregainapproach is discussed B9 40]. Our
second main contribution is a systematic treatment of uéisol completeness. The concept of “resolution
completeness” is widely used in the motion planning literai10], but rarely analyzed. We introduce the
concept ofresolution-exact (or e-exaci algorithms, and analyze their properties. There are subtleties in
this concept — for instance, we will prove that there is ielnéindeterminacy in such algorithms.

2 On Numerical Subdivision Algorithms

Computational Geometry until now has almost exclusivelpoamtrated orExact Methods The many
attractive features of exact algorithms are well-knownt Bere is limitation in its computational model
based on hard primitives. The inability of Exact Methods awdnwider impact on robotics and those fields
of Computational Sciences and Engineering (CS&E) wherengdac reasoning is dominant ought to call
for a re-examination of our assumptions. We argue that Sigioin Algorithms, wheh combined with soft
primitives, offer a pathway for Computational Geometerslésign new algorithms that are theoretically
sound and can have an impact on the above fields. Our softtpesido not entail any error analysis in the
style of numerical analysis; rather, we rely on some forrarivel method 24]. It is hard to ignore the many
advantages in this alternative view of Computational Gaonie0]. We now outline these advantages for
motion planning.

Subdivision Methods share with Sampling Methods many adgms over Exact Methods. They both
lead to algorithms that are very easy to implement and mottifplementability is a property that should be
valued more. Modifiability is important in practice: imagideploying such algorithms in physical robots
where non-algorithmic considerations may need to be ad¢edunr. Exact algorithms are not so flexible.
A less obvious advantage is that both methods are very faggiv you can implement the primitives of
Sampling or Subdivision Methods imprecisely, and the allgors would not necessarily suffer catastrophic
breakdown (crashing, entering an infinite loop, etd)] In contrast, exact algorithms are infamous for their
sensitivity to numerical errors; this is the key motivatfonthe field of EGC B&]. Despite these similarities,
the big difference between Sampling and Subdivision istti@tatter can detect non-existence of free paths
[41]. In view of Latombe’s keynote talk above, this ability igsificant. Some authors make sampling
methods resolution-complete by ensuring a certainly samehsity as in{]. Nevertheless, the guarantees
are much weaker than in Subdivision.

A practical advantage of Subdivision and Sampling Methedkat they allow the possibility of finding
free pathsbeforethe entire free configuration space has been fully explodedcontrast, known Exact
Methods have an expensive pre-processing phase which #&noucomputing a complete description of
the free configuration spac€’{,...) before any path searching can even begin.

Exact algorithms typically returns a combinatorial patfirted by implicit constraints; this path must
be converted into a trajectory (i.e., parametrized paifijin..) before a physical robot can follow the path.
Thus, trajectory planning requires a subsequent numesiage that is rarely discussed in exact algorithms.
In Subdivision Methods, these 2 stages are integrated ituaahavay.

One disadvantage of numerical primitives is that they alg oomplete in the limiting sense. But
in robotics, where the data and control have limited prenisthis is no serious restriction — numerical

3 We note that Subdivision Algorithms could also be combinéith Wward primitives, as seen in Section Ill. But the full pawe
of Subdivision Methods reveals itself when we exploit saofiritives.



methods can be certified up to any desired precision. But ricatenethods are more general than exact
approaches in the sense that they are applicable to an@lpticalgebraic) problems where exact solutions
are generally unknown (seg]].

3 Subdivision Motion Planning

In this section, we illustrate our approach with a basic oroplanning problem. Fix a rigid robd?, C R?
and an obstacle s€t C R?. Both R, and( are closed sets. Initially we assurRg is ad-dimensional ball
of radiusrg > 0.

Suppose we want to compute a motion from an initial configomat to some final configuratiod. One
of the best exact solution wheRy is a ball is based on roadmaps (i.e., retraction approactstottitally,
the casel = 2 was the first exact roadmap algorith@5]. For polygonal(2, the roadmap is efficiently
computed as the Voronoi diagram of line segmefts [L7]. For d = 3, it is clear that a similar exact
solution is possible. But here we see the severe barriedgogexact solutions: we are not aware of any
exact algorithm for the Voronoi diagram of polyhedral obtta. The problem lies in working out details of
the algebraic primitives and the possible degeneracigs (p.the style of {4]). Indeed, the details for the
exact computation of the Voronoi diagram of three lineRinhas only recently been worked outf 15].

The configuration spaceor Cyqce iS R? when Ry is a ball. In general, we WIit€ 00 (Rp) for the
configuration of a robofRy. Leta, 5 € Cspqce. Thefootprint of Ry ata is the setRy[«] comprising those
points inR? occupied byR, in configuratione. We saya is free if Ry[a] N Q2 is empty; it issemi-free
if it is not free butRy[«] does not intersect the interior Of. Thusa is semi-free ifRy[a] is just touching
Q) without penetrating it. Finallyy is stuck if it neither free nor semi-free. Thus, every configuratisn i
classified as free, stuck or semi-free. We extend this ¢ieason to any set3 C Cypq.c: We sayB is
free (resp., stuck) if everyw € B is free (resp., stuck). Otherwis® is mixed. We have thus defined
the classification predicateC : 2¢s»ac« — {FREE, STUCK, MIXED}. In practice, the predicat€/(-) is only
computable for “nice” sets, e.g., whéhis a box. Our goal in soft primitive design is to avoid this exa
computation. This classification goes back to beginningubis/ision motion planning when Brooks and
Perez f] used the empty/full/mixed labels.

Let Crree = Clree(R0,Q2) C Cspace denote the set of free configurations.fotion from o to 5 is a
continuous mag : [0, 1] — Cspace With 11(0) = a andp(1) = 5. We sayy is afree motion if its range is
contained inC'f,¢c

€2. Subdivision Trees. Our main data structure is a subdivision tfEeooted at a box3, C R? (see
Figurel for d = 2). The nodes of/ are subboxes aB,, where boxes are closed subsets of full dimension
d, and each internal nodB is split into2’ (i = 1,...,d) congruent subboxes which form the children of
B. We remark that boxe® are axes-parallel and not assumed to be square,widlth w(B) andlength
¢(B) defined to be the lengths of the shortest and longest side.)rdSor convergence, we must assume
that theaspect ratio/(B)/w(B) > 1 is bounded. Any box that can be obtained as a descendédsy iofa
subdivision tree is said to kaigned. Letm(B) denote themidpoint andradius r(B) be the distance from
m(B) to any corner ofB. For any real numbet > 0, lets - B denote the congruent box centeredidtB)
with radiuss - r(B). Two boxesB, B areadjacentif BN B’ is afacet F' of B or of B’, where facets refer
to faces of co-dimensioh. Also, letD,,(r) denote thelosed ballcentered atn with radiusr.

To allow domains of arbitrarily complex geometry, the inpaitour algorithm is an initial subdivision
tree 7o whose leaves are arbitrarily marked or OFF. The set ofoN-leaves forms aubdivision of the
region-of-interest ROI(T) of the tree. Subsequently; can beexpandedat anyON-leaf B, by splitting B
into 2° (1 < i < d) congruent subboxes who become the childre oThese children remaibN-boxes, so
ROI(T) is preserved.

93. An Exact Subdivision Algorithm.  Our algorithm is giverr > 0 and an initial7, rooted atB,. The
algorithm is parametrized by two subroutines: a classiiogpredicateC'(B) for boxes, and a subroutine



Split(B, ) which returns a subdivision db into 2¢ (for somei = 0, ..., d) congruent subboxes; the split
subroutine is said to fail ifu(B) < ¢ (in this casei = 0). We useT to search for a path iy N Ctyce
as follows. Letl/(7") denote the set of free leavesn We define an undirected gragh7") with vertex
setV(7) and edges connecting pairs of adjacent free boxes. We nmathta connected components of
G(T) using the well-knowrnion-Find data structure o (7): given B, B’ € V(T ), Find(B) returns
the index of the component containiriyy andUnion(B, B') merges the components Bfand of B'.

We associate witlf” a priority queuel) = @7 to store all the mixed leaveB with width w(B) > e.
Let 7.get Next() remove a box irQ) of highest “priority”. This priority is discussed below. B is the box
returned by7 .get Next(), we will expandB as follows: first calBplit(B, ). If Split(B, ¢) fails, we return
fail. Otherwise, each of the subboxBSreturned bysplit(B, ¢) is made a child of3. We label B’ with the
predicateC'(B’). If C(B’) = FREE, we insertB’ into V(7) and into the union-find structure, and for each
B" € V(T) adjacent taB’, we callUnion(B’, B”). Finally, if C(B’) = MIXED andw(B’) > ¢, we insert
B’ into Q. Thus, mixed box of width< ¢ are discarded (effectively regardedst®CK). Now we are ready
to present a simple but useful exact subdivision algorithm:

EXACT FINDPATH:
Input: Configurationsy, 3, tolerance: > 0, box By € R<.
Output: Path froma to 8 in Free(Rg, Q) N By.
Initialize a subdivision treg” with only a rootBy.
1. While (Boxy(«) # FREE)
If (ExpandBox1(«) fails) Return("No Path”).
2. While (Boxt(B) # FREE)
If (ExpandBox () fails) Return("No Path”).
3. While (Find(Boxy(a)) # Find(Box1(5)))
If Q7 is empty, Return("No Path”)
* B+ T.getNext()
ExpandB
4. Compute a channét from Boz7(«) to Box1(5).
General a motior® from P and Returnp)

In Step 4, thehannel P is a sequencéBy, . . ., By,) of boxes whereB;, B, are adjacent. We convert
the channel into a motion (or trajectory) which is a paraipett pathP : [0,1] — Cree froma to 5. We
can easily generatk to satisfy reasonable constraints such as smoothness.téd, tlais ability to generate
a motion is a big win of subdivision methods over pure algelmzgethods. Note that our channels are free,
in contrast to the M-channels (each a sequence of adj&&®mt or MIXED leaf boxes) of Zhu-Latombe
[42], Barbehenn-Hutchinson?] and Zhang-Manocha-Kim4[l]. Freeness is essential in the Union-Find
application.

The routineT .get Next() in Step (*) is not fully specified, but critical. To ensure fopleteness” of this
algorithm, a simple solution is to return any mixed leaf ohimum depth. Below, we will provide careful
analysis of completeness. But many other interesting siesiare possible: lfet Next() is random, we
obtain a form of Sampling Method. By alternating betweerdmmness and some complete strategy, we
can get the best of both worlds. ¢ét Next() always return a mixed leaf that is adjacent to the connected
component oBox7(«), we get a sort of Dijkstra’s algorithm or A*-search (see Bdrénn and Hutchinson
[2, 1]). Another idea is to use some entropy criteria. Recent veorkhortest-path algorithms in GIS road
systems offers many other heuristics.

4 Let us Design Soft Predicates!

The above exact subdivision is not our claim to novelty. Néhadess, our framework has interesting fea-
tures, and seems more adaptive than some suggestions itethtite. For instance, the (uniform) griei3



p. 185] is widely used. According to the Wikipediarticle on resolution completeness, most resolution
complete planners are grid-based and uniform. Althougtisgaire superficially similar to subdivisions, a
critical difference is that grids use point-based operatiohile our theory is based on box (interval) op-
erations with guarantees. Uniform grid translates intabtle-first search strategy far.get Next(), but

we can do much better. Zhu and LatomBé&][suggests a more goal directed form of this expansion: pick
some “shortest” M-channel (sequence of adjad&®EE or MIXED leaf boxes) and expand all thXED
boxes in the channel. To support this kind of channel expan&arbehenn and Hutchinson introduced the
highly efficient Dijkstra-search or its extension to A* sgaf2, 1]. While finding the shortest A*-path is
efficient, the efficient update of the A*-structure after arpion is not well-understood. The justification of
expanding along a shortest M-channel is also unclear.

Our true interest lies in replacing the exact predica{d?). Generally, exact predicates need algebraic
computation and can be highly non-trivial to compute. Inghesent case, especially for= 2, computing
C(B) is actually feasible. Even so, we prefer to avoid exact cdatpn. We will replaceC'(B) by some
C(B) which is easy to compute and “correct in the limit".

4. Soft Predicates. We now formalize the needed properties. f}ftB) be a box predicate that returns a
value in{FREE, STUCK, MIXED} . We callC' asoft versionof C if two conditions hold:

(A1) Itis safe i.e.,C(B) # MIXED impliesC(B) = C(B).
(A2) Itis convergenti.e.,if {B; : i = 1,2,...,00} converges to a configurationandC'(~y) #
MIXED, thenC(B;) = C(~) for large enough.

We need a quantitative measure of the convergence ratetiieedtaany clasd3 of boxes, a soft versiofy
of C'is said to have effectivity factor of ¢ if C'(B) = FREE impliesC(cB) = FREE for all B € B. One
might imagine a stronger condition th@{ 3) # MIXED impliesé(aB) = MIXED for all B € B. However,
it seems difficult to effectively comput€ with such strong properties. Our weaker definition suffiaes f
our main Theorem A. Clearly) < o < 1. Call C effectivefor B if it has some effectivity factor relative to
B. For example, we will prove that our soft predicates belogvedfective for the clasB of square boxes.

We now design soft predicaté% assuming? is a polyhedral set, and the boundary(bfs partitioned
into a simplicial complex comprising open cells of each disien. These cells are callégatures of 2.
Ford = 3, the features of dimensioris 1,2 (resp.) are calledorners, edgesandwalls. Each boxB is
associated with three sets: @gster domain W+ (B) C R?, inner domain W~ (B) C R?, andfeature set
(B) C ®(2). We defineW*(B) andW ~(B) as the discdD,,,(p)(ro + 7(B)) and D,,(p)(ro — r(B)),
respectively. Ifrg < r(B), theW—(B) is empty. Also,p(B) comprises the features ©f that intersects
W*(B). We call B simpleif one of the following conditions holds:

(S0)Its feature sep(B) is empty.
(S1) Some feature of? intersects its inner domain.

The soft predicateﬁ can now be defined: for our purposes, we only need to deﬁi(ﬁ) for aligned
boxesB. Thus we can use induction by depth. Bfis non-simple, declaré(B) = MIXED. Else if (S1)
holds, decIareﬁ(B) = STUCK. Otherwise, (S0) holds and clearly is either free or stuck, and we define
C(B) = C(B) accordingly.

We now come to computin@*(B), but only in the context wherB is a leaf of a subdivision tree. In this
case, we can easily comput¢B) by induction: when we expan8, we can easily distribute the features
in ¢(B) to each of its children (note that a feature can be given toentfwein one child, or to no child).
Moreover, we can check the conditions (S1) and (S0) durimgdistribution. Finally, if (S0) holds, we
determineC(B) as follows:C/(B) = FREE (resp.,STUCK) iff m(13) is outside (resp., inside) the obstafle

“http://en.w ki pedi a. org/ wi ki / Mot i on_pl anni ng#Conpl et eness_and_Per f or mance, retrieved Oct 27,
2011.



To distinguish these two cases, we just check the featur@(éeparent) of its parent boxB.parent of
B. The setp(B.parent) is non-empty, and by a linear search, we find the feafurethis set that is closest
to m(B). This feature may be a wall, edge or corner but it is assunegdlile features are locally oriented
so that we can decide whether(B) is inside or outsidé? in the neighborhood of .

LEMMA 1. The predicate@ is a soft version of” for the robotRy. When boxes are square@N, has an
effectivity factor ofl /v/2.

Proof. See Appendix. O

All we do is to substitute” for C in the exact algorithm of the previous section to get a cotaepietion
planning algorithm — this will be proved below, when we iduze resolution-exact algorithms.

What have we gained? This algorithm is extremely easy toempht ford = 2 and3. Ford > 3,
it is also easily implemented if we assume all features argl&tial. In particular, the computation of
C' (which includes maintaining(B)) uses only distance computation between points and featare
numerical approximations can be employed in these conipogatAlready, ford = 3, we have achieved a
resolution-exact algorithm for a problem for which theradsknown exact solution.

95. Improvements. We can speed up the computation as follows: we will define gte&&3) in a
slightly different way by recognizing two regimes for boxds the “small B regime”, i.e.,r(B) < 7o,
we computep(B) as before. In the “largd? regime”, i.e.,r(B) > ro, we can define)(B) to comprise
those features that intersects the o wherea = 1 + +/2rq/r(B). In general, for any box3, and real
numbera > 0, aB denotes the box centeredra( B) of radiusa. Checking if a feature intersectsB is
also extremely simple. This new definition should genenadbult in smaller sizes faf(B).

We remark that the condition (S1) could have been omittetiowit affecting the correctness of the
algorithm. It’s role is to provide an early stuck decisiom. fSr fast implementation, it could be omitted.

5 Rotational Degree of Freedom

Next consider the case where rob®t C R? has a simple shape. Assunig is a triangle, andR; is
contained in a circumscribing dige, of radiusrg. Now, Cspace = SE(2) = R?2x S1. Each boxB C Cypace
is decomposed aB x © whereR C R? is a rectangle an® C S! is an angular range. We also write
m(B),r(B),w(B) to denote the previously defined(R),r(R),w(R). Two boxesB = R x © and
B’ = R' x © areadjacentiff R andR’ are adjacent, an® and®©’ are adjacent in the circular geometry of

c 96. =-Smallness. We discuss the issue splitting
‘b ¥ B: we can obviously simply spliB into 8 congruent
¢ children. However there are two issues. First of all, we
4\ may want to avoid splitting the angular range when
« is in the “large regime”: as long as(B) > 19, we
/ b can approximateR?; by Ry and ignore the rotational
degree of freedom. SB is split into 4 children (based
on splitting R but not®). When B is in the “small
regime”, i.e.,w(R) < 19, we begin to split the angular
Figure 2: Shaded area represent round triangléange. But here, we want to tre@tdifferently thanZ.
(i) aa'bb'c, (i) ab'cc’. To understand this, recall we previously do not split a
box R whenw(R) < e. Let us sayR is e-small if
w(B) < e. We need a similar criteria fa®, and here, we sa@ is e-small if |©| < ¢/ry. This assumes
that angles are in radians, afds represented as a sub&gt 6] C [0, 27]; also|O| is defined a®, — 6;.

Finally, we sayB = R x © is e-small if both R and© arec-small. We now define our procedwglit(B, ¢)
as follows: to splitB, we split R and© separately. These will not be split if they are alreadymall. Thus,

(i)



splitting B will result in 2¢ children fori = 0,1,2,3. Our definition ofe-smallness is motivated by this
lemma:

LEMMA 2. Assumé) < ¢ < 7/2. If B ise-small, then the Hausdorff distance between the footpohi3;
at any two configurations i is at most(1 + v/2)e.

This result uses the fact that if we rotate by 6 about the center Ry, then the vertices ak; moves by
at most2r( sin(0/2) < rof sincesin§ < 6 for ¢ in the said range. Also, the translational distance between
any two configurations i is at mosty/2e.
€7. Soft Predicate for Rotation. We now design a soft versiofi of C. The strategy follows the
case of disc robot: we define the feature #eB) associated with a bo® = R x © as comprising those
features of) that intersects the s&' ™ (B) wherelV ™ (B) is a “round triangle” associated with. We calll
R around triangle if it is given as the intersection of a dide with a triangular regiori’ (see Figure?).
If (D, T) # (D', 7")butDNT = D' NT’', we regard these two round triangles as different. For any
real numbers, we denote the-expansionof various shapes C R? by (S)*. If S = D(m,r) is a disc,
(D)% :=D(m,r + s). If S aconvex polygorP, then(P)® is the triangle obtained by shifting each defining
line of its edges in an outward normal direction by a distasfee Typically, P is a triangle or a box. Finally,
if Sisaround triangle? = DNT, then(R)® = (D)*N(T)*. Note that(R)* depends on the representation
D andT'. Usually,s > 0. If s < 0, this is actually a shrinking operation ag§l)* may be the empty set.
Consider a configuratiofin, §) € Cjpqc. the footprintR; [m, 6] is a triangle inD,, (ro)). Let RT'(m, ©)
be a convex hull of the union of these footprintaange ove©. Note thatR7T (m, ©) is a round triangle.
In Figure 2, we showRT'(m, ©) for two choices ofR;’s. We define theouter domain 1 (B) to be the
r(B)-expansion ofRT'(m(B), ©). As before, théeature sety(B) is defined as those featuresd(?) that
intersectsV *(B). Finally, we defineC(B) using¢(B) as before. Computing'(B) in the context of an
expanding subdivision tree is also similar.

LEMMA 3. C is a soft version of” for the robotR;. AlsoC is effective for the class of squares.

98. Improvements. We can improve by providing some heuristic for quick detattf stuck boxes, in
analogy to Property (S1) for a disc robot. For any e can define amner domain W~ (B) such that
if any feature intersectd/ ~(B), thenB is stuck. IndeedV —(B) can be defined to be a suitable triangle:
in Figure2(i), W~ (B) is the triangle bounded by the line&, ab’ andbc'.

Figure 3: Enclosing circle of enclosing rectangle for obttrgangle: their rotation

Notice that we defined, as the circumscribing circle faR;. This can give us very largey when R,
is very thin (obtuse). Why not defing, as the smallest disc that contaifis? If R; is an obtuse triangle,
then its longest side will be a diameter 8§, and one vertex oR; will be in the interior of Ry. In general,
obtuse or not, we may need to deal with shapes more generaldbad triangles. Consider the triangle
in Figure3in its smallest enclosing circl€'. Two vertices of the triangle (red and blue) are@nbut the
green vertex is in the interior of the circle. If we slightiytate the triangle slightly counter-clockwise about



the center of”, the green vertex will lie outside the swept area. Theretbieeconvex hull of the swept area
of the triangle is bounded in part by an arc of the inner cifbtaunding the pink disk). The resulting convex
hull of the swept may comprise of 3 arcs, where one of them sdnoen the inner circle. But we expect
that the circumscribing circle approach is more effectiveua approximation.

6 Resolution Exactness

We have designed some non-trivial algorithms in the prevgections. We now clarify what sort of algo-
rithms these are. They are “resolution complete” in therimi@ sense of the literature. But what exactly
does this mean? Here is one commadefinition: “Resolution completeness” is the property that the plan-
ner is guaranteed to find a path if the resolution of an undegdygrid is fine enoughPresumably, “fine
enough” means “as the resolution paramétgo to0”. But if & is not bounded away frot, this entails an
infinite search and such algorithms will suffer from the imgltproblem that plaque Sampling Methods.
Notice that our algorithms in SectioAsnd5 have an explicit input > 0, called theesolution param-
eter. Itis essential that be different fromD. To use this parameter, we recall the concept of “cleararicet’
Ry C R¢ be any robot moving amidst the obstacfes- R%. Theclearanceof a configurationy € Cspace
is the closest distance between a pointify] and a point in{2. Moreover, theclearanceof a motion
po: [0,1] = Copace is the minimum clearance qi(t) for t € [0,1]. Here is another attempt to define
resolution completeness, where we now state a conversétioonr “no path’: (i) if there is a path with
clearances, then the algorithm will find a free patland (ii)if there is no path with clearancs it will report
“no-path”. Taken together, this pair of statements cannot be coasdtjmplies that we can detect the case
where the clearance is exactly a feat that only Exact Methods can perform (in which case wghtras
well design algorithms witlh = 0). What is missing in current discussions of resolution clatgmess is an
accuracy parameter K > 1. We say that a planner has accuracy K > 1 if the following holds:

e If there is a path with clearandge, it outputs a path with clearane¢ K.
o If there is no path with clearaneg K, it reports “no-path”.

Now we can define a concept noted in the introduction: a plaisngaid to beresolution-exactif it has
an accuracyK > 1. What if the maximum clearance of free paths lies strictlyhiea range(c/ K, Ke|?
According to this definition, the planner is free to reportadhpor “no path”. In our Theorem A below, we
prove that this cannot be avoidethis indeterminacy is the necessary price to pay for regmiuexactness
In our view, this price is not a serious one because the usethieaoption to decrease thgparameter as
desired. Of course, if you decreaséo ¢/ K, the indeterminacy will reappear for input instances thdy o
has paths with clearance in the rarig¢k?, <].

The result of Theorem A below concerns our algorithaET FINDPATH in 3 in the 2D case, as-
suming that all boxes are squares and we use the exact @apsédicate”’ (B). Recall that in our EACT
FINDPATH algorithm, we subdivide a box only if its width(B) is larger thanthe input resolution parame-
tere > 0. So the smallest boxes in the subdivision tfe@ave widtht with €/2 < ¢t < e. Now consider the
“full expansion” of the subdivision treg whose leaves are of the smallest size possible. Recall &8m
that a channel is a sequen@®,, ..., B,,) whereB;, B;,, are adjacent. We are interested in a free channel
wherea € B; andj € B,,.

LEMMA 4. If there exists a motiom with clearanced = 1/2¢, then ourEXACT FINDPATH algorithm
outputs a path with clearance/4.

Proof. See Appendix. O

We define aressential pathto be a path from the centerof a free boxB(«) containinga to the center
b of a free boxB(/3) containings (e.g., pathP in Figure7). A canonical path consists of line segments

5 E.g., http://len.wikipedia.org/wiki/Motiaplanning#Grid-Basedearch.
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@a, b3, and an essential pathfrom a to b. Note that the major task in motion planning is to find an essaken
path, while constructingia andb3 is straightforward. We define thessential clearancef a canonical path
to be the clearance of its essential path.

LEMMA 5. If there is no free canonical path with essential clearamgé, then ourEXACT FINDPATH
algorithm reports “no path”.

Proof. See Appendix. O

Putting together Lemmaé and 5, we have the following results for 2D, assuming that all woaes
squares and we use the exact classifier predicate).

THEOREM A: [Hard PredicateletC, ¢ > 1 and consider our planneEXACT FINDPATH.
(i) For C = /2, if there is a path with clearanc€'s, then our planner outputs a path with clearancgt.
(i) For ¢ = 4, if there is no free canonical path of essential clearaage, then our planner reports “no
path”.
The results in (i) and (ii) are tight in the following sense:
(i) If C < /2, there are obstacle inpuf@ admitting paths with clearanc€', but our planner reports “no
path”.
(i") If ¢ < 4, there are obstacle inputQ admitting no free canonical paths of essential clearantebut
our planner outputs a path.

Proof. See Appendix. O

Theorem A implies an accuracy factéf = 4, but it is clear that’ can be reduced by adjusting our
algorithm to use the resolution parameten a more equitable way.

The general form of this result is perhaps no surprise, keitattcuracy constants might not be what
we initially expect, since we are talking about an “exacoalfym”. There are two sources for the loss of
accuracy: first, subdivision boxes are “aligned” with theeger grid in the sense that their coordinates are
dyadic numbers. Second, the width of our smallest boxes;-MIXED boxes, lies betweety/2 ande.

An additional reason for accuracy loss is, of course, theafis®ft predicates. In particular, what is
the accuracy of our prototype algorithm93 when using the soft predicates $4? Recall from Lemma 1
that when boxes are squares, our soft predigbtms an effectivity factos = 1/+/2. In our algorithm, we
can replace our input resolution parameter Witk oe, i.e., we split boxes until the smallest box width is
betweere/2 andz, i.e., betweemwe/2 andoe.

LEMMA 6. If there exists a motiop with clearances = v/2¢, then our algorithm using soft predicaé
outputs a path with clearancee /4.

Proof. See Appendix. O

LEMMA 7. If there is no free canonical path with essential clearaneg4, then our algorithm using soft
predicateC reports “no path”.

Proof. See Appendix. O

Combining Lemmas 6 and 7, we have the following.
THEOREM B: [Soft Predicate)With the same assumptions as Theorem A, but with the exatitate
C(B) replaced by a soft predicaté(B) with effectivity factorr, we have:
(i) For C = /2, if there is a path with clearanc€’s, then our planner outputs a path of clearanee/4.
(i) For ¢ = 4, if there is no free canonical path with essential clearanegc, then our planner reports “no
path”.



This implies that the accuracy factéf now becomed/o. In general, we have:
Corollary: If the Exact version of our planner has an accuracy factok othen the Soft version of our
planner using a soft predicate with effectivity factohas an accuracy factor &f/o.

7 Robots with Complex Geometry

We shall now show how to extend our soft predicates techsitueobots with complex geometry or multi-
ple degrees-of-freedom (DOF). The state-of-the-art foatdould be practically implemented is discussed
in Zhang, Kim and Manochai[l]. They considered a series of challenging robot configoinati a “five-
gear” robot moving amidst a collection of static gear ods®@ “2-D puzzle” robot in a maze-like environ-
ment, a certain “star” robot with four DOF, and “serial linkdbot with four DOF. Another famous robot in
this literature is from Kavraki, with 10 DOF. Except for thstér”, the rest are planar robots. See Figlire
for (a) the “five-gear” of Zhang et.al, and (b) Kavraki’s rébo

B* Free Path’
Figure 4: Complex Robots

99. Decomposition Principle for Complex Rigid RobotsFirst consider the case of a rigid polygonal
robot Ry C R2, not necessarily convex. The “5-gear” robot inJis an instance. We first “coverR, with
a setS of triangles. More precisely, a s&tof subsets oR? is called acoverof Ry if [(R2) C Ures [(T)
where [(T') denotes the interior of a s@t C R?. The coversS is exactif the inclusion is an equality:
J(R2) = Ures [(T). Inour application, eacl € S'is atriangle. LeC, (B) denote the box classification
predicate forRy; we reduceC'y, to the classification predicaté€sr for each trianglél” € S as follows:

(VT € S)[Cr(B) =FREE] <  Cg,(B) = FREE, (1)

and
(3T € S)[Cr(B) =STUCK] = Cpg,(B) = STUCK. (2

Thus the condition for stuckness is only one-sided. Degp#enveakness of this criterion, our next result
shows that the weakness vanishes when we consider softatesti

THEOREM 8. Let.S be an exact cover for a robd?,. Consider the predicate:

N FREE if Cp(B)=FREEforallT € S
Cr,(B) = { STUCK if Crp (B) = STUCK for some T} € S
MIXED else.

If eachCr is a soft version of'7(13), thenCp, is a soft version of 'z, .

Proof. We must prove tha(f?R2 is conservative and convergent. The safety of the condtfé‘j@(B) =
FREE follows (1) and the safety of’y for eachT’ € S. Similarly, the safety of the conclusidfiy, (B) =
STUCK follows (2) and the safety o1, . Suppos€B; : i = 0,1,...) is a sequence of strictly decreasing
boxes that converges to a configuratipthat is not semi-free:

B; — v € Cspace(R2) (i — 00).
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If v is free, then we see that fordarge enoughéT(BZ-) =FREEforall T € S. Ihus,5R2(BZ-) = FREE.
If v is stuck, then we see that there is sofe S such that fori large enough('r(B;) = STUCK. Thus
Cr,(B;) = STUCK. Q.E.D.

<7

Figure 5: Sector o2 (7") defined by a robof” not containing the origird).

It remains to see how to classify boxes relative to a triamgbotT < S. Unlike the triangular robot
R, above, we must now choose a common origirfor all the triangles inS. It is not hard to ensure
that S contains at least one acute triandlg whose circumcente) is not covered by any other triangle
in S. We choose thi® as our origin. The soft version @f7,(B) can be computed as for simple robots
above. We now address computing the soft versio@’efB) for T' # T,. EncloseT” in the smallest disc
Ry(T') centered aD. By assumption(® ¢ T andT lies in sector ofRy(T") with angley wherey < .
The soft version o7 (B) whenB C Cj,qc is in the large regime can be based on just the digcl")
(i.e., we ignore the angular range B). When B is in the small regime, we develop a shape™ (B, T)
that is analogous to the round triangle. We define the)6Bt ") comprising those features that intersect
W*(B,T). As usual, we use(B,T) to define the soft predicat€7(B). Finally, we reduce the soft
predicateCNR2 (B) to éT(B) (T € S) using Theoren8. This completes our resolution-complete algorithm
for a complex robofRs.

In the full paper, we will also work out the details for the easf non-rigid robots such an link or
Kavraki's 10 DOF robot.

8 Conclusion

In this paper, we introduced the notion of soft predicated @é@monstrated their use in subdivision plan-
ners. We defined the concept of resolution-exact plannatspeoved that the algorithms we designed are
resolution-exact. The notion of resolution-exactnessedrout to offer previously unnoticed subtleties.

Several open problems are raised by this research: first,afi@lcan in principle extend our work to
subdivision of SE(3) = R? x S3. But the proper method for subdividing® is an interesting research.
Second, notice that we have not tried to compute the cormhecimponents o§TUCK boxes. We could do
this, and it has some use for fast termination in the case -g@atio. However, the best way to maintain this
information seems to run into interesting issues of contjmrtal topology. Edelsbrunner and Delfinado’s
work on computing the Betti number of3acomplex yields some clue about this isstie]]

According to Zhang et alJ[1], implementation of exact motion planning algorithms andydnown for
simple planer robots (like ladders or discs) and up to 3 aegoéfreedom. Thus it is important to pay more
attention to implementability of algorithms in this area.rbbotics, we propose to give up exactness for the
weaker notion of resolution-exactness. Little is lost by #tep, since exact algorithms are ill-matched to the
inherent limits on accuracy in physical systems. But we lmaueh to gain: Subdivision algorithms are more
holistic, integrating the concerns of topological cornests with geometric accuracy into one algorithm.

We believe Subdivision Methods can match the performan&aaipling Methods in many problems,
but with superior properties. We plan to implement our athars and make comparisons.
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In the full paper, we explore other variants of these alporg, with an eye to simplicity and imple-
mentability, and as always, correctness. We plan to imphktraad compare our method with other ap-
proaches, including those with exact predicates and pilidtadbapproaches. Our general philosophy can
clearly be extended to more complex motion planning problsuth as kinodynamic problems or those with
differential constraints. Combined with suitaliieget Next() heuristics, the complexity of our algorithms
can be highly adaptive.
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APPENDIX
In this appendix we provide all the missing proofs.

Lemma 1. The predicateC is a soft version of” for the robotR,. When boxes are squares, has an

effectivity factor ofl /v/2.
P Proof. To see the effectivity factor, suppose tl@tB) = FREE. Re-

ferring to Figure6, we see that the region bounded by the outer four red

segments and the outer four red circular arcs has no obsi@tdarly, the

dotted circle also contains no obstacle. Note that thisedatircle is cen-

tered atm(B) with radiusr + r(, and is the outer domaiiv * (o B) of box

o B whose radius ig, wherer = r(B)/+/2. This means that = 1//2

and we haveC(¢B) = FREE. ThereforeC has an effectivity factor of

Figure 6: Effectivity factor 1/V2. Q.E.D.

1/\/5- Lemma 4. If there exists a motiom with clearanced = v/2e, then our
ExAcT FINDPATH algorithm outputs a path with clearaneg4.

Proof. Consider the “full expansion” of as mentioned above, where the leaves have a widith = /2 <
t < e. Consider the subset of such leaves that cover. We claim that each leaf box id is free letp be a
point in  and B, be the leaf box wherg lies; since the diagonal d8, is v/2t < v/2e = 6, By lies entirely
within the “clearance region” gb and thusBy is free. Therefored consists of free leaf boxes of width
that coversy; in other words,A is afree channelll that coversu.

t2

/2

Figure 7: PathP with clearance /2 > /4.

Since there exists a free chanihetonnectingx and3, our EXACT FINDPATH algorithm will find some
free channelll’ connectinga: and 3 (I is not necessarilyiI, but at leasfll exists as a candidate to be
found by our algorithm). This can be justified as follows: sider the subdivision treg produced by our
algorithm It produces a subdivision ®®OI(7), and for each free bo® in A, there is a corresponding
free leafB* in T that containg3. These free leaveB*, after pruning redundancies, yield a free chariiiel
that coverdI. By definition of the correctness of any path finding algarih) a free channél’ connecting
« andg will be found iff there exists a free channidl connectingy andg.

Note thatll’ consists of free aligned boxes connecting frdfw), the free (aligned) box containing,
to B(p3), the free (aligned) box containing Since each free box i’ has width at least, we can construct
a rectilinear pathP, from the box centet. of B(«) to the box centeb of B(f), through the free boxes in
IT" where each point oP is away from the box boundary by a distance at le#8t(see Figure/ for an
example), and thu® has clearance/2 > ¢/4.

Our final reported patl®; is given byP; = aa U P U b. It remains to show thata has clearance/4
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(and similarly forbg by the same argument). The key point is to use the factdtzlongs tou and thus
has a clearancé& = \/2¢. We consider the following two cases.

Case (1): The width oB(«) is t. Then for any poiny € aa, d(«, ¢) is at most half of the diagonal of
B(a), i.e.,d(a,q) < /2t/2 < +/2¢/2 = §/2. However,a has clearancé, and thus; € @a has clearance
0 —d(a,q) >0d/2 >¢/4.

Case (2): The width oB(«) is at least2t. We refer to Figure3, where the boundaries of the inner box
and of B(«) are apart by a distaneg¢2. Clearly, any point ofva lying inside the inner box has clearance at
leastt/2 > /4. Now consider the portion afa outside the inner box. Without loss of generality, suppose
such portion lies in the green shaded rectangle and the slope is in the rang€0, 1] (for other cases
the slopes are in the rang€k oo), [—1,0), and (—oco, —1) and symmetric arguments apply). Note that
w = t/2 andh < w (since the slope aofia is in [0, 1]), the diagonal of the green shaded rectangle is at
mosty/2t/2 < v/2¢/2 = §/2, i.e., any poiny € @a lying in the green shaded rectangle s, q) < §/2.
Sincea has clearance, suchqg has clearancé — d(a, q) > 6/2 > ¢/4. Therefore every point ofia has
clearance: /4.

]

i)

B(a)

2

Figure 8: Segmenta has clearance/4.

Lemma 5. If there is no free canonical path with essential clearang¢é, then ourEXACT FINDPATH
algorithm reports “no path”.

Proof. We prove the contrapositive: When our &CT FIND PATH algorithm finds a path, there exists a free
canonical path with essential clearancel. Indeed, when our algorithm finds a free path, it finds a set
of free aligned boxes connecting froBi(«) to B(/3). Since each such free box has width at leaste

can construct an essential path, which is a rectilinear patthere each point of is away from the box
boundary by a distance at leagp (see Figur&). Clearlyaa U PUbS is a free canonical path with essential
clearance at leasgf2 = ¢/4. O

THEOREM A: [Hard PredicatelLetC, ¢ > 1 and consider our planneEXACT FIND PATH.

(i) For C = /2, if there exists a path with clearancgs, then our planner outputs a path with clearance
e/4.

(i) For ¢ = 4, if there is no free canonical path with essential clearan¢e then our planner reports “no
path”.

The results in (i) and (ii) are tight in the following sense:

(i) If C < /2, there are obstacle inpuf@ admitting paths with clearanc€', but our planner reports “no
path”.

(i") If ¢ < 4, there are obstacle inputQ admitting no free canonical paths of essential clearantebut
our planner outputs a path.
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Proof.

(i) and (ii) are Lemmag and 5 respectively.

(). Consider anyC' < /2. We can have an obstacle ingitsuch that it admits a path with clearance
Ce, whereq lies in the aligned boX3 = B(«) of our subdivision tree, with widthv(B) = ¢, but the robot
center cannot be placed in the red shaded triangle regierHge Figure9d). Note that the diagonal dB is
v/2e anda can still have clearanc€e. However,B is a mixed box withw(B) = ¢ and thus the expansion
of B fails. Therefore our planner reports “no path”.

13

Figure 9: Proof of Theorem A (i’).

(ii"). Supposec = 4 — ¢ for somel > § > 0. Choose a dyadic number> § and defines := 2t — 4.
Since we subdivide our boxes until they are just smaller thahis implies our smallest boxes will have
width exactlyt. Suppose we have a channel comprising a “linear” sequeBeeBs, . .., By) (k > 3) of
free boxes of widtht. Linear sequence means there is a lingmssing through the centers of these boxes.
We may place obstacles such that the clearance of any poihisari2, and all other points in this channel
has clearance: /2. Assumex = m(B;) ands = m(By). Note that/ is both a free canonical path and
an essential path, and the essential clearandesothe same as its clearance and vice versa. Clearly, our

planner will report the channel pat,, . . ., By). It remains to show that there are no (free canonical) paths
of (essential) clearancg/c = 2. Observe that
2t — 4
— < t/2.
4—0 /
: - _ 26
Hence there are no (free canonical) paths of (essenti@jasiee: /c = . Q.E.D.

Lemma 6. If there exists a motiop with clearances = /2¢, then our algorithm using soft predicaﬁé
outputs a path with clearance: /4.

Proof. This is a “soft version” of Lemma4. Consider the “full expansion” of our subdivision trée now the
smallest boxes have widty (instead oft). Look at the subsetl of such leaf boxes that cover For each
such leaf boxBy, let By /o be the box centered at(B,) with width ¢. We claim thatB, /o is free: letp be a
point ony that lies inBy; clearlyp also lies inB,/o. Since the diagonal aB, /o is /2t < \/2c = §, By/o
lies entirely within the “clearance region” pfand thusB, /o is free. Therefore we haw€(By/o) = FREE.
By the effectivity factoro for C, C(By/o) = FREE implies C(B;) = C(0(B/o)) = FREE. Therefore we
can useC' to classify eachB, to be free, and thus to classiff as afree channelcoveringy. This is the
same as the free channdlcoveringu in the proof of Lemmad, but now each channel box has width
rather thart. The rest of the proof of Lemmécarries over, with the reported path having a cleararge
rather thare /4. O

Lemma 7. If there is no free canonical path with essential clearaneg4, then our algorithm using soft
predicateC reports “no path”.
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Proof. This is a “soft version” of Lemm&. Again we prove the contrapositive: When our algorithm finds
a path, there exists a free canonical path with essentiataieess/4. The proof of Lemméb carries
over, but now each free aligned box has widthrather thart, and thus the essential clearance is at least

ot/2 = oe/4. O
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