
On Soft Predicates in Subdivision Motion Planning∗

Yi-Jen Chiang† Chee Yap‡

Polytechnic Institute of NYU New York University

Abstract

We propose to design new algorithms for motion planning problems using the well-
known Domain Subdivision paradigm, coupled with “soft” predicates. Unlike the tra-
ditional exact predicates in computational geometry, our primitives are only exact in
the limit. We introduce the notion ofresolution-exact algorithmsin motion planning:
such an algorithm has an “accuracy” constantK ≥ 1, and takes an arbitrary input
“resolution” parameterε > 0 such that: if there is a path with clearanceKε, it will
output a path with clearanceε/K; if there are no paths with clearanceε/K, it reports
“no path”. Besides the focus on soft predicates, our framework also admits a variety of
global search strategies including forms of the A* search and also probabilistic search.

Our algorithms are practical, easy to implement, and have adaptive complexity. Our
deterministic and probabilistic strategies can achieve if-and-only-if form of complete-
ness, unlike probabilistic completeness. We will give examples of our approach, in-
cluding problems that currently have no complete exact description, complex robot
geometry and high-degree freedom robots. The approach is widely applicable to other
related problems, illustrating what we call “numerical Computational Geometry”.

∗This work is supported by NSF Grant CCF-0917093 and DOE GrantDE-SC0004874.
†Chiang is with the Department of Computer Science and Engineering, Polytechnic Institute of NYU,yjc@poly.edu.
‡Yap is with the Department of Computer Science, NYU, New York, NY 10012, USA,yap@cs.nyu.edu.

1 Introduction

A central problem of robotics is motion planning [4, 22, 23, 10]. In the early 80’s there was strong inter-
est in this problem among computational geometers [18, 29]. This period saw the introduction of strong
algorithmic techniques with complexity analysis, and the careful investigation of the algebraic C-space. We
introduced the retraction method in [25, 30, 31, 35]. In a survey of algorithmic motion planning [36], we
also established the universality of the retraction method. This method is now commonly known as the road
map approach, popularized by Canny [7] who showed that its algebraic complexity is in single exponential
time. Typical of algorithms in Computational Geometry, these exact motion planning algorithms assume a
computational model in which exact primitives are available in constant time. Implementing these primi-
tives exactly is non-trivial (certainly not constant time), involving computation with algebraic numbers. In
the 90’s, interest shifted back to more practical techniques, such as the well-knownprobabilistic roadmap
method (PRM) [20]. The idea is to compute a partial road map by random samplingof the configuration
space. PRM offers a computational framework for a class of algorithms. Moreover, many1 variants of the
basic framework have been developed. In an invited talk at the recent workshop2 on open problems in mo-
tion planning, J.C. Latombe stated that the major open problem of suchSampling Methodsis that they do
not know how to terminate when there is no free path. In practice, one would simply time-out the algorithm,
but this leads to issues such as the “Climber’s Dilemma” [19, p. 4] that arose in the work of Bretl (2005).
We call this thehalting problem of PRM, viewed as the ultimate form of what is popularly knownas the
“Narrow Passage Problem” [10, p. 216]. Latombe’s talk suggested promising approaches such as Lazy PRM
[3]. An excellent account of the state of the art in motion planning is found in Choset et al [10].

In this paper, we turn to another pop-

(b)

1

(a)

ON leaf

OFF leaf

KEY:

1 2 3 4

Figure 1: (a) Subdivision of a region (yellow). (b) Its Subdivi-
sion Tree

ular approach [42] for motion planning,
which we callSubdivision Methods. The
general idea is to subdivide some bounded
domainB0, typically a subset ofRd. In
motion planning, the domain is a subset of
configuration space. In its simplest form,
the subdivision ofB0 can be represented
as asubdivision tree, which is a gener-
alization of bisection search (d = 1) or
quad-trees (d = 2), as illustrated in Fig-
ure1. An early reference for this approach

is Brooks and Lozano-Perez [5]. Some more recent subdivision references include [42, 2, 41, 12, 26].
Manocha’s Group at UNC has been very active and highly successful in producing practical subdivision
algorithms for a variety of tasks, many critical in motion planning [34, 33]. Although domain subdivisions
are sometimes known as “cell decomposition” (e.g., [42]), we reserve “cell decomposition” for methods of
partitioning configuration space into cells with finite combinatorial-algebraic description (e.g., [28, 36]). In
contrast to such cells, the boxes in our subdivision need nothave any direct correlation to combinatorial
complexity of the problem. Such boxes are clearly related to“resolution”. But more “guided subdivision”
that takes into account combinatorial complexity are seen in [41, 42]. This “combinatorial-cum-resolution”
complexity leads to new complexity analysis that is not possible in the traditional exact algorithms. Recent
examples of such complexity analysis are seen in our relatedwork [27, 13, 32, 6].
¶1. What is New in This Paper. The most distinctive contribution of this paper is the explicit introduc-

tion of soft primitives into motion planning (and more generally, into SubdivisionMethods). Briefly, soft
primitives are just suitable numerical approximations of exact (hard) primitives. Soft primitives are ideally
suited in a subject like motion planning where the standard notion of exactness of computational geometry
makes little sense for robot sensors and mechanical systemsthat have inherent accuracy limits. As we shall

1 A partial list includes Expansive-Spaces Tree planner (EST), Rapidly-exploring Random Tree planner (RRT), and Sampling-
Based Roadmap of Trees planner (SRT).

2 IROS 2011 Workshop on Progress and Open Problems in Motion Planning, September 30, 2011, San Francisco.
http://www.cse.unr.edu/robotics/tc-apc/ws-iros2011.

1

show, the development of such primitives will lead to new theoretically sound algorithms that are highly
practical. Based on the above work [27, 13, 32, 6], we conjecture that these algorithms are also provably
efficient. Currently, it seems that practitioners have to choose between sound algorithms that are not prac-
tical and heuristic methods that seems to work well in practice. We stress that Subdivision Methods using
soft primitives are easy to implementexactly. Implementing a primitive exactly does not mean the primitive
itself is exact; but it does means that our implemented algorithm will not suffer from “implementation gaps”
that could render theoretical correctness/exactness properties worthless. This has been a bugbear of many
algorithms of computational geometry. The basis for our general approach is discussed in [39, 40]. Our
second main contribution is a systematic treatment of resolution completeness. The concept of “resolution
completeness” is widely used in the motion planning literature [10], but rarely analyzed. We introduce the
concept ofresolution-exact (or ε-exact) algorithms, and analyze their properties. There are subtleties in
this concept – for instance, we will prove that there is inherent indeterminacy in such algorithms.

2 On Numerical Subdivision Algorithms

Computational Geometry until now has almost exclusively concentrated onExact Methods. The many
attractive features of exact algorithms are well-known. But there is limitation in its computational model
based on hard primitives. The inability of Exact Methods to have wider impact on robotics and those fields
of Computational Sciences and Engineering (CS&E) where geometric reasoning is dominant ought to call
for a re-examination of our assumptions. We argue that Subdivision Algorithms, when3 combined with soft
primitives, offer a pathway for Computational Geometers todesign new algorithms that are theoretically
sound and can have an impact on the above fields. Our soft primitives do not entail any error analysis in the
style of numerical analysis; rather, we rely on some form interval method [24]. It is hard to ignore the many
advantages in this alternative view of Computational Geometry [40]. We now outline these advantages for
motion planning.

Subdivision Methods share with Sampling Methods many advantages over Exact Methods. They both
lead to algorithms that are very easy to implement and modify. Implementability is a property that should be
valued more. Modifiability is important in practice: imagine deploying such algorithms in physical robots
where non-algorithmic considerations may need to be accounted for. Exact algorithms are not so flexible.
A less obvious advantage is that both methods are very forgiving – you can implement the primitives of
Sampling or Subdivision Methods imprecisely, and the algorithms would not necessarily suffer catastrophic
breakdown (crashing, entering an infinite loop, etc) [21]. In contrast, exact algorithms are infamous for their
sensitivity to numerical errors; this is the key motivationfor the field of EGC [38]. Despite these similarities,
the big difference between Sampling and Subdivision is thatthe latter can detect non-existence of free paths
[41]. In view of Latombe’s keynote talk above, this ability is significant. Some authors make sampling
methods resolution-complete by ensuring a certainly sample density as in [9]. Nevertheless, the guarantees
are much weaker than in Subdivision.

A practical advantage of Subdivision and Sampling Methods is that they allow the possibility of finding
free pathsbefore the entire free configuration space has been fully explored.In contrast, known Exact
Methods have an expensive pre-processing phase which amounts to computing a complete description of
the free configuration space (Cfree) before any path searching can even begin.

Exact algorithms typically returns a combinatorial path defined by implicit constraints; this path must
be converted into a trajectory (i.e., parametrized path inCfree) before a physical robot can follow the path.
Thus, trajectory planning requires a subsequent numericalstage that is rarely discussed in exact algorithms.
In Subdivision Methods, these 2 stages are integrated in a natural way.

One disadvantage of numerical primitives is that they are only complete in the limiting sense. But
in robotics, where the data and control have limited precision, this is no serious restriction — numerical

3 We note that Subdivision Algorithms could also be combined with hard primitives, as seen in Section III. But the full power
of Subdivision Methods reveals itself when we exploit soft primitives.

2

methods can be certified up to any desired precision. But numerical methods are more general than exact
approaches in the sense that they are applicable to analytic(non-algebraic) problems where exact solutions
are generally unknown (see [8]).

3 Subdivision Motion Planning

In this section, we illustrate our approach with a basic motion planning problem. Fix a rigid robotR0 ⊆ R
d

and an obstacle setΩ ⊆ R
d. BothR0 andΩ are closed sets. Initially we assumeR0 is ad-dimensional ball

of radiusr0 > 0.
Suppose we want to compute a motion from an initial configurationα to some final configurationβ. One

of the best exact solution whenR0 is a ball is based on roadmaps (i.e., retraction approach). Historically,
the cased = 2 was the first exact roadmap algorithm [25]. For polygonalΩ, the roadmap is efficiently
computed as the Voronoi diagram of line segments [37, 17]. For d = 3, it is clear that a similar exact
solution is possible. But here we see the severe barrier posed by exact solutions: we are not aware of any
exact algorithm for the Voronoi diagram of polyhedral obstacles. The problem lies in working out details of
the algebraic primitives and the possible degeneracies (e.g., in the style of [14]). Indeed, the details for the
exact computation of the Voronoi diagram of three lines inR

3 has only recently been worked out [16, 15].
The configuration spaceor Cspace is R

d whenR0 is a ball. In general, we writeCspace(R0) for the
configuration of a robotR0. Letα, β ∈ Cspace. Thefootprint of R0 atα is the setR0[α] comprising those
points inRd occupied byR0 in configurationα. We sayα is free if R0[α] ∩ Ω is empty; it issemi-free
if it is not free butR0[α] does not intersect the interior ofΩ. Thusα is semi-free ifR0[α] is just touching
Ω without penetrating it. Finallyα is stuck if it neither free nor semi-free. Thus, every configuration is
classified as free, stuck or semi-free. We extend this classification to any setB ⊆ Cspace: we sayB is
free (resp., stuck) if everyα ∈ B is free (resp., stuck). Otherwise,B is mixed. We have thus defined
theclassification predicateC : 2Cspace → {FREE, STUCK, MIXED}. In practice, the predicateC(·) is only
computable for “nice” sets, e.g., whenB is a box. Our goal in soft primitive design is to avoid this exact
computation. This classification goes back to beginning of subdivision motion planning when Brooks and
Perez [5] used the empty/full/mixed labels.

Let Cfree = Cfree(R0,Ω) ⊆ Cspace denote the set of free configurations. Amotion from α to β is a
continuous mapµ : [0, 1] → Cspace with µ(0) = α andµ(1) = β. We sayµ is afree motion if its range is
contained inCfree

¶2. Subdivision Trees. Our main data structure is a subdivision treeT rooted at a boxB0 ⊆ R
d (see

Figure1 for d = 2). The nodes ofT are subboxes ofB0, where boxes are closed subsets of full dimension
d, and each internal nodeB is split into2i (i = 1, . . . , d) congruent subboxes which form the children of
B. We remark that boxesB are axes-parallel and not assumed to be square, withwidth w(B) and length
ℓ(B) defined to be the lengths of the shortest and longest side (resp.). For convergence, we must assume
that theaspect ratioℓ(B)/w(B) ≥ 1 is bounded. Any box that can be obtained as a descendent ofB0 in a
subdivision tree is said to bealigned. Letm(B) denote themidpoint andradius r(B) be the distance from
m(B) to any corner ofB. For any real numbers > 0, let s · B denote the congruent box centered atm(B)
with radiuss · r(B). Two boxesB,B′ areadjacent if B ∩B′ is afacetF of B or ofB′, where facets refer
to faces of co-dimension1. Also, letDm(r) denote theclosed ballcentered atm with radiusr.

To allow domains of arbitrarily complex geometry, the inputto our algorithm is an initial subdivision
treeT0 whose leaves are arbitrarily markedON or OFF. The set ofON-leaves forms asubdivision of the
region-of-interestROI(T) of the tree. Subsequently,T can beexpandedat anyON-leafB, by splitting B
into 2i (1 ≤ i ≤ d) congruent subboxes who become the children ofB. These children remainON-boxes, so
ROI(T) is preserved.

¶3. An Exact Subdivision Algorithm. Our algorithm is givenε > 0 and an initialT0 rooted atB0. The
algorithm is parametrized by two subroutines: a classification predicateC(B) for boxes, and a subroutine

3

Split(B, ε) which returns a subdivision ofB into 2i (for somei = 0, . . . , d) congruent subboxes; the split
subroutine is said to fail ifw(B) < ε (in this casei = 0). We useT to search for a path inB0 ∩ Cfree

as follows. LetV (T) denote the set of free leaves inT . We define an undirected graphG(T) with vertex
setV (T) and edges connecting pairs of adjacent free boxes. We maintain the connected components of
G(T) using the well-knownUnion-Find data structure onV (T): givenB,B′ ∈ V (T), Find(B) returns
the index of the component containingB, andUnion(B,B′) merges the components ofB and ofB′.

We associate withT a priority queueQ = QT to store all the mixed leavesB with width w(B) ≥ ε.
Let T .getNext() remove a box inQ of highest “priority”. This priority is discussed below. IfB is the box
returned byT .getNext(), we will expandB as follows: first callSplit(B, ε). If Split(B, ε) fails, we return
fail. Otherwise, each of the subboxesB′ returned bySplit(B, ε) is made a child ofB. We labelB′ with the
predicateC(B′). If C(B′) = FREE, we insertB′ into V (T) and into the union-find structure, and for each
B′′ ∈ V (T) adjacent toB′, we callUnion(B′, B′′). Finally, if C(B′) = MIXED andw(B′) ≥ ε, we insert
B′ intoQ. Thus, mixed box of width< ε are discarded (effectively regarded asSTUCK). Now we are ready
to present a simple but useful exact subdivision algorithm:

EXACT FINDPATH :
Input: Configurationsα, β, toleranceǫ > 0, boxB0 ∈ R

d.
Output: Path fromα to β in Free(R0,Ω) ∩B0.

Initialize a subdivision treeT with only a rootB0.
1. While (BoxT (α) 6= FREE)

If (ExpandBoxT (α) fails) Return(”No Path”).
2. While (BoxT (β) 6= FREE)

If (ExpandBoxT (β) fails) Return(”No Path”).
3. While (Find(BoxT (α)) 6= Find(BoxT (β)))

If QT is empty, Return(”No Path”)
(*) B ← T .getNext()

ExpandB
4. Compute a channelP fromBoxT (α) toBoxT (β).

General a motionP fromP and Return(P)

In Step 4, thechannelP is a sequence(B1, . . . , Bm) of boxes whereBi, Bi+1 are adjacent. We convert
the channel into a motion (or trajectory) which is a parametrized pathP : [0, 1] → Cfree from α to β. We
can easily generateP to satisfy reasonable constraints such as smoothness. As noted, this ability to generate
a motion is a big win of subdivision methods over pure algebraic methods. Note that our channels are free,
in contrast to the M-channels (each a sequence of adjacentFREE or MIXED leaf boxes) of Zhu-Latombe
[42], Barbehenn-Hutchinson [2] and Zhang-Manocha-Kim [41]. Freeness is essential in the Union-Find
application.

The routineT .getNext() in Step (*) is not fully specified, but critical. To ensure “completeness” of this
algorithm, a simple solution is to return any mixed leaf of minimum depth. Below, we will provide careful
analysis of completeness. But many other interesting heuristics are possible: IfgetNext() is random, we
obtain a form of Sampling Method. By alternating between randomness and some complete strategy, we
can get the best of both worlds. IfgetNext() always return a mixed leaf that is adjacent to the connected
component ofBoxT (α), we get a sort of Dijkstra’s algorithm or A*-search (see Barbehenn and Hutchinson
[2, 1]). Another idea is to use some entropy criteria. Recent workon shortest-path algorithms in GIS road
systems offers many other heuristics.

4 Let us Design Soft Predicates!

The above exact subdivision is not our claim to novelty. Nevertheless, our framework has interesting fea-
tures, and seems more adaptive than some suggestions in the literature. For instance, the (uniform) grid [23,

4

p. 185] is widely used. According to the Wikipedia4 article on resolution completeness, most resolution
complete planners are grid-based and uniform. Although grids are superficially similar to subdivisions, a
critical difference is that grids use point-based operations while our theory is based on box (interval) op-
erations with guarantees. Uniform grid translates into breadth-first search strategy forT .getNext(), but
we can do much better. Zhu and Latombe [42] suggests a more goal directed form of this expansion: pick
some “shortest” M-channel (sequence of adjacentFREE or MIXED leaf boxes) and expand all theMIXED
boxes in the channel. To support this kind of channel expansion, Barbehenn and Hutchinson introduced the
highly efficient Dijkstra-search or its extension to A* search [2, 1]. While finding the shortest A*-path is
efficient, the efficient update of the A*-structure after expansion is not well-understood. The justification of
expanding along a shortest M-channel is also unclear.

Our true interest lies in replacing the exact predicateC(B). Generally, exact predicates need algebraic
computation and can be highly non-trivial to compute. In thepresent case, especially ford = 2, computing
C(B) is actually feasible. Even so, we prefer to avoid exact computation. We will replaceC(B) by some
C̃(B) which is easy to compute and “correct in the limit”.

¶4. Soft Predicates. We now formalize the needed properties. LetC̃(B) be a box predicate that returns a
value in{FREE, STUCK, MIXED} . We callC̃ asoft versionof C if two conditions hold:

(A1) It is safe, i.e.,C̃(B) 6= MIXED impliesC̃(B) = C(B).
(A2) It is convergent, i.e., if {Bi : i = 1, 2, . . . ,∞} converges to a configurationγ andC(γ) 6=
MIXED, thenC̃(Bi) = C(γ) for large enoughi.

We need a quantitative measure of the convergence rate. Relative to any classB of boxes, a soft versioñC
of C is said to have aeffectivity factor of σ if C(B) = FREE implies C̃(σB) = FREE for all B ∈ B. One
might imagine a stronger condition thatC(B) 6= MIXED impliesC̃(σB) 6= MIXED for all B ∈ B. However,
it seems difficult to effectively computẽC with such strong properties. Our weaker definition suffices for
our main Theorem A. Clearly,0 ≤ σ ≤ 1. Call C̃ effective for B if it has some effectivity factor relative to
B. For example, we will prove that our soft predicates below are effective for the classB of square boxes.

We now design soft predicates̃C assumingΩ is a polyhedral set, and the boundary ofΩ is partitioned
into a simplicial complex comprising open cells of each dimension. These cells are calledfeatures of Ω.
For d = 3, the features of dimensions0, 1, 2 (resp.) are calledcorners, edgesandwalls. Each boxB is
associated with three sets: itsouter domainW+(B) ⊆ R

2, inner domain W−(B) ⊆ R
2, andfeature set

φ(B) ⊆ Φ(Ω). We defineW+(B) andW−(B) as the discsDm(B)(r0 + r(B)) andDm(B)(r0 − r(B)),
respectively. Ifr0 < r(B), theW−(B) is empty. Also,φ(B) comprises the features ofΩ that intersects
W+(B). We callB simple if one of the following conditions holds:

(S0) Its feature setφ(B) is empty.
(S1)Some feature ofΩ intersects its inner domain.

The soft predicatẽC can now be defined: for our purposes, we only need to defineC̃(B) for aligned
boxesB. Thus we can use induction by depth. IfB is non-simple, declarẽC(B) = MIXED. Else if (S1)
holds, declarẽC(B) = STUCK. Otherwise, (S0) holds and clearlyB is either free or stuck, and we define
C̃(B) = C(B) accordingly.

We now come to computing̃C(B), but only in the context whereB is a leaf of a subdivision tree. In this
case, we can easily computeφ(B) by induction: when we expandB, we can easily distribute the features
in φ(B) to each of its children (note that a feature can be given to more than one child, or to no child).
Moreover, we can check the conditions (S1) and (S0) during this distribution. Finally, if (S0) holds, we
determineC̃(B) as follows:C̃(B) = FREE (resp.,STUCK) iff m(B) is outside (resp., inside) the obstacleΩ.

4 http://en.wikipedia.org/wiki/Motion planning#Completeness and Performance, retrieved Oct 27,
2011.

5

To distinguish these two cases, we just check the feature setφ(B.parent) of its parent boxB.parent of
B. The setφ(B.parent) is non-empty, and by a linear search, we find the featuref in this set that is closest
tom(B). This feature may be a wall, edge or corner but it is assumed that the features are locally oriented
so that we can decide whetherm(B) is inside or outsideΩ in the neighborhood off .

LEMMA 1. The predicateC̃ is a soft version ofC for the robotR0. When boxes are squares,̃C has an
effectivity factor of1/

√
2.

Proof. See Appendix.

All we do is to substitutẽC for C in the exact algorithm of the previous section to get a complete motion
planning algorithm — this will be proved below, when we introduce resolution-exact algorithms.

What have we gained? This algorithm is extremely easy to implement ford = 2 and3. For d > 3,
it is also easily implemented if we assume all features are simplicial. In particular, the computation of
C̃ (which includes maintainingφ(B)) uses only distance computation between points and features, and
numerical approximations can be employed in these computations. Already, ford = 3, we have achieved a
resolution-exact algorithm for a problem for which there isno known exact solution.
¶5. Improvements. We can speed up the computation as follows: we will define the set φ(B) in a

slightly different way by recognizing two regimes for boxes. In the “smallB regime”, i.e.,r(B) < r0,
we computeφ(B) as before. In the “largeB regime”, i.e.,r(B) ≥ r0, we can defineφ(B) to comprise
those features that intersects the boxαB whereα = 1 +

√
2r0/r(B). In general, for any boxB, and real

numberα > 0, αB denotes the box centered atm(B) of radiusα. Checking if a feature intersectsαB is
also extremely simple. This new definition should generallyresult in smaller sizes forφ(B).

We remark that the condition (S1) could have been omitted without affecting the correctness of the
algorithm. It’s role is to provide an early stuck decision. So for fast implementation, it could be omitted.

5 Rotational Degree of Freedom

Next consider the case where robotR1 ⊆ R
2 has a simple shape. AssumeR1 is a triangle, andR1 is

contained in a circumscribing discR0 of radiusr0. Now,Cspace = SE(2) = R
2×S1. Each boxB ⊆ Cspace

is decomposed asR × Θ whereR ⊆ R
2 is a rectangle andΘ ⊆ S1 is an angular range. We also write

m(B), r(B), w(B) to denote the previously definedm(R), r(R), w(R). Two boxesB = R × Θ and
B′ = R′×Θ′ areadjacent iff R andR′ are adjacent, andΘ andΘ′ are adjacent in the circular geometry of
S1.

¶6. ε-Smallness. We discuss the issue ofsplittingc

a

b′

b

a
a′

c′

c

(ii)(i)

b′

b

a′

c′

Figure 2: Shaded area represent round triangles:
(i) aa′bb′cc′, (ii) ab′cc′.

B: we can obviously simply splitB into 8 congruent
children. However there are two issues. First of all, we
may want to avoid splitting the angular range whenB
is in the “large regime”: as long asw(B) ≥ r0, we
can approximateR1 by R0 and ignore the rotational
degree of freedom. SoB is split into 4 children (based
on splittingR but notΘ). WhenB is in the “small
regime”, i.e.,w(R) < r0, we begin to split the angular
range. But here, we want to treatΘ differently thanR.
To understand this, recall we previously do not split a
box R whenw(R) < ε. Let us sayR is ε-small if

w(B) < ε. We need a similar criteria forΘ, and here, we sayΘ is ε-small if |Θ| < ε/r0. This assumes
that angles are in radians, andΘ is represented as a subset[θ1, θ2] ⊆ [0, 2π]; also|Θ| is defined asθ2 − θ1.
Finally, we sayB = R×Θ is ε-small if bothR andΘ areε-small. We now define our procedureSplit(B, ε)
as follows: to splitB, we splitR andΘ separately. These will not be split if they are alreadyε-small. Thus,

6

splitting B will result in 2i children fori = 0, 1, 2, 3. Our definition ofε-smallness is motivated by this
lemma:

LEMMA 2. Assume0 < ε ≤ π/2. If B is ε-small, then the Hausdorff distance between the footprintsofR1

at any two configurations inB is at most(1 +
√
2)ε.

This result uses the fact that if we rotateR1 by θ about the center ofR0, then the vertices ofR1 moves by
at most2r0 sin(θ/2) ≤ r0θ sincesin θ ≤ θ for θ in the said range. Also, the translational distance between
any two configurations inB is at most

√
2ε.

¶7. Soft Predicate for Rotation. We now design a soft versioñC of C. The strategy follows the
case of disc robot: we define the feature setφ(B) associated with a boxB = R × Θ as comprising those
features ofΩ that intersects the setW+(B) whereW+(B) is a “round triangle” associated withB. We call
R a round triangle if it is given as the intersection of a discD with a triangular regionT (see Figure2).
If (D,T) 6= (D′, T ′) but D ∩ T = D′ ∩ T ′, we regard these two round triangles as different. For any
real numbers, we denote thes-expansionof various shapesS ⊆ R

2 by (S)s. If S = D(m, r) is a disc,
(D)s :=D(m, r+ s). If S a convex polygonP , then(P)s is the triangle obtained by shifting each defining
line of its edges in an outward normal direction by a distanceof s. Typically,P is a triangle or a box. Finally,
if S is a round triangleR = D∩T , then(R)s = (D)s∩ (T)s. Note that(R)s depends on the representation
D andT . Usually,s ≥ 0. If s < 0, this is actually a shrinking operation and(S)s may be the empty set.

Consider a configuration(m, θ) ∈ Cspace the footprintR1[m, θ] is a triangle inDm(r0)). LetRT (m,Θ)
be a convex hull of the union of these footprints asθ range overΘ. Note thatRT (m,Θ) is a round triangle.
In Figure2, we showRT (m,Θ) for two choices ofR1’s. We define theouter domainW+(B) to be the
r(B)-expansion ofRT (m(B),Θ). As before, thefeature setφ(B) is defined as those features inΦ(Ω) that
intersectsW+(B). Finally, we defineC̃(B) usingφ(B) as before. Computing̃C(B) in the context of an
expanding subdivision tree is also similar.

LEMMA 3. C̃ is a soft version ofC for the robotR1. AlsoC̃ is effective for the class of squares.

¶8. Improvements. We can improve by providing some heuristic for quick detection of stuck boxes, in
analogy to Property (S1) for a disc robot. For any boxB, we can define aninner domain W−(B) such that
if any feature intersectsW−(B), thenB is stuck. IndeedW−(B) can be defined to be a suitable triangle:
in Figure2(i), W−(B) is the triangle bounded by the linesa′c, ab′ andbc′.

Figure 3: Enclosing circle of enclosing rectangle for obtuse triangle: their rotation

Notice that we definedR0 as the circumscribing circle forR1. This can give us very larger0 whenR1

is very thin (obtuse). Why not defineR0 as the smallest disc that containsR1? If R1 is an obtuse triangle,
then its longest side will be a diameter ofR0, and one vertex ofR1 will be in the interior ofR0. In general,
obtuse or not, we may need to deal with shapes more general than round triangles. Consider the triangle
in Figure3 in its smallest enclosing circleC. Two vertices of the triangle (red and blue) are onC, but the
green vertex is in the interior of the circle. If we slightly rotate the triangle slightly counter-clockwise about

7

the center ofC, the green vertex will lie outside the swept area. Therefore, the convex hull of the swept area
of the triangle is bounded in part by an arc of the inner circle(bounding the pink disk). The resulting convex
hull of the swept may comprise of 3 arcs, where one of them comes from the inner circle. But we expect
that the circumscribing circle approach is more effective as an approximation.

6 Resolution Exactness

We have designed some non-trivial algorithms in the previous sections. We now clarify what sort of algo-
rithms these are. They are “resolution complete” in the informal sense of the literature. But what exactly
does this mean? Here is one common5 definition: “Resolution completeness” is the property that the plan-
ner is guaranteed to find a path if the resolution of an underlying grid is fine enough.Presumably, “fine
enough” means “as the resolution parameterh go to0”. But if h is not bounded away from0, this entails an
infinite search and such algorithms will suffer from the halting problem that plaque Sampling Methods.

Notice that our algorithms in Sections4 and5 have an explicit inputε > 0, called theresolution param-
eter. It is essential thatε be different from0. To use this parameter, we recall the concept of “clearance”. Let
R0 ⊆ R

d be any robot moving amidst the obstaclesΩ ⊆ R
d. Theclearanceof a configurationγ ∈ Cspace

is the closest distance between a point inR0[γ] and a point inΩ. Moreover, theclearanceof a motion
µ : [0, 1] → Cspace is the minimum clearance ofµ(t) for t ∈ [0, 1]. Here is another attempt to define
resolution completeness, where we now state a converse condition for “no path’: (i) if there is a path with
clearanceε, then the algorithm will find a free path, and (ii) if there is no path with clearanceε, it will report
“no-path” . Taken together, this pair of statements cannot be correct,as it implies that we can detect the case
where the clearance is exactlyε, a feat that only Exact Methods can perform (in which case we might as
well design algorithms withε = 0). What is missing in current discussions of resolution completeness is an
accuracy parameterK ≥ 1. We say that a planner has anaccuracyK ≥ 1 if the following holds:

• If there is a path with clearanceKε, it outputs a path with clearanceε/K.
• If there is no path with clearanceε/K, it reports “no-path”.

Now we can define a concept noted in the introduction: a planner is said to beresolution-exact if it has
an accuracyK ≥ 1. What if the maximum clearance of free paths lies strictly inthe range(ε/K,Kε]?
According to this definition, the planner is free to report a path or “no path”. In our Theorem A below, we
prove that this cannot be avoided!This indeterminacy is the necessary price to pay for resolution-exactness.
In our view, this price is not a serious one because the user has the option to decrease theε parameter as
desired. Of course, if you decreaseε to ε/K, the indeterminacy will reappear for input instances that only
has paths with clearance in the range(ε/K2, ε].

The result of Theorem A below concerns our algorithm EXACT FINDPATH in ¶3 in the 2D case, as-
suming that all boxes are squares and we use the exact classifier predicateC(B). Recall that in our EXACT

FINDPATH algorithm, we subdivide a box only if its widthw(B) is larger thanthe input resolution parame-
ter ǫ > 0. So the smallest boxes in the subdivision treeT have widtht with ǫ/2 < t ≤ ǫ. Now consider the
“full expansion” of the subdivision treeT whose leaves are of the smallest size possible. Recall from¶3
that a channel is a sequence(B1, . . . , Bm) whereBi, Bi+1 are adjacent. We are interested in a free channel
whereα ∈ B1 andβ ∈ Bm.

LEMMA 4. If there exists a motionµ with clearanceδ =
√
2ǫ, then ourEXACT FINDPATH algorithm

outputs a path with clearanceǫ/4.

Proof. See Appendix.

We define anessential pathto be a path from the centera of a free boxB(α) containingα to the center
b of a free boxB(β) containingβ (e.g., pathP in Figure7). A canonical pathconsists of line segments

5 E.g., http://en.wikipedia.org/wiki/Motionplanning#Grid-BasedSearch.

8

αa, bβ, and an essential pathP from a to b. Note that the major task in motion planning is to find an essential
path, while constructingαa andbβ is straightforward. We define theessential clearanceof a canonical path
to be the clearance of its essential path.

LEMMA 5. If there is no free canonical path with essential clearanceǫ/4, then ourEXACT FINDPATH

algorithm reports “no path”.

Proof. See Appendix.

Putting together Lemmas4 and 5, we have the following results for 2D, assuming that all boxes are
squares and we use the exact classifier predicateC(B).

THEOREM A: [Hard Predicate]LetC, c ≥ 1 and consider our plannerEXACT FINDPATH.
(i) For C =

√
2, if there is a path with clearanceCε, then our planner outputs a path with clearanceε/4.

(ii) For c = 4, if there is no free canonical path of essential clearanceε/c, then our planner reports “no
path”.
The results in (i) and (ii) are tight in the following sense:
(i’) If C <

√
2, there are obstacle inputsΩ admitting paths with clearanceCε, but our planner reports “no

path”.
(ii’) If c < 4, there are obstacle inputsΩ admitting no free canonical paths of essential clearanceε/c but
our planner outputs a path.

Proof. See Appendix.

Theorem A implies an accuracy factorK = 4, but it is clear thatK can be reduced by adjusting our
algorithm to use the resolution parameterε in a more equitable way.

The general form of this result is perhaps no surprise, but the accuracy constants might not be what
we initially expect, since we are talking about an “exact algorithm”. There are two sources for the loss of
accuracy: first, subdivision boxes are “aligned” with the integer grid in the sense that their coordinates are
dyadic numbers. Second, the width of our smallest boxes, theε-MIXED boxes, lies betweenε/2 andε.

An additional reason for accuracy loss is, of course, the useof soft predicates. In particular, what is
the accuracy of our prototype algorithm in¶3 when using the soft predicates of¶4? Recall from Lemma 1
that when boxes are squares, our soft predicateC̃ has an effectivity factorσ = 1/

√
2. In our algorithm, we

can replace our input resolution parameter withε̄ = σǫ, i.e., we split boxes until the smallest box width is
between̄ε/2 andε̄, i.e., betweenσǫ/2 andσǫ.

LEMMA 6. If there exists a motionµ with clearanceδ =
√
2ǫ, then our algorithm using soft predicatẽC

outputs a path with clearanceσǫ/4.

Proof. See Appendix.

LEMMA 7. If there is no free canonical path with essential clearanceσǫ/4, then our algorithm using soft
predicateC̃ reports “no path”.

Proof. See Appendix.

Combining Lemmas 6 and 7, we have the following.
THEOREM B: [Soft Predicate]With the same assumptions as Theorem A, but with the exact predicate
C(B) replaced by a soft predicatẽC(B) with effectivity factorσ, we have:
(i) For C =

√
2, if there is a path with clearanceCε, then our planner outputs a path of clearanceσε/4.

(ii) For c = 4, if there is no free canonical path with essential clearanceσε/c, then our planner reports “no
path”.

9

This implies that the accuracy factorK now becomes4/σ. In general, we have:
Corollary: If the Exact version of our planner has an accuracy factor ofK, then the Soft version of our
planner using a soft predicate with effectivity factorσ has an accuracy factor ofK/σ.

7 Robots with Complex Geometry

We shall now show how to extend our soft predicates techniques to robots with complex geometry or multi-
ple degrees-of-freedom (DOF). The state-of-the-art for what could be practically implemented is discussed
in Zhang, Kim and Manocha [41]. They considered a series of challenging robot configurations: a “five-
gear” robot moving amidst a collection of static gear obstacles, a “2-D puzzle” robot in a maze-like environ-
ment, a certain “star” robot with four DOF, and “serial link”robot with four DOF. Another famous robot in
this literature is from Kavraki, with 10 DOF. Except for the “star”, the rest are planar robots. See Figure4
for (a) the “five-gear” of Zhang et.al, and (b) Kavraki’s robot.

(b)(a)

Figure 4: Complex Robots

¶9. Decomposition Principle for Complex Rigid RobotsFirst consider the case of a rigid polygonal
robotR2 ⊆ R

2, not necessarily convex. The “5-gear” robot in [41] is an instance. We first “cover”R2 with
a setS of triangles. More precisely, a setS of subsets ofR2 is called acover of R2 if

∫
(R2) ⊆ ∪T∈S

∫
(T)

where
∫
(T) denotes the interior of a setT ⊆ R

2. The coverS is exact if the inclusion is an equality:∫
(R2) = ∪T∈S

∫
(T). In our application, eachT ∈ S is a triangle. LetCR2

(B) denote the box classification
predicate forR2; we reduceCR2

to the classification predicatesCT for each triangleT ∈ S as follows:

(∀T ∈ S)[CT (B) = FREE] ⇔ CR2
(B) = FREE, (1)

and
(∃T ∈ S)[CT (B) = STUCK] ⇒ CR2

(B) = STUCK. (2)

Thus the condition for stuckness is only one-sided. Despitethe weakness of this criterion, our next result
shows that the weakness vanishes when we consider soft predicates:

THEOREM 8. LetS be an exact cover for a robotR2. Consider the predicate:

C̃R2
(B) =





FREE if C̃T (B) = FREE for all T ∈ S
STUCK if C̃T1

(B) = STUCK for some T1 ∈ S
MIXED else.

If eachC̃T is a soft version ofCT (B), thenC̃R2
is a soft version ofCR2

.

Proof.We must prove that̃CR2
is conservative and convergent. The safety of the conclusion C̃R2

(B) =
FREE follows (1) and the safety of̃CT for eachT ∈ S. Similarly, the safety of the conclusioñCR2

(B) =
STUCK follows (2) and the safety of̃CT1

. Suppose(Bi : i = 0, 1, . . .) is a sequence of strictly decreasing
boxes that converges to a configurationγ that is not semi-free:

Bi → γ ∈ Cspace(R2) (i→∞).

10

If γ is free, then we see that fori large enough,̃CT (Bi) = FREE for all T ∈ S. Thus,C̃R2
(Bi) = FREE.

If γ is stuck, then we see that there is someT ∈ S such that fori large enough,̃CT (Bi) = STUCK. Thus
C̃R2

(Bi) = STUCK. Q.E.D.

O

ψ

Figure 5: Sector ofR0(T) defined by a robotT not containing the originO.

It remains to see how to classify boxes relative to a trianglerobotT ∈ S. Unlike the triangular robot
R1 above, we must now choose a common originO for all the triangles inS. It is not hard to ensure
thatS contains at least one acute triangleT0 whose circumcenterO is not covered by any other triangle
in S. We choose thisO as our origin. The soft version ofCT0

(B) can be computed as for simple robots
above. We now address computing the soft version ofCT (B) for T 6= T0. EncloseT in the smallest disc
R0(T) centered atO. By assumption,O /∈ T andT lies in sector ofR0(T) with angleψ whereψ < π.
The soft version ofCT (B) whenB ⊆ Cspace is in the large regime can be based on just the discR0(T)
(i.e., we ignore the angular range inB). WhenB is in the small regime, we develop a shapeW+(B,T)
that is analogous to the round triangle. We define the setφ(B,T) comprising those features that intersect
W+(B,T). As usual, we useφ(B,T) to define the soft predicatẽCT (B). Finally, we reduce the soft
predicateC̃R2

(B) to C̃T (B) (T ∈ S) using Theorem8. This completes our resolution-complete algorithm
for a complex robotR2.

In the full paper, we will also work out the details for the case of non-rigid robots such an link or
Kavraki’s 10 DOF robot.

8 Conclusion

In this paper, we introduced the notion of soft predicates and demonstrated their use in subdivision plan-
ners. We defined the concept of resolution-exact planners, and proved that the algorithms we designed are
resolution-exact. The notion of resolution-exactness turned out to offer previously unnoticed subtleties.

Several open problems are raised by this research: first of all, we can in principle extend our work to
subdivision ofSE(3) = R

3 × S3. But the proper method for subdividingS3 is an interesting research.
Second, notice that we have not tried to compute the connected components ofSTUCK boxes. We could do
this, and it has some use for fast termination in the case of no-path. However, the best way to maintain this
information seems to run into interesting issues of computational topology. Edelsbrunner and Delfinado’s
work on computing the Betti number of a3-complex yields some clue about this issue [11].

According to Zhang et al [41], implementation of exact motion planning algorithms are only known for
simple planer robots (like ladders or discs) and up to 3 degrees of freedom. Thus it is important to pay more
attention to implementability of algorithms in this area. In robotics, we propose to give up exactness for the
weaker notion of resolution-exactness. Little is lost by this step, since exact algorithms are ill-matched to the
inherent limits on accuracy in physical systems. But we havemuch to gain: Subdivision algorithms are more
holistic, integrating the concerns of topological correctness with geometric accuracy into one algorithm.

We believe Subdivision Methods can match the performance ofSampling Methods in many problems,
but with superior properties. We plan to implement our algorithms and make comparisons.

11

In the full paper, we explore other variants of these algorithms, with an eye to simplicity and imple-
mentability, and as always, correctness. We plan to implement and compare our method with other ap-
proaches, including those with exact predicates and probabilistic approaches. Our general philosophy can
clearly be extended to more complex motion planning problems such as kinodynamic problems or those with
differential constraints. Combined with suitableT .getNext() heuristics, the complexity of our algorithms
can be highly adaptive.

12

References

[1] M. Barbehenn and S. Hutchinson. Efficient search and hierarchical motion planning by dynamically
maintaining single-source shortest paths trees.IEEE Trans. Robotics and Automation, 11(2), 1995.

[2] M. Barbehenn and S. Hutchinson. Toward an exact incremental geometric robot motion planner. In
Proc. Intelligent Robots and Systems 95, volume 3, pages 39–44, 1995. 1995 IEEE/RSJ International
Conference on ’Human Robot Interaction and Cooperative Robots’, 5–9, Aug 1995. Pittsburgh, PA ,
USA.

[3] R. Bohlin and L. Kavraki. A randomized algorithm for robot path planning based on lazy evaluation.
In P. Pardalos, S. Rajasekaran, and J. Rolim, editors,Handbook on Randomized Computing, pages
221–249. Kluwer Academic Publishers, 2001.

[4] M. Brady, J. Hollerbach, T. Johnson, T. Lozano-Perez, and M. Mason. Robot Motion: Planning and
Control. MIT Press, 1982.

[5] R. A. Brooks and T. Lozano-Perez. A subdivision algorithm in configuration space for findpath with
rotation. InProc. 8th Intl. Joint Conf. on Artificial intelligence - Volume 2, pages 799–806, San Fran-
cisco, CA, USA, 1983. Morgan Kaufmann Publishers Inc.

[6] M. Burr, F. Krahmer, and C. Yap. Continuous amortization: A non-probabilistic adaptive analysis tech-
nique.Electronic Colloquium on Computational Complexity (ECCC), TR09(136), December 2009.

[7] J. Canny. Computing roadmaps of general semi-algebraicsets.The Computer Journal, 36(5):504–514,
1993.

[8] E.-C. Chang, S. W. Choi, D. Kwon, H. Park, and C. Yap. Shortest paths for disc obstacles is com-
putable. In21st ACM Symp. on Comp. Geom., pages 116–125, 2005. June 5-8, Pisa, Italy.

[9] P. Cheng and S. M. Lavalle. Resolution complete rapidly-exploring random trees. InIn Proc. IEEE
Intl Conf. on Robotics and Automation, pages 267–272, 2002.

[10] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.Principles
of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston, 2005.

[11] C. Delfinado and H.Edelsbrunner. An incremental algorithm for Betti numbers of simplicial complexes
on the 3-sphere.Computer Aided Geom. Design, 12:771–784, 1995.

[12] B. Donald and P. Xavier. Provably good approximation algorithms for optimal kinodynamic planning:
Robots with decoupled dynamics bounds.Algorithmica, 14:443–479, 1995.

[13] A. Eigenwillig, V. Sharma, and C. Yap. Almost tight complexity bounds for the Descartes method.
In 31st Int’l Symp. Symbolic and Alge. Comp. (ISSAC’06), pages 71–78, 2006. Genova, Italy. Jul
9-12, 2006. Eigenwillig and Sharma won the Best Student Author Award for this paper, shared with
G.Moroz.

[14] I. Z. Emiris and M. I. Karavelas. The predicates of the Apollonius diagram: Algorithmic analysis and
implementation.Comput. Geometry: Theory and Appl., 33(1–2):18–57, 2006. Special Issue on Robust
Geometric Algorithms and their Implementations.

[15] H. Everett, C. Gillot, D. Lazard, S. Lazard, and M. Pouget. The Voronoi diagram of three arbitrary
lines inr3. In 25th European Workshop on Computational Geometry (EuroCG’09), 2009. Mar 2009,
Bruxelles, Belgium.

13

[16] H. Everett, D. Lazard, S. Lazard, and M. S. E. Din. The Voronoi diagram of three lines.Discrete and
Comp. Geom., 42(1):94–130, 2009. See also 23rd SoCG, 2007.

[17] S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174, 1987.

[18] D. Halperin, L. Kavraki, and J.-C. Latombe. Robotics. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 41, pages 755–778. CRC Press LLC,
1997.

[19] K. Hauser. Motion planning for legged and humanoid robots. PhD thesis, Stanford University, Dec
2008. Department of Computer Science.

[20] L. Kavraki, P.Švestka, C. Latombe, and M. Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces.IEEE Trans. Robotics and Automation, 12(4):566–580, 1996.

[21] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap.Classroom examples of robustness problems
in geometric computation.Comput. Geometry: Theory and Appl., 40(1):61–78, 2007.

[22] J.-C. Latombe.Robot Motion Planning. Kluwer Academic Publishers, 1991.

[23] S. M. LaValle.Planning Algorithms. Cambridge University Press, Cambridge, 2006.

[24] R. E. Moore.Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.

[25] C. Ó’Dúnlaing and C. K. Yap. A “retraction” method for planning the motion of a disc.J. Algorithms,
6:104–111, 1985. Also, Chapter 6 inPlanning, Geometry, and Complexity, eds. Schwartz, Sharir and
Hopcroft, Ablex Pub. Corp., Norwood, NJ. 1987.

[26] J. H. Reif and H. Wang. Nonuniform discretization for kinodynamic motion planning and its applica-
tions. SIAM J. Computing, 30:161–190, 2000.

[27] M. Sagraloff and C. K. Yap. A simple but exact and efficient algorithm for complex root isolation.
In I. Z. Emiris, editor,36th Int’l Symp. Symbolic and Alge. Comp. (ISSAC’11), pages 353–360, 2011.
June 8-11, San Jose, California.

[28] J. T. Schwartz and M. Sharir. On the piano movers’ problem: I. the case of a two-dimensional rigid
polygonal body moving amidst polygonal barriers.Communications on Pure and Applied Mathemat-
ics, 36:345–398, 1983.

[29] J. T. Schwartz, M. Sharir, and J. Hopcroft, editors.Planning, Geometry and Complexity of Robot
Motion. Ablex Series in Artificial Intelligence. Ablex PublishingCorp., Norwood, New Jersey, 1987.

[30] M. Sharir, C. O’D’únlaing, and C. Yap. Generalized Voronoi diagrams for moving a ladder I: topo-
logical analysis.Communications in Pure and Applied Math., XXXIX:423–483, 1986. Also: NYU-
Courant Institute, Robotics Lab., No. 32, Oct 1984.

[31] M. Sharir, C. O’D’únlaing, and C. Yap. Generalized Voronoi diagrams for moving a ladder II: efficient
computation of the diagram.Algorithmica, 2:27–59, 1987. Also: NYU-Courant Institute, Robotics
Lab., No. 33, Oct 1984.

[32] V. Sharma and C. Yap. Near optimal tree size bounds on a simple real root isolation algorithm, 2011.
In Preparation.

14

[33] G. Varadhan, S. Krishnan, T. Sriram, and D. Manocha. Topology preserving surface extraction using
adaptive subdivision. InProc. Symp. on Geometry Processing (SGP’04), pages 235–244, 2004.

[34] G. Varadhan and D. Manocha. Accurate Minkowski sum approximation of polyhedral models.Graph.
Models, 68(4):343–355, 2006.

[35] C. K. Yap. Coordinating the motion of several discs. Robotics Report 16, Dept. of Computer Science,
New York University, Feb. 1984.

[36] C. K. Yap. Algorithmic motion planning. In J. Schwartz and C. Yap, editors,Advances in Robotics,
Vol. 1: Algorithmic and geometric issues, volume 1, pages 95–143. Lawrence Erlbaum Associates,
1987.

[37] C. K. Yap. AnO(n log n) algorithm for the Voronoi diagram for a set of simple curve segments.
Discrete and Comp. Geom., 2:365–394, 1987. Also: NYU-Courant Institute, Robotics Lab., No. 43,
May 1985.

[38] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke, editors,Handbook
of Discrete and Computational Geometry, chapter 41, pages 927–952. Chapman & Hall/CRC, Boca
Raton, FL, 2nd edition, 2004.

[39] C. K. Yap. Theory of real computation according to EGC. In P. Hertling, C. Hoffmann, W. Luther, and
N.Revol, editors,Reliable Implementation of Real Number Algorithms: Theoryand Practice, number
5045 in Lect. Notes in C.S., pages 193–237. Springer, 2008.

[40] C. K. Yap. In praise of numerical computation. In S. Albers, H. Alt, and S. Näher, editors,Efficient
Algorithms, volume 5760 ofLect. Notes in C.S., pages 308–407. Springer-Verlag, 2009.

[41] L. Zhang, Y. J. Kim, and D. Manocha. Efficient cell labelling and path non-existence computation
using C-obstacle query.The International Journal of Robotics Research, 27(11–12), 2008.

[42] D. Zhu and J.-C. Latombe. New heuristic algorithms for efficient hierarchical path planning.IEEE
Transactions on Robotics and Automation, 7:9–20, 1991. 1995 IEEE/RSJ International Conference on
’Human Robot Interaction and Cooperative Robots’, 5–9, Aug1995. Pittsburgh, PA , USA.

15

APPENDIX

In this appendix we provide all the missing proofs.

Lemma 1. The predicateC̃ is a soft version ofC for the robotR0. When boxes are squares,̃C has an
effectivity factor of1/

√
2.

Proof. To see the effectivity factor, suppose thatC(B) = FREE. Re-

B

0
r

r(B)

r

Figure 6: Effectivity factor
1/
√
2.

ferring to Figure6, we see that the region bounded by the outer four red
segments and the outer four red circular arcs has no obstacle. Clearly, the
dotted circle also contains no obstacle. Note that this dotted circle is cen-
tered atm(B) with radiusr+ r0, and is the outer domainW+(σB) of box
σB whose radius isr, wherer = r(B)/

√
2. This means thatσ = 1/

√
2

and we haveC̃(σB) = FREE. ThereforeC̃ has an effectivity factor of
1/
√
2. Q.E.D.

Lemma 4. If there exists a motionµ with clearanceδ =
√
2ε, then our

EXACT FINDPATH algorithm outputs a path with clearanceε/4.

Proof. Consider the “full expansion” ofT as mentioned above, where the leaves have a widtht with ε/2 <
t ≤ ε. Consider the subsetA of such leaves that coverµ. We claim that each leaf box inA is free: let p be a
point inµ andBℓ be the leaf box wherep lies; since the diagonal ofBℓ is

√
2t ≤

√
2ε = δ, Bℓ lies entirely

within the “clearance region” ofp and thusBℓ is free. ThereforeA consists of free leaf boxes of widtht
that coversµ; in other words,A is afree channelΠ that coversµ.

β

t

2t

2t

P

t/2

t/2

t/2

t/2

t

a

bα

Figure 7: PathP with clearancet/2 > ε/4.

Since there exists a free channelΠ connectingα andβ, our EXACT FINDPATH algorithm will findsome
free channelΠ′ connectingα andβ (Π′ is not necessarilyΠ, but at leastΠ exists as a candidate to be
found by our algorithm). This can be justified as follows: consider the subdivision treeT produced by our
algorithm. It produces a subdivision ofROI(T), and for each free boxB in A, there is a corresponding
free leafB∗ in T that containsB. These free leavesB∗, after pruning redundancies, yield a free channelΠ∗

that coversΠ. By definition of the correctness of any path finding algorithms, a free channelΠ′ connecting
α andβ will be found iff there exists a free channelΠ∗ connectingα andβ.

Note thatΠ′ consists of free aligned boxes connecting fromB(α), the free (aligned) box containingα,
toB(β), the free (aligned) box containingβ. Since each free box inΠ′ has width at leastt, we can construct
a rectilinear pathP , from the box centera of B(α) to the box centerb of B(β), through the free boxes in
Π′ where each point ofP is away from the box boundary by a distance at leastt/2 (see Figure7 for an
example), and thusP has clearancet/2 > ε/4.

Our final reported pathPf is given byPf = αa ∪ P ∪ bβ. It remains to show thatαa has clearanceε/4

16

(and similarly forbβ by the same argument). The key point is to use the fact thatα belongs toµ and thus
has a clearanceδ =

√
2ε. We consider the following two cases.

Case (1): The width ofB(α) is t. Then for any pointq ∈ αa, d(α, q) is at most half of the diagonal of
B(α), i.e.,d(α, q) ≤

√
2t/2 ≤

√
2ε/2 = δ/2. However,α has clearanceδ, and thusq ∈ αa has clearance

δ − d(α, q) ≥ δ/2 > ε/4.
Case (2): The width ofB(α) is at least2t. We refer to Figure8, where the boundaries of the inner box

and ofB(α) are apart by a distancet/2. Clearly, any point ofαa lying inside the inner box has clearance at
leastt/2 > ε/4. Now consider the portion ofαa outside the inner box. Without loss of generality, suppose
such portion lies in the green shaded rectangle and the slopeof αa is in the range[0, 1] (for other cases
the slopes are in the ranges(1,∞), [−1, 0), and(−∞,−1) and symmetric arguments apply). Note that
w = t/2 andh ≤ w (since the slope ofαa is in [0, 1]), the diagonal of the green shaded rectangle is at
most

√
2t/2 ≤

√
2ε/2 = δ/2, i.e., any pointq ∈ αa lying in the green shaded rectangle hasd(α, q) ≤ δ/2.

Sinceα has clearanceδ, suchq has clearanceδ − d(α, q) ≥ δ/2 > ε/4. Therefore every point ofαa has
clearanceε/4.

α

a
t/2

t/2

t/2

t/2

w
h

B()

α

Figure 8: Segmentαa has clearanceε/4.

Lemma 5. If there is no free canonical path with essential clearanceε/4, then ourEXACT FINDPATH

algorithm reports “no path”.

Proof. We prove the contrapositive: When our EXACT FINDPATH algorithm finds a path, there exists a free
canonical path with essential clearanceε/4. Indeed, when our algorithm finds a free path, it finds a set
of free aligned boxes connecting fromB(α) to B(β). Since each such free box has width at leastt, we
can construct an essential path, which is a rectilinear pathP where each point ofP is away from the box
boundary by a distance at leastt/2 (see Figure7). Clearlyαa∪P ∪bβ is a free canonical path with essential
clearance at leastt/2 = ε/4.

THEOREM A: [Hard Predicate]LetC, c ≥ 1 and consider our plannerEXACT FINDPATH.
(i) For C =

√
2, if there exists a path with clearanceCε, then our planner outputs a path with clearance

ε/4.
(ii) For c = 4, if there is no free canonical path with essential clearanceε/c, then our planner reports “no
path”.
The results in (i) and (ii) are tight in the following sense:
(i’) If C <

√
2, there are obstacle inputsΩ admitting paths with clearanceCε, but our planner reports “no

path”.
(ii’) If c < 4, there are obstacle inputsΩ admitting no free canonical paths of essential clearanceε/c but
our planner outputs a path.

17

Proof.
(i) and (ii) are Lemmas4 and 5 respectively.
(i’). Consider anyC <

√
2. We can have an obstacle inputΩ such that it admits a path with clearance

Cε, whereα lies in the aligned boxB = B(α) of our subdivision tree, with widthw(B) = ε, but the robot
center cannot be placed in the red shaded triangle region (see Fig. Figure9). Note that the diagonal ofB is√
2ε andα can still have clearanceCε. However,B is a mixed box withw(B) = ε and thus the expansion

of B fails. Therefore our planner reports “no path”.

ε

ε

α

εC

Figure 9: Proof of Theorem A (i’).

(ii’). Supposec = 4 − δ for some1 > δ > 0. Choose a dyadic numbert > δ and defineε := 2t − δ.
Since we subdivide our boxes until they are just smaller thanε, this implies our smallest boxes will have
width exactlyt. Suppose we have a channel comprising a “linear” sequence(B1, B2, . . . , Bk) (k ≥ 3) of
free boxes of widtht. Linear sequence means there is a lineℓ passing through the centers of these boxes.
We may place obstacles such that the clearance of any point onℓ is t/2, and all other points in this channel
has clearance< t/2. Assumeα = m(B1) andβ = m(Bk). Note thatℓ is both a free canonical path and
an essential path, and the essential clearance ofℓ is the same as its clearance and vice versa. Clearly, our
planner will report the channel path(B1, . . . , Bk). It remains to show that there are no (free canonical) paths
of (essential) clearanceε/c = 2t−δ

4−δ
. Observe that

2t− δ
4− δ < t/2.

Hence there are no (free canonical) paths of (essential) clearanceε/c = 2t−δ
4−δ

. Q.E.D.

Lemma 6. If there exists a motionµ with clearanceδ =
√
2ε, then our algorithm using soft predicatẽC

outputs a path with clearanceσε/4.

Proof. This is a “soft version” of Lemma4. Consider the “full expansion” of our subdivision treeT ; now the
smallest boxes have widthσt (instead oft). Look at the subsetA of such leaf boxes that coverµ. For each
such leaf boxBℓ, letBℓ/σ be the box centered atm(Bℓ) with width t. We claim thatBℓ/σ is free: letp be a
point onµ that lies inBℓ; clearlyp also lies inBℓ/σ. Since the diagonal ofBℓ/σ is

√
2t ≤

√
2ε = δ,Bℓ/σ

lies entirely within the “clearance region” ofp and thusBℓ/σ is free. Therefore we haveC(Bℓ/σ) = FREE.
By the effectivity factorσ for C̃, C(Bℓ/σ) = FREE implies C̃(Bℓ) = C̃(σ(Bℓ/σ)) = FREE. Therefore we
can useC̃ to classify eachBℓ to be free, and thus to classifyA as afree channelcoveringµ. This is the
same as the free channelA coveringµ in the proof of Lemma4, but now each channel box has widthσt
rather thant. The rest of the proof of Lemma4 carries over, with the reported path having a clearanceσε/4
rather thanε/4.

Lemma 7. If there is no free canonical path with essential clearanceσε/4, then our algorithm using soft
predicateC̃ reports “no path”.

18

Proof. This is a “soft version” of Lemma5. Again we prove the contrapositive: When our algorithm finds
a path, there exists a free canonical path with essential clearanceσε/4. The proof of Lemma5 carries
over, but now each free aligned box has widthσt rather thant, and thus the essential clearance is at least
σt/2 = σε/4.

19

	Introduction
	On Numerical Subdivision Algorithms
	Subdivision Motion Planning
	Let us Design Soft Predicates!
	Rotational Degree of Freedom
	Resolution Exactness
	Robots with Complex Geometry
	Conclusion

