
Degeneracy Proof Predicates for the

Additively Weighted Voronoi Diagram

by

David L. Millman

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

May 2007

Prof. Chee K. Yap

c© David L. Millman

All Rights Reserved, 2007

To my mom, dad and sister.

iii

Abstract

This thesis focuses on the Additively Weighted Voronoi diagram. It begins by presenting the

history of the diagram and some of the early algorithms used for its generation [OBSC00, Aur91].

The paper then addresses the more recent incremental approach to calculating the diagram, as

seen in the 2D Apollonius Graphs (Delaunay Graphs of Disks) package of CGAL [KY06]. Next,

the algorithm of Boissonnat et al. [BD05] for calculating Convex Hulls is presented. We then

apply the predicates presented by Bossonnat to the CGAL implementation of the AW-Voronoi

diagram, and the results are discussed. The main contribution of this paper results in predicates

of the AW-Voronoi diagram, with a lower algebraic degree which also handle degeneracies in such

a way as to produce a conical result.

iv

Acknowledgments

I would like to thank Professor Chee Yap for his encouragement, knowledge and advice as an

adviser and mentor. I would also like to thank Professor Ernest Davis for being my thesis second

reader. Many thanks to Christophe Delage for his time spent speaking with me at INRIA, Lee

Parnell Thompson and Sudhama Bhatia for bouncing ideas around with me in the lab, and Doug

McNamara for his grammatical feedback. I especially would like to thank my Mom and Dad, my

sister Lisa and my Grandma for all their love as well as their amazing support over the past two

years.

v

Table of Contents

Abstract iv

Acknowledgments v

List of Figures viii

Introduction 1

1 Preliminary 4

1.1 Basic definitions . 4

1.2 Additively-Weighted Voronoi Diagram . 4

1.3 Power Diagram . 6

2 Additively Weighted Voronoi Diagram in 2D 8

2.1 Insertion . 8

2.2 Deletion . 10

2.3 Predicates . 11

3 Convex Hull and Voronoi Diagram of Additively Weighted Points 13

3.1 Correspondence between the Convex Hull and the Power Diagram 13

4 Degeneracy Proof Predicates for the Additively Weighted Voronoi Diagram

in 2D 19

4.1 VertexConflict Introduction . 20

4.2 Orientation predicate . 22

4.3 RadicalIntersection predicate . 23

4.4 RadicalSide predicate . 24

4.5 VertexConflict Non-Degenerate . 25

4.6 Degeneracies . 26

4.7 OrderOnLine . 27

vi

4.8 NDPowerTest . 28

4.9 NDRadicalSide and NDRadicalIntersection . 30

4.10 NDVertexConflict . 32

4.11 NDEdgeConflict . 32

4.12 Algebraic Degree Analysis . 36

4.13 Experimental Results . 38

4.14 Further Work . 39

Appendix 41

A.1 Increasing the Weights of the Generator Sites in the AW-Voronoi Diagram does

not change the Diagram . 41

A.2 The Bisectors of a AW-Voronoi Diagram in 2D are Hyperbolic Arcs 41

A.3 The Bisectors of a Power Diagram in 2D are Lines 42

A.4 Parabolas of a beach line intersect at two points 44

Bibliography 46

vii

List of Figures

1 A portion of John Snow’s map showing the area surrounding the broad street

water pump. Each bar represents a death at that address, and the solid gray line

(which replaced Snow’s original dotted line) is equidistant from the Broad Street

pump and the nearest alternative pump. 2

1.1 An example of the AW-Voronoi diagram in R2 5

1.2 An example of the Power diagram in R2 . 6

2.1 A set of generator sites (red) and their induced AW-Voronoi diagram (blue), as

well as the dual of the AW-Voronoi diagram, the Apollonius graph(green) 9

3.1 A convex hull in R2 of two sites demonstrating facets of circularity k, k = 0, 1 . . 14

3.2 A face, f and one of its sub-faces, f ′, demonstrating the half space of f and f ′

where f is a 2− face . 15

3.3 case 1: aff(f) is outside of S . 15

3.4 case 2: f is inside of S . 16

3.5 case 3: f intersects S . 16

3.6 case 4: tag[f ′] = � and aff(f) ∩ S ⊆ H(f, f ′) . 16

3.7 case 5: f does not intersect S but aff(f) does . 17

4.1 Four sites which are tangent to the same Voronoi circle, inserted in a different

order resulting in two different. 19

4.2 This figure demonstrates the projection of ∂V (s0) (black) formed by sites, si, i =

0, 1, 2 (also black) onto S (cyan) and its correspondence with the power diagram

(red) of the inverted weighted points σi, i = 0, 1, 2 (also red) which are transformed

according to transformation 4.1, where s0 is the inversion pole. Note, to clearly

illustrate the concept, this picture is not drawn to scale. 21

viii

4.3 The six cases for insertion of q when all points are in general position. The unit

sphere S is shown in cyan, the power diagram of σi, i = 1, 2, q in red, where power

cells, P (σi), i = 1, 2, q are labeled accordingly. 22

4.4 The three cases of the Orientation Predicate. The unit sphere S shown in cyan,

the power diagram of σi, i = 1, 2, 3 in red, where power cells, P (σi), i = 1, 2, 3 are

labeled accordingly. 23

4.5 The three cases of the RadicalIntersection Predicate. The unit sphere S shown in

cyan, the power diagram of σi, i = 1, 2, 3 in red where power cells, P (σi), i = 1, 2, 3

are labeled accordingly. 24

4.6 The three cases of the RadicalSide Predicate. The unit sphere S shown in cyan,

the power diagram of σi, i = 1, 2, 3 in red where power cells, P (σi), i = 1, 2, 3 are

labeled accordingly. 25

4.7 An example where RadicalIntersection = 0, but VertexConflict could be deter-

mined without perturbation. The unit sphere S shown in cyan, the power diagram

of σi, i = 1, 2, q in red where power cells, P (σi), i = 1, 2, q are labeled accordingly. 27

4.8 OrderOnLine Predicate, with inverted weighted points σi, i = 1, 2, 3 in red. . . . 28

4.9 A graphical representation of the PowerTest Predicate in R2, inverted weighted

points σi, i = 1, 2, 3 in black, and their corresponding power circle in blue, inverted

weighted point, the query site σ4 in yellow, and the unit circle, S in cyan 29

4.10 A graphical representation of the perturbation of σ3 in the case of RadicalIntersection =

0, in R2. The first frame shows inverted weighted points σi, i = 1, 2, 3 in black,

and their corresponding power circle in blue, the unit circle S in cyan, and the

power diagram in red. The second frame is an overlay of the first, which shows

the result of perturbing the weight of σ3. The perturbed σ3 with weight w3 + ε

is shown in magenta, the resultant perturbed power circle is shown in green, and

perturbed power diagram dark red. 31

ix

4.11 Graphical representation of α01 the AW-Voronoi edge between s0 and s1, and

its correspondence to a01, a section of the unit circle shown in green. The sites

si, i = 0, 1, 2, 3 as well as the corresponding AW-Voronoi diagram are shown in

black. The sites transformed by Equation 4.1 into the inverted weighted points

σi, i = 0, 1, 2, 3 and the corresponding Power diagram are shown in red. The

unit circle S, as well as the correspondence between the intersection of the power

diagram with S and the projection of the ∂V (s0) onto S are shown in cyan. Note,

this picture is not drawn to scale. 35

4.12 perturb constant vs. number of filter failures for nearly degenerate case of the

original predicates (red) and NCVertexConflict (green). 40

A.1 A picture of two sites with a line segment connecting their centers 42

A.2 Intersecting parabolas at points p, Sweep line l in green, parabola P0 and associated

focus s0 in blue, parabola P1 and associated focus s1 in red 45

x

Introduction

One of the fundamental structures of Computational Geometry is the Voronoi diagram of a set

of points. Intuitively, a Voronoi diagram is created by taking a given set of points in space,

the representative points, and assigning all locations to the nearest representative point. This

assignment partitions the space into a set of cells, where locations which are equidistant to

multiple representative points form the cell boundaries.

Structures resembling the Voronoi digram can be found as early as 1644. Descartes used a

Voronoi like diagram to show the physical inclination of matter in the solar system [Des28]. It

was not until the mid 19th century that the first comprehensive presentation of the diagram

appeared. Peter Gustave Lejeune Dirichlet [Dir50] and Georgy Fedoseevich Voronoy (Georges

Voronöı) [Vor07], first studied a special form of the Voronoi diagram of regularly placed points

while investigating positive definite quadratic forms. Dirichlet considered the Voronoi diagram

in 2D and 3D, and Voronöı considered the diagram in d dimension.

The diagram also seems to have been discovered independently many times and in many

fields. One of the more interesting examples is in from 1911 in which Thiessen [Thi11] created the

diagram for meteorology to aid in estimating average regional rain fall. Shannon used a variation

of the diagram for coding theory, where distance is based on edit distance [Sha48a, Sha48b],

and even as recently as 1985, Hoofd et al. [HTK+85] independently discovered the Voronoi

diagram when studying anatomy, where Voronoi regions represent the centers of capillaries in

tissue sections.

One of the early and most famous examples of the use of a Voronoi like diagram is John

Snow’s, Report on the Cholera Outbreak in the parish of St. James [Sno54]. Prior to this

paper, the Anesthesiologist, published a report hypothesizing that Cholera was spread through

contaminated water. In the Fall of 1854 there was a massive Cholera outbreak in which over 500

people died. In his report Snow showed a map with the locations of the deaths caused from the

disease as well as a line labeling a boundary equidistant from the Broad Street pump and other

pumps (see Figure 1). This generated enough support for his hypothesis that he convinced the

authorities to remove the handle from the pump on Broad Street. Once the handle was removed

1

Figure 1: A portion of John Snow’s map showing the area surrounding the broad street water
pump. Each bar represents a death at that address, and the solid gray line (which replaced Snow’s
original dotted line) is equidistant from the Broad Street pump and the nearest alternative pump.

the outbreak ended quickly. What is of interest about the map is it represents the Voronoi cell

of the Broad street pump, where distance is measured by the actual walking distance.

Since the 1970’s there have been many extensions and generalizations of the Voronoi diagram

in many fields. Some of the more well known generalizations are the additively/multiplicatively

weighted Voronoi diagram, power diagram, Voronoi diagrams of lines, sets of points, polygons,

as well as visibility-shortest-path diagrams with barriers. This paper will focus on the additively

weighted Voronoi diagram, as well as touch on the power diagram.

The additively weighted Voronoi diagram, alternatively the Apollonius diagram, has many

interesting uses. Some of these are marketing-area analysis, modeling crystal growth and cell

structure. One of the most interesting uses of the additively weighted Voronoi diagram is its

application in animation. For instance, Tao and Huang [TH96] applied the additively weighted

Voronoi diagram for diagram warping, image correction of distorted images, animation effects

and human-expression synthesis.

Algorithms for calculating the additively weighted Voronoi diagram can be found as early

2

as the 1970s. Drysdale and Lee [DL78] presented the first known algorithm for computing the

additively weighted Voronoi diagram in two dimensional space. This algorithm has a running

time of O(nc
√

logn) where c is a constant, but only works when the sites are disjoint. Later Lee

and Drysdale [LD81] presented a divide and conquer algorithm which still only works on non-

intersecting sites, but has a running time of O(n log2 n). Sharir [Sha85] presented a divide-and-

conqueror algorithm which also runs in O(n log2 n); the novelty of this algorithm is it could handle

intersecting sites. Initially Kirkpatrick [Kir79] was thought to have presented the first O(n log n)

algorithm for calculating the diagram, but the algorithms correctness was an issue, and Yap

[Yap85, Yap87] was the first to discover such an algorithm in fall of 1984. A final early algorithm

to note is Fortune’s sweepline algorithm [For86] which run in O(n log n). In this algorithm

Fortune applies a transformation to change the sites into points and then uses the standard

Fortune sweepline algorithm on the transformed sites. More recently, incremental approaches to

calculating the additively weighted voronoi diagram have started to emerge. Section 2 will look

at one such approach which is used by the 2D Apollonius Graphs (Delaunay Graphs of Disks)

package of CGAL [KY06].

3

1

Preliminary

We begin by defining some basic terms used throughout, as well as the Additively Weighted

Voronoi diagram, and the Power Diagram. Also, one should note, most of the diagrams of this

paper are in color to aid visualization.

1.1 Basic definitions

We will begin by stating Frey and George’s [FG00] definition of a predicate as the sign, {−, 0,+},

of a homogeneous polynomial over some input values and the algebraic degree, or degree for

short, of the predicate as the largest degree of the irreducible factors. Moreover, the degree of

an algorithm is said to be the maximum degree of its predicates. We will return to this idea

repeatedly though out the paper, so an example will be helpful. The standard SideOfLine test

determines given three points, pi = (xi, yi), i = 1, 2, 3, of R2 which side of the line formed by p1,

and p2 does p3 lay. Mathematically SideOfLine can be can be evaluated by calculating,

SideOfLine(p1,p2,p3) = sign











∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 y1 1

x2 y2 1

x3 y3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣











which means SideOfLine has an algebraic degree of 2. The algorithm that randomly generates

three points, a, b, c of R2 and calculates SideOfLine, would also have a degree of 2, provided the

point generation has a degree less then or equal to 2. Also note in the literature the term predicate

is sometimes used when referring to an algorithm which returns {−, 0,+} or {true, false}, but

the definition of degree remains the same with respect to an algorithm.

1.2 Additively-Weighted Voronoi Diagram

We define a weighted point, or site for short, of Rd is the pair (p, w) where p is a point in Rd and

w, the weight, is a real number. When w is positive a site can be interpreted as a hypersphere,

4

Figure 1.1: An example of the AW-Voronoi diagram in R2

for example, a circle in R2 and a sphere in R3.

Given a set of n sites S = {s1, . . . , sn} of Rd, where si = (pi, wi), we define the additively

weighted distance from a point x ∈ Rd to si as,

d+(si, x) = ‖pi − x‖ − wi

If wi is positive then all points outside of si have a positive distance; likewise, all points inside

of si have a negative distance.

We can now define the additively weighted Voronoi diagram, or AW-Voronoi for short, as the

subdivision of Rd into n cells V(S) = {V (s1), . . . , V (sn)} such that,

V (si) = {x ∈ Rd : d+(si, x) ≤ d+(sj , x),∀j : j = 1, . . . , n}.

We say the bisector of two sites, si, sj , is the locus of points which are equidistant from si and sj

(see Figure 1.1), and note that in the AW-Voronoi diagram bisectors in R2 are hyperbolic curves

with focii pi and pj (see A.2 for proof in R2).

Unlike the Voronoi diagram, the AW-Voronoi diagram can contain empty cells, i.e. V (si) = ∅.

An empty cell is caused by a site, s′ being completely contained inside another site, s. In this

case s′ is a trivial site, and say we that s′ is hidden by s (conversely s hides s′).

5

Figure 1.2: An example of the Power diagram in R2

One final preliminary point about the AW-Voronoi diagram concerns negatively weighted

sites. Since adding a constant to all the weights of the sites does not change the AW-Voronoi

diagram (see A.1 for proof in Rd) we can assume, when dealing with the AW-Voronoi diagram

all sites have positive weights. We next move to the topic of the power diagram.

1.3 Power Diagram

Once again we are given a set of n sites S = {s1, . . . , sn} of Rd and we define the power of a

point x ∈ Rd to si as,

dp(si, x) = ‖pi − x‖2 − w2
i .

We will also define the power cell of si as

P (si) = {x ∈ Rd : dp(si, x) ≤ dp(sj , x), i 6= j, j = 1, . . . , n}.

and the power diagram, as the subdivision of Rd into non-empty cells P(S) = {P (si) : i =

1, . . . , n, P (si) 6= ∅}. Similar to the AW-Voronoi diagram a bisector of two sites, si, sj , is the

locus of points whose power to si and sj are equal (see Figure 1.2). However, unlike the AW-

Voronoi diagram, the bisectors of the power diagram, are hyperplanes (see A.3 for proof in R2).

Also note, we write P (s1, . . . , sk) = P (s1)∩. . .∩P (sk) when P (s1, . . . , sk) is a d−k+1 dimensional

face of P(S), if the sites are in general position.

6

We finish the preliminary on the power diagram by considering negatively weighted sites.

Since the weight of the site is squared when calculating the power of a point, we can replace any

site s = (p, w) where w < 0 with an equivalent site s′ = (p, w′) where w′ = |w|, leaving the power

diagram unchanged.

7

2

Additively Weighted Voronoi Diagram

in 2D

In this section we review the work of Karavelas et al. [KE02, KY02a, KY02b], which presents a

2D incremental algorithm for the insertion and deletion of sites in the Apollonius diagram given

a set of sites on a 2D plane.

Karavelas et al.’s papers cover the following material: [KE02] contains the details of the

predicates used for evaluating the algorithm, [KY02a] explains the general algorithm and restates

the important lemmas and theorems of [KE02, KY02b], and [KY02b] covers the details and

proofs of the algorithm presented in [KY02a]. Their presented algorithm has a running time of

O(nT (h)+h log h) where T (k) is the time to locate the nearest neighbor of a query site to a given

set of k sites, and h is the number of sites with non-empty cells. The novelty of their approach is

that the dual of the Apollonius diagram, the Apollonius graph, also know as the AW-Delaunay

graph, is used to represent the diagram, making insertion and deletion easier. In the Apollonius

graph, vertices are the generator sites, and edges correspond to any sites whose voronoi cell share

a face (see Figure 2.1).

2.1 Insertion

This section presents Karavelas et al.’s incremental algorithm for constructing the AW-Voronoi

diagram. Let S be a set of n sites, and assume that the diagram for the subset Sm of S has

already been constructed, such that m is the number of sites in Sm. Our goal is to insert the site

s 6∈ Sm into Sm. This is done in three steps: (i) locate NN(s), the nearest neighbor of s in Sm;

(ii) test if s is trivial; and if it is not (iii) find and repair the conflict region of s in A(Sm), the

AW-Delaunay graph of the partially formed AW-Voronoi diagram.

The first step of site insertion is (i) to locate the nearest neighbor. Finding NN(s) reduces

to simply finding c, the center of s, in V(Sm), which can be done by randomly selecting a site

s′ ∈ Sm, and looking at all the neighbors of s′ in the diagram. If there exists a site s′′ such

8

Figure 2.1: A set of generator sites (red) and their induced AW-Voronoi diagram (blue), as well
as the dual of the AW-Voronoi diagram, the Apollonius graph(green)

that d+(s, s′′) < d+(s, s′), then we repeat the process with s′′. If there does not, NN(s) = s′.

Location is done in O(h) where h is the number of non-trivial sites in S. Their general paper,

[KY02a] mentions a method for speeding up the location phase, which uses a Delaunay hierarchy.

The analysis of the method does not generalize to the AW-Delaunay hierarchy, but in practice

the method results in a nearest neighbor location time of O(log h).

Once NN(s) is known we (ii) test if s is trivial. Doing this is simply a case of checking to see

if s ⊂ NN(s) [KY02b, Lemma 1].

Finally (iii) we discover the conflict region caused from the insertion of s, and repair the

region to make the diagram valid. Let Rm(s) be the conflict region of Sm with respect to s, and

let ∂Rm(s) be the boundary of Rm(s). The previous statement means that Rm(s) is a subset of

V1(Sm), the Voronoi skeleton of Sm, and ∂Rm is a set of points on the edges of V1(Sm). Also note,

the points in ∂Rm(s) are the vertices of the Voronoi cell, Vs in V1(Sm+1) where Sm+1 = Sm
⋃

{s}.

It can be shown that Rm(s) is connected [KMM93, Lemma 1], so all that needs to be done is to

find the boundary ∂Rm(s) of Rm(s) and then repair the AW-Voronoi diagram as described by

Klein et al. [KMM93].

Finding ∂Rm(s) of Rm(s) can be found by performing a depth first search on V1(Sm), starting

from a point on the skeleton which is known to be in conflict. In the comprehensive explanation

of the algorithm [KY02b], Karavelas and Yvinec show that if s is non-trivial, then s must be in

9

conflict with at least one edge of VNN(s), the Voronoi cell of NN(s), in V(Sm)[KY02b, Lemma

2]. So, to find this edge we can simply walk along the boundary of VNN(s) until we find an edge

in conflict.

Next, we move to the topic of managing trivial sites. Recall that a site, s, is trivial if and

only if it is contained entirely within another site, s′. This means that when inserting, there are

only two ways in which a site can become trivial: (i) either a new site is inserted within another

site, or (ii) the new site contains existing sites, these existing sites will become trivial once the

new site is inserted. To maintain trivial sites we let each non-trivial site, s′ maintain a list of

trivial sites which it contains, Ltr(s
′). Also, we must consider the issue of a newly inserted site

s′′ such that, s′ ⊂ s′′. In this case we simply add s′ to Ltr(s
′′), and move all sites from Ltr(s

′)

to Ltr(s
′′).

Karavelas handles the issue of degeneracies with a lazy evaluation[KY02a], such that, any

new site found to be tangent to a tritangent Voronoi circle is considered to be not in conflict

with the corresponding Voronoi vertex. This scheme causes the diagram to be non-canonical,

and dependent on the insertion order of the sites.

The insertion section ends with an analysis of the incremental insertion algorithm [KY02a,

Theorem 1].

Theorem 1. Let S be a set of n sites among which h are non-trivial. We can construct the

AW-Voronoi diagram incrementally in O(nT (h) + h log h) expected time, where T (k) it the time

to locate the nearest neighbor of a query site within a set of k sites.

2.2 Deletion

This section describes the process of deleting a site from a preexisting AW-Voronoi diagram.

Suppose we have already constructed V(S), the AW-Voronoi diagram for the set of sites S, and

let s ∈ S be a site which we want to delete from V(S). The deletion can split into two cases: (i)

s is trivial, (ii) s is non-trivial.

First, we will look at (i)s is non-trivial. Let Sγ be the set of neighbors of Vs in A(S),

the Apollonius graph of S. The AW-Voronoi diagram after the deletion of s can be found by

constructing the AW-Voronoi diagram of Sγ
⋃

Ltr(s).

10

Next, we will look at (ii) s is trivial. To delete s we must find the non-trivial site s′ such that

s ∈ Ltr(s
′) and then delete s from Ltr(s

′). Since s ⊂ NN(s), s must be in the list of some s′

which is in the same connected component of the union of sites as NN(s). It has been shown

that the subgraph K(S) of A(S) that consists of all edges of A(S) connecting intersecting sites,

is a spanning subgraph of the connectivity graph of the set of sites [Kar01, Chapter 5]. So, the

deletion can be done in three stages: (i) find the nearest neighbor NN(s) of s; (ii) walk on the

connected component C of NN(s) in the graph K(S) and for every site s′ ∈ C that contains s,

test if s ∈ Ltr(s
′); (iii) once the site s′ such that s ∈ Ltr(s

′) is found, delete s from Ltr(s
′).

The deletion section ends with an analysis of the incremental deletion algorithm,

Theorem 2. Let S be a set of n sites, among which h are non-trivial. Let s ∈ S, and let Ltr(s)

be the list of trivial sites whose parent is s. If s is non-trivial, it can be deleted from V(S) in

expected time O((d + t)T (d + t′) + (d + t′) log(d + t′)), where d is the degree of s in A(S), t is

the cardinality of Ltr(s) and t′ is the number of sites in Ltr(s) that become non-trivial after the

deletion of s. If s is trivial, it can be deleted from Ltr(S) in worst case time of O(n).

2.3 Predicates

This section discusses the predicates used to calculate the AW-Voronoi diagram.

1. SideOfBisector: Given two sites s1 and s2 as well as a query site q, determine if q is closer

to s1 or s2. The algebraic degree of this predicate is 4.

2. IsTrivial: Given a site s1 and a query site q determine if q ⊂ s1. This is used to determine

whether the query site is trivial. The algebraic degree of this predicate is 2.

3. Orientation: Given two sites s1 and s2 as well as the tritangent Voronoi circle C345, with cen-

ters c1, c2, c345, respectively determine the result of the orientation test CCW (c1, c2, c345).

This is used to find the first conflict of a new site s given its nearest neighbor, NN(s)

[KE02]. The algebraic degree of this predicate is 14.

4. EdgeConflictType: Given a Voronoi edge α and a query site q, determine the type of the

conflict region of q with α. This predicate is used to discover the conflict region of q

11

with respect to the pre-existing AW-Voronoi diagram [KE02]. The algebraic degree of this

predicate is 16.

Before moving on, it is important to note that the Orientation and EdgeConflictType are

evaluated using a method introduced by Karavales [KE02, Section 5] know as the inversion

approach. In general this method is used to compute the Voronoi circle C123, corresponding to

sites s1, s2, s3 ordered counter-clockwise around the boundary of C123, via the inversion,

σi = (ci, ri), ci = qi

α , ri =
ωi

α

qi = pi − p1, ωi = wi − w1, α = q2
i − w2

i for i = 2, 3.

The reason for this inversion is it maps C123, the circle tangent to s1, s2, s3, to l, a line

co-tangent to σ2, σ3. We will return to these predicates in Section 4.

12

3

Convex Hull and Voronoi Diagram of

Additively Weighted Points

In this section we review the work of Boissonnat and Delage [BD05], who present a method for

constructing the convex hull of additively weighted points in Rd, and then apply this method to

constructing AW-Voronoi diagrams via a single cell construction method [BK03].

They begin by first showing a correspondence between the convex hull and the power diagram

in Rd. The correspondence is used to show a new approach to constructing the convex hull in

Rd. Finally, they apply the result to the AW-Voronoi diagram in Rd.

3.1 Correspondence between the Convex Hull and the Power

Diagram

This section presents the method Boissonnat and Delage [BD05] use to show a correspondence

between the power diagram in Rd and the convex hull of additively weighted points in Rd. Let S

be a set of n weighted points in Rd such that all n sites are hyperspheres, S = {s1, . . . , sn}. The

convex hull of S, CH(S), is the smallest closed convex subset of Rd containing all hyperspheres

of S. We define a supporting hyperplane H of S to be a hyperplane tangent to at least one of the

hyperspheres in S such that all other hyperspheres in S are in the same halfspace partitioned

by H. Also, we define a facet of CH(S) of circularity k, 0 ≤ k < d to be the portion of

∂CH(S) that consist of the points whose supporting hyperplanes are tangent to the same subset

of d − k hyperspheres. For example if d = 3, faces of circularity 0 are planar faces tangent to 3

hypersphere, faces of circularity 1 are conical patches (faces which are the same shape as a section

of a cone) which are tangent to 2 hypersphere and faces of circularity 2 are spherical patches

(faces which are the same shape as a section of a sphere) contained in some site si. Another

example of is when d = 2, the faces of circularity 0 are lines tangent to 2 circles, and faces of

circularity 1 are circular arcs (faces which are part of a circle) which are contained in some site,

si (see Figure 3.1).

13

Facets of cirularity 1 Facets of cirularity 0

Figure 3.1: A convex hull in R2 of two sites demonstrating facets of circularity k, k = 0, 1

Next, Boissonnat and Delage show that if we let S be the unit hypersphere and convert the set

of n hypersphere S = {s1, . . . , sn} to Σ = {σ1, . . . , σn} where, si = (pi, wi), σi = (pi, ri) where

ri is defined by the transformation r2
i = p2

i + 2wi then, for each k = 0, . . . , d − 1, the k-faces of

the power digram of Σ intersected with S, P(Σ) ∩ S are in 1-1 correspondence with the facets of

circularity k of ∂CH(S) [BD05, lemma 1].

This lemma tells us that computing the convex hull of S reduces to transforming S to Σ

and computing the intersection of the power diagram of Σ, P(Σ), with the unit hypersphere, S.

Before presenting a static algorithm we need to first define a few terms. A k-face, f ′, is a sub-face

of a (k + 1)-face, f , when f ′ ⊆ f . Conversely, a (k + 1)-face, f , is super-face of a k-face f ′ when

f ′ ⊆ f . Also, we notate the affine hull of a face f as aff(f). Finally, we define the halfspace

of a face f and its sub-face f ′, H(f, f ′), to be the halfspace of aff(f) bounded by aff(f ′) which

contains f . For example if f is a 1-face (a line segment), f ′ is one of its two endpoints, and

H(f, f ′) is the ray issued from f ′ which contains f . A second example is when f is a 2-face (a

polygon); then f ′ is a line segment and H(f, f ′) is the half plane of the plane though f bounded

by the line though f ′ which contains f (see Figure 3.2)

In the static algorithm we first construct the power diagram P(Σ) and determine for each

face, f of P(Σ), if f intersects S. The result is stored in tag[f]:

• tag[f] = � if and only if aff(f) is outside S

• tag[f] = 	 if and only if f is outside of S but aff(f) intersects S

• tag[f] = ⊕ if and only if f intersects S

14

���

���

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������f ′

f

H(f, f ′)

Figure 3.2: A face, f and one of its sub-faces, f ′, demonstrating the half space of f and f ′ where
f is a 2− face

f ′

fS

Figure 3.3: case 1: aff(f) is outside of S

• tag[f] = � if and only if f is inside of S

Assuming we know tag[f ′] for each subface f ′ of f , we can computer tag[f] by:

a: if aff(f) does not intersect S, tag[f] = � (see Figure 3.3)

b: else, if for each sub-face f ′ of f , tag[f ′] = � then tag[f] = � (see Figure 3.4)

c: else, if there is a sub-face f ′ of f , such that tag[f ′] = � then tag[f] = ⊕ (see Figure 3.5)

d: else, if for each sub-face f ′ of f , tag[f ′] = � and aff(f) ∩ S ⊆ H(f, f ′), then tag[f] = ⊕

(see Figure 3.6)

e: else, f does not intersect S but aff(f) does, so tag[f] = 	 (see Figure 3.7)

Without loss of generality, let k-face, f = P (σ1, . . . , σk) and (k−1)-face f ′ = P (σ1, . . . , σk+1).

To differentiate between the two cases in the algorithm, we need the two predicates:

15

S

f ′

f

Figure 3.4: case 2: f is inside of S

f ′f

S

Figure 3.5: case 3: f intersects S

f ′

f
S

Figure 3.6: case 4: tag[f ′] = � and aff(f) ∩ S ⊆ H(f, f ′)

16

S

f ′

f

Figure 3.7: case 5: f does not intersect S but aff(f) does

• k-RadicalIntersection(f), which determines if aff(f) is inside S

• k-RadicalSide(f, f ′), which determines if aff(f) ∩ S ⊆ H(f, f ′), assuming aff(f) intersects

S and f is outside of S.

We will return to the actual calculation of these predicates after covering the rest of the

algorithm. To compute the tag for the (d − 1)-face f we begin by first calculating the tag for

each 0-face of f , we then use this information to calculate the tag for each 1-face of f , etc. until

we have calculated the the tag for f . It then follows that the time complexity of this algorithm

is bounded by the time complexity of the power diagram algorithm used, which in this case is

O(n log n + nd d
2
e).

Now we will briefly return to the predicates necessary for calculating this algorithm. The

k-RadicalIntersection predicate is used to determine if a face of the power diagram f is inside

of S. This can be accomplished by seeing where the origin projects onto aff(f), and comparing

the norm of the projection, π, to 1. The details of computing π can be found in Boissonnat

et al. [BD05, index A.3]. The k-RadicalSide predicate determines if for a face of the power

diagram f and one of its sub-faces f ′, if aff(f) ∩ S ⊆ H(f, f ′), assuming aff(f) intersects S

and f is outside of S. Assume without loss of generality that f is defined by sites σ0, . . . , σk−1

and f ′ is defined by sites σ0, . . . , σk, and recall P (σi) is the power cell of σi, and P (σ0, . . . , σk)

is the d − k + 1 dimensional face, which is the intersection of the power cells of σ0, . . . , σ1,

ie, P (σ0, . . . , σk) = P (σ0) ∩ . . . ∩ P (σk) (see section 1.3). The k-RadicalSide predicate can be

determined by calculating which side of P (σ0, . . . , σk) does the orthogonal projection onto aff(f)

of the origin reside.

17

Boissonnat and Delage [BD05] also present a dynamic algorithm for calculating the convex

hull of a set of n points using the same result, along with an algorithm which uses the single cell

construction technique similar to the algorithm presented in Karavelas [KY02a]. We have now

covered the major concepts necessary for the rest of this paper.

18

4

Degeneracy Proof Predicates for the

Additively Weighted Voronoi Diagram

in 2D

The algorithm presented by Karavelas et al. [KY02a] leads to non-canonical AW-Voronoi dia-

grams in the case of degenerate inputs. Their algorithm uses the VertexConflict and EdgeConflict

predicates to determine the conflict region of a newly inserted site. When a degeneracy is encoun-

tered VertexConflict uses a lazy evaluation where any site found to be tangent to a tritangent

voronoi circle is considered to be not in conflict. This in turn causes EdgeConflict to have a

different result, as EdgeConflict is only necessary when both vertices in conflict or not in conflict.

Hence, the lazy evaluation of VertexConflict causes the resultant diagram to be non-canonical

and dependent on the insertion order (see Figure 4.1). To deal with this problem we create

degeneracy-proof predicates for the AW-Voronoi diagram in R2 by expressing the VertexConflict

predicate in terms of the k-RadicalIntersection and k-RadicalSide predicates of [BD05], and then

explicitly handle degeneracies. Not only does this yield a consistent result but also predicates of

lower degree along with a 39− 66 percent increase in speed. This same method was then applied

to EdgeConflict.

Figure 4.1: Four sites which are tangent to the same Voronoi circle, inserted in a different order
resulting in two different.

19

4.1 VertexConflict Introduction

The VertexConflict predicate takes four sites, s0, s1, s2, q where sites si, i = 0, 1, 2 ordered counter

clockwise, form the tritangent voronoi circle C012, and returns the sign of the additively weighted

distance of q from the center of C012. VertexConflict is evaluated by calling the InCircle predicate

which determines the sign of the distance δ(C012, q) of q from C012. The sign of the δ(C012, q)

is calculated by using the inversion approach (see Section 2.3), to transform C012 to l, then

obtaining q′ by applying the same transformation to q. Now the problem reduces to finding the

sign of the distance from q′ to l.

We will now present another method of determining the VertexConflict predicate. Boissonnat

and Karavelas [BK03] have show that the projection of a cell of the AW-Voronoi onto a sphere

coincides with the intersection of the Power Diagram and the sphere (see Figure 4.2). This

means, given a set of n sites S = {s1, . . . , sn} of Rd, the projection of the partial AW-Voronoi

cell of si, ∂V (si) onto a unit sphere centered at pi corresponds to the intersection between the

power diagram diagram of Σ = {σ1, . . . , σn} and the unit hyper sphere centered at the origin,

where:

σj = (cj , rj , αj), cj =
qj

αj
, rj =

ω∗
j

αj

qj = pj − pi, ω∗
j = wj − wi, αj =







q2
i − ω∗2

i , i 6= j

1, i = j
(4.1)

Note that we refer to sites which have undergone this transformation as inverted weighted

points, and when referring to them throughout the predicates section we will refer to the com-

ponents of the inverted weighted point σj as xj , the x coordinate of cj , yj , the y coordinate of

cj , rj , the weight of σj and αj , the α value of σj . Also, we introduce the function invert(sj , si)

which performs the inversion presented above, where si is the inversion pole.

Since we are now interested in calculating the attributes of the intersection of the Power

diagram and the unit sphere, we can use the predicates presented in [BD05], as they are less costly

then Karavelas’ original predicates. To achieve this we must differentiate when the insertion site

20

s1

s2

S

s0

σ0

σ1

σ2

Figure 4.2: This figure demonstrates the projection of ∂V (s0) (black) formed by sites, si, i =
0, 1, 2 (also black) onto S (cyan) and its correspondence with the power diagram (red) of the
inverted weighted points σi, i = 0, 1, 2 (also red) which are transformed according to transforma-
tion 4.1, where s0 is the inversion pole. Note, to clearly illustrate the concept, this picture is not
drawn to scale.

21

CASE 1

P (σq)

CASE 2

P (σ1)

P (σ1)

P (σq)

P (σ1)

P (σ2)

P (σq)

P (σ1)

P (σ2)

P (σq)

CASE 3

P (σ2)

P (σ2)

P (σq)

P (σ1)

P (σ2)

P (σq)

P (σ1)

P (σ2)

CASE 5CASE 4 CASE 6

Figure 4.3: The six cases for insertion of q when all points are in general position. The unit sphere
S is shown in cyan, the power diagram of σi, i = 1, 2, q in red, where power cells, P (σi), i = 1, 2, q
are labeled accordingly.

q causes the Voronio circle, C012 to be invalid. Figure 4.3 shows the six non-degenerate cases

which can occur (note, we will define a non-degenerate case after presenting our predicates).

Cases 1, 2, 3 correspond to no vertex-conflict, cases 4, 5, 6 correspond to vertex conflict.

Before describing how the six non-degenerate cases can be differentiated, it would be helpful

to present the necessary predicates for calculating our version of the vertex conflict predicate.

Graphical examples in R2, as well as the formula which must be evaluated for these predicates

will also be shown. We will then present a method for determining when q causes a vertex

conflict.

4.2 Orientation predicate

The first predicate which we will cover is the orientation predicate. This predicate evaluates if

three inverted weighted points, σi, i = 1, 2, 3, are a right or left turn, when traveling from σ1 to

22

Orientation 0Orientation - Orientation +

P (σ3)

P (σ2)

P (σ1)

P (σ2) P (σ3) P (σ1)

P (σ2)

P (σ3)

P (σ1)

LinearClockwise Counter Clockwise

Figure 4.4: The three cases of the Orientation Predicate. The unit sphere S shown in cyan, the
power diagram of σi, i = 1, 2, 3 in red, where power cells, P (σi), i = 1, 2, 3 are labeled accordingly.

σ2 to σ3. In other words, in R2 we determine if the orientation of σ1, σ2, σ3 is clockwise, linear

or counter clockwise (see Figure 4.4). Mathematically this can be expressed as,

Orientation(σ1, σ2, σ3) = sign











∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 α2 α3

x1 x2 x3

y1 y2 y3

∣

∣

∣

∣

∣

∣

∣

∣

∣











where Orientation is negative, zero or positive when the sites σ1, σ2, σ3 are oriented clockwise,

linearly or counter clockwise respectively.

4.3 RadicalIntersection predicate

As stated earlier, the k-RadicalIntersection predicate, referred to as the RadicalIntersection pred-

icate throughout, determines if a face, f of the power diagram is inside S. This can be accom-

plished by seeing where the origin projects onto aff(f), and comparing the norm of the projection,

π, to 1. Since we are only interested in the location of f1, the 1-face of the power diagram of

the inverted weighted points σi, i = 1, 2, 3 with respect to S, our predicate will determine, given

three inverted weighted points, σi, i = 1, 2, 3, is f1 inside, tangent or outside of S (see Figure

23

RadicalIntersection - RadicalIntersection 0 RadicalIntersection +

P (σ1)
P (σ1)

P (σ1)

P (σ2)
P (σ2)

P (σ3) P (σ3)

P (σ2)

P (σ3)

TangentInside Outside

Figure 4.5: The three cases of the RadicalIntersection Predicate. The unit sphere S shown in
cyan, the power diagram of σi, i = 1, 2, 3 in red where power cells, P (σi), i = 1, 2, 3 are labeled
accordingly.

4.5). Mathematically this can be expressed as,

RadicalIntersection(σ1, σ2, σ3) =

sign













∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 r1 y1

α2 r2 y2

α3 r3 y3

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 x1 r1

α2 x2 r2

α3 x3 r3

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 x1 y1

α2 x2 y2

α3 x3 y3

∣

∣

∣

∣

∣

∣

∣

∣

∣

2











where RadicalIntersection is negative, zero or positive when f1 is inside, tangent or outside of S

respectively.

4.4 RadicalSide predicate

The next predicate which we will cover is the k-RadicalSide predicate, in our case k = 1, and we

will refer to the k-RadicalSide predicate where k = 1 as the RadicalSide predicate throughout.

Recall, the RadicalSide predicate determines for a face of the power diagram f and one of its

sub-faces f ′, if aff(f)∩ S ⊆ H(f, f ′), assuming aff(f) intersects S and f is outside of S. Without

loss of generality, let f , defined by sites σi, i = 1, 2 and f ′ defined by sites σi, i = 1, 2, 3. The

RadicalSide predicate can be determined by calculating which side of f ′ the orthogonal projection

24

RadicalSide +RadicalSide 0RadicalSide -

P (σ3)

P (σ2)

P (σ1)
P (σ1)

P (σ2)

P (σ1)

P (σ3)
P (σ3)

P (σ2)

CenterRight Left

Figure 4.6: The three cases of the RadicalSide Predicate. The unit sphere S shown in cyan, the
power diagram of σi, i = 1, 2, 3 in red where power cells, P (σi), i = 1, 2, 3 are labeled accordingly.

onto aff(f) of the origin resides (see Figure 4.6). Mathematically this can be expressed as,

RadicalSide(σ1, σ2, σ3) =

sign











−

∣

∣

∣

∣

∣

∣

α1 x1

α2 x2

∣

∣

∣

∣

∣

∣

∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 r1 x1

α2 r2 x2

α3 r3 x3

∣

∣

∣

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

α1 y1

α2 y2

∣

∣

∣

∣

∣

∣

∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 r1 y1

α2 r2 y2

α3 r3 y3

∣

∣

∣

∣

∣

∣

∣

∣

∣











where RadicalSide is negative, zero or positive when the orthogonal projection of the origin on to

aff(f) right, center or left of f ′, respectively. Also note, RadicalSide = 0 can only happen when

RadicalIntersection = 0, else the predicates assumptions are invalid. We will return to this issue

when we investigate the issue of degeneracies.

4.5 VertexConflict Non-Degenerate

We begin by defining a non-degenerate case as one in which Orientation 6= 0,RadicalSide 6= 0

and RadicalIntersection 6= 0. We can now describe a new algorithm for calculating VertexCon-

flict in the non-degenerate case which can differentiate the cases 1, 2, 3 from 4, 5, 6. We first

take our three sites si, i = 0, 1, 2 and our query sites q. We invert s1, s2, q with respect to

s0 to get the inverted weighted points σ1, σ2, σq. We can now determine that there is Vertex-

Conflict when RadicalSide(σ1, σ2, σq) and RadicalIntersection(σ1, σ2, σq) are positive or when

25

RadicalIntersection(σ1, σ2, σq) is negative and Orientation(σ1, σ2, σ3) is positive, provided none

of this predicates are zero. If any of them are zero, we simply return Degenerate (See Algorithm

(1)).

Algorithm 1 VertexConflict Non-Degenerate

//Let si, i = 0, 1, 2 be three site ordered counter clockwise which form
// the tritangent voronoi circle C012, and q be the query site.
//Return Conflict if the sign of the additively weighted distance
// of q from C0,1,2 is negative, NoConflict if it is positive
// and Degenerate if the input is degenerate

σ1 ← invert(s1, s0)
σ2 ← invert(s2, s0)
σq ← invert(q, s0)
orient← Orientation(σ1, σ2, σq)
radInt← RadicalIntersection(σ1, σ2, σq)
radSide← RadicalSide(σ1, σ2, σq)
if orient = 0 || radInt = 0 || radSide = 0 then

return Degenerate
end if

if radInt > 0 then

if radSide > 0 then

return Conflict
else

return NoConflict
end if

else

if orient < 0 then

return NoConflict
else

return Conflict
end if

end if

4.6 Degeneracies

Now that we have described a method which can determine VertexConflict, we will next present a

method to handle degeneracies. Degeneracies are handled via the symbolic perturbation method

presented in by Boissonnat and Delage[BD05, section 5.2]. Generally, in the case of a predicate

evaluating to zero, we grow the site with the largest radius by ε > 0. In the case of the largest radii

being equal we use the lexicographical ordering of the centers to determine the perturbation site.

26

P (σ1)

P (σ2)

P (σq)

Figure 4.7: An example where RadicalIntersection = 0, but VertexConflict could be determined
without perturbation. The unit sphere S shown in cyan, the power diagram of σi, i = 1, 2, q in
red where power cells, P (σi), i = 1, 2, q are labeled accordingly.

This method is consistent with the original implementation, and preserves the combinatorial

structure of the diagram, provided ε is sufficiently small. This method does not increase the

algebraic degree of the predicates, but does cause unnecessary perturbations as some predicates

return zero in non-degenerate cases, for example, when Orientation < 0, RadicalSide > 0 and

RadicalIntersection = 0 (see Figure 4.7). Introducing this symbolic perturbation scheme requires

a modification of the the previous predicates along with the introduction of two more predicates.

The degeneracies section will proceed as follows. First, we introduction two new predicates,

OrderOnLine predicate followed by NDPowerTest, a non-degenerate version of PowerTest pred-

icate presented in [BD05]. Second, we use these predicates to create the NDRadicalSide, non-

degenerate RadicalSide and NDRadicalIntersection, non-degenerate RadicalIntersection. Note,

we do not present a non-degenerate Orientation predicate, as Orientation = 0 will be used for

determining EdgeConflict. Third, once we have introduced our new non-degenerate predicates

we present the full algorithm for NDVertexConflict (non-degenerate VertexConflict).

4.7 OrderOnLine

OrderOnLine is a predicate which given three co-linear inverted weighted points σi, i = 1, 2, 3,

determines if they are ordered on a line (see Figure 4.8). OrderOnLine will depend on a general-

27

OrderOnLine FalseOrderOnLine True

σ1 σ3 σ2σ1 σ2 σ3

Ordered On a Line Not Ordered On a Line

Figure 4.8: OrderOnLine Predicate, with inverted weighted points σi, i = 1, 2, 3 in red.

ization of the standard two site order on a line test (oolTest), which determines the orientation

of two inverted weighted points. Mathematically, oolTest can be expressed as,

oolTest(σ1, σ2, σ3) = sign







































































∣

∣

∣

∣

∣

∣

α1 x1

α2 x2

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

α1 x1

α2 x2

∣

∣

∣

∣

∣

∣

6= 0

∣

∣

∣

∣

∣

∣

α1 y1

α2 y2

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

α1 x1

α2 x2

∣

∣

∣

∣

∣

∣

= 0

























Now using our previously defined oolTest, we can define the OrderOnLine predicate by first

testing if oolTest(σ1, σ2) is positive, if it is, return true if oolTest(σ2, σ3) is positive false otherwise.

If oolTest(σ1, σ2) is non-positive return true if oolTest(σ3, σ2) is positive and false otherwise (see

Algorithm 2).

Algorithm 2 OrderOnLine Predicate

//Let σi, i = 1, 2, 3 be three co-linear sites
//Return true if are σi, 1, 2, 3 are ordered on the line false otherwise

if oolTest(σ1, σ2) > 0 then

return oolTest(σ2, σ3) > 0
else

return oolTest(σ3, σ2) > 0
end if

4.8 NDPowerTest

Now we will turn to the NDPowerTest predicate. Before discussing this predicate, we must

first introduce the notion of the power product of two weighted points, si, sj , as dp(si, sj) =

28

PowerTest 0 PowerTest +PowerTest -

σ1 σ1 σ1

σ2 σ2 σ2

σ3σ3σ3

σ4 σ4 σ4

Inside Tangent Outside

Figure 4.9: A graphical representation of the PowerTest Predicate in R2, inverted weighted points
σi, i = 1, 2, 3 in black, and their corresponding power circle in blue, inverted weighted point, the
query site σ4 in yellow, and the unit circle, S in cyan

(pipj)
2 − wi − wj . We say that the two weighted points, si, sj are orthogonal if, dp(si, sj) = 0,

and we call the power circle of three weighted points, si, sj , sk the unique circle orthogonal to

si, sj , sj . Essentially in the power diagram, a power circle is equivalent to the voronoi circle of

the voronoi diagram. In general, the power test computes the sign of the power product of a

query site from a power circle of a power diagram. Once again in terms of the standard Voronoi

diagram, the PowerTest is conceptually equivalent to the InCircle predicate (see Figure 4.9).

Mathematically, the PowerTest can be expressed as,

PowerTest(σ1, σ2, σ3, σ4) = sign

















−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 α2 α3 α4

x1 x2 x3 x4

y1 y2 y3 y4

r1 r2 r3 r4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

















We will create NDPowerTest by explicitly handling the degeneracies which can occur in the

case of the PowerTest, by making the observation that we are only using the PowerTest when

the orientation of our points is zero. Our power test predicate will take three inverted weighted

points σi, i = 1, 2, 3 and a label which specifies the perturbed site in the case of degeneracies.

The sites σ1 and σ2, and the inverted weighted point σ0, p0 = (0, 0), r0 = 0, α0 = 1 define a

29

power circle, C012, and σ3 is the query site. The NDPowerTest predicate will first calculate

PowerTest to determine if s3 is a positive or negative distance from C012. If PowerTest = 0 and

turns out to be degenerate, we only need to decide if the perturbation will force s3 inside or

outside of the power circle, which is the same as deciding which way the perturbation scheme

will cause the power circle to shift, as we already know of σ1, σ2, q is collinear we can simply use

the OrderOnLine predicate (see Algorithm 3).

Algorithm 3 NDPowerTest Predicate

//Let σi, i = 1, 2, 3 be three co-linear sites and perturb

// be the label of the site to perturb if necessary
// and let σ0 be a inverted weighted site at the origin
// such that r0 = 0 and α0 = 1.
//Return the sign of the distance of σ3 from the
// power circle formed by σ1 and σ2 and the origin

powTest← PowerTest(σ0, σ1, σ2, σ3)
if powTest 6= 0 then

return powTest

end if

if perturb = 1 then

if OrderOnLine(σ1, σ2, σ3) then

return NEGATIVE
else

return POSITIVE
end if

else if perturb = 2 then

if OrderOnLine(σ2, σ1, σ3) then

return NEGATIVE
else

return POSITIVE
end if

else

return NEGATIVE
end if

4.9 NDRadicalSide and NDRadicalIntersection

Next we will modify RadicalSide and RadicalIntersection to handle degeneracies. Recall that

RadicalSide = 0 can only occur when RadicalIntersection = 0. Because of this property, we can

use a lazy evaluation in NDRadicalSide, where it returns POSITIVE in the case of degenera-

30

σ1

σ2

σ3

σ1

σ2

σ3

RadicalIntersection 0 Perturb σ3

Figure 4.10: A graphical representation of the perturbation of σ3 in the case of
RadicalIntersection = 0, in R2. The first frame shows inverted weighted points σi, i = 1, 2, 3
in black, and their corresponding power circle in blue, the unit circle S in cyan, and the power
diagram in red. The second frame is an overlay of the first, which shows the result of perturb-
ing the weight of σ3. The perturbed σ3 with weight w3 + ε is shown in magenta, the resultant
perturbed power circle is shown in green, and perturbed power diagram dark red.

cies, and simply handle the issue in NDRadicalIntersection, thus, avoiding extra computation.

Now, recall that RadicalIntersection = 0 means the face of the power diagram of which we are

attempting to calculate the position with respect to S is on S. Explicitly this means the power

circle of σi, i = 1, 2, 3, C123 lies on S, so, we need to determine how our perturbation scheme will

affect the perturbed center of C123.

Without loss of generality assume σ3 is the point which is going to be perturbed. This

perturbation scheme will cause the center of C123 to move away from the perturbed point in the

direction of the bisector between σ1 and σ2 (see Figure 4.10), hence we can determine how C123

will be perturbed using NDRadicalSide predicate.

Now, NDRadicalIntersection can be evaluated by calculating RadicalIntersection on σi, i =

1, 2, 3, if the result is 0, evaluate NDRadicalSide(σ3, σ2, σ1) if σ1 is the perturbed site, NDRadicalSide(σ1, σ3, σ2)

if σ2 is the perturbed site or NDRadicalSide(σ1, σ2, σ3) if σ3 is the perturbed site (see Algorithm

4).

31

Algorithm 4 NDRadicalIntersection Predicate

//Let σi, i = 1, 2, 3 be three sites and perturb

// be the label of the site to perturb if necessary
//Return NEGATIVE if center of the power circle C123

// is inside S.
radInt← RadicalIntersection(σ1, σ2, σ3)
if radInt 6= 0 then

return radInt

end if

if perturb = σ1 then

return NDRadicalSide(σ3, σ2, σ1)
else if perturb = σ2 then

return NDRadicalSide(σ1, σ3, σ2)
else

return NDRadicalSide(σ1, σ2, σ3)
end if

4.10 NDVertexConflict

Now that we have modified RadicalIntersection and RadicalSide to handle degeneracies as well

as presented NDPowerTest, we can create a NDVertexConflict, VertexConflict which handles

degeneracies. We will begin by first simplify to predicate to simply return true if the vertex q

is in conflict with C012, and false otherwise. Creating NDVertexConflict is simply an issue of

substituting NDRadicalSide for RadicalSide, NDRadicalIntersection for RadicalIntersection, and

handling the unmodified Orientation predicate. The first two are trivial, and the final can easily

be achieved by evaluating NDPowerTest in the case of Orientation = 0 (see Algorithm 5). Before

continuing we should also note that instead of handling the special case where the inversion site

is also the the perturbed site, we simply return the predicate NDVertexConflict(σ1, σ2, σ0, q),

because it has the same result since the perturbation scheme is consistent, and we maintain the

counter-clockwise ordering of σi, i = 0, 1, 2.

4.11 NDEdgeConflict

Next we discuss the EdgeConflict Predicate. This predicate takes four sites si, i = 0, 1, 2, 3 which

defines α01, the bisector between s0 and s1 with endpoints defined by s0, s1, s2 and s0, s3, s2

32

Algorithm 5 NDVertexConflict Predicate

//Let si, i = 0, 1, 2 be three sites ordered counter clockwise which form
// the tritangent voronoi circle C012, and q be our query site.
//Return true if the sign of the additively weighted distance
// of q from C012 is negative and false otherwise,
// using the perturbation method presented in 4.6

perturbSite← GetSiteToPerturb(s0, s1, s2, q)
if perturbSite = s0 then

return NDVertexConflict(s1, s2, s0, sq)
end if

σ1 ← invert(s1, s0)
σ2 ← invert(s2, s0)
σq ← invert(q, s0)
orient← Orientation(σ1, σ2, σq)
radInt← NDRadicalIntersection(σ1, σ2, σq,perturbSite)
radSide← NDRadicalSide(σ1, σ2, σq,perturbSite)
powTest← NDPowerTest(σ1, σ2, σq,perturbSite)
if orient = 0 then

return (powTest < 0)
else if radInt > 0 then

return (radSide > 0)
else

return !(orient < 0)
end if

33

oriented counter clockwise, as well as a query site q and a flag specifying if both vertices are

in conflict or not, and determines whether q is in conflict with α01. It is important to note

that if one vertex of an edge is in conflict and the other is not, this predicate is unnecessary, as

we already know that the edge is in conflict. In the original implementation EdgeConflict was

achieved by determining if q is in conflict with the bitangent Voronoi circle C01 defined by s0, s1.

This in turn was calculated in a similar manner to the original implementation of VertexConflict,

via the inversion method.

We now present our method for evaluating the NDEdgeConflict. Recall that it has been

shown by Boissonnat and Karavelas [BK03], that the projection of a cell of the AW-Voronoi

diagram onto a sphere coincides with the intersection of the Power Diagram and the sphere. For

the VertexConflict predicate we use this result to help us determine if the query site is in conflict

with the vertex in question. Once again we will use the same result to help us with EdgeConflict,

as this result also tells us that in R2 while the vertices of the AW-Voronoi cell coincide with

the intersection of the Power Diagram and the unit circle, the faces of the AW-Voronoi cell

corresponds to the sections on the face of of the unit circle between the intersections (see Figure

4.11). Let aij be the section of the unit sphere which corresponds to αij . To determine when

q causes an edge conflict with with edge α01, we simply need to determine if the insertion of q

causes a01 to become disconnected, or non-existent.

We will first describe the case when both vertices are in conflict, and begin by dealing with

the simple case where our query site q causes our inversion pole s0 to become trivial. This can

be determined by simply checking if αq is non-positive. Next we will handle the degenerate

case where, σi, i = 1, 2, 3, q are collinear. This case is also very simple, since the four inverted

weighted points are collinear, we only need to determine if the query site is in between σ1 and σ2,

or if it is in between σ3 and σ2. If this occurs, then we know q will cause a01 to break into two

parts meaning edge conflict. Next we will look at the non trivial and non degenerate cases. We

can simplify this problem by simply realizing that we already know both vertices are in conflict

greatly limiting the number of configurations we must consider resulting in the isConflict case

of Algorithm 6.

Next we will turn to the case when neither of the vertices are in conflict. We begin by realizing

that, we do not need to check for αq being non-positive as we already know that the vertices

34

s1

s2

s3

σ2

σ1

S

s0

σ3

a01

α01

σ0

Figure 4.11: Graphical representation of α01 the AW-Voronoi edge between s0 and s1, and its
correspondence to a01, a section of the unit circle shown in green. The sites si, i = 0, 1, 2, 3 as well
as the corresponding AW-Voronoi diagram are shown in black. The sites transformed by Equation
4.1 into the inverted weighted points σi, i = 0, 1, 2, 3 and the corresponding Power diagram are
shown in red. The unit circle S, as well as the correspondence between the intersection of the
power diagram with S and the projection of the ∂V (s0) onto S are shown in cyan. Note, this
picture is not drawn to scale.

35

are both not in conflict, hence this could not happen. So, the first case which we will want to

handle is the degenerate case where σi, i = 1, 2, 3, q are collinear. As the vertices are both not in

conflict, the only way that this situation could result in an edge conflict, is for σq, σ1 and σ2 to

be on the line in order and σq, σ1 and σ3 to be in a line in order. Now we simply need to do the

same task as before and consider the possible configuration under the presupposition that both

vertices are not in conflict resulting in the else section of Algorithm 6.

Finally, it should be noted that RadicalSide and RadicalIntersection are being used instead

of, their non-degenerate counterparts. Since we already know the result of the perturbation from

the fact that the vertices are in conflict or not, we can use the simpler and faster predicates as

we already know the results of the perturbation. Algorithm 6 describes the full NDEdgeConflict

in pseudo code.

4.12 Algebraic Degree Analysis

We will now analyze the algebraic complexity of the presented non-degenerate predicates, and

compare them to the original predicates. In this section we will continue to refer to the non-

degenerate predicates presented in this paper as ND〈PredicateName〉 and the original predicates

as simply 〈PredicateName〉. We begin by first recalling that Boissonnat et al. [BD05] showed

the degree of the presented versions of Orientation, RadicalSide, RadicalIntersection and the

PowerTest, and Karavelas et al. [KE02] showed the degree of VertexConflict and EdgeConflict

as,

Predicate degree

Orientation 4

RadicalSide 3

RadicalIntersection 6

PowerTest 5

VertexConflict 14

EdgeConflict 14

To evaluate the non degenerate version of these predicates we must first determine the degree

of the OrderOnLine predicate. As OrderOnLine only calls oolTest, we only need to determine

36

Algorithm 6 NDEdgeConflict Predicate

//Let si, i = 0, 1, 2, 3 be four sites which define the bisector of s0 and s1,
// which has endpoints s0, s1, s2 and s0, s3, s1 in counter clockwise
// ordering, and let q be the query site, isConflict denotes if the two
// endpoints are, or are not in in VertexConflict with q.
//Return true if q is in conflict with the edge false if it is not.

σ1 ← invert(s1, s0)
σ2 ← invert(s2, s0)
σ3 ← invert(s3, s0)
σq ← invert(q, s0)
orient12Q← Orientation(σ1, σ2, σq)
orient31Q← Orientation(σ3, σ1, σq)
orient123← Orientation(σ1, σ2, σ3)
ri12Q← RadicalIntersection(σ1, σ2, σq)
ri13Q← RadicalIntersection(σ1, σ3, σq)
rs1Q2← RadicalSide(σ1, σq, σ2)
rs1Q3← RadicalSide(σ1, σ1, σ3)
oolQ13← OrderOnLine(σq, σ1, σ3)
oolQ12← OrderOnLine(σq, σ1, σ2)
if isConflict then

if αq ≤ 0 then

return true

else if orient123 = 0 && orient12Q = 0 && orient31Q = 0 then

return (oolQ12 || oolQ13)
else if !((ri12Q ≥ 0 && rs1Q2 < 0)&&(ri13Q ≥ 0 && rs1Q3 < 0)) then

return true

else if orient123 ≥ 0 then

return (orient12Q ≤ 0 && orient31Q ≤ 0)
else

return (orient12Q ≤ 0 || orient31Q ≤ 0)
end if

else

if orient123 = 0 && orient12Q = 0 && orient31Q = 0 then

return (oolQ12 && oolQ13)
else if !((ri12Q ≥ 0 && rs1Q2 < 0)&&(ri13Q ≥ 0 && rs1Q3 < 0)) then

return false

else if orient123 ≥ 0 then

return (orient12Q ≤ 0 || orient31Q ≤ 0)
else

return (orient12Q ≤ 0 && orient31Q ≤ 0)
end if

end if

37

the degree of oolTest. Recall that our transformation computes a value αi with respect to our

pole sj , for each site si with center pi and then defines their center by pi

αi
. Also note that if si

and sj do not hide each other then αi > 0 [BK03], and when αi ≤ 0 these predicates are not

needed.

Without loss of generality, recall the standard oolTest can be defined on two points pi =

(x
′
i, y
′
i), i = 1, 2 in R2 as

sign





∣

∣

∣

∣

∣

∣

1 x
′
1

1 x
′
2

∣

∣

∣

∣

∣

∣



 = sign





∣

∣

∣

∣

∣

∣

1
x
′
1

α1

1
x
′
2

α2

∣

∣

∣

∣

∣

∣



 = sign





∣

∣

∣

∣

∣

∣

α1 x1

α2 x2

∣

∣

∣

∣

∣

∣





which has degree 3, which follows, OrderOnLine has degree of 3. As OrderOnLine does not raise

the algebraic degree of any of the non degenerate predicates, NDVertexConflict and NDEdgeCon-

flict both have an algebraic degree of 6 which is smaller then VertexConflict and EdgeConflict’s

original degree of 14.

New Predicate degree Old Predicate degree

Orientation 4 - -

NDRadicalSide 3 RadicalSide 3

NDRadicalIntersection 6 RadicalIntersection 6

NDPowerTest 5 PowerTest 5

NDVertexConflict 6 VertexConflict 14

NDEdgeConflict 6 EdgeConflict 14

4.13 Experimental Results

The predicate NDVertexConflict, has been optimized to reduce redundant computation between

predicates, and is implemented in CGAL [CGA]. Also exact predicates are implemented via

a filtered traits class which supports dynamic filtering in CGAL through the Filtered exact

mechanism [HB01], and the CORE [gNYU] library. The Filtered exact mechanism allows for the

slower exact predicates to be evaluated only when necessary. Timings were calculated on a Dell

600m with a Pentium M 1.6GHz processor with 512MB RAM, running Linux.

38

Experimental results for time comparisons were calculated by randomly generating 1024 sites

and for each set of four sites si, i = 1, . . . , 4 an AW-Voronoi vertex is created from s1, s2, s3.

The site s4 is then used to evaluate the vertex conflict predicate 50, 000 times to minimize any

system overhead, as well as the start up cost of creating the AW-Voronoi vertex. This process

was then again done for the AW-Voronoi vertex of s2, s3, s4 with s1 as the query site, s3, s4, s1

as an AW-Voronoi vertex with s2 as the query site and s4, s1, s2 as the AW-Voronoi vertex with

s3 as the query site. This process was timed on both predicate, across ten datasets to ensure

consistency. The NDVertexConflict predicate performed 39% better then the origional predicate

in the the case where the AW-Voronoi vertex was not an infinite vertex, and performed 66%

better when the AW-Voronoi vertex was an infinite vertex.

Next, experimental results with respect to filter failures were calculated. Filter failure testing

was accomplished by generating a set of highly degenerate sites as follows. Create an AW-

Voronoi diagram of 1000 ± 100 voronoi vertices, then let the set of tritangent voronoi circles

which correspond to the voronoi vertices of the input set be our new test set. The new test set

would now be a highly degenerate set of 1000± 100 sites. We then repeatedly calculate the AW-

Voronoi diagram of this input set but perturbed the input sites centers and weights by ε, such that

0 ≤ ε < E where at every iteration E was incremented by 1x10−16 for 1x10−16 ≤ E < 5 ∗ 10−14.

NDVertexConflict experimentally had 10 − 20% fewer filter failures then the origonal vertex

conflict predicate. This results in machine precision being sufficent for NDVertexConflict where

the origional predicate needed to result to the slower exact computation version of its predicate

(Figure 4.12).

4.14 Further Work

While NDEdgeConflict has been implemented in CGAL, this work could be extended by first

optimizing the NDEdgeConflict predicate by reducing redundant determinant computations, and

running experimental results. This could further be extended by sharing the substantial number

of calculations which are first done in NDVertexConflict then again in NDEdgeConflict, but

this would require small modifications to the algorithm. Sharing these calculation could further

reduce the number of filter failures, and decrease the amount of time required to calculate the

39

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5e-15 1e-14 1.5e-14 2e-14 2.5e-14 3e-14 3.5e-14 4e-14 4.5e-14 5e-14

N
um

be
r

O
f F

ilt
er

 F
ai

lu
re

s

The perturbed value ε

Filter failures in nearly degerate input

VertexConflict
NDVertexConflict

Figure 4.12: perturb constant vs. number of filter failures for nearly degenerate case of the
original predicates (red) and NCVertexConflict (green).

conflict region of a query site. Another further extension would be to investigate degeneracies in

R3 and handle them via the method presented above.

40

Appendix

Proofs

This section contains miscellaneous proofs which are referred to in the paper.

A.1 Increasing the Weights of the Generator Sites in the

AW-Voronoi Diagram does not change the Diagram

Our goal is to prove that increasing the weights of the generator sites of the AW-Voronoi diagram

of Rd does not change the diagram. Let si, sj be two sites in Rd, k ∈ R, and define s
′
i =

(pi, wi + k), s
′
j = (pj , wj + k) of Rd. Note that if k < 0 then we are actually decreasing the

weights of si, sj . It is clear that,

d+(s
′
i, x) = d+(s

′
j , x)

‖pi − x‖ − (wi + k) = ‖pj − x‖ − (wj + k)

‖pi − x‖ − wi = ‖pj − x‖ − wj

d+(si, x) = d+(sj , x)

Hence increasing the weights by a constant factor does not modify the diagram.

A.2 The Bisectors of a AW-Voronoi Diagram in 2D are

Hyperbolic Arcs

Our goal is to prove that the bisectors of the AW-Voronoi diagram of a set of additively weighted

points in R2 are hyperbolic arcs. It is straightforward to see this as the bisector of the additively

41

p

ai aj

wi

wj

ci cj

Figure A.1: A picture of two sites with a line segment connecting their centers

weighted sites si, sj is defined as the the locus of points x ∈ R2 such that,

d+(si, x) = d+(sj , x)

‖pi − x‖ − wi = ‖pj − x‖ − wj

‖pi − x‖ − ‖pj − x‖ = wi − wj

So the bisector of si, sj consists of the locus of points such that the difference between the distance

pi and pj is the constant wi − wj . Which is the same as the hyperbola with focii pi and pj . We

should also restate that this holds when the weights are negative as well as zero, since increasing

the weights by a constant factor will not change the diagram (see proof A.1).

A.3 The Bisectors of a Power Diagram in 2D are Lines

Our goal is to prove that the bisectors of the power diagram of a set of weighted points (positive,

negative or zero) in R2 are lines. We will begin by showing the bisectors are straight for positively

weighted points. Let si and sj be two sites in R2 such that wi, wj > 0 and let segment cicj be

the line segment connecting the centers of si and sj . Also, define p, the point on cicj such that

dp(si, p) = dp(sj , p). To show the bisectors of a power diagram are straight, it suffices to show

that for any point q, which is on the bisector of si and sj , the projection of q onto cicj is p.

42

It is important to note, since q is on the bisector of si and sj :

dp(si, q) = dp(sj , q)

(q − ci)
2 − w2

i = (q − cj)
2 − w2

j

(q − ci)
2 − (q − cj)

2 = w2
i − w2

j (A.1)

Finally we will label the point q′ the projection of q onto segment cicj . For simplicity we

define ai = (q′− ci), aj = (q′− cj), b = (q′−q) (see Figure A.1). Using the Pythagorean theorem

we get:

(q − ci)
2 = a2

i + b2 (A.2)

(q − cj)
2 = a2

j + b2 (A.3)

And subtracting (A.2) and (A.3):

(q − ci)
2 − (q − cj)

2 = a2
i − a2

j (A.4)

Combining (A.1) with (A.4) results in:

a2
i − a2

j = w2
i − w2

j

a2
i − w2

i = a2
j − w2

j

(q′ − ci)
2 − w2

i = (q′ − cj)
2 − w2

j

dp(si, q
′) = dp(sj , q

′)

But this means that q′ is the point which is equidistant from si and sj which is on cicj , i.e.

q′ = p. So, the bisectors of a power diagram of positively weighted points are straight lines.

Note, this also holds when wi = 0 and/or wj = 0.

Next, we consider negatively weighted sites. Let s and s′ be two sites such that c = c′, w′ < 0

and w = |w′|. In this case we refer to s as the positively weighted point equivalent to s′. Recall

that the the power of a point x ∈ R2 to a site si ∈ R2 is defined as:

43

dp(si, x) = (x− ci)
2 − w2

i

This means that {∀x|x ∈ R2 : dp(s, x) = dp(s
′, x)}, so for any negatively weighted site, s′ we

could substitute its positively weighted equivalent without changing the cell of s′; also note that

the reverse is true. Thus the bisectors in a power diagram containing sites with positive, negative

and/or zero weights are straight.

A.4 Parabolas of a beach line intersect at two points

Our goal is to prove that two parabolas along the beach line intersect at two points. We will

begin by first deriving an equation for a parabola of the sweep line and then showing our main

goal. Let s0 = (x0, y0) be a point, l be the current sweep line, and P be the parabola defined by

s0 and l. Since a parabola geometrically is all the points p = (x, y), equidistant between a point

and a line P can be defined algebraically as,

(y − l)2 = (x− x0)
2 + (y − y0)

2

y2 − 2yl + l2 = x2 − 2xx0 + x2
0 + y2 − 2yy0 + y2

0

2yy0 − 2ly = x2 − 2xx0 + x2
0 + y2

0 − l2

2y(y0 − l) = x2 − 2xx0 + x2
0 + y2

0 − l2

y =
x2 − 2xx0 + x2

0 + y2
0 − l2

2(y0 − l)
(A.5)

Let, two points si = (xi, yi), i = 0, 1 and sweepline l define parabolas Pi, i = 0, 1 respectively.

Also, let p = (x, y) be the points equidistant from s0, s1 and l, and note that p corresponds to

the intersections of P0 and P1. Let sweepline l be y = 0, assume x0 = 0 and x1 ≥ x0 (see Figure

A.2).

Then we have parabolas P0 and P1 given by

y =
x2 + y2

0

2y0

y =
x2 − 2xx1 + x2

1 + y2
1

2y1

44

 0

 0

s0

l

s1

p

p

Figure A.2: Intersecting parabolas at points p, Sweep line l in green, parabola P0 and associated
focus s0 in blue, parabola P1 and associated focus s1 in red

respectively. Hence x satisfies the equation,

x2 + y2
0

2y0
=

x2 − 2xx1 + x2
1 + y2

1

2y1

x2

2y0
+

y2
0

2y0
−

x2

2y1
+

2xx1

2y1
−

x2
1 + y2

1

2y1
= 0

(

1

2y0
−

1

2y1

)

x2 +
2x1

2y1
x +

y2
0

2y0
−

x2
1 + y2

1

2y1
= 0

and we can solve for the intersection points by solving the quadratic equation. So to show

the parabolas of a beach line intersect at 2 points it would suffice to show the discriminant,

∆ = b2 − 4ac > 0 where,

a =
1

2y0
−

1

2y1
=

y1 − y0

2y0y1

b =
2x1

2y1
=

2x1y0

2y0y1

c =
y2

0

2y0
−

x2
1 + y2

1

2y1
=

y2
0y1 − x2

1y0 − y0y
2
1

2y0y1

45

So plugging this into ∆ we get,

∆ =

(

2x1y0

2y0y1

)2

− 4

(

y1 − y0

2y0y1

)(

y2
0y1 − x2

1y0 − y0y
2
1

2y0y1

)

=
x2

1y
2
0

y2
0y2

1

−
(y1 − y0)(y

2
0y1 − x2

1y0 − y0y
2
1)

y2
0y2

1

=
x2

1y
2
0 − y2

0y1(y1 − y0) + x2
1y0(y1 − y0) + y0y

2
1(y1 − y0)

y2
0y2

1

=
x2

1y
2
0 − y2

0y2
1 + y3

0y1 + x2
1y0y1 − x2

1y
2
0 + y0y

3
1 − y2

0y2
1

y2
0y2

1

=
x2

1y0y1 + y3
0y1 − 2y2

0y2
1 + y0y

3
1

y2
0y2

1

=
y0y1(x

2
1 + y2

0 − 2y0y1 + y2
1)

y2
0y2

1

=
x2

1 + (y0 − y1)
2

y0y1

and since x1, y0, y1 > 0, and (y0 − y1)
2 ≥ 0, ∆ is positive. Hence we have two solutions. One

thing to note, when y0 = y1, hence a = 0 and −b±
√
b2−4ac

2a =∞. This case must be handled with

care since p is the midpoint of the segment s0s1, and the second intersection point is at infinity.

46

Bibliography

[Aur91] Franz Aurenhammer. Voronoi diagrams a survey of a fundamental geometric data

structure. ACM Comput. Surv., 23(3):345–405, 1991.

[BD05] Jean-Daniel Boissonnat and Christophe Delage. Convex hulls and voronoi diagrams

of additively weighted points. In 13th European Symposium on Algorithms, pages

367–378, 2005.

[BK03] Jean-Daniel Boissonnat and Menelaos I. Karavelas. On the combinatorial complex-

ity of euclkirkpatricknoi cells and convex hulls of d-dimensional spheres. In SODA

’03: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete al-

gorithms, pages 305–312, Philadelphia, PA, USA, 2003. Society for Industrial and

Applied Mathematics.

[CGA] CGAL. Computational geometry algorithms library. http://www.cgal.org/.

[Des28] Rene Descartes. Le monde, ou traitè de la lumiére, 1628.

[Dir50] Gustave Lejeune Dirichlet. Über die reduktion der positiven quadratischen formen

mit drei unbestimmten ganzen zahlen. Journal für die Reine und Angewandte Math-

ematik, pages 209–227, 1850.

[DL78] Robert L. (Scot) Drysdale and D.T. Lee. Generalized voronoi diagrams in the plane.

In 16th Allerton Conf. Commun. Control Comput., pages 833–842, 1978.

[FG00] Pascal Jean Frey and Paul-Louis George. Mesh Generation: Application to Finite

Elements. Hermes Science, 2000.

[For86] S Fortune. A sweepline algorithm for voronoi diagrams. In SCG ’86: Proceedings of

the second annual symposium on Computational geometry, pages 313–322, New York,

NY, USA, 1986. ACM Press.

[gNYU] Exact Geometric Computation group New York University. Core.

http://www.cs.nyu.edu/exact/.

47

[HB01] Christoph Burnikel Sylvain Pion Herv Brnnimann. Interval arithmetic yields efficient

dynamic filters for computational geometry. Discrete Applied Mathematics, pages

25–47, 2001.

[HTK+85] L Hoofd, Z Turek, K Kubat, BEM Ringnalda, and S Kazda. Variability of intercap-

illary distance estimated on histological sections of rat heart. Oxygen transport to

tissue VII, 1985.

[Kar01] Menelaos I. Karavelas. Proximity Structures for Moving Objects in Constrained and

Unconstrained Environments. PhD thesis, Stanford University, 2001.

[KE02] Menelaos I. Karavelas and Ioannis Z. Emiris. Predicates for the planar additively

weighted voronoi diagram. Technical Report ECG-TR-122201-01, INRIA Sophia-

Antipolis, 2002.

[Kir79] David Kirkpatrick. Efficient computation of continuous skeletons. In 14th IEEE

Symposium on Foundations of Computer Science, pages 18–27, 1979.

[KMM93] Rolf Klein, Kurt Mehlhorn, and Stefan Meiser. Randomized incremental construction

of abstract voronoi diagrams. Computational Geometry: Theory and Application,

3:157–184, 1993.

[KY02a] Menelaos I. Karavelas and Mariette Yvinec. Dynamic additively weighted voronoi

diagrams in 2d. In 10th European Symposium on Algorithms, pages 586–598, 2002.

[KY02b] Menelaos I. Karavelas and Mariette Yvinec. Dynamic additively weighted voronoi

diagrams in 2d. Technical Report ECG-TR-122201-01, INRIA Sophia-Antipolis, 2002.

[KY06] Menelaos Karavelas and Mariette Yvinec. 2d apollonius graphs (delaunay graphs of

disks). In CGAL Editorial Board, editor, CGAL-3.2 User and Reference Manual.

CGAL, 2006.

[LD81] D.T. Lee and Robert L. (Scot) Drysdale. Generalization of voronoi diagrams in the

plane. SIAM J. Comput., 10:73–87, 1981.

48

[OBSC00] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial tessel-

lations: Concepts and applications of Voronoi diagrams. Probability and Statistics.

Wiley, NYC, 2nd edition, 2000.

[Sha48a] Claude Elwood Shannon. A mathematical theory of communication. Bell System

Technical Journal, 27:379–423, July 1948.

[Sha48b] Claude Elwood Shannon. A mathematical theory of communication. Bell System

Technical Journal, 27:623–656, October 1948.

[Sha85] Micha Sharir. Intersection and closest-pair problems for a set of planar discs. SIAM

J. Comput., 14:448–468, 1985.

[Sno54] John Snow. Report on the cholera outbreak in the parish of st james, westminster

during the autumn of 1854. Medical Times, pages 39–54, 1854.

[TH96] Hai Tao and Thomas Huang. Multi-scale image warping using weighted voronoi

diagram. In International Conference on Image Processing, pages 241–244, 1996.

[Thi11] Alfred H. Thiessen. Precipitation averages for large areas. Monthly Weather Review,

39(7):1082–1084, 1911.

[Vor07] Georgy Voronoi. Nouvelles applications des paramètres continus à la théorie des

formes quadratiques. Journal für die Reine und Angewandte Mathematik, pages 97–

178, 1907.

[Yap85] Chee-Keng Yap. An o(n log n) algorithm for the voronoi diagram of a set of simple

curve segments. Technical Report 43, Courant Institute New York University, 1985.

[Yap87] Chee-Keng Yap. An o(n log n) algorithm for the voronoi diagram of a set of simple

curve segments. Discrete & Computational Geometry, 2:365–393, 1987.

49

